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A Choosing r for r-robustness

Proposition 1. For any input and perturbation, a necessary requirement for a VAE with a Gaussian encoder
to satisfy r-robustness is that

r >

p
2Tr(⌃(x)) +O(") (1)

where ⌃(x) = J✓(µ�(x))�
2
�(x)J

T
✓ (µ�(x)), (J✓(µ�(x))i,j = @g✓(µ�(x))i/@(µ�(x))j, and O(") represents higher

order terms that tend to zero in the limit ��(x)! 0.

We provide empirical confirmations in Appendix D.1.1 that show that the r for r-robustness scales with the
encoder variance.

Proof. Let g✓(µ�(x)) be the result of mapping to the encoder mean (µ�) and then decoding to the likelihood
mean (g✓), and �(x) = g✓(µ�(x) + ⌘ � ��(x))� g✓(µ�(x)) we want to find a bound for r for which:

p(||�(x)||2  r) > p(||�(x)||2 > r) (2)

where as before ⌘ ⇠ N (0, I).

Here we can invoke Taylor’s theorem on g✓(µ�(x)+⌘���(x)) around the deterministic mapping µ�(x). Namely,
if we assume that all terms in Hessian of g✓(µ�(x) are finite (i.e. |@2

g✓(µ�(x)i/@µ�(x)jµ�(x)k| < 18i, j, k),
then we have:

g✓(µ�(x) + ✏) = g✓(µ�(x)) + J✓(µ�(x))(⌘ � ��(x)) +O(") (3)

where O(") represents asymptotically dominated higher order terms that go to zero in the limit of small ��(x))
and J✓ is defined element-wise as:

J✓(µ�(x))i,j =
@g✓(µ�(x))i
@(µ�(x))j

(4)

Note that J✓(µ�(x))(⌘ � ��(x)) is distributed according to the multivariate Gaussian

N (0,J✓(µ�(x))�
2
�(x)J

T
✓ (µ�(x)))

Given these definitions

p(||�(x)||2  r) > p(||�(x)||2 > r) (5)

, p(||�(x)||2  r) > 0.5 (6)

, p(||J✓(µ�(x))(⌘ � ��(x)) +O(")||2 < r) > 0.5 (7)

, p(||J✓(µ�(x))(⌘ � ��(x)) +O(")||22 < r
2) > 0.5 (8)

We must now consider the distribution of the square norm of E(x) = J✓(µ�(x))(⌘ � ��(x)). Let

Q(E(x)) = ||E(x)||22 = E(x)TE(x) (9)

⌃(x) = J✓(µ�(x))�
2
�(x)J

T
✓ (µ�(x)) (10)

Y(x) = ⌃(x)�
1
2E(x) (11)
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Given that we restrict ourselves to positive activation functions, J✓ is positive and ⌃(x) will be positive semi
definite and is invertible. As such we have Q(E) = Y

T (x)⌃(x)Y(x).

Using the spectral decomposition theorem we can write that ⌃(x) = P
T (x)⇤(x)P(x) where P

T (x)P(x) = I

and ⇤(x) is the diagonal matrix of the eigenvalues of ⌃(x), �1, . . . ,�dX , where dX is the dimensionality of the
data-space. Given that ⌃(x) is positive semi definite ⇤(x) will only have positive values.

Let U(x) = P(x)Y(x) = P(x)⌃(x)�
1
2E(x), which is multivariate Gaussian with identity matrix and zero mean.

We have that:

Q(E) = Y
T (x)⌃(x)Y(x) (12)

= Y
T (x)PT (x)⇤(x)P(x)Y(x) (13)

= U
T (x)⇤(x)U(x) (14)

As such:

dXX

i=1

(Ei)
2 = U

T (x)⇤(x)U(x) =
dXX

i=1

�i(Ui(x))
2
, �i(Ui(x))

2
⇠ �

✓
1

2
, 2�i

◆
(15)

This comes from the fact that for �iX,X ⇠ �
�
1
2 , 2

�
we have that �iX ⇠ �

�
1
2 , 2�i

�
.

To establish a lower bound on r, we use Markov’s inequality which states that:

p(||E(x) +O(")||22 > r
2) <

E ||E(x) +O(")||22
r2

(16)

Here E ||E(x)||22 = E
PdX

i=1(Ei(x))2 = E
PdX

i=1(�i(Ui)2(x))2, which is simply
PdX

i=1 �i.

Recall that we want: p(||E(x) +O(")||22 > r
2) < 0.5. As such

r >

vuut2
dXX

i=1

�i +O(") =
p
2Tr(⌃(x)) +O(") (17)

B Margin for r-robustness in X

Theorem 1. Consider a VAE with a diagonal-variance Gaussian encoder, an input x, and an output margin
r 2 R such that the VAE is r-robust to the stochasticity of the encoder when the x is unperturbed as per (2).
Assuming standard regularity assumptions (discussed in the proof) hold for µ�(x), then

R
r
X (x) �

(mini ��(x)i)��1(p(||�(x)||2  r))

||J
µ
�(x)||F

+O(") (4)

where O(") represents higher order dominated terms that disappear in the limit of small perturbations, ��1 is
the probit function, Jµ

�(x)i,j = @µ�(x)i/@xj is the Jacobian of µ�(x), and || · ||F is the Frobenius norm.

Proof. Suppose we have an r for which r-robustness is satisfied before any perturbation is added to the VAE
input. First we want to establish a margin in the latent space Z for which our model is robust given a perturbation
in the latent space.

To do this, we first define

�e(y) = g✓(y)� g✓(µ�(x)), y 2 Z (18)
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where g✓ is the decoder network and y is an arbitrary realization of the latents. Note here that there is an implicit
dependency on x, but as this input is fixed we will ignore this dependency throughout. Let z = µ�(x)+⌘���(x)
be the random variable produced by the embedding, i.e. the latent sampled by the encoder. We want to find a
bound R

r
e for which:

k�zk2  R
r
e , p(||�e(z+ �z)||2  r) > p(||�e(z+ �z)||2 > r) (19)

such that r-robustness is satisfied on the decoder output when we apply a deterministic a perturbation �z of
maximum size R

r
e to the random variable z. Note that all the stochasticity is contained in ⌘.

Let A
r denote the set of �z for which (19) holds and conversely let B

r be the set of �z for which it does not.
By assumption in the Theorem, then 0 2 A

r as the unperturbed input satisfies r-robustness. Moreover, we also
have that this unperturbed input �z has a probability p�(0) := p(||�e(z)||2  r) = p(||�(x)||2  r) > 0.5 of
returning a reconstruction with r of g✓(µ�(x)).

Now we know that z is a Gaussian random variable and so regardless of form of the decoder, p�(�z) := p(||�e(z+
�z)||2  r) must vary smoothly as we change �z. In essence, as we increase the size of the perturbation �z slowly
from zero, the distribution of z+�z will still have most of its mass of the same region z. When coupled with the
fact that we have some “excess probability” p�(0) � 0.5 beyond what it is needed for r-robustness, there must
be at certain degree to which we can increase �z before all this excess probability is “used up”. We can then
use this to construct a bound for Rr

e by considering the minimum �z to break r-robustness in the “worst-case”
setting for the boundary between A

r and B
r.

Intuitively as shown in Figure B.1, and also more formally using the Neyman-Pearson lemma (Neyman & Pearson,
1933) by analogy to the approach of Cohen et al. (2019), this worst case setting will occur when the boundary
between A

r and B
r is a straight line perpendicular to the direction of lowest variance for z (remembering that this

is Gaussian distributed) and �z is increased in this direction of lowest variance. In essence, this is the setup where
our excess probability is used up most quickly for a given k�zk2. By assumption in the theorem statement, we are
using a diagonal covariance encoder and so this direction of lowest variance is the latent variable corresponding
to argmini ��(x)i. Further, by noting that we need only consider the marginal distribution in this dimension,
it is straightforward to see that the bound is reached when

k�zk2 =
⇣
min
i

��(x)i
⌘
��1 (p�(0)) =

⇣
min
i

��(x)i
⌘
��1 (p(||�(x)||2  r)) (20)

where ��1 is the inverse cumulative distribution function for a unit Gaussian, i.e. the probit function. Note
that this yields k�zk2 = 0 if p(||�(x)||2  r) = 0, such we get the excepted result that our margin is zero is
r-robustness only just holds without an input perturbation.

Next we need to relate k�zk2 to k�xk2. Here we can straightforwardly invoke Taylor’s theorem on µ�(x +
�x) around the original input x. Namely, if we assume that all terms in Hessian of µ�(x) are finite
(i.e. |@2µ�(x)i/@xjxk| <18i, j, k), then we have

�z = µ�(x+ �x)� µ�(x) = J
µ
�(x)�x +O(") (21)

where O(") represents asymptotically dominated higher order terms that go to zero in the limit of small �x. We
thus have

k�xk2 
k�zk2
kJ

µ
�(x)kF

+O(") (22)

where O(") again represents asymptotically dominated higher order terms (note though these are not the same
terms as in (21)). To complete the proof we now simply combine this with (20) to give the k�xk2 at which the
bound is reached and thus the R

r
X (x) quoted in the theorem, namely

R
r
X (x) �

(mini ��(x)i)��1(p(||�(x)||2  r))

||J
µ
�(x)||F

+O(") (23)

where the inequality comes from the fact that the �z we derived was the worst possible case (i.e. smallest �z
which might reach the bound).
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Figure B.1: Illustration of the boundary R we are measuring in Z. Red represents spaces where A
r is satis-

fied. Blue represent spaces where B
r is satisfied. The concentric ellipsoids centered on z are the contours of

N (µ�(x),�
2
�(x)). R is the minimum distance � for which A

r is satisfied. The line dividing the two spaces

represent the Neyman-Pearson “worst-case” model and is along the direction of minimum variance, mini �2
�(x)i.

C �-VAE Optimal Posterior

Theorem 2. For a �-VAE, the optimum posterior is:

q�(z|x) / p(z)p✓(x|z)
1/�

Proof. Here we use calculus of variations to obtain optimal posteriors for �-VAEs. The objectives we are
optimising are over the whole dataset D = {xi}, i = 1, .., N , with empirical data density ⇢(x) = 1

N

PN
i �(x�xi).

The evidence lower bound for a �-VAE is

L�(D; ✓,�) = E⇢(x)

⇥
Eq�(z|x) [ log p✓(x|z)]� �KL(q�(z|x)||p(z))

⇤
. (24)

This is easier to work with written explicitly as integrals. Note that as we are going to be finding the optimal
q�(z|x) we must add a constraint so that it integrates to 1.

L�(D; ✓,�) =

Z
dx dz ⇢(x)

⇥
q�(z|x)[ log p✓(x|z)� � log q�(z|x) + � log p(z)] + �(x)(q�(z|x)� 1)

⇤
(25)

For brevity, going forward p✓(x|z) = p, p(z) = ⇡, q�(z|x) = q. We also view L as depending on q, p directly.

To proceed with calculus of variations, we substitute q ! q + ✏, where ✏ is a small function that goes to zero
appropriately fast for large x, z. Thus we expand L to first order in q to find �L

�q . The form of q for which this
gradient is zero gives us the optimum q for this functional.

L�(q + ✏) =

Z
dx dz ⇢(x)

⇥
(q + ✏)[ log p� � log(q + ✏) + � log ⇡] + �(x)(q + ✏� 1)

⇤
(26)

Recall that log(1 + x) ⇡ x to first order. Thus log(q + ✏) ⇡ log q + ✏
q to first order. So,

L�(q + ✏) =

Z
dx dz ⇢(x)q

⇥
log p� � log q + � log ⇡ � �

✏

q

⇤
(27)

+

Z
dx dz ⇢(x)✏

⇥
log p� � log q + � log ⇡ � �

✏

q

⇤
(28)

+

Z
dx dz ⇢(x)�(x)(q � 1) +

Z
dx dz ⇢(x)�(x)✏+

Z
dx dz ⇢(x)O(✏2). (29)
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Rearranging we find

L�(q + ✏) =L�(q) +

Z
dx dz ⇢(x)✏

⇥
log p� � log q + � log ⇡ � � + �(x)

⇤

+

Z
dx dz ⇢(x)O(✏2) (30)

=L�(q) +

Z
dx dz

�L�

�q
✏+

Z
dx dz ⇢(x)O(✏2) (31)

At the optimum value of q the functional will have vanishing functional derivative �L�

�q , so

log p� � log q + � log ⇡ � � + �(x) = 0, (32)

log q =
1

�
log p+ log ⇡ + C(x). (33)

Exponentiating we find the optimal q to be

q�(z|x) =
1

Z(x)
p✓(x|z)

1
� p(z), (34)

where Z is an appropriate normalising constant. This completes the proof.

D Empirical Calculation of the Bounds

D.1 Estimating the minimum r

D.1.1 Results

(a) (b)

Figure D.2: Here we show that the minimum r for which p(||�(x)||2  r) = 0.5 increases with � and ⌧ , where �

is the penalty applied to the KL in �-VAEs and ⌧ is an o↵set added to the encoder standard deviation ��(x).
This probability, estimated as detailed below in Appendix D.1.2, increases with r, but increases more slowly for
large � (a) and large ⌧ (b). In such models the encoding process has higher variance resulting in a greater spread
of reconstructions, confirming Proposition 1 in Appendix A that the minimum r for r-robustness increases with
the encoder variance.
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D.1.2 Algorithm

Algorithm 1: Estimating r

Result: r such that p(||�(x)||2  r) > 0.5
m, step, samples, x, r  0, p(||�(x)||2  r) 0;
while p(||�(x)||2  r) < m do

d {};
for i 1 to samples by 1 do

s ⇠ N (µ�(x),��(x));
sd  ||g✓(s)� g✓(µ�(x))||2;
d.insert(sd);

end

r  r + step ;

p(||�(x)||2  r) Sum(d<r)
nsamples ;

end

D.2 Estimating R
r
X (x)

Algorithm 2: Estimating R
r
X (x)

Result: R
r
X (x) such that p(||�(x, �x)||2  r) > 0.5

step, samples, x, r, p(||�(x, �x)||2  r) 0, Rr
X (x) 10, restarts 5 ;

while p(||�(x, �x)||2  r) < 0.5 do

for j  1 to restarts by 1 do

d {};
for i 1 to samples by 1 do

�x  max damage attack constrained to the norm R
r
X (x);

s ⇠ N (µ�(x+ �x),��(x+ �x))
sd  ||g✓(s)� g✓(µ�(x))||2;
d.insert(sd);

end

R
r
X (x) R

r
X (x)� step;

p(||�(x, �x)||2  r) Sum(d<r)
nsamples ;

end

end
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E �-VAE Sensitivity Experiments

(a) � = 0.1 (b) � = 0.5 (c) � = 1 (d) � = 5 (e) � = 10

(f) VAE Sensitivity (g) Encoder Variance (h) Encoder Jacobian (i) Rr
X (x) bound

Figure E.3: Here we illustrate that �-VAEs, trained MNIST, with higher � penalties generalise better and are
less sensitive to input perturbations. The first row (a)-(e) shows samples drawn from the latent space prior
that are then fed through the VAE decoder. It is clear that as � increases, so too does the quality of generated
samples. (f) shows the sensitivity of the VAE to input perturbations. We add zero-mean Gaussian noise of
variance �

2
✏ to the VAE input to form a noisy input x

⇤ and embedding z⇤. We then measure the likelihood of
the original point x under this noisy embedding. �

2
✏ is thus an approximation of the margin of robustness of

the VAE, if the VAE’s likelihood does not change even for high variance noise, it must have a large margin of
robustness (Rr

X (x)). The likelihood of x is quasi constant, under increasing noise variance, for high values of
�. This supports our analysis that such models have higher Rr

X (x). Figures (g) and (h) show that the encoder
variance and that the norm of the encoder Jacobian (||Jµ

�(x)||F ) increase as � increases, supporting our analysis
that the changes in these values underpin the robustness observed. In (i) we calculate the bound for Rr

X (x) from
Theorem 1 where we ignore higher order terms. We select r such that pAr (x) = 0.9, which is a relatively strict
metric for robustness. In (f-i) confidence intervals correspond to the standard deviations of values over the entire
MNIST dataset. Taken as a whole these experiments support our analysis that the margin R

r
X (x) increases with

� as in Theorem 2, in conjuction with the norm of the encoder Jacobian and the encoder variance, supporting
Theorem 1.
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(a) � = 0.1 (b) � = 0.5 (c) � = 1 (d) � = 5 (e) � = 10

(f) VAE Sensitivity (g) Encoder Variance (h) Encoder Jacobian (i) Rr
X (x) bound

Figure E.4: Here we illustrate that �-VAEs, trained on fashion-MNIST, with higher � penalties generalise better
and are less sensitive to input perturbations. The first row (a)-(e) shows samples drawn from the latent space
prior that are then fed through the VAE decoder. It is clear that as � increases, so too does the quality of
generated samples. (f) shows the sensitivity of the VAE to input perturbations. We add zero-mean Gaussian
noise of variance �

2
✏ to the VAE input to form a noisy input x

⇤ and embedding z⇤. We then measure the
likelihood of the original point x under this noisy embedding. �

2
✏ is thus an approximation of the margin of

robustness of the VAE, if the VAE’s likelihood does not change even for high variance noise, it must have a
large margin of robustness (Rr

X (x)). The likelihood of x is quasi constant, under increasing noise variance, for
high values of �. This supports our analysis that such models have higher R

r
X (x). Figures (g) and (h) show

that the encoder variance and that the encoder Jacobian norm (||Jµ
�(x)||F ) increase as � increases, supporting

our analysis that the changes in these values underpin the robustness observed. In (i) we calculate the bound
for R

r
X (x) from Theorem 1 where we ignore higher order terms. We select r such that pAr (x) = 0.9, which is

a relatively strict metric for robustness. In (f-i) confidence intervals correspond to the standard deviations of
values over the entire fashion-MNIST dataset. Taken as a whole these experiments support our analysis that the
margin R

r
X (x) increases with � as in Theorem 2, in conjuction with the norm of the encoder Jacobian and the

encoder variance, supporting Theorem 1.
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(a) Encoder Variance (b) Encoder Jacobian (c) Rr
X (x) bound

Figure E.5: Here we illustrate that �-VAEs, trained on CIFAR10, with higher � have larger margins of robustness.
Figures (a) and (b) show that the encoder variance and that the encoder Jacobian norm (||Jµ

�(x)||F ) increase as
� increases, supporting our analysis that the changes in these values underpin the robustness observed. In (i)
we calculate the bound for R

r
X (x) from Theorem 1 where we ignore higher order terms. We select r such that

pAr (x) = 0.9, which is a relatively strict metric for robustness. In (a-c) confidence intervals correspond to the
standard deviations of values over the entire dataset. Taken as a whole these experiments support our analysis
that the margin R

r
X (x) increases with � as in Theorem 2, in conjuction with the norm of the encoder Jacobian

and the encoder variance, supporting Theorem 1.

(a) � = 0.1 (b) � = 1 (c) � = 10

Figure E.6: We show reconstructions of noisy data for VAEs trained with � 2 {0.1, 1, 10} on Fashion-MNIST.
The first row corresponds to the original image, the second to noised a image x + ✏ where ✏ ⇠ N (0, (0.52)I).
Clearly larger � models are less sensitive to noise, supporting our analysis that increasing � increases the margin
of robustness to perturbations.
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F Network Hyperparameters

All networks used the same hyperparameters. Namely networks were trained for 100 epochs with the Adam
optimizer, with a learning rate of 0.001 and a batch size of 512.

For MNIST and fashion-MNIST networks for the encoder variance and encoder mean were two hidden layer
multi-layer perceptrons (MLPs) with 400 units per layer, which shared their first layer. Similarly the decoder
was a two layer MLP with 400 units per layer. For these datasets we used a latent space size of 20.

For CIFAR10 we used 4-layer MLPs with 400 units per layer for the encoder and decoder networks and used a
64-dimensional latent space.
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