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A PROOFS OF ANALYTICAL RESULTS

A.1 Proof of Proposition 2.1

Proof. Our proof follows closely to that of Singh et al. (2009) for the capacity of the one-bit quantized Gaussian
channel. We start by writing I(L;Y ) = H(Y ) −H(Y | L), where H denotes the entropy of a discrete random
variable (Cover and Thomas, 2006). H(Y ) is maximized at 1 bit, when p(Y = 1) = p(Y = −1) = 0.5. Expanding
H(Y | L), we have H(Y | L) = EpL [hb(p(Y = 1 | L))] = EpL [hb(f(L))].

For distribution pL, consider its symmetrized distribution p̃L(`) = 1
2pL(`) + 1

2pL(−`) and the expectation of any
even function e(·) over p̃L(`):
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Observe that hb is symmetric about 0.5, i.e. for x ∈ [−0.5, 0.5], hb(0.5 + x) = hb(0.5− x). Combining this with
the fact that f(`)− 0.5 is an odd function (i.e. f(−`)− 0.5 = −(f(`)− 0.5)), we have

hb(f(−`)) = hb(f(−`)− 0.5 + 0.5) = hb(−(f(`)− 0.5) + 0.5) = hb((f(`)− 0.5) + 0.5) = hb(f(`))

and so hb(f(`)) is an even function. Therefore, the conditional entropy H(Y | L) is equivalent when L is
distributed as pL or p̃L, i.e. Ep̃L [hb(f(L))] = EpL [hb(f(L))].

We also have
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and so under p̃L, p(Y = 1) = Ep̃L [f(L)] = 0.5 and H(Y ) is maximized at 1 bit.

Combining these facts, we have

I(p̃L, f) = 1− Ep̃L [hb(f(L))] = 1− EpL [hb(f(L))] ≥ hb(EpL [f(L)])− EpL [hb(f(L))] = I(pL, f)

and so symmetrizing a distribution can only increase I(L;Y ). Furthermore, since `2 is even we have Ep̃L [L2] =
EpL [L2]. Therefore, when evaluating the capacity of channel with transition probability f under power constraint
P , we only consider symmetric distributions since for every pL ∈ CP there exists a symmetric distribution
p̃L ∈ CP satisfying I(p̃L, f) ≥ I(pL, f). We solve for the capacity-achieving distribution over the set of symmetric
distributions in CP :

p∗L = arg max
EpL [L2]≤P
pL(`)=pL(−`)

I(pL, f) (1)

= arg max
EpL [L2]≤P
pL(`)=pL(−`)

1− EpL [hb(f(L))]

= arg min
EpL [L2]≤P
pL(`)=pL(−`)

EpL [hb(f(L))] (2)

Since hb(f(`)) is even, hb(f(`)) = hb(f(|`|)) = hb(f(
√
`2)). Omitting calculations, we have

d2

du2
hb(f(

√
u)) = (log2 e)

tanh(
√
u

2 ) sech2(
√
u

2 )

16
√
u

which is non-negative for u > 0 and therefore hb(f(
√
u)) (which is continuous on u ≥ 0) is convex on u ≥ 0. We

then have

EpL [hb(f(L))] = EpL
[
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(
f
(√
L2
))] (a)

≥ hb

(
f
(√

EpL [L2]
)) (b)

≥ hb
(
f
(√
P
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where Jensen’s inequality is used in (a) (Cover and Thomas, 2006), with equality if and only if L2 is constant,
and (b) results from the power constraint EpL [L2] ≤ P and the fact that hb(f(

√
u)) is monotonically decreasing

for u ≥ 0. For symmetric pL, equality in (a) is achieved if pL = Bt for some t > 0. By setting t =
√
P , equality

in (b) is also achieved, and so B√P minimizes (2) (and therefore maximizes (1)). The maximum value in (1),
which is equal to capacity C, is then

I(B√P , f) = 1− EB√P [hb(f(L))] = 1− 1

2
hb(f(

√
P ))− 1

2
hb(f(−

√
P )) = 1− hb(f(

√
P )).

A.2 Proof of Proposition 2.2

Proof. Since pθ is log-concave, then pθ|Ln−1
(θ) ∝ pθ(θ)

∏n−1
i=1 p(Y = yi | xi, θ) is also log-concave since it is the

product of log-concave functions (Saumard and Wellner, 2014). Since marginals of log-concave distributions are
log-concave (Lovász and Vempala, 2007), Ln = xTnθ is log-concave for any xn under the distribution pθ|Ln−1.
However, we know from Proposition 2.1 that p∗L for logistic regression is a sum of mass points, which is not
log-concave. Therefore no xn exists which can induce p∗L from h.

A.3 Proof of Theorem 3.1

Proof. In the following, suppose that pL ∈ CP , and let HpL(Y ) = hb(EpL [f(L)]) and HpL(Y | L) = EpL [hb(f(L))].
f(`) is K1-Lipschitz, where K1 = 0.25, and hb(f(`)) is K2-Lipschitz, where K2 ≈ 0.32.

|I(pL, f)− I(Bt, f)| = |HpL(Y )−HpL(Y | L)− (HBt(Y )−HBt(Y | L))|
≤ |HpL(Y )−HBt(Y ))|+ |HpL(Y | L)−HBt(Y | L)|
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∣∣∣∣



Assume that there exists ε ∈ (0, 0.5) such that ε ≤ EpL [f(L)] ≤ 1− ε. For ` ∈ (ε, 1− ε), hb is log2
1−ε
ε -Lipschitz.

Since ε < EpL [f(L)] < 1−ε by assumption and Bt satisfies ε < EBt [f(L)] < 1−ε since EBt [f(L)] = 0.5, we have
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)
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ε
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To continue, we use the following result from Villani (2008): defining P1(R) := {µ′ : Eµ′ [|L|] < ∞}, for any
µ, ν ∈ P1(R) we have

sup
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where the last inequality is from W1(µ, ν) ≤W2(µ, ν) (Villani, 2008).

To apply this inequality to both expressions in (3), we first verify that pL, Bt ∈ P1(R). EBt [|L|] = t <∞, and

EpL [|L|] = EpL
[√

L2
] (a)

≤
√
EpL [L2]

(b)

≤
√
P <∞

where (a) results from Jensen’s inequality with the concavity of
√
·, and (b) is since EpL [L2] ≤ P by assumption

and
√
· is monotonically increasing. Applying (4) separately to both terms in (3), we have

|I(pL, f)− I(Bt, f)| ≤
(
K1 log2
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ε

)
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)
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Finally, we compute a valid value of ε for all pL ∈ CP . First note that f(`) < 0.5 for ` < 0 and f(`) ≥ 0.5 for
` ≥ 0, implying that f(`) ≤ f(|`|) ∀`. Next note that f(

√
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√
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√
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√
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since f is concave on R≥0. This can be shown by considering

d2

du2
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eu

(1 + eu)3
(1− eu) ≤ 0 ∀u ≥ 0
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Combining these facts, we have

EpL [f(L)] ≤ EpL [f(|L|)] since f(`) ≤ f(|`|)

= EpL
[
f
(√
L2
)]

≤ f
(√

EpL [L2]
)

from Jensen’s inequality with the concavity of f(
√
·)

≤ f(
√
P )

since f(
√
·) is monotonically increasing, and by assumption EpL [L2] ≤ P . Similarly, EpL [1 − f(L)] ≤ f(

√
P ),

and therefore we can set ε = 1− f(
√
P ). Applying this choice of ε to (5) we have

|I(pL, f)− I(Bt, f)| ≤
(
K1 log2

(
f(
√
P )

1− f(
√
P )

)
+K2

)
W2(pL, Bt)

and can set KP = K1 log2

(
f(
√
P )

1−f(
√
P )

)
+K2 to obtain |I(pL, f)− I(Bt, f)| ≤ KPW2(pL, Bt).

Recall that C = maxpL∈CP I(pL, f) = I(B√P , f) and C̃n = maxx∈Un I(pLn|Ln−1
, f). By assumption, P is selected

such that pLn|Ln−1
∈ CP for any x ∈ Un, which implies I(pLn|Ln−1

, f) ≤ C for any x ∈ Un and hence C̃n ≤ C.
Combining these facts, we have

C̃n − I(pLn|Ln−1
, f) ≤ C − I(pLn|Ln−1

, f) = |I(B√P , f)− I(pLn|Ln−1
, f)| ≤ KPW2(pLn|Ln−1

, B√P ).

A.4 Proof of Proposition 3.2

Proof. Adopting notation from Mérigot (2011), let S denote a finite set of points in R, and w : S → R a weight
vector. Define VorwS (p) = {` : ‖`− p‖22 − w(p) ≤ ‖`− q‖22 − w(q) ∀q ∈ S}.

Let µ be a given probability measure with density pL. Consider S = {−t, t}, with the corresponding measure
Bt =

∑
p∈S

1
2δp = 1

2δ−t + 1
2δt. Let w∗(−t) = 2tmedpL(L), and w∗(t) = −2tmedpL(t). We have
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∗
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= {` : ‖`+ t‖22 − 2tmedpL(L) ≤ ‖`− t‖22 + 2tmedpL(L)}
= {` : ` ≤ medpL(L)}
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∫
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pL(`)d` =
1

2
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∫
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∗
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have
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‖`+ t‖22 pL(`)d`+

∫
Vorw

∗
S (t)
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∫
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∫
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∫
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∫
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A.5 Proof of Corollary 3.2.1

Proof. Let pL ∼ N (µ, σ2). We have EpL [L2] = EpL [L]2 + VarpL(L) = µ2 + σ2, and EpL [|L − medpL(L)|] =

EpL [|L − µ|] = σ
√

2
π (Winkelbauer, 2014). Hence W 2

2 (pL, Bt) = EpL [L2] + t2 − 2tEpL [|L − medpL(L)|] =

µ2 + σ2 + t2 − 2
√

2
π tσ. Completing the square, we have the desired result.

B EXPERIMENT DETAILS

B.1 Selection of Power Constraint

Recall that APM-LR minimizes an objective function consisting of a mixture of two terms, reprinted below:

πn(Ln−1) = arg min
x∈Un

(µTnx)2 +

(√
xTΣnx−

√
2

π
Pn

)2

. (6)

The first term in (6), which is independent of Pn, encourages x to lie orthogonal to the hyperplane posterior
mean, µn. For all such x satisfying µTnx = 0, we have E[Ln] = µTnx = 0 and

E[L2
n] = (µTnx)2 + xTΣnx = xTΣnx ≤ B2λ1(Σn)

where expectations are taken with respect to pLn|Ln−1
. Therefore Pn = B2λ1(Σn) is a valid power constraint for

the set of examples that induce zero-mean input distributions. This set arguably contains the “best” candidate
examples, since if (µTnx)2 � 0 then the objective in (6) will be large. For this reason we set Pn = B2λ1(Σn) in
our experiments, as opposed to the power constraint of B2λ1(µnµ

T
n + Σn) which is valid for all examples but is

loose for examples encouraged by the first term in (6).
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B.2 Dataset Information

In Table 1 we describe the datasets used in our experiments. Several datasets have multiple classes: in this
case, we select a two-class dataset partition by either grouping individual classes together into super-classes, or
simply training on a subset of the classes. In our experiments we treat each class partition as its own dataset,
and refer to each partition by a nickname. All datasets except for clouds, cross, and horseshoe come from the
UCI Machine Learning Repository (Dua and Graff, 2017); several UCI datasets have additional citations, which
are listed next to their names.

Nickname Dataset Class partition
# of

features
# of

examples

vehicle-full
Vehicle Silhouettes
(Siebert, 1987)

Y = −1: ‘saab’ or ‘opel’
Y = 1: ‘bus’ or ‘van’

18 846

vehicle-cars
Vehicle Silhouettes
(Siebert, 1987)

Y = −1: ‘saab’
Y = 1: ‘opel’

18 429

vehicle-transport
Vehicle Silhouettes
(Siebert, 1987)

Y = −1: ‘bus’
Y = 1: ‘van’

18 417

letterDP Letter Recognition
Y = −1: ‘D’
Y = 1: ‘P’

16 1608

letterEF Letter Recognition
Y = −1: ‘E’
Y = 1: ‘F’

16 1543

letterIJ Letter Recognition
Y = −1: ‘I’
Y = 1: ‘J’

16 1502

letterMN Letter Recognition
Y = −1: ‘M’
Y = 1: ‘N’

16 1575

letterUV Letter Recognition
Y = −1: ‘U’
Y = 1: ‘V’

16 1577

letterVY Letter Recognition
Y = −1: ‘V’
Y = 1: ‘Y’

16 1550

austra
Australian Credit

Approval
Y = −1: ‘0’
Y = 1: ‘1’

14 690

wdbc
Breast Cancer

Wisconsin (Diagnostic)
Y = −1: ‘M’
Y = 1: ‘B’

30 569

clouds
Synth1

(Yang and Loog, 2018)
Y = −1: ‘-1’
Y = 1: ‘1’

2 600

cross
Synth2

(Yang and Loog, 2018)
Y = −1: ‘-1’
Y = 1: ‘1’

2 600

horseshoe
Synth3

(Yang and Loog, 2018)
Y = −1: ‘-1’
Y = 1: ‘1’

2 600

Table 1: Full dataset information

B.3 Baseline Methods Details

Below we elaborate on the BALD and InfoGain baseline selection methods:

InfoGain We can directly approximate information gain I(θ;Y | Ln−1) with a Monte Carlo approximation
over s samples from pθ|Ln−1

∼ N (µn,Σn):

I(θ;Y | Ln−1) = hb(Epθ|Ln−1
[f(θTxn)])− Epθ|Ln−1

[hb(f(θTxn))]

≈ hb
(

1

s

s∑
i=1

f(θTi xn)

)
− 1

s

s∑
i=1

hb

(
f(θTi xn)

)
θi ∼ pθ|Ln−1

≈ hb
(

1

s

s∑
i=1

f(θTi xn)

)
− 1

s

s∑
i=1

hb

(
f(θTi xn)

)
θi ∼ N (µn,Σn) (7)

Our “InfoGain” baseline selects the example xn ∈ Un that maximizes the expression in (7), computed in O(sd)
time per candidate example.



BALD Consider a probit regression label distribution p(Y = 1 | L) = Φ(L), where Φ is the standard normal
cumulative distribution function. For pL ∼ N (µ, σ2), Houlsby et al. (2011) use a Taylor expansion in the BALD
algorithm to approximate I(pL,Φ(L)) as

I(pL,Φ(L)) ≈ hb
(

Φ

(
µ√

σ2 + 1

))
−
D exp

(
− µ2

2(σ2+D2)

)
√
σ2 +D2

(8)

where D =
√

π ln 2
2 . By equalizing derivatives at L = 0, we can approximate f(L) ≈ Φ(kL) where k =

√
π
8

(Bishop, 2006). Define L̃ = kL and note that L̃ ∼ N (µ̃, σ̃2) for µ̃ = kµ and σ̃2 = k2σ2. We can then use the
BALD approximation in (8) for logistic regression:

I(pL, f(L)) ≈ I(pL,Φ(kL))

= hb(EpL(Φ(kL)))− EpL(hb(Φ(kL)))

= hb(EpL̃(Φ(L̃)))− EpL̃(hb(Φ(L̃)))

= I(pL̃,Φ(L̃))

≈ hb

(
Φ

(
kµ√

k2σ2 + 1

))
−
D exp

(
− k2µ2

2(k2σ2+D2)

)
√
k2σ2 +D2

Approximating pθ|Ln−1
∼ N (µn,Σn), we have pLn|Ln−1

∼ N (µTnxn, x
T
nΣnxn) and so we can approximate

I(pLn|Ln−1
, f(L)) ≈ hb

(
Φ

(
kµTnxn√

k2xTnΣnxn + 1

))
−
D exp

(
− k2(µTnxn)2

2(k2xTnΣnxn+D2)

)
√
k2xTnΣnxn +D2

(9)

where D =
√

π ln 2
2 and k =

√
π
8 . Our “BALD” baseline method selects the example xn ∈ Un that maximizes

the expression in (9), computed in O(d2) time per candidate example.

Summary For completeness, below we summarize all selection methods used in our experiments. For any
method utilizing a normal approximation to the hyperplane posterior, let pθ|Ln−1

∼ N (µn,Σn). Let θ̂n−1 =

A(Ln−1), D =
√

π ln 2
2 , and k =

√
π
8 .

APM-LR: xn = arg min
x∈Un

(µTnx)2 +

(√
xTΣnx−

√
2

π
Pn

)2

(10)

Uncertainty : xn = arg min
x∈Un

xT θ̂n−1

Random: Select xn uniformly at random from Un
MaxVar : xn = arg max

x∈Un
xTΣnx

InfoGain: xn = arg max
x∈Un

hb

(
1

s

s∑
i=1

f(θTi xn)

)
− 1

s

s∑
i=1

hb

(
f(θTi xn)

)
θi ∼ N (µn,Σn)

BALD : xn = arg max
x∈Un

hb

(
Φ

(
kµTnxn√

k2xTnΣnxn + 1

))
−
D exp

(
− k2(µTnxn)2

2(k2xTnΣnxn+D2)

)
√
k2xTnΣnxn +D2

B.4 Extended Test Accuracy Results

Below we plot average holdout test accuracy against number of queried examples, excluding one initial seed
point selected uniformly at random per class. Error bars show ±1 standard error over 150 trials per method.
For visual clarity, we display different numbers of queried examples for each dataset.
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Figure 1 shows test accuracy across several two-class partitions of the Vehicle Silhouettes dataset (see Table 1).
In vehicle-cars, Uncertainty, InfoGain, and BALD fail to perform as well as MaxVar, Random, and APM-LR. As
noted in Yang and Loog (2018), there are cases where Random sampling — or more generally, selection methods
that encourage dataset exploration — can outperform methods that maximize information. In vehicle-cars, it’s
possible that the “exploration” component in APM-LR encourages the selection of satisfactory examples, which
we investigate further in Section B.6.
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(b) vehicle-cars
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Figure 1: Test accuracy on “Vehicle Silhouettes”

Figure 2 shows test accuracy across several two-class partitions of the Letter Recognition dataset. All partitions
show similar trends to letterDP, which was included in the paper body.
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(b) letterEF
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(c) letterIJ
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(d) letterMN
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(e) letterUV
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Figure 2: Test accuracy on “Letter Recognition”



Figure 3 shows test accuracy across the remaining UCI datasets in Table 1. On wdbc, the active methods appear
to have an average test accuracy that peaks early and then gradually decreases. While this behavior merits
further investigation, we note that it is possible in some cases for a selected subset of the full data pool to
generalize better than when training on the entire pool (Ma et al., 2018).
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(a) austra
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Figure 3: Miscellaneous UCI datasets

Figure 4 shows test accuracy across several synthetic datasets. On clouds and cross, Uncertainty sampling is
outperformed by the other baseline active learning methods, except MaxVar.
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Figure 4: Synthetic datasets



Feedback Coding for Active Learning

B.5 Extended Computational Cost Results

All experiments were run on Intel Xeon Gold 6226 CPUs at 2.7 GHz. In Table 2 we present for all datasets the
cumulative compute time (in seconds) needed for each method to select the first 40 examples (excluding seed
points). In this first table, we exclude the compute time needed to retrain the logistic regression model and
perform the VariationalEM posterior update after each example is selected, since these steps are common to all
selection methods. While some methods do not directly utilize the variational posterior in selecting examples, we
perform variational posterior updates for all data selection methods since we consider the variational posterior
to be part of the Bayesian model produced by the training routine.

APM-LR Uncertainty BALD InfoGain Random MaxVar
vehicle-full 0.173 0.077 2.212 7.166 0.003 0.061
vehicle-cars 0.089 0.039 1.078 3.462 0.002 0.030

vehicle-transport 0.087 0.037 1.036 3.306 0.002 0.029
letterDP 0.336 0.149 4.230 12.755 0.005 0.118
letterEF 0.318 0.143 4.044 12.188 0.005 0.113
letterIJ 0.314 0.139 3.941 11.879 0.004 0.110
letterMN 0.331 0.147 4.170 12.531 0.005 0.117
letterUV 0.330 0.145 4.129 12.429 0.005 0.115
letterVY 0.318 0.143 4.063 12.284 0.004 0.114
austra 0.150 0.063 1.770 5.089 0.003 0.050
wdbc 0.125 0.052 1.480 6.415 0.003 0.042
clouds 0.119 0.053 1.522 2.735 0.002 0.041
cross 0.125 0.053 1.521 2.722 0.002 0.040

horseshoe 0.116 0.053 1.517 2.731 0.002 0.040

Table 2: Cumulative selection time: comparison of median cumulative time (s) for each method to select the
first 40 examples (excluding seed points).

Table 3 isolates the compute time needed for performing VariationalEM at each input, summed over the first
40 examples. Interestingly, methods which are primarily focused on data space exploration (MaxVar, Random)
require more time for variational posterior updating than exploitation methods (Uncertainty). Since Varia-
tionalEM is an iterative procedure that we run with an adaptive stopping rule (with convergence defined as
the relative variational parameter difference falling below 1e−6 between iterations), it presumably requires more
iterations to adjust to significant changes in the posterior distribution due to variability in examples. Although
less accurate of an approximation than VariationalEM, using a Laplace posterior approximation instead would
have a constant update time per method (Jaakkola and Jordan, 2000).

APM-LR Uncertainty BALD InfoGain Random MaxVar
vehicle-full 10.088 4.540 10.118 9.729 7.469 18.064
vehicle-cars 5.420 4.412 5.605 5.475 3.280 4.558

vehicle-transport 9.609 5.814 9.289 9.083 11.216 21.058
letterDP 7.618 6.412 6.904 6.758 10.694 11.851
letterEF 6.866 5.701 6.320 6.160 11.302 10.755
letterIJ 7.367 5.724 6.924 6.708 10.019 9.846
letterMN 8.190 6.281 7.615 7.375 10.082 13.236
letterUV 8.029 6.556 7.137 7.075 10.746 12.585
letterVY 7.463 5.760 7.142 6.910 8.234 9.975
austra 12.513 6.451 12.009 11.645 8.541 13.580
wdbc 17.966 10.880 14.183 13.874 20.763 29.778
clouds 1.221 1.172 1.156 1.322 3.201 5.318
cross 1.386 2.417 1.474 1.537 3.138 4.453

horseshoe 0.996 0.908 0.863 0.931 0.802 1.208

Table 3: Cumulative VariationalEM time: comparison of median cumulative time (s) for each method to
perform VariationalEM over the first 40 examples (excluding seed points).

Table 4 depicts the total compute time needed for selecting each example, performing VariationalEM, and
retraining the logistic regression classifier at each iteration, summed over the first 40 examples. The median



time needed for retraining the logistic regression classifier lies within 0.01 to 0.03 seconds across all methods
and datasets, and therefore contributes only marginally to the total. While the spread of running times is more
narrow than it would be when only evaluating selection time, the same general trend holds that InfoGain is more
expensive than BALD and APM-LR.

APM-LR Uncertainty BALD InfoGain Random MaxVar
vehicle-full 10.288 4.637 12.365 16.943 7.493 18.148
vehicle-cars 5.532 4.474 6.727 8.980 3.306 4.616

vehicle-transport 9.721 5.876 10.341 12.419 11.238 21.116
letterDP 7.992 6.583 11.139 19.534 10.730 11.995
letterEF 7.215 5.868 10.396 18.414 11.330 10.887
letterIJ 7.716 5.892 10.896 18.619 10.048 9.981
letterMN 8.561 6.455 11.813 19.991 10.124 13.374
letterUV 8.399 6.724 11.294 19.552 10.781 12.724
letterVY 7.802 5.931 11.233 19.233 8.260 10.118
austra 12.690 6.538 13.801 16.804 8.574 13.655
wdbc 18.130 10.968 15.711 20.323 20.787 29.842
clouds 1.358 1.241 2.706 4.122 3.224 5.385
cross 1.534 2.490 3.028 4.291 3.159 4.515

horseshoe 1.134 0.978 2.405 3.741 0.819 1.264

Table 4: Cumulative running time: comparison of median cumulative run time (s) for each method to select
each example, perform VariationalEM, and retrain the logistic regression classifier over the first 40 examples
(excluding seed points).

B.6 Failure Mode Analysis

While in many cases APM-LR performs comparably to InfoGain, BALD, and Uncertainty while outperforming
Random and MaxVar, the main exception in our experiments is on vehicle-cars (Figure 1b), where APM-LR,
Random, and MaxVar outperform InfoGain, BALD, and Uncertainty. Conceptually, what differentiates these two
classes of methods is that APM-LR, Random, and MaxVar have explicit exploration components to their selection
policies, while InfoGain, BALD, and Uncertainty only seek to directly maximize information or uncertainty. As
we will demonstrate below, on vehicle-cars this difference in exploration correlates with significant differences in
generalization performance.

To isolate the effect of each term in APM-LR (eq. (10)) — corresponding to exploitation and exploration — we
simulated two pseudo-APM policies where only one of the terms is active at once. In APM-LR-U, examples are
selected that minimize the first term, which has an action similar to uncertainty sampling:

APM-LR-U : xn = arg min
x∈Un

(µTnx)2.

In APM-LR-V, examples are selected that minimize the second term, which prefers examples that probe in
directions of high posterior variance:

APM-LR-V : xn = arg min
x∈Un

(√
xTΣnx−

√
2

π
Pn

)2

.

We start in Figure 5 by plotting generalization performance as in Figure 1b, with the addition of APM-LR-U
and APM-LR-V. In all plots below, error bars are removed for visual clarity, and the query horizon spans the
entire training sequence (until the training pool is exhausted). As expected, APM-LR-V performs comparably
to MaxVar, since both methods prefer examples that probe in directions of large posterior variance. Similarly,
APM-LR-U performs comparably to Uncertainty, since both methods minimize distance to a hyperplane estimate
(the former using the posterior mean hyperplane, the latter using a MAP estimate). These results support the
hypothesis that it is the exploration component of APM-LR which leads to improved performance on vehicle-cars
over non-exploration methods, including its own exploitation variant APM-LR-U.

We can explore this hypothesis further by directly evaluating metrics for exploitation and exploration of each
method. To measure exploitation, in Figure 6, we plot the average distance from each selected example to the
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Figure 5: Test accuracy on vehicle-cars, over expanded method set.

MAP hyperplane estimate. Since distance from the classifier hyperplane directly corresponds to label uncertainty
in logistic regression, this distance is a direct measure of how often a policy selects uncertain examples. By
definition, Uncertainty begins by querying examples that are closest to the hyperplane estimate, maximally
exploiting the estimate to query examples with the highest model uncertainty. The remaining methods vary in
their levels of initial distance from the hyperplane estimate, but all eventually query close to their respective
estimates, either by design or due to exhausting the full training pool. Notably, the level of initial distance
from the hyperplane corresponds almost exactly to test accuracy performance: high-performing MaxVar and
APM-LR-V initially query far from their hyperplane estimates, while the poorly performing Uncertainty queries
examples close by.
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Figure 6: Exploitation metric for vehicle-cars: average distance of selected example to estimated hyperplane.
Small distances reflect high levels of policy exploitation since this reflects examples being queried that are
uncertain with respect to the current hyperplane estimate.

To measure policy exploration, we use two metrics and plot their average values in Figure 7. In the first metric,
we measure the Euclidean distance from each unlabeled example to its nearest labeled neighbor, and take the
maximum such distance over all unlabeled examples. This quantity measures the worst-case level of isolation of
an unlabeled point to its nearest labeled neighbor, with lower values corresponding to higher degrees of policy
exploration. A similar quantity is involved in the construction of coresets for active learning to promote diversity
among selected examples (Sener and Savarese, 2018). As our second metric, we consider windows of d examples
(recall that d denotes the data space dimension) and plot the log determinant of the Gram matrix of the examples



selected in each window, which can be used as a measure of example diversity (higher values correspond to higher
levels of example diversity) (Ash et al., 2020). In Figure 7a, MaxVar, APM-LR-V, APM-LR, and Random have
the lowest average maximin distances, corresponding to lower levels of isolated unlabeled examples. Similarly,
these methods generally have large initial Gram matrix log determinants, as depicted in Figure 7b.
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Figure 7: Exploration metrics for vehicle-cars: (a) maximum distance from an unlabeled example to its closest
labeled example. Smaller values indicate lower levels of unlabeled data isolation, and correspond to higher
levels of exploration. (b) Log determinant of Gram matrix, where larger values correspond to higher levels of
exploration.

The ablation of individual terms in APM-LR and direct measurement of exploitation and exploration of each
active learning method suggests that when tested on vehicle-cars, exploration-based methods outperform methods
that do not explicitly optimize for diverse selection. While this extended analysis is limited to a single dataset, it
provides evidence that the exploration term in APM-LR can lead to higher levels of performance on a real-world
dataset, where methods that do not directly account for exploration might fail.
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