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Abstract

The iterative selection of examples for label-
ing in active machine learning is conceptually
similar to feedback channel coding in infor-
mation theory: in both tasks, the objective
is to seek a minimal sequence of actions to
encode information in the presence of noise.
While this high-level overlap has been pre-
viously noted, there remain open questions
on how to best formulate active learning as a
communications system to leverage existing
analysis and algorithms in feedback coding.
In this work, we formally identify and lever-
age the structural commonalities between the
two problems, including the characterization
of encoder and noisy channel components,
to design a new algorithm. Specifically, we
develop an optimal transport-based feedback
coding scheme called Approximate Posterior
Matching (APM) for the task of active ex-
ample selection and explore its application to
Bayesian logistic regression, a popular model
in active learning. We evaluate APM on a
variety of datasets and demonstrate learn-
ing performance comparable to existing ac-
tive learning methods, at a reduced compu-
tational cost. These results demonstrate the
potential of directly deploying concepts from
feedback channel coding to design efficient
active learning strategies.

1 INTRODUCTION

Active learning is an area of modern machine learning
that studies how data points can be sequentially se-
lected for labeling to train a model with as few labeled
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examples as possible (Settles, 2009). Minimizing the
number of labeled examples is critical in any learning
scenario where labels are expensive to obtain, such as
in healthcare applications where a medical expert must
hand-label each training example (Liu, 2004), or where
only a limited number of examples can be evaluated,
such as in drug discovery (Warmuth et al., 2003).

The active selection of data points shares many techni-
cal parallels with channel coding with feedback, where
a message is encoded into a sequence of symbols trans-
mitted across a noisy channel and each symbol is se-
lected based on the message and past channel outputs.
In active learning, the optimal classifier parameters
play the role of the “message” while the sequence of
examples with noisy labels plays the role of “channel
outputs” available through feedback to select the next
example for labeling. Both feedback channel coding
and active learning seek to minimize the number of
encoder actions, leverage a history of noisy observa-
tions to select the next most informative action, must
account for observation noise, and should operate in a
computationally efficient manner. Although there ex-
ists a large literature studying the intersection of infor-
mation theory with machine learning (Xu and Ragin-
sky, 2017) and specifically active learning (Naghshvar
et al., 2015), there remain open questions about the
best ways to directly leverage techniques in channel
coding for active example selection.

The main contribution of this work is a formulation of
general active learning problems in terms of a feedback
coding system, and a demonstration of this approach
through the application and analysis of active learning
in logistic regression. To motivate this approach, we
first examine active learning through the lens of feed-
back channel coding by identifying communications
system components, including a deterministic encoder,
noisy channel, channel input constraints, and capacity-
achieving distribution. With these components identi-
fied, we show how typical structural constraints in ac-
tive learning problems prevent the direct application of
existing feedback coding approaches such as posterior
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matching (Ma and Coleman, 2011). We address this
challenge by proposing Approximate Posterior Match-
ing (APM), an optimal transport-based active learning
scheme that extends posterior matching to account for
the type of encoder constraints found in active learning
problems.

To demonstrate the power of this approach, we apply
APM to Bayesian logistic regression, a popular model
in active learning. We identify the communication sys-
tem components in logistic regression, derive a corre-
sponding APM selection scheme (APM-LR), provide
analytical results concerning each selected example’s
information content, and empirically demonstrate on
several datasets how APM-LR attains a sample com-
plexity comparable to other active logistic regression
methods at a reduced computational cost. While this
example scenario highlights the capabilities of APM
as a specific data selection method, the feedback com-
munications framework we develop provides a unified
approach for designing and analyzing active learning
systems in general.

1.1 Related Work

Modern active learning methods vary considerably in
their approach to example selection, ranging from
coreset construction (Pinsler et al., 2019; Sener and
Savarese, 2018) and adversarial learning of informative
examples (Sinha et al., 2019) to ensemble measures of
example utility (Beluch et al., 2018) and Bayesian in-
formation acquisition methods (Gal et al., 2017; Kirsch
et al., 2019). Bayesian active learning methods are in-
timately related to concepts in information and coding
theory, and the intersection between these topics has a
long history rooted in the study of sequential design of
experiments (Lindley, 1956; Chernoff, 1959) and active
hypothesis testing (Burnashev and Zigangirov, 1974).
Since this early work, direct estimation and maximiza-
tion of information gain has emerged as a popular ac-
tive learning method (MacKay, 1992), and has been
approximated for computational tractability (Houlsby
et al., 2011). More recently, Naghshvar et al. (2015)
have studied the direct application of an information-
theoretic active hypothesis testing method to active
learning problems. This method is limited to discrim-
inating between a finite number of hypotheses (as op-
posed to estimating arbitrary model parameters) and
to our knowledge has not been applied to popular
machine learning models such as logistic regression.
Other works have described at a high-level the similar-
ities between active learning and coding with feedback
over a noisy channel but do not exploit this observa-
tion to leverage existing coding schemes for example
selection (Chen et al., 2015; Arias-Castro et al., 2013).

Posterior matching (Shayevitz and Feder, 2011; Ma

and Coleman, 2011) is a general feedback coding
scheme that has been applied to tasks beyond telecom-
munications such as brain-computer interfacing (Omar
et al., 2010; Tantiongloc et al., 2017) and aircraft path
planning (Akce et al., 2010), but has limited appli-
cation to example selection in active learning. Cas-
tro and Nowak (2008) study an active learning algo-
rithm related to posterior matching that learns deci-
sion boundaries in discretized spaces, but does not di-
rectly maximize information about hyperplane param-
eters in a continuous space as we do here. More gen-
erally, to our knowledge existing work has not framed
the task of active learning as a feedback communica-
tions system for the purpose of identifying an equiv-
alent capacity-achieving distribution and selecting ex-
amples whose channel input distribution most closely
approximates it, as we do here.

Logistic regression is a popular setting for the study
of active learning, and has served as a testbed for the
evaluation of competing example selection techniques.
Yang and Loog (2018) surveyed modern active learn-
ing methods for logistic regression and evaluated them
on many datasets. They generally found that uncer-
tainty sampling and random sampling match or exceed
the performance of more sophisticated (and computa-
tionally intensive) example selection methods. Uncer-
tainty sampling, where examples closest to the esti-
mated decision boundary are selected for labeling, is
arguably the most popular active learning method for
linear classification (Tong and Koller, 2001). Other
active learning methods for linear classifiers are dis-
cussed in the literature related to learning halfspaces
under bounded noise (Zhang et al., 2020).

2 ACTIVE LEARNING AS A
COMMUNICATIONS MODEL

Let U ⊆ Rd denote a pool of unlabeled examples from
which at each training iteration n ∈ N an example
xn ∈ U is selected for labeling by an expert, who as-
signs label Yn ∈ {1, 2, . . .K} according to a probabilis-
tic model (all random variables are capitalized in this
work). We consider a Bayesian framework in which we
assume the existence of ground-truth model parame-
ters θ ∈ Θ distributed according to a prior pθ that
parameterizes a distribution p(Y | x, θ) governing the
expert’s labeling behavior. As is common in active
learning, we assume that the labels {Yn} are indepen-
dent when conditioned on θ. At each iteration n, a
learning algorithm A is trained on a labeled dataset
Ln = {(xi, yi)}ni=1 (using lowercase to denote previ-
ously observed labels), resulting in a trained model

with parameters θ̂n ∈ Θ. The task of active learning
is to design a policy πn that, at each iteration, uses
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the label history Ln−1 to select example xn from the
remaining unlabeled examples Un := U \{xi}n−1

i=1 , such
that the classifier trains a generalizable model with as
few labeled examples as possible.

In active logistic regression, θ encodes the weights of a
linear separator, with Θ = Rd (we consider only homo-
geneous logistic regression in this work). We assume
a Gaussian prior pθ ∼ N (0, 1

λI) with hyperparameter
λ > 0. The label Y ∈ {−1, 1} for data example x is
assumed to be distributed according to

p(Y = 1 | x, θ) =
1

1 + e−xT θ
. (1)

Given a labeled dataset L, we consider a maximum
a posteriori (MAP) learning algorithm given by the
convex program

A(L) = arg max
θ∈Rd

ln pθ
∏

(x,y)∈L

p(y | x, θ)

= arg min
θ∈Rd

λ

2
‖θ‖22 +

∑
(x,y)∈L

ln(1 + e−yx
T θ). (2)

Our key insight in this work is to define an inter-
mediate variable L = hθ(x), where hθ(x) := xT θ,
and decompose the labeling distribution in (1) into
p(Y = 1 | x, θ) = p(Y = 1 | L) = 1

1+e−L . This
decomposition of the labeling distribution into a de-
terministic function hθ(x) and conditional distribution
p(Y | L) can be found in many machine learning mod-
els. For instance, in Bayesian neural networks (Gal
et al., 2017), hθ(x) is typically given by the compo-
sition of several nonlinear layers with L = hθ(x) en-
coding the final layer feature vector, and p(Y | L) is
given by the softmax function. Figure 1a depicts this
decomposition for logistic regression, and Figure 1b il-
lustrates the full active learning decomposition in the
general case.

By decomposing active learning in this manner, we
are able to draw direct connections to feedback chan-
nel coding, in which a message θ is encoded into a
sequence of symbols {Ln}, transmitted across a chan-
nel with transition probability p(Y | L) yielding noisy
output symbols {Yn}, and subsequently decoded into

an estimated message θ̂n. The availability of noiseless
feedback from the channel output to the encoder pro-
vides the encoder with the history of received symbols,
and allows it to adaptively select an informative chan-
nel input (Figure 1c). By comparing Figures 1b and
1c, we can see the direct correspondence between ac-
tive learning and channel coding with feedback: model
parameters θ serve as the message, which is encoded
by function h (parameterized by xn) into channel in-
put Ln = hθ(xn). Label distribution p(Y | L) can be
interpreted as a noisy channel, with label Yn as the
channel output. Algorithm A decodes labeled data
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Figure 1: (a) Decomposition of logistic regression into
an inner product between hyperplane θ and example
xn, and a logistic label distribution that depends only
on this product. (b) Active learning decomposed into
a deterministic function h, label distribution p(Y | L),
and feedback of the labeling history Ln−1 to example
selection policy πn. (c) Coding with feedback, where
a message is transmitted across a noisy channel as a
sequence of symbols and subsequently decoded. By
comparing (b) and (c), one can draw direct connec-
tions between active learning and coding with feed-
back.

Ln into a decoded message θ̂n, and Ln is passed as
noiseless feedback to the encoder. This formulation of
active learning as a feedback communications system
allows one to leverage existing tools in channel cod-
ing for the design of an example selection scheme πn.
While similar decompositions have been observed in
prior work (Naghshvar et al., 2015; Chen et al., 2015),
we believe our work is the first to use this approach to
analyze active learning in a real-world setting such as
logistic regression.

2.1 Optimal Feedback Coding

In devising a feedback coding scheme for selecting a se-
quence of channel inputs {Ln}, there are several quan-
tities that characterize optimal performance. We de-
note the mutual information I(L;Y ) between random
variables L and Y as a function of marginal distribu-
tion pL and conditional distribution pY |L (using the
notation pL and pY |L interchangeably with p(L) and
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p(Y | L)) given by I(pL, pY |L):

I(pL, pY |L) :=

∫
L,Y

pL pY |L log2

pY |L

pY
,

where pY denotes the output distribution of chan-
nel pY |L with input distribution pL. Letting yi :=
{y1, . . . yi} denote the history of observed channel out-
puts, at iteration n we seek to maximize the infor-
mation gain I(θ;Yn | yn−1), which measures the one-
step decrease in uncertainty about the message upon
receiving each channel output. For deterministic en-
coders, information gain is equal to I(Ln;Yn | yn−1) =
I(pLn|yn−1 , pY |L) (Cover and Thomas, 2006). Note
that for a fixed channel pY |L, information gain is only
a function of the channel input distribution pLn|yn−1 ,
conditioned on the history of channel outputs.

A key quantity in channel coding is the channel ca-
pacity C, defined as the maximum mutual information
across the channel for any channel input distribution
pL within some class C:

p∗L(C) := arg max
pL∈C

I(pL, pY |L) C := I(p∗L, pY |L).

The capacity-achieving distribution p∗L(C) is the input
distribution in C that maximizes information across
the channel. Through achievability and converse ar-
guments, a central result in information theory is that
optimal coding schemes, when marginalized over the
message set, should induce the capacity-achieving dis-
tribution on the channel input (Shannon, 1948). In
working towards applying existing feedback coding
schemes to active example selection, we first charac-
terize the capacity-achieving distribution for logistic
regression, which is a core contribution of our work
and forms the basis of our novel active logistic regres-
sion scheme in Section 3.

Channel Capacity in Logistic Regression. Let-
ting f(`) := 1

1+e−` , we observe from Figure 1a that
logistic regression has a binary output channel with
transition probability p(Y = 1 | L) = f(L). With-
out constraints on the channel input, the information
gain can be maximized by placing masses of equal
weight at ±∞. However, logistic regression imposes
the structural constraint L = xT θ, so that such a
distribution would require data points of infinite en-
ergy for finite model weights. Therefore, to character-
ize logistic regression capacity in practice, we consider
the capacity-achieving distribution within the class of
power-constrained distributions given by CP := {pL :
E[L2] ≤ P}; we discuss the selection of P in Section
3. With this class defined, we have our first result.

Proposition 2.1 (Capacity of Logistic Regression).
For p(Y = 1 | L) = f(L), we have p∗L(CP ) = B√P ,

where Bt is defined as Bt(`) := 1
2δ(` − t) + 1

2δ(` + t)
and δ denotes the Dirac delta function. Furthermore,
we have C = I(B√P , f) = 1 − hb(f(

√
P )), where hb

denotes the binary entropy function.

The proof follows closely to that of Singh et al. (2009)
for the one-bit quantized Gaussian channel; the proofs
of Proposition 2.1 and all subsequent results are pre-
sented in the Supplement.

2.2 Posterior Matching

By characterizing the channel capacity and capacity-
achieving distribution of active learning models, we en-
able the use of existing feedback coding schemes that
achieve capacity. Recently, a capacity-achieving feed-
back coding scheme known as posterior matching has
been developed to select a sequence of channel inputs
{Ln} to maximize the information gain across a given
channel pY |L. The central concept is to construct an
encoder that by definition induces pLn|yn−1 = p∗L for
every n, which in essence hands the decoder the in-
formation that it is still “missing” (Ma and Coleman,
2011). This involves the construction of an encoder
mapping Syn−1 : θ → L parameterized by yn−1 such
that Syn−1(θ) ∼ p∗L for every n.

While posterior matching is an attractive feedback
coding scheme, there are challenges in applying it
to active learning: given the structural constraints
of any particular active learning problem as depicted
in Figure 1b, it may not always be the case that
a mapping from pθ|Ln−1

to p∗L exists, since the en-
coder is constrained to the set of mappings given by
{hθ(x) : x ∈ Un}.1 For example, in active logistic
regression under mild assumptions, there exists no x
such that hθ(x) ∼ p∗L, as shown in the following propo-
sition.

Proposition 2.2. Under a log-concave prior distribu-
tion pθ, in Bayesian logistic regression for any n there
exists no xn that induces pLn|Ln−1

∼ p∗L.

Since we assume a Gaussian prior pθ (which is log-
concave), Proposition 2.2 applies and therefore there
exists no active logistic regression scheme πn corre-
sponding to a posterior matching mapping from θ to
p∗L. We suspect that the infeasibility of p∗L holds gener-
ally in other real-world machine learning models (e.g.,
Bayesian neural networks) due to similar structural
constraints imposed by hθ(x), preventing the direct
application of posterior matching for example selec-
tion. In the next section, we extend concepts from

1The analogous distribution to pLn|yn−1 in active learn-
ing is pLn|Ln−1

. When considering only deterministic ex-
ample selection schemes, pLn|Ln−1

is induced directly from

pθ|Ln−1
, through hθ(x).
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posterior matching to a novel active learning scheme
compatible with this constrained encoder structure.

2.3 Approximate Posterior Matching

To address the impossibility of finding x ∈ U that in-
duces p∗L on L, we introduce a scheme that instead
selects an example xn such that pL|Ln−1

is distributed
“as close as possible” to p∗L, as measured by a dis-
tance between distributions. Specifically, we use the 2-
Wasserstein distance because of its convenient geomet-
ric properties and compatibility with non-overlapping
distribution supports (Arjovsky et al., 2017). The p-
Wasserstein distance between distributions µ and ν is
given by

Wp(µ, ν) =

(
inf

γ∈Π(µ,ν)

∫
u

∫
v

|u− v|pγ(u, v)

) 1
p

,

where Π(µ, ν) is the set of couplings with marginal
distributions µ and ν (Villani, 2008). Our selec-
tion scheme, called Approximate Posterior Matching
(APM), is then given by

xn = πn(Ln−1) := arg min
x∈Un

W2(pLn|Ln−1
, p∗L). (3)

While APM is intuitively appealing because it steers
the induced channel distribution as close as possible to
p∗L, we justify this strategy in the next section for the
case of logistic regression by showing that information
gain does in fact approach its maximum possible value
as W2(pL|Ln−1

, p∗L) is minimized.

3 APM IN LOGISTIC REGRESSION

Under the power constraint E[L2] ≤ P , Proposition 2.1
establishes that the capacity-achieving distribution in
the logistic regression system is given by B√P . We now
show an information continuity result for this capacity-
achieving distribution, which provides a mathematical
justification for the APM Wasserstein distance mini-
mization in (3).

Theorem 3.1. Let C̃n = maxx∈Un I(pLn|Ln−1
, f) de-

note the maximum information gain from any example
selected at iteration n, and suppose P > 0 is selected
such that pLn|Ln−1

∈ CP for any x ∈ Un. Then for any
x ∈ Un,

C̃n − I(pLn|Ln−1
, f) ≤ KPW2(pLn|Ln−1

, B√P ),

where KP > 0 is a constant that only depends on P .

For decreasing W2(pL, B√P ), this result bounds
I(pLn|Ln−1

, f) towards its maximum possible informa-

tion gain C̃n. In other words, minimizing the distance

to the known capacity-achieving distribution (even if
not achievable in practice) ensures that the informa-
tion gain approaches its maximum value within the
set of possible input distributions — a value which is
unknown a priori. As we shall see in the results and
experiments that follow, targeting the known capacity-
achieving distribution affords geometric simplifications
and computational benefits over the strategy of di-
rectly selecting the example that achieves C̃n. Unlike
APM, the latter method does not benefit from analyti-
cal knowledge of the information structure of the chan-
nel and constraint set, and so it must instead conduct
an expensive brute-force maximization of information
gain.

3.1 Closed-form Results

For logistic regression, the calculation of W2(pL, Bt)
takes a convenient closed-form expression, which sim-
plifies the example selection in (3):

Proposition 3.2. For t > 0, with medpL(L) denoting
the median of L according to distribution pL,

W 2
2 (pL, Bt) = EpL [L2]− 2tEpL [|L−medpL(L)|] + t2

We can simplify this expression even further when pL
is normally distributed.

Corollary 3.2.1. For L ∼ N (µ, σ2),

W 2
2 (pL, Bt) = µ2 +

(
σ −

√
2

π
t

)2

+

(
1− 2

π

)
t2.

At iteration n, suppose that pθ|Ln−1
is approximated

by N (µn,Σn), resulting in channel input Ln = θTxn
being distributed as N (µTnxn, x

T
nΣnxn). Although

pθ|Ln−1
is not normally distributed in logistic regres-

sion, it is common to make this approximation in prac-
tice (Bishop, 2006). By applying Corollary 3.2.1 and
omitting constant terms, we derive our APM selection
policy for logistic regression with power constraint P .

Definition 3.1. Approximate Posterior Matching for
Logistic Regression (APM-LR):

πn(Ln−1) = arg min
x∈Un

(µTnx)2 +

(√
xTΣnx−

√
2

π
P

)2

. (4)

This objective is a combination of two terms: the first
term corresponds to minimizing the distance between
example x and the posterior mean hyperplane. If µn
is taken as an estimate of θ, this term corresponds
to the well-known uncertainty sampling active learn-
ing method, which samples points close to the current
hyperplane estimate (Tong and Koller, 2001). The sec-
ond term prefers examples that align with the direc-
tion of maximum posterior covariance. Specifically, for
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Labeled data pool Uncertainty utility: initial 50 Uncertainty queries Uncertainty utility: 50 queries

Hyperplane prior

(a)

APM-LR utility: initial

(b)

50 APM-LR queries

(c)

APM-LR utility: 50 queries

(d)

Figure 2: (a) Top: linearly separable dataset (optimal hyperplane is diagonal) demonstrating the failure of
uncertainty sampling (dataset adapted from Huang et al. (2010)). Bottom: samples from hyperplane posterior,
given two seed labels. The black hyperplane and corresponding normal vector depict the initial logistic regression
solution, the cyan arrow indicates the normal vector to the posterior mean hyperplane, and the purple arrow
indicates the maximal eigenvector of the posterior. (b) Utility function heatmap for uncertainty sampling (top)
and APM-LR (bottom) — the unlabeled example with the highest utility is selected for labeling. Uncertainty
sampling selects examples close to the current hyperplane, while APM-LR selects examples that are both close
to the posterior mean hyperplane and align with the direction of largest posterior variance. (c-d) After 50
queries, uncertainty sampling (c-top) has not selected samples in the dataset corners, leading to sampling bias
and continued sampling of the center clusters (d-top). Meanwhile, APM-LR (c-bottom) has sufficiently explored
the dataset, while continuing to sample examples in only the most ambiguous regions (d-bottom).

xTΣnx <
2
πP , the second term is a decreasing func-

tion of xTΣnx, encouraging x to align with posterior
covariance eigenvectors with large eigenvalues.

These two terms together can be interpreted as encour-
aging “exploitation” and “exploration,” respectively:
the first term encourages the selection of examples that
are close to the current estimate of θ, exploiting this
estimate to only query examples whose labels are am-
biguous. The second term balances this exploitation
by probing in directions of the hyperplane posterior
that have not yet been sufficiently explored, reducing
uncertainty about the hyperplane itself. Figure 2 visu-
alizes this tradeoff in comparison to uncertainty sam-
pling, which only queries examples close to the current
hyperplane estimate and does not account for the fact
that there may be directions of the hyperplane pos-
terior that have not been sufficiently explored. This
myopic behavior is an instance of sampling bias, a
well-known phenomenon in active learning where a
policy continually selects examples that reinforce the
learner’s belief in an incorrect hypothesis (Dasgupta,
2011; Beygelzimer et al., 2009; Farquhar et al., 2021).
The balance of exploitation and exploration terms in
APM-LR helps prevent this type of sampling bias, in

a spirit similar to other active learning methods that
balance uncertainty reduction with diverse example se-
lection (Dasgupta and Hsu, 2008; Huang et al., 2010).

An attractive computational feature of (4) is that the
posterior mean and covariance can be estimated once
at each selection iteration and then simply projected
onto each candidate example, resulting in a computa-
tional cost of only O(d2) per example evaluation. Note
that these computational advantages along with the
natural balance between exploration and exploitation
in APM-LR emerged naturally from first-principles of
feedback coding, demonstrating the potential of iden-
tifying the capacity-achieving distribution and apply-
ing APM as a universal means of designing geomet-
rically intuitive, computationally efficient active selec-
tion schemes.

4 EXPERIMENTAL RESULTS

We evaluate the performance of APM-LR against
baseline example selection methods for logistic regres-
sion on a variety of datasets from different tasks, as
measured by holdout test accuracy and selection com-
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pute time.2 For each method, we follow Yang and
Loog (2018) and set the regularization parameter in
(2) to λ = 0.01, which we solve with the LIBLINEAR
solver (Fan et al., 2008). After each example is labeled,
we approximate pθ|Ln−1

with a normal distribution by
applying the variational approximation described in
Jaakkola and Jordan (2000), which is solved in only a
few iterations of an expectation-maximization proce-
dure (referred to here as “VariationalEM”). The final
component needed to apply APM-LR is the selection
of power constraint P in (4).

Selecting Power Constraint Although our ap-
proach is rooted in feedback coding theory, regarding
the power constraint there are two key differences be-
tween our model and traditional communications sys-
tems. First, unlike telecommunications systems that
have physical restrictions such as limited battery lev-
els, in our framework there is no external prescription
of the power budget P and therefore we can select
any valid upper bound on the channel input power
induced by the unlabeled examples. Secondly, unlike
coding schemes which globally maximize information
gain over the entire trajectory of channel inputs, we
seek to myopically maximize the one-step information
gain at every channel input. Since the goal at each it-
eration is to separately solve a local information max-
imization problem, there is no need for the power con-
straint P to be constant across iterations, and there-
fore we set a separate power constraint Pn for each
iteration.

Since the selection of Pn parameterizes the target dis-
tribution in APM-LR, it is important for Pn to be
set as tight as possible so that the target capacity-
achieving distribution is well-matched to the set of
feasible channel input distributions. This is because
at each iteration the capacity-achieving distribution
serves as a proxy for the optimal input distribution
induced by a real example, and a setting of Pn that
is too loose will result in APM targeting a proxy that
is not well-matched to the feasible input distributions.
To select a satisfactory setting of Pn, we derive an up-
per bound on the channel input power to use as an
implicit constraint.

Suppose for a given dataset that there exists a known
B > 0 such that ‖x‖2 < B (this is a reasonable as-
sumption in many real-world settings). Let λ1(M) de-
note the largest magnitude eigenvalue of matrix M .
We then have (with expectations taken with respect
to pLn|Ln−1

)

E[L2
n] = xT (µnµ

T
n + Σn)x ≤ B2λ1(µnµ

T
n + Σn).

For each n we can therefore set Pn = B2λ1(µnµ
T
n +

2Code at https://github.com/siplab-gt/APM-LR

Algorithm 1: Approximate Posterior Matching for
Logistic Regression (APM-LR)

Input: data pool X , hyperparameter λ > 0, horizon
N , initial training set L

1: µ← 0, Σ← 1
λI

2: B ← maxx∈U‖x‖2
3: U ← X
4: for n = 1 to N do
5: P ← B2λ1(Σ)

6: x∗ ← arg minx∈U (µTx)2 +
(√

xTΣx−
√

2
πP
)2

7: y∗ ← ExpertLabel(x∗)
8: U ← U \ {x∗}, L ← L ∪ (x∗, y∗)
9: µ,Σ← VariationalEM(L)

10: θ∗ ← A(L) i.e., eq. (2)
11: end for
Output: hyperplane θ∗

Σn). In our experiments we select a slightly modified
parameter Pn = B2λ1(Σn), which we justify as a more
practical heuristic in the Supplement. We summarize
APM-LR in full in Algorithm 1, including power con-
straint calculation and variational posterior updating.

Datasets We follow previous work in active learn-
ing for logistic regression (Huang et al., 2010; Yang
and Loog, 2018) and test each method on several UCI
datasets (Dua and Graff, 2017) including vehicle, let-
ter, austra, and wdbc. We also evaluate performance
on several synthetic datasets including the dataset de-
picted in Figure 2 (adapted from Huang et al. (2010)),
which we refer to as cross (see Supplement for de-
tails on all datasets). For each simulation trial, we
first randomly divide the dataset into an equally-sized
data pool (U) and held-out test set. We normalize U
to zero-mean and coordinate-wise unit-variance, and
apply the same transformation to the test set. Before
evaluating each example selection method, the train-
ing dataset (L) is seeded to consist of one randomly
selected labeled example from each class.3

Baseline Methods We evaluate the following base-
line methods, each described with their computational
cost per candidate example evaluation (see Supple-
ment for details):

• Uncertainty : select closest example to current hy-
perplane estimate (i.e. arg minx∈Un x

T θ̂n−1) at cost
O(d). The action of Uncertainty sampling is com-
parable to that of the first term in (4).

• Random: each example is selected uniformly at ran-

3Our experiments are synchronized across data selection
methods: each trial uses the same training/test split and
seed examples for each tested method.

https://github.com/siplab-gt/APM-LR
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Figure 3: Average test classification accuracy plotted against number of labeled examples (error bars show
±1 standard error) across select UCI datasets (a-b) and the synthetic cross dataset (c, with legend shared
with a-b and omitted for visual clarity). Overall, APM-LR performs comparably to other methods seeking to
approximately maximize information gain. While uncertainty sampling performs well on some datasets (a-b),
it can fail in cases where it suffers from sampling bias (c). Most of the tested active learning methods (except
the control, MaxVar) outperform random sampling. For visual clarity we show different numbers of queried
examples for each dataset.

dom from Un, at O(1) cost.

• MaxVar : to isolate the effect of the second term
in (4), we evaluate a control strategy that selects
the example that induces the largest channel input
variance (i.e. arg maxx∈Un x

TΣnx), at cost O(d2).

• InfoGain: selects the example with the largest infor-
mation gain I(θ;Yn | Ln−1), estimated by sampling
s times from the normally approximated hyperplane
posterior (here we set s = 100) and for each candi-
date example evaluating a Monte Carlo approxima-
tion of information gain, at O(ds) cost.

• BALD : we approximate the logistic function f(`)
with a probit function and apply the probit regres-
sion active learning method of Houlsby et al. (2011),
at cost O(d2). Like APM-LR, BALD approximates
the action of InfoGain and only requires the mean
and covariance of the normally approximated hyper-
plane posterior.

InfoGain is the most computationally intensive selec-
tion method, since it requires a brute-force Monte
Carlo approximation of information gain for each can-
didate example. BALD and APM-LR have the next
least expensive cost per example at O(d2), followed by
Uncertainty and Random sampling.

Performance Comparison In Figure 3, we com-
pare the learning performance of each data selection
method by plotting holdout test accuracy against num-
ber of queried examples (excluding the seed set) across
select datasets (see Supplement for full results). We
generally find that the tested active data selection
methods outperform random sampling. The exception
is MaxVar, which performs comparably to random se-
lection and worse than APM-LR. Although simple Un-

certainty sampling matches the performance of other
active methods on several datasets (Figure 3a-b) as
previously observed by Yang and Loog, in additional
tests on synthetic datasets we find that APM-LR out-
performs uncertainty sampling. This is the case for
the cross dataset (Figure 3c), demonstrating how Un-
certainty sampling can be susceptible to sampling bias
that leads to insufficient exploration (see Supplement
for additional failure mode analysis). These tests to-
gether lend evidence to the mixture of terms in (4)
having combined benefits over pure exploration of di-
rections with large posterior variance or pure exploita-
tion of ambiguous examples with respect to the current
hyperplane estimate. Finally, APM-LR generally per-
forms similarly to InfoGain and BALD, both of which
directly approximate the action of information gain
maximization, in contrast to APM’s geometric, indi-
rect approach.

Table 1 depicts the computational cost for each
method across select datasets (see Supplement for full
results and expanded timing evaluations). Similar to
the analysis in Yang and Loog (2018), for each method
we evaluate the cumulative compute time to select the
first 40 examples (excluding seed examples and time
for model retraining), and compute the median time
over all trials. We see that InfoGain is the most ex-
pensive of all methods, since it directly approximates
information gain with Monte Carlo sampling. BALD
has the next highest cost, followed by APM-LR — the
two latter methods only require a single computation
of posterior mean and variance, which can be projected
onto each candidate example. Uncertainty sampling
and random sampling have the lowest computational
cost.

Although BALD can also be computed using only the
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letterDP austra cross
APM-LR 0.336 0.150 0.125

Uncertainty 0.149 0.063 0.053
BALD 4.230 1.770 1.521

InfoGain 12.755 5.089 2.722
Random 0.005 0.003 0.002
MaxVar 0.118 0.050 0.040

Table 1: Comparison of median cumulative time (s) for
each method to select the first 40 examples (excluding
seed points and time for model retraining). Gener-
ally, APM-LR has a cost an order of magnitude lower
than InfoGain and BALD (which directly approximate
the action of information maximization), while Un-
certainty, MaxVar, and Random sampling have the
cheapest cost.

posterior mean and covariance, it is unclear how the
approximation in BALD can be applied beyond probit
regression. In contrast, the APM formulation in (3)
can be applied generally to any active learning prob-
lem that can be decomposed into a deterministic en-
coder and noisy channel, along with a known capacity-
achieving distribution. The combined results of Figure
3 and Table 1 suggest that the universal APM ap-
proach of leveraging this analytical knowledge of the
capacity-achieving distribution affords a geometric ac-
tive selection approach that performs well in terms of
both sample and computational complexity.

5 CONCLUSION

To our knowledge, our work is the first effort to both
reframe active learning as a feedback communications
system and utilize analytical knowledge of the corre-
sponding capacity-achieving distribution to derive an
active learning scheme. The analytical and empiri-
cal results in this work for the special case of logistic
regression demonstrate the potential of this coding-
based active learning approach: information continu-
ity results show how examples selected with APM-
LR have information gain approaching their maximum
possible value, APM-LR has a convenient geometrical
formulation resulting from analytical knowledge of the
capacity-achieving distribution for logistic regression
(characterized here for the first time) that can lead to
computationally efficient example selection, and when
tested on multiple datasets APM-LR performs com-
parably to baseline active learning methods including
brute-force information maximization. APM-LR’s at-
tractive balance between exploration and exploitation
emerged naturally from first-principles of channel cod-
ing, extending beyond the common approach of uncer-
tainty sampling.

More generally, a fundamental feature of Approximate

Posterior Matching is that analytical knowledge of
the capacity-achieving distribution converts the usu-
ally unwieldy information maximization problem in
active learning to a geometric problem. In logistic
regression, this geometry led to computational advan-
tages over direct information maximization, and we
conjecture that similar benefits may emerge in more
complex settings. Additionally, the general formula-
tion of APM in (3) presents several opportunities to
leverage existing computational algorithms to aid ex-
ample selection, including estimating p∗L when it is an-
alytically unknown (Blahut, 1972; Arimoto, 1972) and
optimizing Wasserstein distances with state-of-the-art
methods (Peyré and Cuturi, 2019). Overall, we believe
that our coding-theoretic approach opens several new
directions for future work in active learning.
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