
Maximizing Agreements for Ranking, Clustering
and Hierarchical Clustering via MAX-CUT

Vaggos Chatziafratis Mohammad Mahdian Sara Ahmadian
Google Research NY Google Research NY Google Research NY

Abstract

In this paper, we study a number of well-
known combinatorial optimization problems
that fit in the following paradigm: the input
is a collection of (potentially inconsistent) lo-
cal relationships between the elements of a
ground set (e.g., pairwise comparisons, simi-
lar/dissimilar pairs, or ancestry structure of
triples of points), and the goal is to aggre-
gate this information into a global structure
(e.g., a ranking, a clustering, or a hierarchical
clustering) in a way that maximizes agree-
ment with the input. Well-studied problems
such as rank aggregation, correlation cluster-
ing, and hierarchical clustering with triplet
constraints fall in this class of problems. We
study these problems on stochastic instances
with a hidden embedded ground truth solu-
tion. Our main algorithmic contribution is
a unified technique that uses the maximum
cut problem in graphs to approximately solve
these problems. Using this technique, we can
often get approximation guarantees in the
stochastic setting that are better than the
known worst case inapproximability bounds
for the corresponding problem. On the neg-
ative side, we improve the worst case inap-
proximability bound on several hierarchical
clustering formulations through a reduction
to related ranking problems.

1 Introduction

In many learning/optimization problems, the input
data is in the form of a number of ordinal judgements
about the local relationships among a set of n items.
A prominent example is the problem of ranking n al-

Proceedings of the 24th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2021, San Diego,
California, USA. PMLR: Volume 130. Copyright 2021 by
the author(s).

ternatives, where the input is often pairwise compar-
isons between these items. For example, sports teams
are often ranked by aggregating the results of matches
played between pairs of teams, and election outcomes
are decided by aggregating individual votes.

Learning from comparisons has been prevalent across
different domains, as humans are typically good
at quickly answering ordinal questions (“which
movie/restaurant/candidate do you prefer”), but often
respond slowly and inaccurately to cardinal questions
(“how much do you like this option”). In the psy-
chology literature, the method of paired comparisons
that has been in use since the 1920’s is based on this
principle (see (Thurstone, 1959, Chapter 7)). More-
over, modern online platforms can organically extract
such ordinal preferences by observing the users (e.g.,
“which movie did they first watch”, or “did they skip a
search result and click on the next one”) and later use
them for improving search or recommendation rank-
ings (see, for example, Joachims (2002)). The same
principle applies to settings other than ranking. For
example, when trying to learn a clustering of n items,
it is easier for a human judge to answer questions of the
form “should x and y be in the same cluster” than to
measure the similarity of x and y. Or, to reconstruct
the evolutionary tree (also known as the phylogenetic
tree) between n species, biologists often start by an-
swering questions of the form “between three species
x, y, and z, which two are evolutionarily closer”.

At the heart of each of these examples is the non-
trivial algorithmic task of reconciling potentially in-
consistent judgements into a global solution. This de-
fines a number of algorithmic problems that we study
in this paper. Though seemingly unrelated, all of these
problems seek to find a global structure that has the
maximum number of agreements with the given collec-
tion of local ordinal relationships. As we shall see later
in the paper, the problems are also linked in that we
can apply a common technique (based on graph max
cuts) to them all. The problems, shown in Figure 1,
fall under the three categories of ranking, clustering,
and hierarchical clustering:

Ranking, Clustering and Hierarchical Clustering via MAX-CUT

• Ranking: The goal is to find an ordering of n
items. In the Maximum Acyclic Subgraph (Mas),
the input is a number of pairwise comparisons of
the form a < b. In Betweenness, the input is a
number of triples a|b|c meaning that b is between
a and c in the ordering. In Non-Betweenness, the
input is a number of triples b|ac meaning that b
is not between a and c.

• Clustering: In the Correlation Clustering prob-
lem, the goal is to find a partitioning of n items,
and the input is a number of pairs of the form
ab, meaning that a and b should be in the same
cluster, and a number of pairs of the form a|b,
meaning that a and b should be in different clus-
ters.

• Hierarchical clustering: The goal is to find a
(rooted or unrooted) tree with the set of n items
as its leaves. In the Desired Triplets problem,
the input is a number of triplets ab|c, meaning
that the least common ancestor of a and b is a
descendant of the least common ancestor of a, b,
and c. In the Desired Quartets problem, the in-
put is a number of quartets ab|cd, meaning that
the unique path connecting a and b in the tree
does not intersect with the unique path connect-
ing c and d. The Forbidden Triplets and Forbidden
Quartets problems are defined similarly with the
opposite requirements.

These problems come from a variety of applications:
Mas is a formulation of the rank aggregation prob-
lem and has many applications, e.g., in search ranking.
Correlation Clustering is a central problem in unsuper-
vised learning and data analysis (Bansal et al., 2004).
Hierarchical clustering problems are motivated by ap-
plications in reconstructing phylogenetic trees (Felsen-
stein, 2004), and are also related to the objective-
driven formulations of Dasgupta (2016), Moseley and
Wang (2017) and Cohen-Addad et al. (2019) for hier-
archical clustering. In fact, the Desired Triplets for-
mulation described above is tightly connected with
objective-based approaches for Hierarchical Clustering
as can be seen in Charikar et al. (2019a,b). Between-
ness and Non-Betweenness are motivated by applica-
tions in genome sequencing in bioinformatics (Slonim
et al., 1997). We are interested in algorithms that
can provide an approximation guarantee, i.e., a prov-
able bound on the multiplicative factor between the
solution found by the algorithm and the optimal solu-
tion. We will consider this problem both in the worst
case and under a stochastic model with an embedded
ground-truth solution. Our contribution is two-fold
(see Table 1 for a summary):

On the positive side, in Section 3, under a simple
stochastic model akin to the well-known stochastic

block model, we are able to improve upon worst-case
approximations for all problems and in some cases
(e.g., for problems on rankings and hierarchies) even
overcome impossibility results. Interestingly, our algo-
rithms are all based on variants of MaxCut on graphs
that can have both positive and negative weights and
may also be directed. Some approaches for tree re-
construction based on MaxCut had been used in pre-
vious experimental works (Snir and Rao, 2006, 2008,
2012), and in this way our work provides concrete
proof for why these heuristics are reported to perform
well on “real-world” instances. Our natural stochastic
model captures “real-world” instances via an embed-
ded ground-truth from which we generate “noisy” con-
straints, similar to the Stochastic Block Model (Mossel
et al., 2012) in community detection.

On the negative side, we obtain new hardness of ap-
proximation results for four problems on hierarchical
clustering: Forbidden Triplets, Desired Triplets, For-
bidden Quartets, Desired Quartets. Briefly, we may
refer to them as triplets/quartets consistency prob-
lems. These are instances of Constraint Satisfaction
Problems (CSP) on trees (Bodirsky and Mueller, 2010;
Bodirsky et al., 2016), analogous to SAT formulas in
complexity. Even though such problems on hierarchies
have been studied for decades, the current best approx-
imations are achieved by trivial baseline algorithms.
Our hardness results give some explanation why pre-
vious approaches were not able to obtain anything bet-
ter. Our result on the Forbidden Triplets problem is
tight and is the first tight hardness for CSPs on trees,
extending analogous hardness results by Guruswami
et al. (2011) from linear orderings (i.e., rankings) to
trees. This is carried out in Section 4.

Our stochastic model for collecting information is the
simplest form of embedded model on n items, and
is motivated by crowdsourcing and biological applica-
tions (Vaughan, 2017; Kleindessner and von Luxburg,
2017; Ghoshdastidar et al., 2019; Snir and Yuster,
2012). We simply choose items at random and in-
clude a pairwise/triplet/quartet constraint depending
on the task. For example, to generate constraints for
the Mas problem on rankings, let π∗ denote a ground-
truth ranking (e.g., of chess players or ads to show a
user). We select uniformly at random m pairs of items
ai, bi and then we generate m pairs ai < bi; if ai pre-
cedes bi in π∗ the constraint is included with proba-
bility (1− ε), otherwise the opposite constraint is gen-
erated. Thus, some fraction of the constraints can be
erroneous. After generating m (noisy) constraints in
this way, our goal is to find a global solution (ranking,
partition, or tree) that satisfies as many as possible.

Techniques: Our hardness reductions for Maximum
Forbidden Triplets consistency are based on mapping

Vaggos Chatziafratis, Mohammad Mahdian, Sara Ahmadian

Figure 1: A schematic representation of all problems
considered in the paper. The left column has the prob-
lem names, the middle the types of constraints and the
right column has a candidate solution. With green are
constraints that are correctly resolved in the given can-
didate solution, whereas with red are those that are
incorrect. For more examples, see Section 2.

trees to permutations on their leaves and back, and
showing that any constant factor improvement over
trivial baselines would refute the Unique Games Con-
jecture1 (Ugc) (Khot, 2002). Regarding our MaxCut
algorithm (see Algorithm 1), it is based on MaxCut
variations on directed and undirected graphs with neg-
ative weights and is conceptually simple. Briefly, given
an instance for any of the problems we consider, we
map it to a graph where edges encode the underlying
constraints; perhaps the most intuitive such construc-
tion is for Correlation Clustering where a “must-link”
or “cannot-link” constraint between items i, j is cap-
tured by a negative or positive edge (i, j) respectively.
Then, we show how large (positive) cuts in this graph
yield partitions that satisfy many of the constraints.
The existence of a large cut can be guaranteed by an-
alyzing our stochastic model and so an approximate
MaxCut algorithm can yield improvements over pre-
vious results. An interesting ingredient that we need
for the case of Mas, is how to approximate the Max-
Cut problem on directed graphs with both positive
and negative weights which, to the best of our knowl-
edge, hadn’t been analyzed before.

More broadly, we justify theoretically why prior exper-
imental heuristics work and we extend them to work
for new problems with provable approximation guar-
antees. Our work also presents the first case of a CSP
on trees that is approximation resistant; recall that
many important CSPs, including Max3SAT, are ap-
proximation resistant, i.e., it is NP-hard to approxi-
mate them better than a random assignment. This
echoes the striking result by H̊astad (2001) on ap-

1Khot’s Ugc is a major open question in complexity.
We will not define it here as we only use some of its con-
sequences on ordering problems (Guruswami et al., 2011).

proximation resistance of boolean CSPs to CSPs on
trees and shows why no algorithmic improvement had
been made in the worst-case, despite significant ef-
forts (Byrka et al., 2010; Jiang et al., 2001; Bryant,
1997; He et al., 2006; Steel, 1992).

Table 1: Shown in bold are our improved hardness
(column “Hardness”) and approximations under our
stochastic model (column “Stochastic”). Column “Ap-
prox.” has prior approx. ratios. Also see Section 3 and
Appendix A for the dependence on error parameter ε.

Approx. Hardness Stochastic
Mas 1/2 1/2 0.642
Btw 1/3 1/3 0.402

non-Btw 2/3 2/3 0.84
Correl. Cl. 0.76 APX-hard 0.82(*)

Forb. Triplet 2/3 2/3 (tight) 0.78(*)
Des. Triplet 1/3 2/3 0.64(*)

Forb. Quartet 2/3 8/9 0.672
Des. Quartet 1/3 2/3 0.425

Remark 1. We want to point out that all our ap-
proximation results here hold with high probability as
a standard concentration argument about the stochastic
process guarantees that the weight of the cuts is well-
concentrated around its mean (as long as the number
of generated constraints m ≥ Ω(log n)).

Remark 2. Our results for ranking and quartets hold
with no assumption on the optimal solution. For the
positive results (denoted with (*) in Table 1) via Max-
Cut for correlation clustering and triplets however, we
need a mild balancedness assumption, roughly stating
that the optimal solution contains a relatively balanced(
1
3 : 2

3

)
partition, to ensure the existence of a good

cut in the ground-truth (see Appendix, Assumption 1).
Usually, such assumptions are common in generative
graph models for clustering, e.g., the Stochastic Block
Model (Mossel et al., 2012; Abbe et al., 2015) and for
hierarchical clustering, e.g., the Hierarchical Stochas-
tic Block Model (Lyzinski et al., 2016; Cohen-Addad
et al., 2019; Ghoshdastidar et al., 2019), where we ex-
pect to see at least two large communities emerge.

2 Background and Related Work

As the paper discusses multiple problems on rankings,
partitions and hierarchies, we devote this section in de-
scribing the multitude of problems. A familiar reader
can skip this section and proceed to Section 3.

There are 3 categories of problems we study here,
depending on the type of the output: ranking (also
called a permutation or a leaf ordering in biology (Bar-
Joseph et al., 2001)), clustering (partitioning of the
data points) and hierarchical clustering (also called

Ranking, Clustering and Hierarchical Clustering via MAX-CUT

phylogenetic tree). There has been significant amounts
of work on each of these tasks, that we only partially
cover here as we go over our problems and results.

2.1 Optimization Problems and Types of
Constraints

In all problems, we are given m constraints and we
want to maximize the number of constraints satisfied
by our output, whether it be a ranking, a partition or
a hierarchy. We describe below the types of different
constraints (see also Figure 1):

Ranking (i.e., a permutation or leaf ordering):
Given n labels {1, 2, . . . , n}, we want to find a per-
mutation that maximizes the number of satisfied con-
straints of the following form:

• Pairwise comparisons: A constraint here is of
the form “a < b”, indicating that in the output
permutation, item a should precede b. If this in-
formation is encoded as a directed graph G with
arcs a→ b, this gives rise to the Maximum Acyclic
Subgraph (Mas) or Feedback Arc Set (Fas), two
fundamental problems in computer science (Karp,
1972).

• Betweenness (BTW) and Non-Betweenness
(Non-BTW) constraints: In the Btw prob-
lem (Opatrny, 1979; Chor and Sudan, 1998;
Makarychev, 2012), we are given relative ordering
constraints of the form a|b|c indicating “b should
be between a and c”. This allows for abc or cba
out of the 6 possible orderings for the 3 labels.
As the name suggests, non-Btw is the comple-
ment of Btw, where a constraint bc|a (equiva-
lently a|bc) indicates that in the output permuta-
tion “a should not lie between b and c”. This al-
lows for 4 valid relative orderings abc, acb, bca, cba.
Generally, these are the two most common exam-
ples of ordering Constraint Satisfaction Problems
(ordering CSPs) of arity 3 and are mainly mo-
tivated by applications in bioinformatics (Slonim
et al., 1997). They have also played a major role
in complexity (Guruswami et al., 2011; Austrin
et al., 2013).

Just to give a sense of the approximability of these
problems in the worst-case, the current best con-
stant factor is a 1

2 -approximation for Mas, a 1
3 -

approximation for Btw, and a 2
3 -approximation for

non-Btw, all achieved by a random permutation.
We also know that under the Unique Games Con-
jecture (Ugc) of Khot (2002), the first two results
are tight, whereas the third is tight under P 6= NP.
Such problems, where a random output is provably the
best, are called approximation resistant and have been
studied extensively by theoreticians (Charikar et al.,
2009; Guruswami et al., 2008; H̊astad, 2001; Austrin

and Mossel, 2009). Our work gives strong evidence
pointing to the fact that important CSPs on trees
(triplets/quartets) may be approximation resistant.

Clustering: Here we want to maximize agreements
with Must-Link/Cannot-Link constraints: The in-
put is a graph with “+” or “−” edges indicating if the
two endpoints should belong to the same cluster or not.
Such constraints give rise to Correlation Clustering,
an important paradigm for data analysis both in prac-
tice (Davidson and Basu, 2007; Wagstaff and Cardie,
2000; Wagstaff et al., 2001) and theory (Bansal et al.,
2004; Ailon et al., 2008; Charikar et al., 2005; Swamy,
2004). The current best for maximizing agreements
is a 0.7666 multiplicative approximation via semidef-
inite programs (Swamy, 2004) and an APX-hardness
is known (Charikar et al., 2005). Here we will improve
upon 0.7666, under our stochastic model for generat-
ing constraints.

Hierarchical Clustering (i.e., phylogenetic
trees): There are two common types of trees: rooted
and unrooted. Given n data points, a rooted binary
tree on n leaves, where each leaf corresponds to a
data point, is usually called a hierarchical clustering
and is a standard tool for data analysis across differ-
ent disciplines (Steinbach et al., 2000; Leskovec et al.,
2014; Tumminello et al., 2010; Sørlie et al., 2001). Un-
rooted ternary trees (all nodes have degree 3, except
the leaves that have degree 1) are usually called phylo-
genetic trees and are prevalent in computational biol-
ogy as they describe speciation events throughout the
evolution of species (Bryant, 1997; Felsenstein, 2004).
Here we will use the two terms interchangeably to de-
scribe hierarchies on n leaves. Since in a hierarchy
all data are eventually separated at the leaves, pair-
wise constraints no longer make sense and the ana-
logue of “must-link/cannot-link” are so-called “must-
link-before/cannot-link-before” constraints:

• Desired/Forbidden Triplets: The output here
is a rooted binary tree T on n leaves. We say a
triplet relation “t = ab|c” is obeyed by T (or T
obeys t), if the lowest common ancestor (LCA) of
a, b is a descendant of the LCA of a, c in T . Oth-
erwise T disobeys ab|c. A triplet can be desired
(we write t ∈ TD) and we want the output T to
obey it2 or forbidden (we write t ∈ TF) and we
want T to disobey/avoid it, giving rise to impor-
tant optimization problems studied in computa-
tional biology and graph theory under the name
of rooted triplets consistency (Steel, 1992; Bryant,
1997; Byrka et al., 2010; He et al., 2006). No-
tice that a forbidden triplet ab|c is less restrictive,
since it only specifies that T should either obey

2For example, “penguin, dolphin| tiger” could be a de-
sired triplet as the tiger is the least relevant item.

Vaggos Chatziafratis, Mohammad Mahdian, Sara Ahmadian

ac|b or bc|a, but not ab|c. This is reflected in the
complexity of the problems: given a set of for-
bidden triplets, it is NP-complete to check consis-
tency (i.e., if there is a tree avoiding all of them),
whereas checking consistency of desired triplets in
polynomial time was established long ago by Aho
et al. (1981).

• Desired/Forbidden Quartets: The desired
output here is a ternary unrooted tree T . We say
a quartet q = ab|cd is obeyed by T (or T obeys q) if
the (unique) path from a to b in T does not share
any vertices with the (unique) path from c to d in
T . Otherwise T disobeys q. Similarly to triplets,
a quartet can be desired (q ∈ QD) or forbid-
den (q ∈ QF), giving rise to important quartets
consistency problems in biology and graph the-
ory (Felsenstein, 2004; Bryant, 1997; Jiang et al.,
2001; Snir and Rao, 2006). For both problems,
even if the input is consistent, checking consis-
tency is NP-complete.

Once again, just to give a sense of the approximability,
for desired triplets or quartets, the current best is a 1

3 -
approximation and for forbidden triplets or quartets,
the current best is a 2

3 -approximation. Embarrass-
ingly, in all four cases these are achieved by a random
(rooted or unrooted) tree or a simple greedy construc-
tion (He et al., 2006).

2.2 Further Motivation and Related Work

Here, we further make a comparison to other relevant
works. For ranking, many different types of proba-
bilistic models have been considered (Braverman and
Mossel, 2009; Shah et al., 2016; Shah and Wainwright,
2017; Negahban et al., 2012; Falahatgar et al., 2017)
giving statistical guarantees for reconstructing the de-
sired permutation. Instead of pairwise comparisons,
the problem has also been studied in the case where
partial rankings or complete information (“tourna-
ments”) is provided (Fagin et al., 2006; Ailon, 2010;
Kenyon-Mathieu and Schudy, 2007). Clustering with
constraints and qualitative information (both max and
min versions) were studied in Bansal et al. (2004);
Charikar et al. (2005) where approximations via lin-
ear programs were derived or practical improvements
were made possible (Wagstaff et al., 2001; Wagstaff
and Cardie, 2000). In crowdsourcing and biological ap-
plications, both triplet and quartets queries have been
deployed (Vinayak and Hassibi, 2016; Vaughan, 2017;
Kleindessner and von Luxburg, 2017; Ghoshdastidar
et al., 2019; Snir and Rao, 2006; Bryant, 1997) as they
can be more intuitive for non-expert users compared to
pairwise comparisons. Semi-supervised models, where
triplet queries depend on answers to previous queries
have been studied in Emamjomeh-Zadeh and Kempe
(2018); Vikram and Dasgupta (2016).

To further motivate our stochastic model and re-
sults, we include a slightly more detailed comparison
with 3 important prior works Braverman and Mossel
(2009); Emamjomeh-Zadeh and Kempe (2018); Snir
and Yuster (2012) that study “ground-truth” stochas-
tic models similar to ours. The authors in Braverman
and Mossel (2009) study the ranking problem and as-
sume that there exists a ground-truth ranking π∗, as
we do. However, their stochastic model assumes either
that we have access to all

(
n
2

)
pairwise comparisons,

or that we have access to complete rankings σ on the
n items, where each complete ranking σ is generated
with probability inverse exponential in the Kemeny
distance between π∗ and σ (Kemeny distance is the
number of inversions, i.e., the number of pairs ordered
in π∗ differently from σ).

As it will become obvious, their assumptions are much
stricter than our simple stochastic model that gen-
erates m pairwise comparisons uniformly at random.
Moreover, notice that our approximation guarantees
hold for any number m of given constraints without
requiring it to be Ω(n2). Given their more refined
model, they are of course in a position to analyze the
maximum likelihood estimator and prove approximate
recovery results, e.g., that no element is misplaced by
more than log n positions with high probability; how-
ever no guarantees are given for the number of violated
pairwise constraints, which is the focus of our paper.

For triplets hierarchical clustering, the authors
in Emamjomeh-Zadeh and Kempe (2018) assume there
exists a ground-truth binary tree T , as we do. How-
ever, they are allowed adaptive triplet queries and
show that ≈ n log n such queries suffice to recover T
using a clever partition algorithm similar to Quicks-
elect and Quicksort. Once again, our model is not
adaptive, and we do not pose any constraints on the
number m of given constraints. For quartets hierarchi-
cal clustering, our model is similar to Snir and Yuster
(2012), but we generalize their results to hold both for
forbidden and desired quartets.

Finally, our constrained version of Hierarchical Clus-
tering based on triplet constraints was studied
in Chatziafratis et al. (2018) under the assumption
that the input contains pairwise similarities as well as
triplet constraints.

3 Using MaxCut on instances with
embedded ground-truth

We present our main strategy MaxCut behind our
positive results. As we will see, by modifying the
graphs, our method is flexible to allow for combina-
tions of constraints, e.g., both Btw and non-Btw
constraints for rankings, or both desired and forbid-
den triplets (or quartets) for trees.

Ranking, Clustering and Hierarchical Clustering via MAX-CUT

Stochastic Model for Generating Constraints:
Since our goal is to beat the worst-case approxima-
tion and hardness results, we use a simple stochas-
tic model with an embedded ground-truth solution on
n items. The form of the ground-truth changes de-
pending on which problem we consider; it can be a
ranking (for Mas, Btw, non-Btw), a partition (for
Correlation Clustering) or a hierarchical tree (rooted
for Triplets and unrooted for Quartets). For generat-
ing the m input constraints, we simply choose items
at random and with probability (1− ε) we add a pair-
wise/triplet/quartet constraint that is consistent with
the ground-truth, otherwise with probability ε we add
an erroneous constraint on the selected items. For
example, in the introduction, we saw the Mas con-
straints. Similarly, for Btw, we would uniformly at
random pick m triples of items a, b, c and then add
w.p. (1 − ε) the constraint a|b|c if b appears in be-
tween a and c in the ground-truth ordering. Also,
for the Triplets Consistency problem, we would again
uniformly at random pick m triples of items a, b, c and
then add w.p. (1 − ε) the constraint ab|c if c is sep-
arated first from a, b in the ground-truth (rooted bi-
nary) tree. For all problems, after getting m (noisy)
constraints in the analogous manner, our goal is to find
a global solution that satisfies as many constraints as
possible.

Positive Results: Using our stochastic model we
can escape worst-case impossibility results and for all
3 categories of problems, we present improved approx-
imation algorithms. At a high-level, we first construct
a graph by encoding each of the local constraints on
the items as a set of positive or negative edges between
them. The graph captures the desired relationships
and then, we find a good first split maximizing the
ratio of satisfied over violated constraints by the cut.
Naturally, our algorithm MaxCut (see Algorithm 1)
is based on variants of MaxCut on graphs with nega-
tive weights. An interesting building block in our anal-
ysis when solving for better Maximum Acyclic Sub-
graphs, is the directed MaxCut problem on graphs
with negative weights which, to the best of our knowl-
edge, hadn’t been analyzed before. We note that
for the triplets problem on trees, analogous MaxCut
heuristics had been successfully used before in experi-
mental work for computational biology, however with
no theoretical guarantees (Snir and Rao, 2006, 2012,
2008). An exception is the work of Snir and Yuster
(2012), where they focus only on the desired quartets
problem, however their analysis is a special case of ours
for when QF = ∅ (i.e., the input contains no forbid-
den quartets). Our final approximations circumvent
known hardness results for the case of rankings (Gu-
ruswami et al., 2011) and our new hardness results for
trees described in detail later in Section 4.

3.1 Better Approximations for MAS

We start with Mas as it is perhaps the easiest to de-
scribe (see also Algorithm 1):

Theorem 1. Given m constraints generated according
to our stochastic model on n items, MaxCut satisfies
at least (0.642− 0.4285ε)m on average, where ε is the
fraction of erroneous comparisons. If moreover m ≥
Ω(log n), the result holds w.h.p.

Remark 3. For example, if the error parameter ε =
0.1, hence 10% of the m generated constraints are er-
roneous, we still satisfy ≈ 60% of them, and we still
beat the previous best 1

2 -approximation together with
the known hardness (Guruswami et al., 2008).

Our general proof template has 5 steps:

• Building a graph: For a sampled constraint a < b
indicating that a should precede b in the ranking,
we add two directed edges:

+1 directed from a→ b,−1 directed from b→ a

Since the problem has orientation, we define the
weight of a directed cut (S, S̄) as the sum of
all (positively or negatively) weighted arcs going
from S to S̄ (and we ignore the arcs going from S̄
to S).

• Cuts and constraints: The goal of constructing
the graph is to use information about its cuts
and relate them to the pairwise constraints. No-
tice that a cut (S, S̄) can either obey, disobey or
leave unaffected the status of a a < b constraint,
depending on if a or b belongs to S or S̄. Let
ms,mv denote the satisfied, violated constraints
by the cut, respectively. The weight of any di-
rected (S, S̄) cut is thus:

w(S, S̄) = ms(S, S̄)−mv(S, S̄) (1)

as satisfied pairs ms (with a ∈ S, b ∈ S̄) con-
tribute +1 and violated pairs mv (with a ∈ S̄, b ∈
S) contribute −1.

• Lower Bounding MaxCut: The constructed
graph from the first step, is directed and has both
positive and negative weights. Based on eq. (1),
we should find a large cut in this graph as this
translates to many satisfied constraints. In order
to find the cut, we use a MaxCut variant that
finds a cut comparable to the optimal max cut in
graphs that are directed and contain both posi-
tive and negative weights. However, we cannot
use the standard Goemans-Williamson algorithm
and guarantees Goemans and Williamson (1995),
as the graph is directed with positive and nega-
tive weights. A new ingredient in our proof is a
semidefinite programming relaxation and analysis
for this variant that achieves:

E(w(S, S̄)) ≥ 0.857w(OPT)− 0.143 ·W− (2)

Vaggos Chatziafratis, Mohammad Mahdian, Sara Ahmadian

where w(OPT) is the weight of the optimum cut
and W− is the total negative weight in the graph
in absolute value. Based on the graph construc-
tion in this case, W− = m as every constraint
contributed a −1 edge. We just note that the
numerical values 0.143 and 0.857 sum to 1, and
they just arise from the rounding scheme used to
obtain an integral solution from the relaxation.

• Now that we have a lower bound for w(S, S̄) based
on the optimum cut, in order to conclude the al-
gorithm’s cut is large (and hence satisfies many
constraints), we need to lower bound the opti-
mum’s cut weight w(OPT). To do this we consider
the weight of a median directed cut: the median
cut is defined to be the one that assigns the first
n/2 labels in the optimum ordering for Mas, on
one side of the cut, and the rest n/2 labels to the
other side of the cut. Since the labels for the con-
straints according to our stochastic model were
chosen at random, a counting argument implies
that with high probability ≈ 1

2m of the generated
constraints are satisfied by the median cut and
hence also by OPT. To see this, observe that for
nearly half of the a < b constraints, a belongs to
the first n/2 labels of the median cut, whereas b
belongs to the remaining n/2 labels. Since OPT is
by definition even better than the median cut, we
get that it has a large cut value. If we wanted to
be slightly more precise, we should say that due
to errors in an ε fraction of the generated con-
straints, we actually lose a small ε fraction of the
constraints (we defer details to Appendix A) but
this discounts the optimum cut only by a small
amount.

• Output of MaxCut: Finally, we need to find
a good permutation overall, not just a good top
split. Our algorithm starts by finding an approxi-
mate MaxCut (S, S̄) in G and then proceeds by
outputting a random permutation on the items in
S and in S̄ and concatenating them. Finally, we
can compute the overall value of ALG (dropping
the notation with (S, S̄)):

ALG = ms + 1
2mu =

= ms+ 1
2 (m−ms−mv) = 1

2m+ 1
2 (w(S, S̄)) (3)

where mu are the constraints that were unaffected
by the (S, S̄) cut. By eq. (3), we already see
that we get some advantage over the 1

2m baseline
which is optimal in the worst-case (and is achieved
by a random permutation on all n items).

Remark 4. A natural question is to attempt to use
MaxCut repeatedly on each of the two generated parts

of the first split. However analyzing the repeated Max-
Cut approach is not that simple, as once the first ap-
proximate MaxCut is performed, there is no random-
ness in the two generated subgraphs that we can exploit.
Analogous difficulties arise in dissimilarity-based and
quartets-based hierarchical clustering Charikar et al.
(2019a); Snir and Yuster (2012); Ahmadian et al.
(2020). Finally, we want to point out that such analy-
ses are also known to be challenging from the literature
on Random Forests for decision trees (e.g., Scornet
et al. (2015)) where a similar (data-dependent) two-
step analysis has been elusive.

3.2 Extensions to Other Problems

The same proof template as presented here can be
modified to deal with the remaining problems: Btw,
non-Btw, forbidden and desired triplets, forbidden
and desired quartets. As each of these constraints, in-
volve 3 or 4 points, the construction and analyses be-
come more involved. We present briefly the main mod-
ifications for the graph construction (see Appendix A
for details).

For a Btw constraint {a|b|c}, we add undirected
edges: +2 for (a, c) and −1 for (b, a), (b, c). The edges
capture that a cut violates the constraint if it sep-
arates b from a, c. For a non-Btw constraint {ab|c}
indicating that c should not be between a, b in the final
ordering, we add the following 3 undirected edges:+1
for pairs (c,a),(c,b) and -2 for the pair (a,b). Recall,
that for Btw and non-Btw, the ultimate goal is to
beat the factors 1

3 and 2
3 which are currently optimal

in the worst-case:

Theorem 2. Given m = Ω(log n) noisy constraints
on n items, variations of MaxCut satisfy at least
(0.402 − 0.329ε)m and (0.845 − 0.329ε)m constraints
w.h.p. for Btw and non-Btw, respectively, where ε
is the fraction of erroneous constraints.

For Correlation Clustering, for each Cannot-Link
constraint ab, we add a +1 for (a, b), and for each
Must-Link constraint ab, we add −3.2735 for edge
(a, b). The chosen numerical value −3.2735 depends
on the current best 0.766-approximation for Correla-
tion Clustering (Swamy, 2004) (see Appendix A).

Theorem 3. Given m = Ω(log n) noisy “must-
link/cannot-link” constraints on n items, MaxCut
(modified appropriately) satisfies at least (0.8226 −
0.775ε)m constraints w.h.p., where ε is the fraction of
erroneous constraints.

Analogous theorems hold for the Triplets/Quartets
consistency problems. Due to space constraints, we
omit the statements but we refer the reader to Table 1
for the final ratios and to Appendix A for the proofs.

Ranking, Clustering and Hierarchical Clustering via MAX-CUT

Algorithm 1 Our MaxCut template as instantiated
for Mas.

Input: m pairwise constraints for Mas.
1. For each a < b constraint, insert a +1 arc directed
from a→ b and another arc with negative weight −1
directed from b→ a. Call the resulting graph G.
2. Run our approximate MaxCut algorithm suit-
able for directed graphs with negative weights to get
a first split (S, S̄), satisfying eq. (2).
3. Construct a random permutation π1 on the nodes
in S and a random permutation π2 on the nodes in
S̄. Let π be the ranking obtained by concatenating
π1 and then π2.
4. Return π.

4 Hardness for CSPs on Trees

Negative Results: As mentioned, previous
work (Byrka et al., 2010; Jiang et al., 2001; Bryant,
1997; He et al., 2006; Steel, 1992) tried to get better
approximations for triplets/quartets consistency
compared to trivial baselines. Recall, that the trivial
baseline is to simply output a random tree (either
rooted or unrooted depending on the problem). In our
paper, near optimal hardness of approximation results
for the maximum desired/forbidden triplets/quartets
consistency problems (4 problems in total) are pre-
sented shedding light to why, despite significant efforts
from different communities, no improvement had been
made for nearly thirty years. As a consequence, we
get the first tight hardness for an ordering problem
on trees, thus extending the work of Guruswami
et al. (2011) from orderings on the line to hierarchical
clustering.

Specifically, for maximizing forbidden triplets, we
show that no polynomial time algorithm can achieve a
constant better than 2

3 -approximation. Similar to Gu-
ruswami et al. (2008, 2011) this is assuming the Unique
Games Conjecture, however for maximizing desired
triplets, we show a threshold of 2

3 , assuming P 6= NP.
The above also implies that forbidden triplets is ap-
proximation resistant as a random tree also achieves a
2
3 factor. In fact our hardness results for all 4 problems
are stronger, as we show it’s not possible to distinguish
almost perfectly consistent inputs from inputs where
the optimum solution achieves almost the same as a
random solution.

Technically, in order to get the hardness results,
we give algorithms to obtain permutations on the
leaves of a tree, such that if the tree obeyed
many triplet/quartet constraints, then the permuta-
tion would also obey a large fraction of them when
viewed as appropriate ordering constraints. Specifi-
cally, we prove that under the Ugc, it is hard to ap-
proximate the Forbidden Triplets Consistency problem

better than a factor of 2
3 , even in the unweighted case.

Fact 1. Let K be the total number of triplets con-
straints in an instance of Btw. For any ε > 0, it
is UGC-hard to distinguish between Btw instances of
the following two cases:
YES: val(π∗) ≥ (1 − ε)K, i.e. the optimal permuta-
tion satisfies almost all constraints.
NO: val(π∗) ≤ (1

3 +ε)K, i.e. the optimal permutation
does not satisfy more than 1/3 fraction.

Given the above fact from Guruswami et al. (2011),
we prove our 2

3 -inapproximability result for Forbidden
Triplets:

Theorem 4. Let K be the total number of the triplet
constraints in an instance of Forbidden Triplets Con-
sistency. For any δ > 0, it is UGC-hard to distinguish
between the following two cases:
YES: val(T ∗) ≥ (1− δ)K, i.e. the optimal tree satis-
fies almost all the triplet constraints.
NO: val(T ∗) ≤ (2

3 + δ)K, i.e. the optimal tree does

not satisfy more than 2
3 fraction of triplets.

Proof. Start with a YES instance of the Btw problem
with optimal permutation π∗ and val(π∗) ≥ (1− ε)K.
Viewing each Btw constraint a|b|c as a forbidden
triplet ac|b, we show how to construct a tree T such
that val(T) ≥ (1 − δ(ε))K. In fact, the construction
is straightforward: simply assign the n labels, in the
order they appear in π∗, as the leaves of a caterpil-
lar tree (every internal node has its left child being
a leaf). Observe that this caterpillar tree satisfies:
val(T) ≥ (1 − ε)K. This is because if a Btw con-
straint a|b|c was obeyed by π∗, it will also be avoided
(viewed as a forbidden triplet ac|b) by the caterpillar
tree above: if a appears first in the permutation then
the caterpillar will avoid ac|b as a gets separated first,
otherwise if c appears first, then again the caterpillar
tree will avoid ac|b as c gets separated first.

The NO instance is more challenging. Start with a NO
instance of the Btw problem with optimal π∗ of value
val(π∗) ≤ (1

3 + ε)K. Viewing the Btw constraints as
forbidden triplets, we show that the optimum tree T ∗

cannot achieve better than > (2/3 + 2ε)K, because
this would imply that val(π∗) > (1

3 + ε)K, which is
a contradiction. For this, assume that some tree T
scored a value val(T) > (2/3 + 2ε)K. We will con-
struct a permutation π from the tree T with value
val(π) > (1/3 + ε)K, a contradiction. Notice that
there are forbidden triplets that may be avoided by
the tree, yet obeyed by the permutation: for example
for a forbidden triplet t = ac|b, the tree R that first
removes a and then splits b, c will successfully avoid
t, however the permutation acb can come from R by
projection, however acb does not obey the Btw con-
straint a|b|c. Hence directly projecting the leaves of T
onto a line may not satisfy > (1/3 + 2ε)K, since every

Vaggos Chatziafratis, Mohammad Mahdian, Sara Ahmadian

forbidden triplet ac|b avoided by T , can be ordered by
this projected permutation in a way that would not
obey the corresponding Btw constraint a|b|c. How-
ever, just by randomly swapping each left and right
child for every internal node in the tree before we
do the projection to the permutation, would satisfy
1/2 · (2/3 + 2ε)K = (1/3 + ε)K number of constraints.
To see this, note that with probability 1

2 a forbidden
ac|b avoided by T will be mapped to the desired abc
(and not acb) or cba (and not cab) ordering.

Finally, we get val(π∗) ≥ val(π) > (1/3 + ε)K, a
contradiction that we were given a NO instance. To
conclude, 2

3 -inapproximability follows from the gap of
these two instances.

For the Desired Triplets problem, the proof proceeds
in a similar fashion. One main difference is that we
prove hardness of 2

3 under P 6= NP, without assuming
Ugc. The reason is that we reduce from the non-Btw
problem that is known to be approximation resistant,
subject only to P 6= NP. Of course, one open question is
to close the gap between this 2

3 factor and the current

best approximation of 1
3 .

Theorem 5. Let K be the total number of the triplet
constraints in an instance of Desired Triplets Consis-
tency. For any δ > 0, it is NP-hard to distinguish:
YES: val(T ∗) ≥ (1

2 − δ)K
NO: val(T ∗) ≤ (1

3 + δ)K

Switching to quartet problems, our reductions are
more challenging. The first challenge is that con-
straints are on 4 items so we need to resort to an order-
ing CSP of arity 4, that we term 4-Separatedness.
Next, trees are unrooted and we want to generate an
ordering on their leaves. To do this we first root the
tree at some internal node and then follow a similar
strategy for randomly reordering their children. For
desired quartets we show hardness of 2

3 and for forbid-

den quartets a hardness of 8
9 (see App. A for state-

ments). Recall that the best approximations are 1
3 and

2
3 respectively, achieved by a random (unrooted) tree.

Remark 5. Note that our hardness results give op-
timal results when restricted to (rooted or unrooted)
caterpillar trees, an important tree family, where each
internal node has at least one leaf as a child.

5 Conclusion

We studied ranking, correlation clustering and hier-
archical clustering under qualitative constraints and
we presented a simple algorithm based on MaxCut
that is able to overcome known hardness results un-
der a random model. We also provided the first tight
hardness of approximation for CSPs on trees shedding
light to basic problems in computational biology and
extending previous results by Guruswami et al. (2011)

from ordering CSPs to trees. We believe that a nice
open question is to prove that the two most important
families of CSPs on trees (triplets and quartets consis-
tency) are approximation resistant. Here we showed
this for the case of forbidden triplets. More generally,
it is conceivable that all non-trivial CSPs on trees are
in fact approximation resistant, implying that the in-
approximability results of Guruswami et al. (2011) can
be extended from linear orderings to trees.

References

E. Abbe, A. S. Bandeira, and G. Hall. Exact recovery
in the stochastic block model. IEEE Transactions
on Information Theory, 62(1):471–487, 2015.

S. Ahmadian, V. Chatziafratis, A. Epasto, E. Lee,
M. Mahdian, K. Makarychev, and G. Yaroslavtsev.
Bisect and conquer: Hierarchical clustering via max-
uncut bisection. The 23rd International Conference
on Artificial Intelligence and Statistics, 2020.

A. V. Aho, Y. Sagiv, T. G. Szymanski, and J. D. Ull-
man. Inferring a tree from lowest common ancestors
with an application to the optimization of relational
expressions. SIAM Journal on Computing, 10(3):
405–421, 1981.

N. Ailon. Aggregation of partial rankings, p-ratings
and top-m lists. Algorithmica, 57(2):284–300, 2010.

N. Ailon, M. Charikar, and A. Newman. Aggregat-
ing inconsistent information: ranking and cluster-
ing. Journal of the ACM (JACM), 55(5):1–27, 2008.

P. Austrin and E. Mossel. Approximation resistant
predicates from pairwise independence. Computa-
tional Complexity, 18(2):249–271, 2009.

P. Austrin, R. Manokaran, and C. Wenner. On the NP-
hardness of approximating ordering constraint sat-
isfaction problems. In Approximation, Randomiza-
tion, and Combinatorial Optimization. Algorithms
and Techniques, pages 26–41. Springer, 2013.

N. Bansal, A. Blum, and S. Chawla. Correlation clus-
tering. Machine Learning, 56(1-3):89–113, 2004.

Z. Bar-Joseph, D. K. Gifford, and T. S. Jaakkola.
Fast optimal leaf ordering for hierarchical cluster-
ing. Bioinformatics, 17(suppl 1):S22–S29, 2001.

M. Bodirsky and J. K. Mueller. The complexity of
rooted phylogeny problems. In Proceedings of the
13th International Conference on Database Theory,
pages 165–173, 2010.

M. Bodirsky, P. Jonsson, and T. Van Pham. The com-
plexity of phylogeny constraint satisfaction. In 33rd
Symposium on Theoretical Aspects of Computer Sci-
ence, 2016.

M. Braverman and E. Mossel. Sorting from noisy in-
formation. arXiv preprint arXiv:0910.1191, 2009.

Ranking, Clustering and Hierarchical Clustering via MAX-CUT

D. Bryant. Building trees, hunting for trees, and com-
paring trees: theory and methods in phylogenetic
analysis. PhD Thesis, 1997.

J. Byrka, S. Guillemot, and J. Jansson. New results
on optimizing rooted triplets consistency. Discrete
Applied Mathematics, 158(11):1136–1147, 2010.

M. Charikar and V. Chatziafratis. Approximate hi-
erarchical clustering via sparsest cut and spread-
ing metrics. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 841–854. SIAM, 2017.

M. Charikar, V. Guruswami, and A. Wirth. Clustering
with qualitative information. Journal of Computer
and System Sciences, 71(3):360–383, 2005.

M. Charikar, V. Guruswami, and R. Manokaran. Ev-
ery permutation csp of arity 3 is approximation
resistant. In 2009 24th Annual IEEE Conference
on Computational Complexity, pages 62–73. IEEE,
2009.

M. Charikar, V. Chatziafratis, and R. Niazadeh. Hier-
archical clustering better than average-linkage. In
Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 2291–
2304. SIAM, 2019a.

M. Charikar, V. Chatziafratis, R. Niazadeh, and
G. Yaroslavtsev. Hierarchical clustering for eu-
clidean data. In The 22nd International Conference
on Artificial Intelligence and Statistics, pages 2721–
2730, 2019b.

V. Chatziafratis, R. Niazadeh, and M. Charikar. Hier-
archical clustering with structural constraints. In In-
ternational Conference on Machine Learning, pages
774–783, 2018.

B. Chor and M. Sudan. A geometric approach to be-
tweenness. SIAM Journal on Discrete Mathematics,
11(4):511–523, 1998.

V. Cohen-Addad, V. Kanade, F. Mallmann-Trenn,
and C. Mathieu. Hierarchical clustering: Objec-
tive functions and algorithms. Journal of the ACM
(JACM), 66(4):1–42, 2019.

S. Dasgupta. A Cost Function for Similarity-Based Hi-
erarchical Clustering, page 118–127. Association for
Computing Machinery, New York, NY, USA, 2016.

I. Davidson and S. Basu. A survey of clustering with
instance level constraints. ACM Transactions on
Knowledge Discovery from data, 1(1-41):2–42, 2007.

E. Emamjomeh-Zadeh and D. Kempe. Adaptive hi-
erarchical clustering using ordinal queries. In Pro-
ceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 415–429.
SIAM, 2018.

R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and
E. Vee. Comparing partial rankings. SIAM Journal
on Discrete Mathematics, 20(3):628–648, 2006.

M. Falahatgar, A. Orlitsky, V. Pichapati, and A. T.
Suresh. Maximum selection and ranking under noisy
comparisons. In International Conference on Ma-
chine Learning, pages 1088–1096. PMLR, 2017.

U. Feige and M. Goemans. Approximating the value of
two power proof systems, with applications to max
2sat and max dicut. In Proceedings Third Israel
Symposium on the Theory of Computing and Sys-
tems, pages 182–189. IEEE, 1995.

J. Felsenstein. Inferring phylogenies, volume 2. Sin-
auer associates Sunderland, MA, 2004.

D. Ghoshdastidar, M. Perrot, and U. von Luxburg.
Foundations of comparison-based hierarchical clus-
tering. In Advances in Neural Information Process-
ing Systems, pages 7454–7464, 2019.

M. X. Goemans and D. P. Williamson. Improved
approximation algorithms for maximum cut and
satisfiability problems using semidefinite program-
ming. Journal of the ACM (JACM), 42(6):1115–
1145, 1995.

V. Guruswami, R. Manokaran, and P. Raghavendra.
Beating the random ordering is hard: Inapproxima-
bility of maximum acyclic subgraph. In 2008 49th
Annual IEEE Symposium on Foundations of Com-
puter Science, pages 573–582. IEEE, 2008.

V. Guruswami, J. H̊astad, R. Manokaran,
P. Raghavendra, and M. Charikar. Beating
the random ordering is hard: Every ordering csp
is approximation resistant. SIAM Journal on
Computing, 40(3):878–914, 2011.

J. H̊astad. Some optimal inapproximability results.
Journal of the ACM (JACM), 48(4):798–859, 2001.

Y.-J. He, T. N. Huynh, J. Jansson, and W.-K. Sung.
Inferring phylogenetic relationships avoiding forbid-
den rooted triplets. Journal of Bioinformatics and
Computational Biology, 4(01):59–74, 2006.

T. Jiang, P. Kearney, and M. Li. A polynomial
time approximation scheme for inferring evolution-
ary trees from quartet topologies and its applica-
tion. SIAM Journal on Computing, 30(6):1942–
1961, 2001.

T. Joachims. Optimizing search engines using
clickthrough data. In Proceedings of the Eighth
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’02, page
133–142, New York, NY, USA, 2002. Association
for Computing Machinery.

R. M. Karp. Reducibility among combinatorial prob-
lems. In Complexity of computer computations,
pages 85–103. Springer, 1972.

Vaggos Chatziafratis, Mohammad Mahdian, Sara Ahmadian

C. Kenyon-Mathieu and W. Schudy. How to rank with
few errors. In Proceedings of the thirty-ninth annual
ACM symposium on Theory of computing, pages 95–
103, 2007.

S. Khot. On the power of unique 2-prover 1-round
games. In Proceedings of the thiry-fourth annual
ACM symposium on Theory of computing, pages
767–775. ACM, 2002.

M. Kleindessner and U. von Luxburg. Kernel functions
based on triplet comparisons. In Advances in Neural
Information Processing Systems, pages 6807–6817,
2017.

J. Leskovec, A. Rajaraman, and J. D. Ullman. Min-
ing of massive datasets. Cambridge university press,
2014.

V. Lyzinski, M. Tang, A. Athreya, Y. Park, and C. E.
Priebe. Community detection and classification in
hierarchical stochastic blockmodels. IEEE Trans-
actions on Network Science and Engineering, 4(1):
13–26, 2016.

Y. Makarychev. Simple linear time approximation al-
gorithm for betweenness. Operations research let-
ters, 40(6):450–452, 2012.

B. Moseley and J. Wang. Approximation bounds for
hierarchical clustering: Average linkage, bisecting
k-means, and local search. In Advances in Neural
Information Processing Systems, pages 3094–3103,
2017.

E. Mossel, J. Neeman, and A. Sly. Stochastic
block models and reconstruction. arXiv preprint
arXiv:1202.1499, 2012.

S. Negahban, S. Oh, and D. Shah. Iterative ranking
from pair-wise comparisons. In Advances in neural
information processing systems, pages 2474–2482,
2012.

J. Opatrny. Total ordering problem. SIAM Journal
on Computing, 8(1):111–114, 1979.

E. Scornet, G. Biau, J.-P. Vert, et al. Consistency
of random forests. The Annals of Statistics, 43(4):
1716–1741, 2015.

N. Shah, S. Balakrishnan, A. Guntuboyina, and
M. Wainwright. Stochastically transitive models
for pairwise comparisons: Statistical and computa-
tional issues. In International Conference on Ma-
chine Learning, pages 11–20, 2016.

N. B. Shah and M. J. Wainwright. Simple, robust and
optimal ranking from pairwise comparisons. The
Journal of Machine Learning Research, 18(1):7246–
7283, 2017.

D. Slonim, L. Kruglyak, L. Stein, and E. Lander.
Building human genome maps with radiation hy-
brids. Journal of Computational Biology, 4(4):487–
504, 1997.

S. Snir and S. Rao. Using max cut to enhance rooted
trees consistency. IEEE/ACM transactions on com-
putational biology and bioinformatics, 3(4):323–333,
2006.

S. Snir and S. Rao. Quartets maxcut: a divide and
conquer quartets algorithm. IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics,
7(4):704–718, 2008.

S. Snir and S. Rao. Quartet maxcut: a fast algorithm
for amalgamating quartet trees. Molecular phyloge-
netics and evolution, 62(1):1–8, 2012.

S. Snir and R. Yuster. Reconstructing approximate
phylogenetic trees from quartet samples. SIAM
Journal on Computing, 41(6):1466–1480, 2012.

T. Sørlie, C. M. Perou, R. Tibshirani, T. Aas,
S. Geisler, H. Johnsen, T. Hastie, M. B. Eisen,
M. Van De Rijn, S. S. Jeffrey, et al. Gene expres-
sion patterns of breast carcinomas distinguish tu-
mor subclasses with clinical implications. Proceed-
ings of the National Academy of Sciences, 98(19):
10869–10874, 2001.

M. Steel. The complexity of reconstructing trees from
qualitative characters and subtrees. Journal of clas-
sification, 9(1):91–116, 1992.

M. Steinbach, G. Karypis, and V. Kumar. A com-
parison of document clustering techniques. In KDD
workshop on text mining, volume 400, pages 525–
526. Boston, 2000.

C. Swamy. Correlation clustering: maximizing agree-
ments via semidefinite programming. In Proceed-
ings of the fifteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 526–527. Society for
Industrial and Applied Mathematics, 2004.

L. L. Thurstone. The Measurement of Values. The
University of Chicago Press, 1959.

M. Tumminello, F. Lillo, and R. N. Mantegna. Cor-
relation, hierarchies, and networks in financial mar-
kets. Journal of economic behavior & organization,
75(1):40–58, 2010.

J. W. Vaughan. Making better use of the crowd:
How crowdsourcing can advance machine learning
research. The Journal of Machine Learning Re-
search, 18(1):7026–7071, 2017.

S. Vikram and S. Dasgupta. Interactive bayesian hier-
archical clustering. In International Conference on
Machine Learning, pages 2081–2090, 2016.

R. K. Vinayak and B. Hassibi. Crowdsourced clus-
tering: Querying edges vs triangles. In Advances
in Neural Information Processing Systems, pages
1316–1324, 2016.

K. Wagstaff and C. Cardie. Clustering with instance-
level constraints. AAAI/IAAI, 1097:577–584, 2000.

Ranking, Clustering and Hierarchical Clustering via MAX-CUT

K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl.
Constrained k-means clustering with background
knowledge. In ICML, volume 1, pages 577–584,
2001.

Vaggos Chatziafratis, Mohammad Mahdian, Sara Ahmadian

A Omitted Proofs - Improved
Approximations via MaxCut

In this first section of the Appendix, we present the
omitted details for our positive results. Specifically,
we show how to overcome impossibility results (see
also Appendix B) by going beyond the hardness of
approximation thresholds ρ for each of the problems
considered in the paper. As noted, to escape the worst-
case analysis, we will assume the input is given as a
set of m noisy constraints generated according to our
stochastic model and the goal is to obtain a solution
with strictly more than ρm satisfied constraints.

Recall that in Table 1, only for the results on Corre-
lation Clustering and on Triplets Consistency marked
with an asterisk (*), we required a mild balancedness
assumption. The assumption here on the balancedness
of the ground truth partition or ground truth hierar-
chical clustering is used in our reduction, and specif-
ically when analyzing our MaxCut approach. It is
needed in order to ensure that based on our stochas-
tic model, our MaxCut approach can find a large cut
in the constructed graph which later translates into a
large portion of satisfied constraints.

Assumption 1. For a tree with n leaves, a split (L,R)
at an internal node is called balanced if |L| = cn, |R| =
(1 − c)n with 1

3 ≤ c ≤ 2
3 . We assume that in the

optimum tree there exists one split that is balanced.
Similarly, for a clustering on n nodes, if there exists a
partition of the clusters into two sides (L,R) such that
|L| = cn, |R| = (1 − c)n with 1

3 ≤ c ≤ 2
3 , we say the

clustering is balanced.

This is a reasonable assumption since hierarchical clus-
terings tend to be balanced and indeed recursive bal-
anced cuts tend to recover good hierarchies (Charikar
and Chatziafratis, 2017). In essence, we exclude cater-
pillar trees or more generally highly skewed trees that
are generated by always removing tiny pieces out
of a giant component. Moreover, such assumptions
are common in generative graph models for cluster-
ing, e.g., the Stochastic Block Model (Mossel et al.,
2012; Abbe et al., 2015) and for hierarchical clustering,
e.g., the Hierarchical Stochastic Block Model (Lyzinski
et al., 2016; Cohen-Addad et al., 2019; Ghoshdastidar
et al., 2019), where we expect to see at least two large
communities emerge. For example, recent generative
models like the Hierarchical Stochastic Block Model
in Ghoshdastidar et al. (2019) satisfy the balancedness
assumption with c = 1

2 .

A.1 Quartets Consistency from Noisy
constraints

Let QF ,QD be the set of forbidden and desired quar-
tet constraints with sizes |QF | = m1, |QD| = m2

respectively. The total number of generated con-
straints according to our stochastic model is denoted
by m = m1 + m2. Out of those constraints, let ε1, ε2
denote the fraction of the erroneous forbidden and er-
roneous desired quartet constraints respectively. Our
main theorem here is:

Theorem 6. Given m = m1 + m2 constraints as
above on n items, our algorithm MaxCut satisfies
at least (0.425 − 0.261ε1)m1 + (0.672 − 0.296ε2)m2

on average, where ε1, ε2 are as above. If moreover
m1,m2 ≥ Ω(log n), the result holds w.h.p.

For example, if the constraints are not erroneous (i.e.,
ε1 = ε2 = 0), we satisfy 42.5% of the desired quar-
tets, while avoiding 67.2% of the forbidden quartets,
improving upon prior best approximations.

In order to prove Theorem 6, we will require several
intermediate lemmas and constructions.

Recall that forbidden quartets should be avoided,
whereas desired quartets should be satisfied by the tree
our algorithm finds. We use the following notation:
Let QA(ALG) denote the number of quartets q ∈ QF
avoided, QF (ALG) the number of quartets q ∈ QF not
avoided (of course, QF = m2 = QA(ALG) +QF (ALG))
and QD(ALG) the number of quartets q ∈ QD satisfied
by the output phylogenetic tree. For the case of no
errors ε1 = 0, ε2 = 0, the best approximation under
worst-case analysis is:

QD(ALG)−QF (ALG) ≥ 1
3 (|QD| − |QF |) ⇐⇒

QD(ALG) +QA(ALG) ≥ 1
3m1 + 2

3m2

In fact, the guarantees hold separately QD(ALG) ≥
1
3 |QD| and QA(ALG) ≥ 2

3 |QF | and are achieved either
by a simple greedy algorithm or by a random tree (He
et al., 2006). Our goal is to find a tree beating the
above guarantees, i.e., satisfying strictly more than 1

3

fraction of desired quartets and strictly more than 2
3

fraction of forbidden quartets. Our approach is based
on extending a previous analysis from Snir and Rao
(2006) that only handled the case with QF = ∅.

The end result of our algorithm ALG, which is based
on MaxCut, is a tree with the following guarantees:

QD(ALG) +QA(ALG) ≥

≥ (0.425− 0.261ε1)m1 + (0.672− 0.296ε2)m2 (4)

We start by instantiating our general algorithmic tem-
plate in Algorithm 1 to the case of the Quartets Consis-
tency problem, and we describe the necessary changes
for the appropriate graph construction below:

Ranking, Clustering and Hierarchical Clustering via MAX-CUT

Graph Construction from constraints: The goal
here is to construct a graph encoding the qualita-
tive information from the generated quartets so that a
MaxCut subroutine can yield a reasonable first split
of the output phylogenetic tree. Quartets q ∈ QF
needs to be handled differently from quartets q ∈ QD.
For each forbidden q = {ab|cd} ∈ QF we add the fol-
lowing six + or − weighted edges:

+2 for pairs (a, b), (c, d) and

−1 for pairs (a, c), (a, d), (b, c), (b, d)

and for a q = {ab|cd} ∈ QD we add the following + or
− edges:

−2 for pairs (a, b), (c, d) and

+1 for pairs (a, c), (a, d), (b, c), (b, d)

Let G be the undirected weighed multigraph con-
structed from the constraints as above and let (S, S̄)
denote any graph cut into two parts. We say that a
quartet q = {ab|cd} ∈ QF∪QD is unaffected by the cut
(S, S̄ if all four labels a, b, c, d end up in one of the two
parts. For quartets whose endpoints are separated by
the cut, we distinguish 3 cases: if one of the labels goes
to one of the two parts while the remaining 3 labels go
to the other part, we say that q is postponed. If pre-
cisely a, b are contained in some part, while the other
part contains precisely c, d, we say q is obeyed. In any
other case, q is disobeyed (e.g., a, c ∈ S and b, d ∈ S̄
or the symmetric split a, d ∈ S and b, c ∈ S̄). The per-
haps more natural terms satisfied and violated were
not used as we deal both with desired and forbidden
quartets and would be misleading when accounting for
the maximization objective:

Lemma 1. The weight of any cut (S, S̄) can be com-
puted based on the status of the quartets as:

w(S, S̄) = 2mQFd (S, S̄)− 4mQFo (S, S̄)+

+ 4mQDo (S, S̄)− 2mQDd (S, S̄) (5)

where mQFd ,mQDd is the number of disobeyed quartets
by the cut that belong to QF ,QD respectively and simi-
larly mQFo ,mQDo is the number of obeyed quartets from
QF ,QD respectively.

Proof. Note that by our choice for the edge weights,
if q = {ab|cd} is postponed or unaffected by the cut
(S, S̄), its contribution to w(S, S̄) is 0 regardless of
q ∈ QF or q ∈ QD. Now, if a forbidden q ∈ QF
is obeyed, that counts as a mistake and it decreases
the weight of the cut by -4, whereas if it is disobeyed,
that counts as a correct choice and it increases the
weight of the cut by +2. Accordingly we compute
the contribution for the desired quartets q ∈ QD as
+4 if obeyed and -2 if disobeyed. Summing over all
constraints gives us the lemma.

The final step is to compute the overall quartets our
algorithm had success on, relative to the sample sizes
m1,m2:

Lemma 2. If (S, S̄) is the first split of ALG, the total
number of quartets decomposed correctly is:

ALG = QA(ALG) +QD(ALG) ≥ 2
3m1 + 1

3m2 + 1
6w(S, S̄)

Proof. Let mQFp ,mQFu denote the number of post-
poned or unaffected by the cut forbidden quartets, and
mQDp ,mQDu denote the number of postponed or unaf-
fected by the cut desired quartets. Our algorithm first
uses an approximation to MaxCutand then proceeds
greedily (or randomly) to achieve the baseline guaran-
tees by building a tree on S and on S̄:

ALG ≥ mQFd (S, S̄) + 2
3 (mQFu (S, S̄) +mQFp (S, S̄))+

+mQDo (S, S̄) + 1
3 (mQDu (S, S̄) +mQDp (S, S̄))

For notation purposes, from now on we drop the paren-
theses (S, S̄) from the terms since we always refer to
the (S, S̄) cut. Observe that m1 = mQFd + mQFo +

mQFu +mQFp and similarly m2 = mQDd +mQDo +mQDu +

mQDp . By substituting the terms for unaffected and
postponed quartets we get:

ALG ≥

mQFd + 2
3 (m1−mQFd −m

QF
o)+mQDo + 1

3 (m2−mQDd −m
QD
o)

= 2
3m1 + 1

3m
QF
d − 2

3m
QF
o + 1

3m2 + 2
3m
QD
o − 1

3m
QD
d

= 2
3m1 + 1

3m2 + 1
6 (2mQFd − 4mQFo + 4mQDo − 2mQDd)

From equation (5), the last term is equal to the weight
of the (S, S̄) cut and this finishes the proof.

Now we need to show that there is a good cut with high
weight in the graph. Recall that the graph has positive
and negative edges. For such graphs, the guarantee of
the rounding algorithm of Goemans and Williamson
(1995) is as follows:

Fact 2. For graphs with both positive and negative
weights, one can efficiently find a cut (S, S̄) with
weight:

w(S, S̄) ≥ 0.878w(S∗, S̄∗)− 0.122W−

where (S∗, S̄∗) is the optimum solution for Max-
Cut and W− is the absolute sum of all negative edge
weights.

The cut (S, S̄) is produced in the same manner as in
the standard Goemans-Williamson algorithm via ran-
dom hyperplane rounding on their semidefinite relax-
ation for MaxCut. We will use this fact to prove the
following:

Vaggos Chatziafratis, Mohammad Mahdian, Sara Ahmadian

Lemma 3. The weight of the top split relative to the
sizes of the quartet constraints is:

w(S, S̄) ≥ (0.03229− 1.56ε1)m1 + (0.5525− 1.56ε2)m2

Proof. Observe that in the constructed graph, the to-
tal negative weight is W− = 4m1 + 4m2 as each quar-
tet adds a total negative weight of -4. In order to use
Fact 2, we require a lower bound on the optimum value
w(S∗, S̄∗).

Notice that for any phylogenetic tree, since all internal
vertices have three neighbors each (a trivalent tree),
we can always find an edge that induces a balanced
cut. For n leaves, a cut (L,R) is called balanced if
|L| = cn, |R| = (1 − c)n with 1

3 ≤ c ≤ 2
3 . From our

uniform generating model, recall that the number of
quartet constraints the cut (L,R) succeeds at is:

E(mQFd) = 6c2(1− c)2(1− ε1)m1

E(mQDo) = 6c2(1− c)2(1− ε2)m2

and the number of constraints the cut (L,R) fails at,
due to the erroneous constraints is:

E(mQFo) = 6c2(1−c)2ε1m1, E(mQDd) = 6c2(1−c)2ε2m2

The quantity c2(1− c)2 with 1
3 ≤ c ≤

2
3 attains a min-

imum value of 4
81 when c = 1

3 ; hence, from Lemma 1,
the weight of the cut (L,R) on the constructed graph
is:

w(L,R) ≥ 2mQFd (L,R)− 4mQFo (L,R)+

+4mQDo (L,R)− 2mQDd (L,R)

≥ 16
27 (1−ε1)m1− 32

27ε1m1+ 32
27 (1−ε2)m2− 16

27ε2m2 (6)

Of course the optimum cut has even larger weight
than the specific balanced (L,R) cut so: w(S∗, S̄∗) ≥
w(L,R). Substituting equation (6) in Fact 2 yields the
lemma.

Proof of Theorem 6. From Lemma 2, we have a lower
bound on our algorithm’s performance via the approx-
imate max cut. Substituting the quantity w(S, S̄)
based on Lemma 3, yields the theorem.

From the above, notice that we can still beat the prior
best baselines as long as the error rates are not too big
(ε1 ≤ 3.4% and ε2 ≤ 35.4%).

A.2 Triplets Consistency from Noisy
constraints

Here we show a similar approximation result but for
Triplets. Let TF , TD be the set of forbidden and desired
triplet constraints with sizes |TF | = m1, |TD| = m2 re-
spectively. The total number of generated constraints

is denoted by m = m1 +m2. Out of those constraints,
let ε1, ε2 denote the fraction of the erroneous forbidden
and erroneous desired triplet constraints respectively.

Theorem 7. Given m = m1+m2 constraints as above
on n items, our algorithm MaxCut satisfies at least
(2
3+0.11378−0.5853ε1)m1+(1

3+0.30886−0.5853ε2)m2

on average, where ε1, ε2 are as above. If moreover
m1,m2 ≥ Ω(log n), the result holds w.h.p.

For example, if the constraints are not erroneous (i.e.,
ε1 = ε2 = 0), we satisfy 64% of the desired triplets,
while avoiding 78% of the forbidden triplets. This lat-
ter ratio beats our worst-case inapproximability results
for triplets (see also Appendix B).

The reason we stated the numerical values in this form
is that the trivial baselines achieve ratios of 2

3 and 1
3

for m1 and m2 respectively.

Recall that forbidden triplets should be avoided,
whereas desired triplets should be satisfied by the tree
our algorithm finds. We use the following notation:
Let TA(ALG) denote the number of triplets t ∈ TF
avoided, TF (ALG) the number of triplets t ∈ QF not
avoided (of course, TF = m2 = TA(ALG) + TF (ALG))
and TD(ALG) the number of triplets t ∈ TD satisfied
by the output rooted binary hierarchical tree. For the
case of no errors ε1 = 0, ε2 = 0, the best approximation
under worst-case analysis is:

TD(ALG)− TF (ALG) ≥ 1
3 (|TD| − |TF |) ⇐⇒

TD(ALG) + TA(ALG) ≥ 1
3m1 + 2

3m2

In fact, the guarantees hold separately TD(ALG) ≥
1
3 |TD| and TA(ALG) ≥ 2

3 |TF | and are achieved either
by a simple greedy algorithm or by a random tree (He
et al., 2006). Our goal is to find a tree beating the
above guarantees, i.e., satisfying strictly more than 1

3

fraction of desired triplets and strictly more than 2
3

fraction of forbidden triplets.

The end result of our algorithm ALG, which is based
on MaxCut, is a tree with the following guarantees:

TD(ALG) + TA(ALG) ≥

(2
3+0.11378−0.5853ε1)m1+(1

3+0.30886−0.5853ε2)m2

(7)

We proceed by describing the necessary changes to be
made in our algorithmic template in Algorithm 1, in
order to handle the triplet constraints.

Graph Construction from constraints: The goal
here is to construct a graph encoding the qualitative
information from the generated triplets so that a Max-
Cut subroutine can yield a reasonable first split of the
output binary hierarchical tree. Triplets t ∈ TF need
to be handled differently from triplets t ∈ TD. For

Ranking, Clustering and Hierarchical Clustering via MAX-CUT

each forbidden t = {ab|c} ∈ TF we add the following
3 + or − undirected weighted edges:

+2 for the pair (a, b) and − 1 for pairs (c, a), (c, b)

and for a t = {ab|c} ∈ TD we add the following + or
− edges:

−2 for the pair (a, b) and + 1 for pairs (c, a), (c, b)

Let G be the undirected weighed multigraph con-
structed from the constraints as above and let (S, S̄)
denote any graph cut into two parts. We say that a
triplet t = {ab|c} ∈ TF ∪ TD is unaffected by the cut
(S, S̄ if all three labels a, b, c end up in one of the two
parts. For triplets whose endpoints are separated by
the cut, we distinguish 2 cases: if precisely a, b are
contained in some part, while the other part contains
precisely c, we say t is obeyed. In any other case, t is
disobeyed (e.g., a, c ∈ S and b ∈ S̄ or the symmetric
split b, c ∈ S and a ∈ S̄). The perhaps more natural
terms satisfied and violated were not used as we deal
both with desired and forbidden quartets and would
be misleading when accounting for the maximization
objective:

Lemma 4. The weight of any cut (S, S̄) can be com-
puted based on the status of the triplets as:

w(S, S̄) =

mTFd (S, S̄)− 2mTFo (S, S̄) + 2mTDo (S, S̄)−mTDd (S, S̄)
(8)

where mTFd ,mTDd is the number of disobeyed triplets by
the cut that belong to TF , TD respectively and similarly
mTFo ,mTDo is the number of obeyed triplets from TF , TD
respectively.

Proof. Note that by our choice for the edge weights, if
t = {ab|c} is unaffected by the cut (S, S̄]), its contri-
bution to w(S, S̄) is 0 regardless of t ∈ TF or t ∈ TD.
Now, if a forbidden t ∈ TF is obeyed, that counts as
a mistake and it decreases the weight of the cut by
−2, whereas if it is disobeyed, that counts as a correct
choice and it increases the weight of the cut by +1. Ac-
cordingly we compute the contribution for the desired
triplets t ∈ TD as +2 if obeyed and −1 if disobeyed.
Summing over all constraints gives us the lemma.

The final step is to compute the overall quartets our
algorithm had success on, relative to the sample sizes
m1,m2:

Lemma 5. If (S, S̄) is the first split of ALG, the total
number of triplets decomposed correctly is:

ALG = TA(ALG) + TD(ALG) ≥ 2
3m1 + 1

3m2 + 1
3w(S, S̄)

Proof. Let mTFu denote the number of unaffected by
the cut forbidden triplets, and mTDu denote the num-
ber of unaffected by the cut desired triplets. Our al-
gorithm first uses an approximation to MaxCut and
then proceeds greedily (or randomly) to achieve the
baseline guarantees by building a tree on S and on S̄:

ALG ≥ mTFd (S, S̄)+ 2
3m
TF
u (S, S̄)+mTDo (S, S̄)+ 1

3m
TD
u (S, S̄)

For notation purposes, from now on we drop the paren-
theses (S, S̄) from the terms since we always refer to
the (S, S̄) cut. Observe that m1 = mTFd +mTFo +mTFu
and similarlym2 = mTDd +mTDo +mTDu . By substituting
the terms for the unaffected triplets we get:

ALG ≥

mTFd + 2
3 (m1−mTFd −m

TF
o)+mTDo + 1

3 (m2−mTDd −m
TD
o)

= 2
3m1 + 1

3m
TF
d −

2
3m
TF
o + 1

3m2 + 2
3m
TD
o − 1

3m
TD
d

= 2
3m1 + 1

3m2 + 1
3 (mTFd − 2mTFo + 2mTDo −m

TD
d)

From equation (8), the last term is equal to the weight
of the (S, S̄) cut and this finishes the proof.

Now we can use again Fact 2 to give a lower bound
on the optimal cut. The cut (S, S̄) is produced in the
same manner as in the standard Goemans-Williamson
algorithm via random hyperplane rounding on their
semidefinite relaxation for MaxCut. We will use the
fact to prove the following:

Lemma 6. The weight of the top split relative to the
sizes of the triplet constraints is:

w(S, S̄) ≥ (0.3413−1.756ε1)m1+(0.9266−1.756ε2)m2

Proof. Observe that in the constructed graph, the to-
tal negative weight is W− = 2m1 +2m2 as each triplet
adds a total negative weight of −2. In order to use
Fact 2, we require a lower bound on the optimum value
w(S∗, S̄∗).

Here is the first time where we require Assumption 1
about the balancedness of the ground truth tree. From
our stochastic model, recall that the number of triplet
constraints the cut (L,R) succeeds at is:

E(mTFd) = (3c2(1− c) + 3c(1− c)2)(1− ε1)m1

E(mTDo) = (3c2(1− c) + 3c(1− c)2)(1− ε2)m2

and the number of constraints the cut (L,R) fails at,
due to the erroneous constraints is:

E(mTFo) = (3c2(1− c) + 3c(1− c)2)ε1m1

E(mTDd) = (3c2(1− c) + 3c(1− c)2)ε2m2

The quantity c2(1 − c) + c(1 − c)2 with 1
3 ≤ c ≤ 2

3

attains a minimum value of 2
9 when c = 1

3 ; hence,

Vaggos Chatziafratis, Mohammad Mahdian, Sara Ahmadian

from Lemma 4, the expected weight of the cut (L,R)
on the constructed graph is:

w(L,R) ≥

mTFd (L,R)− 2mTFo (L,R) + 2mTDo (L,R)−mTDd (L,R)

≥ 2
3 (1− ε1)m1 − 4

3ε1m1 + 4
3 (1− ε2)m2 − 2

3ε2m2 (9)

Of course the optimum cut has even larger weight
than the specific balanced (L,R) cut so: w(S∗, S̄∗) ≥
w(L,R). Substituting equation (9) in Fact 2 yields the
lemma.

Proof of Theorem 7. From Lemma 5, we have a lower
bound on our algorithm’s performance via the approx-
imate max cut. Substituting the quantity w(S, S̄)
based on Lemma 6, yields the theorem.

From the above, notice that we beat the trivial base-
lines as we avoid ≈ 78% > 2

3 of the forbidden triplets

and we satisfy ≈ 64% > 1
3 of the desired triplets.

A.3 Rankings from Noisy constraints

Here we will show how to beat the approximability
thresholds for 3 problems: Mas, Btw and non-Btw,
even though our techniques can be extended to han-
dle many other ordering problems and combinations
of desired or forbidden ordering constraints.

Non-BTW: The goal here is to beat the thresh-
old of 2

3 -approximation and as we will see a 0.84-
approximation is possible. The main difference again
is on the way we construct the graph based on the
generated triplet constraints. For a query {ab|c} indi-
cating that c should not be between a, b in the final
ordering we add the following 3 undirected edges:

+1 for pairs (c, a), (c, b) and − 2 for the pair (a, b)

The graph is as always constructed by inserting all
these edges for each of the triplet constraints. We de-
scribe below the necessary changes for each of the steps
of the template.

• Contrary to previous ordering problems, here a
cut into two pieces can either satisfy, postpone or
leave unaffected the status of a triplet {ab|c}. The
weight of the cut is:

w(S, S̄) = 2ms(S, S̄)−mp(S, S̄)

as a satisfied triplet contributes +2 in the objec-
tive ((c, a), (c, b) are cut) while a postponed triplet
contributes a total of −1 (labels a and b are sep-
arated).

• Our algorithm ALG, starting with the (S, S̄) cut
and continuing randomly after that, scores a total
objective (we drop the (S, S̄) notation):

ALG = ms + 2
3mu + 1

2mp

since even for postponed constraints there is still
a 1

2 probability of correctly placing c either first
or last among the three labels. Substituting m =
ms +mp +mu which is true for any cut:

ALG =

= ms + 2
3 (m−ms −mp) + 1

2mp =

= 2
3m+ 1

3ms − 1
6mp =

= 2
3m+ 1

6 (2ms −md) = 2
3m+ 1

6w(S, S̄) (10)

• The graph’s total negative weight is W− = 2m so
the Goemans-Williamson guarantee is:

E(w(S, S̄)) = 0.878w(OPT)− 0.122 · 2m (11)

We lower bound the weight w(OPT) by the weight
of the median cut: consider the median element q
in the unknown optimum permutation and then
let one part of the split be the elements that pre-
cede q. Generally, in permutation problems, en-
suring that a balanced cut with large cut value
exists, is easier than problems on trees, as the
median cut guarantees a 50-50 split. Since the la-
bels for the constraints were chosen at random, a
simple counting argument implies that in expec-
tation 3

4m (i.e., 3c2(1 − c)m + 3(1 − c)2cm with

c = 1
2) constraints are satisfied by the OPT cut,

so w(OPT) ≥ 2 · 3
4 (1 − ε)m − 3

4εm and we get
(0.845−0.329ε)-approximation by substituting in
equation (11) and then to (10). For example, even
when ≈ 10% are erroneous, we still get a 0.81-
approximation.

BTW: The goal here is to beat the 1
3 -approximation

which is the current best for inconsistent instances
of Btw. We will get a 0.402-approximation.
If the instance is promised to be consistent,
Makarychev Makarychev (2012) gave an algorithm
achieving 1

2 -approximation. It is a divide and con-
quer algorithm that is simple and runs in linear time.
A significantly slower algorithm based on semidefinite
program with the same approximation guarantee was
previously proposed by Chor and Sudan Chor and Su-
dan (1998).

For a triplet {a|b|c} indicating that b should be be-
tween a and c in the ordering we construct a graph
with undirected edges:

+2 for the pair (a, c) and −1 for the pairs (b, a), (b, c)

Ranking, Clustering and Hierarchical Clustering via MAX-CUT

The edges try to capture that a cut violates the con-
straint if it separates b from a, c. We give our main
steps:

• Contrary to non-Btw, a cut into two pieces here
can either violate, postpone or leave unaffected
the status of the triplet {a|b|c}. The weight of a
cut is:

w(S, S̄) = mp(S, S̄)− 2mv(S, S̄)

as violated triplets contribute −2 and postponed
triplets +1.

• Crucially, a postponed by the cut triplet, can still
be satisfied with probability 1

2 and this gives us
the advantage:

ALG = 1
3mu + 1

2mp =

= 1
3 (m−mp −mv) + 1

2mp =

= 1
3m+ 1

6 (mp − 2mv) = 1
3m+ 1

6w(S, S̄) (12)

• Again the graph’s total negative weight is W− =
2m so the Goemans-Williamson guarantee is:

E(w(S, S̄)) = 0.878w(OPT)− 0.122 · 2m (13)

As before, we lower bound the weight w(OPT) by
the weight of the median cut. Since the labels
for the constraints were chosen at random, a sim-
ple counting argument implies that in expecta-
tion 3

4m (i.e., 3c2(1 − c)m + 3(1 − c)2cm with

c = 1
2) constraints are postponed by the OPT cut,

so w(OPT) ≥ 3
4 (1 − ε)m − 2 · 3

4εm and we get
a (0.402− 0.329ε)-approximation by substituting
in equation (13) and then to (12). For an error
rate of ≈ 10% we still get ≥ 0.369-approximation,
which is better than 1

3 .

MAS: The goal here is to beat the trivial 1
2 -

approximation achieved by an arbitrary or its reversed
(or a random) ordering. We will indeed be able to
achieve a 0.642-approximation:

Theorem 8. Given m constraints generated according
to our stochastic model on n items, MaxCut satisfies
at least (0.642− 0.4285ε)m on average, where ε is the
fraction of erroneous comparisons. If moreover m ≥
Ω(log n), the result holds w.h.p.

The constraints here are on pairs of labels, e.g., a <
b. Contrary to Btw and non-Btw where the con-
structed graph and cuts were undirected, Mas is ori-
entated in the sense that it matters which side of the
cut the labels end up at. This introduces the first

challenge since we have to solve approximate Max-
Cut in directed graphs with negative weights. For a
query a < b indicating that a should precede b in the
ranking, we add two directed edges:

+1 directed from a→ b and another arc with

negative weight − 1 directed from b→ a

Here the weight of a directed cut (S, S̄) is the sum of
all (positively or negatively) weighted arcs going from
S to S̄ (and we ignore the arcs going from S̄ to S).
Here a cut can either satisfy, violate or leave unaffected
the status of a query and there are no postponed con-
straints as they only involve two labels. We describe
our steps:

• It is easy to see that the weight of any directed
(S, S̄) cut is:

w(S, S̄) = ms(S, S̄)−mv(S, S̄)

as satisfied pairs contribute +1 and violated pairs
contribute −1.

• Again we can compute the value of ALG(dropping
the notation with (S, S̄)):

ALG = ms + 1
2mu =

= ms+ 1
2 (m−ms−mv) = 1

2m+ 1
2 (w(S, S̄)) (14)

• Again the graph’s total negative weight is W− =
m. However now that the graph is directed
and with negative weights, we cannot use the
Goemans-Williamson guarantee. A new ingredi-
ent in our proof is an SDP relaxation and round-
ing scheme that achieves:

E(w(S, S̄)) = 0.857w(OPT)− 0.143 ·W− (15)

• Continuing as before, we will lower bound the
weight w(OPT) by the weight of the median di-
rected cut (as noted in the main body, this cut
simply separates the first half of the items in the
optimal ordering from the last half). Since the
labels for the constraints were chosen at random,
a simple counting argument implies that in ex-
pectation 1

2m (i.e., 2c(1 − c)m with c = 1
2) con-

straints are satisfied by the OPT cut, so w(OPT) ≥
1
2m(1− ε)− 1

2εm due to errors in ε fraction of the
constraints.

Proof of Theorem 8. Given the above observations, in
order to get a (0.642−0.4285ε)-approximation, we first
substitute in equation (15) the lower bound we got for
w(OPT), and then we substitute w(S, S̄) to (14).

For example, if 10% of the constraints are erroneous we
still satisfy ≈ 60% of all constraints, beating the worst-
case inapproximability results of Guruswami et al.
(2011).

Vaggos Chatziafratis, Mohammad Mahdian, Sara Ahmadian

A.3.1 Directed MaxCut with negative
weights

Here we proceed by proving an important ingredient
in our proof relating to finding directed cuts in graphs
with negative weights.

In the seminal paper by Goemans and Williamson
(1995), they show how directed MaxCut can be
solved approximately on directed graphs with non-
negative weights. They used the following semidefinite
programming relaxation where A denotes the arcs of
the graph and V the vertices (|V | = n):

maximize 1
4

∑
(i,j)∈A

wij(1 + v0vi − v0vj − vivj)

subject to: ||vi||2 = 1, vi ∈ Rn+1,∀i ∈ V ∪ 0

Notice the special role of the vector v0, which is used to
break the symmetry indicating that we want to max-
imize edges going from left to right where left is the
side in which v0 belongs to. Observe that in an integral
{±1} solution if vertex i is on the same side with v0 and
j is on the other side then (1 + v0vi− v0vj − vivj) = 4
that’s why we chose the coefficient 1

4 in front of the
summation. Also note that due to the symmetry if
instead of vj we set −vj the relaxation won’t change
so we can instead think of:

maximize 1
4

∑
(i,j)∈A

wij(1 + v0vi + v0vj + vivj)

This will just simplify some trigonometric expressions
later.

In this subsection we will prove a bound on the weight
of the cut for directed graphs with positive and nega-
tive edge weights. The bound we will be able to show
is:

E(w(S, S̄)) = 0.857w(OPT)− 0.143 ·W− (16)

where W− denotes the total weight in absolute value
of all negative edges. Notice that if no negative
weights are present (W− = 0 then we almost recover
the Goemans-Williamson 0.878 coefficient. The above
bound follows from the following theorem by rearrang-
ing terms:

Theorem 9. Let W− =
∑

(i,j)∈A |w
−
ij | where x− =

min(0, x). Then we can efficiently find a cut (L,R)
such that:

E(w(L,R)) +W− ≥ 0.857
(
w(OPT) +W−

)
where OPT denotes the optimum directed cut in the
graph.

Proof. Let SDP denote the optimal SDP value which is
larger than w(OPT) since we relaxed the problem. We

will show the above bound where w(OPT) is replaced
by SDP. We need to rewrite the SDP relaxation to in-
corporate the W− term and then we need to compute
the probabilities an edge (i, j) ∈ A participates or does
not participate in the cut and how it compares to the
contribution in the SDP relaxation. The probability
an edge does not participate in the cut is needed here
because negatively weighted edges exist, which could
potentially decrease the value of the cut. Separat-
ing the positive and negative weights (A = A+ ∪ A−)
and rewriting the SDP (θij denotes the angle between
vi, vj):

1
4

∑
(i,j)∈A

wij(1 + v0vi + v0vj + vivj) +W− =

= 1
4

∑
(i,j)∈A+

wij(1 + v0vi + v0vj + vivj)+

+ 1
4

∑
(i,j)∈A−

|wij | (4− (1 + v0vi + v0vj + vivj)) =

= 1
4

∑
(i,j)∈A+

wij(1 + cos θ0i + cos θ0j + cos θij)+

+ 1
4

∑
(i,j)∈A−

|wij | (3− cos θ0i − cos θ0j − cos θij)

For the rounding algorithm we can use the standard
Goemans Williamson rounding although this will only
guarantee a sub-optimal coefficient of 0.796 instead
of 0.857 in Equation (15). We will show later how
a non-standard but better rounding scheme by Feige
and Goemans (1995) gives us the desired 0.857 factor.

Let r be a vector drawn uniformly from the unit
sphere. Let’s evaluate the contribution of a positive
arc (i, j) ∈ A+ to the quantity E(w(L,R)) +W−:

1
4wij (4 ·Pr[sgn(vir) = sgn(vjr) = sgn(v0r)]) =

= wijPr[sgn(vir) = sgn(vjr) = sgn(v0r)]

For a negative arc (i, j) ∈ A−, the contribution to the
quantity E(w(L,R)) +W− is:

− 1
4 |wij | (4Pr[sgn(vir) = sgn(vjr) = sgn(v0r)])+|wij | =

= |wij |(1−Pr[sgn(vir) = sgn(vjr) = sgn(v0r)])

Finally, if we can manage to lower bound
Pr[sgn(vir) = sgn(vjr) = sgn(v0r)] by
(1+cos θ0i+cos θ0j+cos θij) and simultaneously lower
bound (1 − Pr[sgn(vir) = sgn(vjr) = sgn(v0r)]) by
(3− cos θ0i − cos θ0j − cos θij) we will have finished as
the final result will follow by linearity of expectations.
This can indeed be done using some trigonometric
facts and the symmetry of spherical geometry:

Ranking, Clustering and Hierarchical Clustering via MAX-CUT

Fact 3. Let r be chosen uniformly at random from the
unit sphere. Then for any three vectors vi, vj , v0 in the
unit sphere:

Pr[sgn(vir) = sgn(vjr) = sgn(v0r)] =

= 1− 1
2π (θij + θj0 + θi0) ≥

≥ 0.796 · 14 (1 + cos θ0i + cos θ0j + cos θij)

and also:

1−Pr[sgn(vir) = sgn(vjr) = sgn(v0r)] =

= 1
2π (θij + θj0 + θi0) ≥

≥ 0.878 · 14 (3− cos θ0i − cos θ0j − cos θij)

Putting it all together and using linearity of expecta-
tions we have shown:

E(w(L,R)) +W− ≥ 0.796
(
SDP +W−

)
≥

≥ 0.796
(
w(OPT) +W−

)
As we shall see next the first inequality is the one that
determines the approximation coefficient. The above
proves so far that 0.796 is possible. However there ex-
ists a more complicated rounding scheme which does
not choose r uniformly at random. It was developed in
the context of Max-2-SAT problem by Feige and Goe-
mans and their main idea behind their improvement
is to take advantage of the special role of v0. They
crucially use v0: they map each vi to another vector
wi that depends both on vi and on v0, and only then
they proceed with the Goemans-Williamson rounding
algorithm. Specifically,wi is coplanar with v0, on the
same side of v0 as vi is, and forms an angle with v0
equal to f(θi0). By choosing the function f to be:

f1/2(θ) = 1
2θ + 1

2 (π2 (1− cos θ))

they report that they get a coefficient 0.857 for the first
inequality above (instead of 0.796) and simultaneously
a coefficient 0.9249 for the second inequality (instead
of 0.878). Using again linearity of expectation, this
implies our theorem:

E(w(L,R)) +W− ≥ 0.857
(
w(OPT) +W−

)

A.4 Correlation Clustering from Noisy
Constraints

The last of the proofs for the positive results will
be for the Correlation Clustering problem, following
the same ideas as in the proofs above. In corre-
lation clustering, the information comes as Must-
Link (ab) or Cannot-Link (a|b) constraints indicat-
ing if two labels should be in the same or in different

parts of an optimal partition. The current best al-
gorithm is a 0.7666-approximation by Swamy (2004)
and here we improve under our stochastic model for
the input constraints. We achieve a (0.8226− 0.775ε)-
approximation.

ALG = ms + 0.766mu = ms + 0.766(m−ms −mv) =

= 0.766m+ 0.234(ms − 3.2735mv)

We construct an undirected graph where for every
Cannot-Link constraint ab we add a +1 edge be-
tween a, b and for every Must-Link constraint ab we
add an edge a, b now with negative weight −3.2735.

w(S, S̄) = ms(S, S̄)− 3.2735mv(S, S̄)

Hence:
ALG = 0.766m+ 0.234w(S, S̄)

Assuming that the largest cluster in the optimum par-
tition has size at most n

2 , our stochastic model will
generate at least m

2 Cannot-Link constraints by a
simple counting argument. This is in expectation, but
of course using a standard large deviation Chernoff
bound, all our claims in this paper can be made to
hold with high probability. This also implies that the
total number of Must-Link constraints is at most m

2 .
Thus, once again using MaxCut for the first split:

E(w(S, S̄)) = 0.878w(OPT)− 0.122 · 3.2735 · m2
An easy lower bound for the value of the OPT cut is:
w(OPT) ≥ m

2 hence we obtain a 0.8226-approximation.

B Hardness via Ordering CSPs

In this part of the Appendix, we present our hard-
ness of approximation results for the constraint satis-
faction problems on trees, extending in some cases the
inapproximability results of Guruswami et al. (2011);
Austrin et al. (2013) from linear orderings to trees.

B.1 Hardness for Rooted Triplets
Consistency

We prove that under the Ugc, it is hard to approxi-
mate the Desired Triplets Consistency problem better
than a factor of 2

3 , even in the unweighted case. No-

tice that the current best approximation is 1
3 achieved

by a random tree (or a simple greedy algorithm). In
fact our result is slightly stronger: it is hard to dis-
tinguish between two instances one of which is almost
perfect (e.g., 99% of constraints are consistent) and
the other is far from perfect (e.g., 67% of constraints
are consistent). We base our hardness result on the
following theorem by Austrin et al. (2013) about the
Non-Betweeness problem and its 2

3 -inapproximability:

Vaggos Chatziafratis, Mohammad Mahdian, Sara Ahmadian

Fact 4. Let K be the total number of triplets con-
straints in an instance of non-Btw. For any ε > 0, it
is NP-hard to distinguish between non-Btw instances
of the following two cases:
YES: val(π∗) ≥ (1 − ε)K, i.e. the optimal permuta-
tion satisfies almost all constraints.
NO: val(π∗) ≤ (2

3 + ε)K, i.e. the optimal permu-
tation does not satisfy more than 2/3 fraction of the
constraints.

Given the above fact, we prove our 2
3 -

inapproximability result for Triplets Consistency:

Theorem 10. Let K be the total number of the triplet
constraints in an instance of Desired Triplets Consis-
tency. For any δ > 0, it is NP-hard to distinguish
between instances of the following two cases:
YES: val(T ∗) ≥ (1

2 − δ)K, i.e. the optimal tree satis-
fies almost half of all the triplet constraints.
NO: val(T ∗) ≤ (1

3+δ)K, i.e. the optimal tree does not

satisfy more than 1
3 fraction of the triplet constraints.

Then, our 2
3 -inapproximability result follows directly

from the gap of these instances: 1
3/

1
2 = 2

3 .

Proof. Start with a YES instance of the non-Btw
problem with optimal permutation π∗ and val(π∗) ≥
(1− ε)K. Viewing each non-Btw constraint as a de-
sired triplet, we show how to construct a tree T such
that val(T) ≥ (1

2 −δ(ε))K. In fact, the construction is
straightforward: simply assign the n labels, either in
the order they appear in π∗ or reversed, as the leaves of
a caterpillar tree (every internal node has at least one
child that is a leaf). Observe that this tree satisfies:

val(T) ≥ (1− ε)K/2

This is because if a non-Btw constraint ab|c was
obeyed by π∗, it will also be obeyed by one of the
two caterpillar trees above: if c appears first in the
permutation then the former caterpillar will obey ab|c
as c gets separated first, otherwise if c appears last,
then the reversed caterpillar tree will obey ab|c. Here
the 1

2 factor is tight, since for example, the two non-
Btw constraints ab|c and bc|a are both satisfied by
the ordering abc, but when viewed as desired triplets,
they cannot both be satisfied by a tree.

The NO instance is slightly more challenging. Start
with a NO instance of the non-Btw problem with
optimal π∗ of value val(π∗) ≤ (2

3 + ε)K. Viewing the
non-Btw constraints as desired triplets, we show that
the optimum tree T ∗ cannot achieve better than >
(1/3 + 2ε)K, because this would imply that val(π∗) >
(2
3 + ε)K, which is a contradiction.

For this, assume that some tree T scored a value
val(T) > (1/3 + 2ε)K. We will construct a permuta-
tion π from the tree T with value val(π) > (2/3+ε)K.

Observe that directly projecting the leaves of T onto a
line (just outputting the n leaves from left to right
as they appear in the tree) would already satisfy
> (1/3 + 2ε)K, since every desired triplet ab|c obeyed
by the tree, will also be obeyed (as a non-Btw con-
straint) by π as c will either be first or last among the
three labels a, b, c.

Moreover, there are potentially desired triplet con-
straints that are disobeyed by the tree T , yet obeyed
by the permutation. We know that the number of re-
maining constraints is K−(1/3+2ε)K = (2/3−2ε)K.
By randomly swapping each left and right child in the
tree T before we do the projection to the permutation
π, will actually lead to an excess of 1/2 ·(2/3−2ε)K =
(1/3 − ε)K number of non-Btw constraints. To see
this notice that for every triplet that is disobeyed
in the tree, there is a 1

2 probability that it becomes
obeyed in the permutation. Summing up, we get
val(π) > (1/3 + 2ε)K + (1/3− ε)K > (2/3 + ε)K =⇒
val(π∗) ≥ val(π) > (2/3 + ε)K, a contradiction.

B.2 Hardness for Forbidden Triplets:
Random is Optimal

We prove that under the Ugc, it is hard to approxi-
mate the Forbidden Triplets Consistency problem bet-
ter than a factor of 2

3 , even in the unweighted case.
Notice that the current best approximation is in fact
2
3 achieved by a random tree (or a simple greedy algo-
rithm), hence we settle the computational complexity
of the problem. Our result is slightly stronger: it is
hard to distinguish between two instances one of which
is almost perfect (e.g., 99% of constraints are consis-
tent) and the other is far from perfect (e.g., 67% of con-
straints are consistent). We base our hardness result
on the following theorem by Guruswami et al. (2011)
about the Btw problem and its 1

3 -inapproximability:

Fact 5. Let K be the total number of triplets con-
straints in an instance of Btw. For any ε > 0, it
is UGC-hard to distinguish between Btw instances of
the following two cases:
YES: val(π∗) ≥ (1 − ε)K, i.e. the optimal permuta-
tion satisfies almost all constraints.
NO: val(π∗) ≤ (1

3 + ε)K, i.e. the optimal permu-
tation does not satisfy more than 1/3 fraction of the
constraints.

Given the above fact, we prove our 2
3 -

inapproximability result for Forbidden Triplets
Consistency:

Theorem 11. Let K be the total number of the triplet
constraints in an instance of Forbidden Triplets Con-
sistency. For any δ > 0, it is UGC-hard to distinguish
between instances of the following two cases:
YES: val(T ∗) ≥ (1− δ)K, i.e. the optimal tree satis-
fies almost half of all the triplet constraints.

Ranking, Clustering and Hierarchical Clustering via MAX-CUT

NO: val(T ∗) ≤ (2
3+δ)K, i.e. the optimal tree does not

satisfy more than 2
3 fraction of the triplet constraints.

Then, our 2
3 -inapproximability result follows directly

from the gap of these instances: 2
3/1 = 2

3 .

Proof. Start with a YES instance of the Btw problem
with optimal permutation π∗ and val(π∗) ≥ (1− ε)K.
Viewing each Btw constraint a|b|c as a forbidden
triplet ac|b, we show how to construct a tree T such
that val(T) ≥ (1

−δ(ε))K. In fact, the construction
is straightforward: simply assign the n labels, in the
order they appear in π∗, as the leaves of a caterpillar
tree (every internal node has its left child being a leaf).
Observe that this caterpillar tree satisfies:

val(T) ≥ (1− ε)K

This is because if a Btw constraint a|b|c was obeyed
by π∗, it will also be avoided (viewed as a forbidden
triplet ac|b) by the caterpillar tree above: if a appears
first in the permutation then the caterpillar will avoid
ac|b as a gets separated first, otherwise if c appears
first, then again the caterpillar tree will avoid ac|b as
c gets separated first.

The NO instance is slightly more challenging. Start
with a NO instance of the Btw problem with opti-
mal π∗ of value val(π∗) ≤ (1

3 + ε)K. Viewing the
Btw constraints as forbidden triplets, we show that
the optimum tree T ∗ cannot achieve better than >
(2/3 + 2ε)K, because this would imply that val(π∗) >
(1
3 + ε)K, which is a contradiction.

For this, assume that some tree T scored a value
val(T) > (2/3 + 2ε)K. We will construct a per-
mutation π from the tree T with value val(π) >
(1/3 + ε)K, a contradiction. Notice that there are for-
bidden triplets that may be avoided by the tree, yet
obeyed by the permutation: for example for a forbid-
den triplet t = ac|b, the tree R that first removes a
and then splits b, c will successfully avoid t, however
the permutation acb can come from R by projection,
however acb do not obey the Btw constraint a|b|c.

Hence directly projecting the leaves of T onto a line
may not satisfy > (1/3 + 2ε)K, since every forbidden
triplet ac|b avoided by T , can be ordered by this pro-
jected permutation in a way that would not obey the
corresponding Btw constraint a|b|c.

However, just by randomly swapping each left and
right child for every internal node in the tree before
we do the projection to the permutation, would satisfy
1/2 · (2/3 + 2ε)K = (1/3 + ε)K number of constraints.
To see this, note that with probability 1

2 a forbidden
ac|b avoided by T will be mapped to the desired abc
(and not acb) or cba (and not cab) ordering.

Finally, we get val(π) > (1/3 + ε)K =⇒ val(π∗) ≥
val(π) > (1/3 + ε)K, a contradiction that we were
given a NO instance.

B.3 Hardness for Desired Quartets
Consistency

The main result in this section is that for the de-
sired quartets problem, one cannot do better than 2

3 -
approximation. Notice that a random unrooted tree
achieve 1

3 -approximation which is currently the best
known algorithm.

To prove our results, we make use of a consequence
from the results in Guruswami et al. (2011) for or-
derings CSPs of arity 4. Specifically, we define the
following problem, which we call 4-Separatedness.

Definition 1. For an ordering problem, a 4-
Separatedness constraint {ab|cd} specifies that both
elements a, b should precede c, d or that both c, d should
precede a, b in the output ordering (e.g., badc, but not
acbd). No constraints are placed on the relative order-
ing between a, b or on the ordering between c, d.

Fact 6. Given 4-Separatedness constraints, no
polynomial time algorithm can beat the performance
of a random permutation, which achieves a 1

3 -
approximation, assuming Ugc. In fact, if K is the
total number of constraints, for any ε > 0, it is UGC-
hard to distinguish between the two cases:
YES: val(π∗) ≥ (1 − ε)K, i.e. the optimal permuta-
tion satisfies almost all constraints.
NO: val(π∗) ≤ (1

3 + ε)K, i.e. the optimal permu-
tation does not satisfy more than 1/3 fraction of the
constraints.

Observe that from the 4! = 24 permutations on
a, b, c, d only 8 of them obey the 4-Separatedness
constraint, that’s why random achieves 1

3 .

Theorem 12. Let K be the total number of the quartet
constraints in an instance of Desired Quartets Consis-
tency. For any δ > 0, it is UGC-hard to distinguish
between instances of the following two cases:
YES: val(T ∗) ≥ (1− δ)K, i.e. the optimal tree satis-
fies almost all the quartet constraints.
NO: val(T ∗) ≤ (2

3 + δ)K, i.e. the optimal tree does

not satisfy more than a 2
3 fraction of the quartet con-

straints.

Proof. We will make a reduction from the 4-
Separatedness problem. Start from a YES instance
and consider the optimum permutation π∗. Construct
an unrooted caterpillar tree T with leaves the labels
of π∗ as they appear in the permutation. It is easy to
see that if a 4-Separatedness constraint ab|cd was
obeyed by the permutation, then the corresponding
quartet constraint ab|cd was also obeyed in the cater-
pillar tree T . For that, we can assume w.l.o.g. that the

Vaggos Chatziafratis, Mohammad Mahdian, Sara Ahmadian

elements appear with relative order abcd in π∗ and ob-
serve that the paths a→ b and c→ d in T are disjoint,
so the quartet is obeyed.

The harder case is the NO instance. For that we will
show how from a tree T with high value, we can con-
struct a permutation π with high value. Specifically,
we will show that if val(T) > (2

3 + 2ε)K then we can

find π with val(π) > 1
2 (2

3 + 2ε)K = (1
3 + ε)K, a con-

tradiction since we started from a NO instance.

The tree T is an unrooted tree on n ≥ 4 leaves, whose
internal nodes have degree exactly 3. We can make T
rooted by selecting an arbitrary internal node r and
making it the root of a binary tree whose internal
nodes have exactly 2 children and one parent. The
only exception is the root r that has 3 children and
no parent. Call this tree Tr. Let A,B,C denote the
leftmost, middle and rightmost child of r respectively,
which are themselves rooted binary trees. Assume
w.l.o.g. that A contains the largest number of leaves
among A,B,C, so |A| ≥ 2, where |A| denotes the num-
ber of leaves contained in the subtree rooted at A.

From this rooted tree Tr, we generate a permutation
π by randomly swapping every left and right child
on each internal node of Tr and also randomly swap-
ping A,B,C at the root r; then we simply project the
leaves onto a line to get π. We show that each quartet
q1q2|q3q4 obeyed by T will be obeyed in π with prob-
ability p ≥ 1

2 . We have several cases depending on the
labels q1, q2, q3, q4:

• If q1, q2 ∈ A and q3 ∈ B and q4 ∈ C: Notice
that the status of the quartet is decided by the
random choices at the root r since after the final
projection, labels from A will be consecutive in π
and similarly for B and C. Here, π will actually
obey the quartet with probability 2

3 , as there are
3 equally likely outcomes ABC, BCA and CAB
and the first two ABC and BCA obey the quar-
tet, irrespectively of how labels from A, B, C are
ordered.

• If q1, q2 ∈ A and q3, q4 ∈ B: This is the easiest
case as every quartet of this form will be obeyed in
π with probability 1. This follows as labels from
A will be consecutive in π and similarly for B.

• If q1, q2, q3 ∈ A and q4 ∈ B: The status of
this quartet only depends on how the elements
q1, q2, q3 are placed. Specifically, depending on
the random choices at the root r, q4 can appear
either first (if BA was chosen) or last (if AB was
chosen) among the 4 elements in π. If the former
is true, then q3 should appear second and we get
q4q3| · · otherwise q3 should appear third and we
get · · |q3q4. We need to compute the probability
for each of these events. Notice that the lowest

common ancestor both for q3, q1 and for q3, q2 is
A. Hence, the status of the quartet is determined
at A and with probability 1

2 , q3 is correctly placed
on the same side as B (and q4).

• If q1, q2, q3, q4 ∈ A: This case essentially reduces
to the analyses of the previous two cases. Just
find the lowest common ancestor A1 of all 4 la-
bels q1, q2, q3, q4 in Tr. If two of the labels belong
to one child and the remaining to the other child,
then the quartet will be obeyed with probability
1, irrespectively of the random choices at A1 (sim-
ilar to the second case above). Moreover, if one
child contains three of the 4 elements, then the
analysis is the same as the previous case yielding
a probability of 1

2 .

The other cases are symmetric for B,C. This proves
that if a quartet is obeyed by the tree then with
probability 1

2 will be obeyed in π which means that

val(π) > 1
2 (2

3 +2ε)K = (1
3 + ε)K by linearity of expec-

tation. This contradicts the fact that we were given a
NO instance.

B.4 Hardness for Forbidden Quartets
Consistency

The proof proceeds in the same way as the previ-
ous paragraph, where we now account for the for-
bidden quartets and we make use of the complement
problem to 4-Separatedness, which we call 4-Non-
Separatedness:

Definition 2. For an ordering problem, a 4-Non-
Separatedness constraint {ab|cd} specifies that ei-
ther a or b should be between c, d or that either c or
d should be between a, b in the output ordering (e.g.,
adcb, but not abcd). No constraints are placed on the
relative ordering between a, b or on the ordering be-
tween c, d.

Fact 7. Given 4-Non-Separatedness constraints,
no polynomial time algorithm can beat the perfor-
mance of a random permutation, which achieves a 2

3 -
approximation, assuming Ugc. In fact, if K is the
total number of constraints, for any ε > 0, it is UGC-
hard to distinguish between the two cases:
YES: val(π∗) ≥ (1 − ε)K, i.e. the optimal permuta-
tion satisfies almost all constraints.
NO: val(π∗) ≤ (2

3 + ε)K, i.e. the optimal permu-
tation does not satisfy more than 2/3 fraction of the
constraints.

Observe that from the 4! = 24 permutations on
a, b, c, d, 16 of them obey the 4-Non-Separatedness
constraint, that’s why random achieves 2

3 .

Theorem 13. Let K be the total number of the quar-
tet constraints in an instance of Forbidden Quartets

Ranking, Clustering and Hierarchical Clustering via MAX-CUT

Consistency. For any δ > 0, it is UGC-hard to distin-
guish between instances of the following two cases:
YES: val(T ∗) ≥ (1− δ)K, i.e. the optimal tree satis-
fies almost all the quartet constraints.
NO: val(T ∗) ≤ (8

9 + δ)K, i.e. the optimal tree does

not satisfy more than a 8
9 fraction of the quartet con-

straints.

Proof. We will make a reduction from the 4-Non-
Separatedness problem. Start from a YES instance
and consider the optimum permutation π∗. Construct
an unrooted caterpillar tree T with leaves the labels of
π∗ as they appear in the permutation. It is easy to see
that if a 4-Non-Separatedness constraint ab|cd was
disobeyed (hence successfully avoided) by the permu-
tation, then the corresponding quartet constraint ab|cd
was also disobeyed (i.e., avoided) in the caterpillar tree
T . For that, we can assume w.l.o.g. that the elements
appear with relative order acbd in π∗ and observe that
the paths from a→ c and from b→ d in T are disjoint,
so the quartet is disobeyed as we wanted.

The harder case is the NO instance. For that we will
show how from a tree T with high value, we can con-
struct a permutation π with high value. Specifically,
we will show that if val(T) > (8

9 + 4
3ε)K then we can

find π with val(π) > 3
4 (8

9 + 4
3ε)K = (2

3 + ε)K, a con-
tradiction since we started from a NO instance.

The tree T is an unrooted tree on n ≥ 4 leaves, whose
internal nodes have degree exactly 3. We follow the
same algorithm to generate the rooted Tr and the final
permutation π as above. the notation for A,B,C is the
same as previously. We show that each quartet q =
q1q2|q3q4 disobeyed by T will be disobeyed in π with
probability p ≥ 3

4 . We have several cases depending
on the labels q1, q2, q3, q4:

• If q1, q3 ∈ A and q2 ∈ B and q4 ∈ C: First notice
that indeed quartet q = q1q2|q3q4 is disobeyed by
the unrooted tree since it instead obeys q1q3|q2q4.
We show that the probability that π disobeys q
is 5

6 . If the random choices at the root r pro-
duce ABC or BCA, then with probability 1 the
quartet q is disobeyed after the projection. For
example, if the realization is ABC notice that ei-
ther q3 will be between q1, q2 or q1 will be be-
tween q3, q4, thus disobeying the corresponding 4-
Non-Separatedness constraint. Symmetrically,
we handle the scenario where the realization was
BCA. However, with probability 1

3 the realization
at the root was CAB and now the status of the
quartet is determined by the random choice at the
lowest common ancestor of q1, q3. With probabil-
ity 1

2 label q1 precedes q3, thus giving the ordering
q4q1|q3q2 disobeying q. In total q is avoided with
probability 2

3 + 1
6 = 5

6 .

• If q1, q3 ∈ A and q2, q4 ∈ B: This is the easiest
case as every quartet of this form will be disobeyed
in π with probability 1. This follows as labels from
A will be consecutive in π and similarly for B.

• If q1, q2, q3 ∈ A and q4 ∈ B: The status of
this quartet only depends on how the elements
q1, q2, q3 are placed. Specifically, depending on
the random choices at the root r, q4 can appear
either first (if BA was chosen) or last (if AB was
chosen) among the 4 elements in π. If the former
is true, then q3 should appear third or fourth and
we get q4 · |q3· or q4 · | · q3, otherwise q3 should ap-
pear first or second and we get q3 · | · q4 or ·q3| · q4.
We need to compute the probability for each of
these events. By the fact that the tree T dis-
obeys q, we can assume w.l.o.g. that label q1 is
the closest to q3, otherwise we just rename q2 as
q1 and vice versa. We get that the lowest com-
mon ancestor A13 of q1, q3 in A is strictly lower
than the lowest common ancestor A12 of q1, q2 in
A (in terminology of triplets consistency we have
q1q3|q2). W.l.o.g. assume that BA was chosen at
the root r, so q4 will appear first. By the random
choice in our algorithm, A12 placed q2 at the left
child (hence second among the 4 elements) with
probability 1

2 and the quartet q is disobeyed. If
instead our algorithm placed q2 at the right child
(and hence fourth in the ordering), there is still 1

4
probability of placing q3 at the right child of A13.
This means that with probability 1

2 + 1
4 = 3

4 , the
projected π disobeys q as promised by the theo-
rem.

• If q1, q2, q3, q4 ∈ A: This case essentially reduces
to the analyses of the previous two cases. Just
find the lowest common ancestor A1 of all 4 la-
bels q1, q2, q3, q4 in Tr. If two of the labels belong
to one child and the remaining to the other child,
then the quartet will be disobeyed with probabil-
ity 1, irrespectively of the random choices at A1

(similar to the second case above). Moreover, if
one child contains three of the 4 elements, then the
analysis is the same as the previous case yielding
a probability of 3

4 .

The other cases are symmetric for B,C. This proves
that if a quartet is disobeyed by the tree then with
probability 3

4 will be disobeyed in π which means that

val(π) > 3
4 (8

9 + 4
3ε)K = (2

3 +ε)K by linearity of expec-
tation. This contradicts the fact that we were given a
NO instance.

	Introduction
	Background and Related Work
	Optimization Problems and Types of Constraints
	Further Motivation and Related Work

	Using MaxCut on instances with embedded ground-truth
	Better Approximations for MAS
	Extensions to Other Problems

	Hardness for CSPs on Trees
	Conclusion
	Omitted Proofs - Improved Approximations via MaxCut
	Quartets Consistency from Noisy constraints
	Triplets Consistency from Noisy constraints
	Rankings from Noisy constraints
	Directed MaxCut with negative weights

	Correlation Clustering from Noisy Constraints

	Hardness via Ordering CSPs
	Hardness for Rooted Triplets Consistency
	Hardness for Forbidden Triplets: Random is Optimal
	Hardness for Desired Quartets Consistency
	Hardness for Forbidden Quartets Consistency

