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Abstract

In this paper, we study a number of well-
known combinatorial optimization problems
that fit in the following paradigm: the input
is a collection of (potentially inconsistent) lo-
cal relationships between the elements of a
ground set (e.g., pairwise comparisons, simi-
lar/dissimilar pairs, or ancestry structure of
triples of points), and the goal is to aggre-
gate this information into a global structure
(e.g., aranking, a clustering, or a hierarchical
clustering) in a way that maximizes agree-
ment with the input. Well-studied problems
such as rank aggregation, correlation cluster-
ing, and hierarchical clustering with triplet
constraints fall in this class of problems. We
study these problems on stochastic instances
with a hidden embedded ground truth solu-
tion. Our main algorithmic contribution is
a unified technique that uses the maximum
cut problem in graphs to approximately solve
these problems. Using this technique, we can
often get approximation guarantees in the
stochastic setting that are better than the
known worst case inapproximability bounds
for the corresponding problem. On the neg-
ative side, we improve the worst case inap-
proximability bound on several hierarchical
clustering formulations through a reduction
to related ranking problems.

1 Introduction

In many learning/optimization problems, the input
data is in the form of a number of ordinal judgements
about the local relationships among a set of n items.
A prominent example is the problem of ranking n al-
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ternatives, where the input is often pairwise compar-
isons between these items. For example, sports teams
are often ranked by aggregating the results of matches
played between pairs of teams, and election outcomes
are decided by aggregating individual votes.

Learning from comparisons has been prevalent across
different domains, as humans are typically good
at quickly answering ordinal questions (“which
movie/restaurant /candidate do you prefer”), but often
respond slowly and inaccurately to cardinal questions
(“how much do you like this option”). In the psy-
chology literature, the method of paired comparisons
that has been in use since the 1920’s is based on this
principle (see (Thurstone, 1959, Chapter 7)). More-
over, modern online platforms can organically extract
such ordinal preferences by observing the users (e.g.,
“which movie did they first watch”, or “did they skip a
search result and click on the next one”) and later use
them for improving search or recommendation rank-
ings (see, for example, Joachims (2002)). The same
principle applies to settings other than ranking. For
example, when trying to learn a clustering of n items,
it is easier for a human judge to answer questions of the
form “should x and y be in the same cluster” than to
measure the similarity of  and y. Or, to reconstruct
the evolutionary tree (also known as the phylogenetic
tree) between n species, biologists often start by an-
swering questions of the form “between three species
x,y, and z, which two are evolutionarily closer”.

At the heart of each of these examples is the non-
trivial algorithmic task of reconciling potentially in-
consistent judgements into a global solution. This de-
fines a number of algorithmic problems that we study
in this paper. Though seemingly unrelated, all of these
problems seek to find a global structure that has the
maximum number of agreements with the given collec-
tion of local ordinal relationships. As we shall see later
in the paper, the problems are also linked in that we
can apply a common technique (based on graph max
cuts) to them all. The problems, shown in Figure 1,
fall under the three categories of ranking, clustering,
and hierarchical clustering:
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e Ranking: The goal is to find an ordering of n
items. In the Mazimum Acyclic Subgraph (MAS),
the input is a number of pairwise comparisons of
the form a < b. In Betweenness, the input is a
number of triples a|b|c meaning that b is between
a and c in the ordering. In Non-Betweenness, the
input is a number of triples blac meaning that b
is not between a and c.

e Clustering: In the Correlation Clustering prob-
lem, the goal is to find a partitioning of n items,
and the input is a number of pairs of the form
ab, meaning that a and b should be in the same
cluster, and a number of pairs of the form ald,
meaning that a and b should be in different clus-
ters.

e Hierarchical clustering: The goal is to find a
(rooted or unrooted) tree with the set of n items
as its leaves. In the Desired Triplets problem,
the input is a number of triplets ab|c, meaning
that the least common ancestor of a and b is a
descendant of the least common ancestor of a, b,
and c. In the Desired Quartets problem, the in-
put is a number of quartets ab|cd, meaning that
the unique path connecting a and b in the tree
does not intersect with the unique path connect-
ing cand d. The Forbidden Triplets and Forbidden
Quartets problems are defined similarly with the
opposite requirements.

These problems come from a variety of applications:
Mas is a formulation of the rank aggregation prob-
lem and has many applications, e.g., in search ranking.
Correlation Clustering is a central problem in unsuper-
vised learning and data analysis (Bansal et al., 2004).
Hierarchical clustering problems are motivated by ap-
plications in reconstructing phylogenetic trees (Felsen-
stein, 2004), and are also related to the objective-
driven formulations of Dasgupta (2016), Moseley and
Wang (2017) and Cohen-Addad et al. (2019) for hier-
archical clustering. In fact, the Desired Triplets for-
mulation described above is tightly connected with
objective-based approaches for Hierarchical Clustering
as can be seen in Charikar et al. (2019a,b). Between-
ness and Non-Betweenness are motivated by applica-
tions in genome sequencing in bioinformatics (Slonim
et al., 1997). We are interested in algorithms that
can provide an approximation guarantee, i.e., a prov-
able bound on the multiplicative factor between the
solution found by the algorithm and the optimal solu-
tion. We will consider this problem both in the worst
case and under a stochastic model with an embedded
ground-truth solution. Our contribution is two-fold
(see Table 1 for a summary):

On the positive side, in Section 3, under a simple
stochastic model akin to the well-known stochastic

block model, we are able to improve upon worst-case
approximations for all problems and in some cases
(e.g., for problems on rankings and hierarchies) even
overcome impossibility results. Interestingly, our algo-
rithms are all based on variants of MAXCUT on graphs
that can have both positive and negative weights and
may also be directed. Some approaches for tree re-
construction based on MAXCUT had been used in pre-
vious experimental works (Snir and Rao, 2006, 2008,
2012), and in this way our work provides concrete
proof for why these heuristics are reported to perform
well on “real-world” instances. Our natural stochastic
model captures “real-world” instances via an embed-
ded ground-truth from which we generate “noisy” con-
straints, similar to the Stochastic Block Model (Mossel
et al., 2012) in community detection.

On the negative side, we obtain new hardness of ap-
proximation results for four problems on hierarchical
clustering: Forbidden Triplets, Desired Triplets, For-
bidden Quartets, Desired Quartets. Briefly, we may
refer to them as triplets/quartets consistency prob-
lems. These are instances of Constraint Satisfaction
Problems (CSP) on trees (Bodirsky and Mueller, 2010;
Bodirsky et al., 2016), analogous to SAT formulas in
complexity. Even though such problems on hierarchies
have been studied for decades, the current best approx-
imations are achieved by trivial baseline algorithms.
Our hardness results give some explanation why pre-
vious approaches were not able to obtain anything bet-
ter. Our result on the Forbidden Triplets problem is
tight and is the first tight hardness for CSPs on trees,
extending analogous hardness results by Guruswami
et al. (2011) from linear orderings (i.e., rankings) to
trees. This is carried out in Section 4.

Our stochastic model for collecting information is the
simplest form of embedded model on n items, and
is motivated by crowdsourcing and biological applica-
tions (Vaughan, 2017; Kleindessner and von Luxburg,
2017; Ghoshdastidar et al., 2019; Snir and Yuster,
2012). We simply choose items at random and in-
clude a pairwise/triplet/quartet constraint depending
on the task. For example, to generate constraints for
the MAs problem on rankings, let 7* denote a ground-
truth ranking (e.g., of chess players or ads to show a
user). We select uniformly at random m pairs of items
a;,b; and then we generate m pairs a; < b;; if a; pre-
cedes b; in m* the constraint is included with proba-
bility (1 —€), otherwise the opposite constraint is gen-
erated. Thus, some fraction of the constraints can be
erroneous. After generating m (noisy) constraints in
this way, our goal is to find a global solution (ranking,
partition, or tree) that satisfies as many as possible.

Techniques: Our hardness reductions for Maximum
Forbidden Triplets consistency are based on mapping
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Problem Name Types of Constraints Types of Solutions

Max Acyclic Subgraph (MAS) A<B, B<C, B<D, D<C ——» Ranking: A,B,C,D
Betweenness (BTW): A|B|C, BIC|D, D|C|A, B|D|C ——p Ranking: A,B,C,D
Non-Betweenness (Non-BTW): A|BC, B|DC, DICA, C|DB —+— Ranking: A, B,C,D
Must-Link & Cannot-Link Ae D
Correlation Clustering: (AB) (AID) —t» Partiton: B e ®
(BC) (BID) ce oFE
(€D) (DIE)
Desired & Forbidden Rooted Binary
Tree: o
ABIC ACIB &)
Desired/Forbidden Triplets: cplB AD|C o D) o0
R =
A B C D
Desired & Forbidden Unrooted Ternary
ABICD AC|BD Tree‘A b
. . . AE|CD ADICB
Desired/Forbidden Quartets: EDJAB AE[CB —_
AE|BC ABIED B C
AC|BE ABI|CD E

Figure 1: A schematic representation of all problems
considered in the paper. The left column has the prob-
lem names, the middle the types of constraints and the
right column has a candidate solution. With green are
constraints that are correctly resolved in the given can-
didate solution, whereas with red are those that are
incorrect. For more examples, see Section 2.

trees to permutations on their leaves and back, and
showing that any constant factor improvement over
trivial baselines would refute the Unique Games Con-
jecture! (Ucc) (Khot, 2002). Regarding our MAXCUT
algorithm (see Algorithm 1), it is based on MAXCuUT
variations on directed and undirected graphs with neg-
ative weights and is conceptually simple. Briefly, given
an instance for any of the problems we consider, we
map it to a graph where edges encode the underlying
constraints; perhaps the most intuitive such construc-
tion is for Correlation Clustering where a “must-link”
or “cannot-link” constraint between items %, j is cap-
tured by a negative or positive edge (i, j) respectively.
Then, we show how large (positive) cuts in this graph
yield partitions that satisfy many of the constraints.
The existence of a large cut can be guaranteed by an-
alyzing our stochastic model and so an approximate
MaxCuT algorithm can yield improvements over pre-
vious results. An interesting ingredient that we need
for the case of MAS, is how to approximate the MAX-
CuT problem on directed graphs with both positive
and negative weights which, to the best of our knowl-
edge, hadn’t been analyzed before.

More broadly, we justify theoretically why prior exper-
imental heuristics work and we extend them to work
for new problems with provable approximation guar-
antees. Our work also presents the first case of a CSP
on trees that is approximation resistant; recall that
many important CSPs, including Max3SAT, are ap-
proximation resistant, i.e., it is NP-hard to approxi-
mate them better than a random assignment. This
echoes the striking result by Hastad (2001) on ap-

'Khot’s Uac is a major open question in complexity.
We will not define it here as we only use some of its con-
sequences on ordering problems (Guruswami et al., 2011).

proximation resistance of boolean CSPs to CSPs on
trees and shows why no algorithmic improvement had
been made in the worst-case, despite significant ef-
forts (Byrka et al., 2010; Jiang et al., 2001; Bryant,
1997; He et al., 2006; Steel, 1992).

Table 1: Shown in bold are our improved hardness
(column “Hardness”) and approximations under our
stochastic model (column “Stochastic”). Column “Ap-
prox.” has prior approx. ratios. Also see Section 3 and
Appendix A for the dependence on error parameter e.

Approx. Hardness Stochastic

Mas 172 172 0.642
BTw /3 /3 0.402
NON-BTW 2/3 2/3 0.84

Correl. CL 0.76 APX-hard 0.82(%)

Forb. Triplet 2/3 2/3 (tight) | 0.78(*)

Des. Triplet 1/3 2/3 0.64(*)
Forb. Quartet 2/3 8/9 0.672
Des. Quartet 1/3 2/3 0.425

Remark 1. We want to point out that all our ap-
prozimation results here hold with high probability as
a standard concentration argument about the stochastic
process guarantees that the weight of the cuts is well-
concentrated around its mean (as long as the number
of generated constraints m > Q(logn) ).

Remark 2. Our results for ranking and quartets hold
with no assumption on the optimal solution. For the
positive results (denoted with (*) in Table 1) via MAX-
CuT for correlation clustering and triplets however, we
need a mild balancedness assumption, roughly stating
that the optimal solution contains a relatively balanced
(% : %) partition, to ensure the existence of a good
cut in the ground-truth (see Appendiz, Assumption 1).
Usually, such assumptions are common in generative
graph models for clustering, e.g., the Stochastic Block
Model (Mossel et al., 2012; Abbe et al., 2015) and for
hierarchical clustering, e.g., the Hierarchical Stochas-
tic Block Model (Lyzinski et al., 2016; Cohen-Addad
et al., 2019; Ghoshdastidar et al., 2019), where we ex-

pect to see at least two large communities emerge.

2 Background and Related Work

As the paper discusses multiple problems on rankings,
partitions and hierarchies, we devote this section in de-
scribing the multitude of problems. A familiar reader
can skip this section and proceed to Section 3.

There are 3 categories of problems we study here,
depending on the type of the output: ranking (also
called a permutation or a leaf ordering in biology (Bar-
Joseph et al., 2001)), clustering (partitioning of the
data points) and hierarchical clustering (also called
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phylogenetic tree). There has been significant amounts
of work on each of these tasks, that we only partially
cover here as we go over our problems and results.

2.1 Optimization Problems and Types of
Constraints

In all problems, we are given m constraints and we
want to maximize the number of constraints satisfied
by our output, whether it be a ranking, a partition or
a hierarchy. We describe below the types of different
constraints (see also Figure 1):

Ranking (i.e., a permutation or leaf ordering):
Given n labels {1,2,...,n}, we want to find a per-
mutation that maximizes the number of satisfied con-
straints of the following form:

e Pairwise comparisons: A constraint here is of
the form “a < b7, indicating that in the output
permutation, item a should precede b. If this in-
formation is encoded as a directed graph G with
arcs a — b, this gives rise to the Maximum Acyclic
Subgraph (MAs) or Feedback Arc Set (FAS), two
fundamental problems in computer science (Karp,
1972).

¢ Betweenness (BTW) and Non-Betweenness
(Non-BTW) constraints: In the BTw prob-
lem (Opatrny, 1979; Chor and Sudan, 1998;
Makarychev, 2012), we are given relative ordering
constraints of the form a|b|c indicating “b should
be between a and ¢”. This allows for abc or cba
out of the 6 possible orderings for the 3 labels.
As the name suggests, NON-BTW is the comple-
ment of BTw, where a constraint bcja (equiva-
lently a|bc) indicates that in the output permuta-
tion “a should not lie between b and ¢”. This al-
lows for 4 valid relative orderings abc, acb, bea, cba.
Generally, these are the two most common exam-
ples of ordering Constraint Satisfaction Problems
(ordering CSPs) of arity 3 and are mainly mo-
tivated by applications in bioinformatics (Slonim
et al., 1997). They have also played a major role
in complexity (Guruswami et al., 2011; Austrin
et al., 2013).

Just to give a sense of the approximability of these
problems in the worst-case, the current best con-
stant factor is a %—approximation for Mas, a %—
approximation for BTw, and a %—approximation for
NON-BTw, all achieved by a random permutation.
We also know that under the Unique Games Con-
jecture (Uac) of Khot (2002), the first two results
are tight, whereas the third is tight under P # NP.
Such problems, where a random output is provably the
best, are called approximation resistant and have been
studied extensively by theoreticians (Charikar et al.,

2009; Guruswami et al., 2008; Hastad, 2001; Austrin

and Mossel, 2009). Our work gives strong evidence
pointing to the fact that important CSPs on trees
(triplets/quartets) may be approximation resistant.

Clustering: Here we want to maximize agreements
with Must-Link/Cannot-Link constraints: The in-
put is a graph with “4+” or “—” edges indicating if the
two endpoints should belong to the same cluster or not.
Such constraints give rise to Correlation Clustering,
an important paradigm for data analysis both in prac-
tice (Davidson and Basu, 2007; Wagstaff and Cardie,
2000; Wagstaff et al., 2001) and theory (Bansal et al.,
2004; Ailon et al., 2008; Charikar et al., 2005; Swamy,
2004). The current best for maximizing agreements
is a 0.7666 multiplicative approximation via semidef-
inite programs (Swamy, 2004) and an APX-hardness
is known (Charikar et al., 2005). Here we will improve
upon 0.7666, under our stochastic model for generat-
ing constraints.

Hierarchical Clustering (i.e., phylogenetic
trees): There are two common types of trees: rooted
and unrooted. Given n data points, a rooted binary
tree on n leaves, where each leaf corresponds to a
data point, is usually called a hierarchical clustering
and is a standard tool for data analysis across differ-
ent disciplines (Steinbach et al., 2000; Leskovec et al.,
2014; Tumminello et al., 2010; Sgrlie et al., 2001). Un-
rooted ternary trees (all nodes have degree 3, except
the leaves that have degree 1) are usually called phylo-
genetic trees and are prevalent in computational biol-
ogy as they describe speciation events throughout the
evolution of species (Bryant, 1997; Felsenstein, 2004).
Here we will use the two terms interchangeably to de-
scribe hierarchies on n leaves. Since in a hierarchy
all data are eventually separated at the leaves, pair-
wise constraints no longer make sense and the ana-
logue of “must-link/cannot-link” are so-called “must-
link-before/cannot-link-before” constraints:

e Desired/Forbidden Triplets: The output here
is a rooted binary tree T on n leaves. We say a
triplet relation “¢t = ablc¢” is obeyed by T (or T
obeys t), if the lowest common ancestor (LCA) of
a,b is a descendant of the LCA of a,c in T. Oth-
erwise T disobeys ablc. A triplet can be desired
(we write t € Tp) and we want the output T to
obey it? or forbidden (we write t € Tr) and we
want T to disobey/avoid it, giving rise to impor-
tant optimization problems studied in computa-
tional biology and graph theory under the name
of rooted triplets consistency (Steel, 1992; Bryant,
1997; Byrka et al., 2010; He et al., 2006). No-
tice that a forbidden triplet ablc is less restrictive,
since it only specifies that T should either obey

2For example, “penguin, dolphin| tiger” could be a de-
sired triplet as the tiger is the least relevant item.
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aclb or be|a, but not able. This is reflected in the
complexity of the problems: given a set of for-
bidden triplets, it is NP-complete to check consis-
tency (i.e., if there is a tree avoiding all of them),
whereas checking consistency of desired triplets in
polynomial time was established long ago by Aho
et al. (1981).

e Desired/Forbidden Quartets: The desired
output here is a ternary unrooted tree T. We say
a quartet ¢ = abled is obeyed by T (or T obeys q) if
the (unique) path from a to b in T does not share
any vertices with the (unique) path from ¢ to d in
T. Otherwise T' disobeys q. Similarly to triplets,
a quartet can be desired (¢ € Qp) or forbid-
den (¢ € QF), giving rise to important quartets
consistency problems in biology and graph the-
ory (Felsenstein, 2004; Bryant, 1997; Jiang et al.,
2001; Snir and Rao, 2006). For both problems,
even if the input is consistent, checking consis-
tency is NP-complete.

Once again, just to give a sense of the approximability,
for desired triplets or quartets, the current best is a %—
approximation and for forbidden triplets or quartets,
the current best is a %—approximation. Embarrass-
ingly, in all four cases these are achieved by a random
(rooted or unrooted) tree or a simple greedy construc-
tion (He et al., 2006).

2.2 Further Motivation and Related Work

Here, we further make a comparison to other relevant
works. For ranking, many different types of proba-
bilistic models have been considered (Braverman and
Mossel, 2009; Shah et al., 2016; Shah and Wainwright,
2017; Negahban et al., 2012; Falahatgar et al., 2017)
giving statistical guarantees for reconstructing the de-
sired permutation. Instead of pairwise comparisons,
the problem has also been studied in the case where
partial rankings or complete information (“tourna-
ments”) is provided (Fagin et al., 2006; Ailon, 2010;
Kenyon-Mathieu and Schudy, 2007). Clustering with
constraints and qualitative information (both max and
min versions) were studied in Bansal et al. (2004);
Charikar et al. (2005) where approximations via lin-
ear programs were derived or practical improvements
were made possible (Wagstaff et al., 2001; Wagstaff
and Cardie, 2000). In crowdsourcing and biological ap-
plications, both triplet and quartets queries have been
deployed (Vinayak and Hassibi, 2016; Vaughan, 2017;
Kleindessner and von Luxburg, 2017; Ghoshdastidar
et al., 2019; Snir and Rao, 2006; Bryant, 1997) as they
can be more intuitive for non-expert users compared to
pairwise comparisons. Semi-supervised models, where
triplet queries depend on answers to previous queries
have been studied in Emamjomeh-Zadeh and Kempe
(2018); Vikram and Dasgupta (2016).

To further motivate our stochastic model and re-
sults, we include a slightly more detailed comparison
with 3 important prior works Braverman and Mossel
(2009); Emamjomeh-Zadeh and Kempe (2018); Snir
and Yuster (2012) that study “ground-truth” stochas-
tic models similar to ours. The authors in Braverman
and Mossel (2009) study the ranking problem and as-
sume that there exists a ground-truth ranking 7*, as
we do. However, their stochastic model assumes either
that we have access to all (g) pairwise comparisons,
or that we have access to complete rankings ¢ on the
n items, where each complete ranking o is generated
with probability inverse exponential in the Kemeny
distance between 7* and o (Kemeny distance is the
number of inversions, i.e., the number of pairs ordered
in 7* differently from o).

As it will become obvious, their assumptions are much
stricter than our simple stochastic model that gen-
erates m pairwise comparisons uniformly at random.
Moreover, notice that our approximation guarantees
hold for any number m of given constraints without
requiring it to be Q(n?). Given their more refined
model, they are of course in a position to analyze the
maximum likelihood estimator and prove approximate
recovery results, e.g., that no element is misplaced by
more than logn positions with high probability; how-
ever no guarantees are given for the number of violated
pairwise constraints, which is the focus of our paper.

For triplets hierarchical clustering, the authors
in Emamjomeh-Zadeh and Kempe (2018) assume there
exists a ground-truth binary tree T, as we do. How-
ever, they are allowed adaptive triplet queries and
show that ~ nlogn such queries suffice to recover T'
using a clever partition algorithm similar to Quicks-
elect and Quicksort. Once again, our model is not
adaptive, and we do not pose any constraints on the
number m of given constraints. For quartets hierarchi-
cal clustering, our model is similar to Snir and Yuster
(2012), but we generalize their results to hold both for
forbidden and desired quartets.

Finally, our constrained version of Hierarchical Clus-
tering based on triplet constraints was studied
in Chatziafratis et al. (2018) under the assumption
that the input contains pairwise similarities as well as
triplet constraints.

3 Using MaxCut on instances with
embedded ground-truth

We present our main strategy MAXCUT behind our
positive results. As we will see, by modifying the
graphs, our method is flexible to allow for combina-
tions of constraints, e.g., both BTw and NON-BTw
constraints for rankings, or both desired and forbid-
den triplets (or quartets) for trees.
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Stochastic Model for Generating Constraints:
Since our goal is to beat the worst-case approxima-
tion and hardness results, we use a simple stochas-
tic model with an embedded ground-truth solution on
n items. The form of the ground-truth changes de-
pending on which problem we consider; it can be a
ranking (for MAs, BTw, NON-BTw), a partition (for
Correlation Clustering) or a hierarchical tree (rooted
for Triplets and unrooted for Quartets). For generat-
ing the m input constraints, we simply choose items
at random and with probability (1 —€) we add a pair-
wise/triplet/quartet constraint that is consistent with
the ground-truth, otherwise with probability € we add
an erroneous constraint on the selected items. For
example, in the introduction, we saw the MAS con-
straints. Similarly, for BTw, we would uniformly at
random pick m triples of items a,b,c and then add
w.p. (1 —¢) the constraint a|b|c if b appears in be-
tween a and c¢ in the ground-truth ordering. Also,
for the Triplets Consistency problem, we would again
uniformly at random pick m triples of items a, b, c and
then add w.p. (1 — €) the constraint ab|c if ¢ is sep-
arated first from a,b in the ground-truth (rooted bi-
nary) tree. For all problems, after getting m (noisy)
constraints in the analogous manner, our goal is to find
a global solution that satisfies as many constraints as
possible.

Positive Results: Using our stochastic model we
can escape worst-case impossibility results and for all
3 categories of problems, we present improved approx-
imation algorithms. At a high-level, we first construct
a graph by encoding each of the local constraints on
the items as a set of positive or negative edges between
them. The graph captures the desired relationships
and then, we find a good first split maximizing the
ratio of satisfied over violated constraints by the cut.
Naturally, our algorithm MAXCUT (see Algorithm 1)
is based on variants of MAXCUT on graphs with nega-
tive weights. An interesting building block in our anal-
ysis when solving for better Maximum Acyclic Sub-
graphs, is the directed MAXCUT problem on graphs
with negative weights which, to the best of our knowl-
edge, hadn’t been analyzed before. We note that
for the triplets problem on trees, analogous MaxCuT
heuristics had been successfully used before in experi-
mental work for computational biology, however with
no theoretical guarantees (Snir and Rao, 2006, 2012,
2008). An exception is the work of Snir and Yuster
(2012), where they focus only on the desired quartets
problem, however their analysis is a special case of ours
for when Qx = 0 (i.e., the input contains no forbid-
den quartets). Our final approximations circumvent
known hardness results for the case of rankings (Gu-
ruswami et al., 2011) and our new hardness results for
trees described in detail later in Section 4.

3.1 Better Approximations for MAS

We start with MAs as it is perhaps the easiest to de-
scribe (see also Algorithm 1):

Theorem 1. Given m constraints generated according
to our stochastic model on n items, MAXCUT satisfies
at least (0.642 — 0.4285¢)m on average, where € is the
fraction of erroneous comparisons. If moreover m >
Q(logn), the result holds w.h.p.

Remark 3. For example, if the error parameter ¢ =
0.1, hence 10% of the m generated constraints are er-
roneous, we still satisfy =~ 60% of them, and we still
beat the previous best %—appromimation together with
the known hardness (Guruswami et al., 2008).

Our general proof template has 5 steps:

e Building a graph: For a sampled constraint a < b
indicating that a should precede b in the ranking,
we add two directed edges:

+1 directed from a — b, —1 directed from b — a

Since the problem has orientation, we define the
weight of a directed cut (S,S) as the sum of
all (positively or negatively) weighted arcs going
from S to S (and we ignore the arcs going from S
to S).

e Cuts and constraints: The goal of constructing
the graph is to use information about its cuts
and relate them to the pairwise constraints. No-
tice that a cut (S,S5) can either obey, disobey or
leave unaffected the status of a a < b constraint,
depending on if @ or b belongs to S or S. Let
ms, M, denote the satisfied, violated constraints
by the cut, respectively. The weight of any di-
rected (9, 9) cut is thus:

w(S, S) = my(S,8) —m,(S,S) (1)

as satisfied pairs m, (with a € S,b € g)icon—
tribute +1 and violated pairs m, (with a € S,b €

S) contribute —1.
e Lower Bounding MaXCuT: The constructed

graph from the first step, is directed and has both
positive and negative weights. Based on eq. (1),
we should find a large cut in this graph as this
translates to many satisfied constraints. In order
to find the cut, we use a MAXCUT variant that
finds a cut comparable to the optimal max cut in
graphs that are directed and contain both posi-
tive and negative weights. However, we cannot
use the standard Goemans-Williamson algorithm
and guarantees Goemans and Williamson (1995),
as the graph is directed with positive and nega-
tive weights. A new ingredient in our proof is a
semidefinite programming relaxation and analysis
for this variant that achieves:

E(w(S,S)) > 0.857w(0PT) — 0.143 - W~ (2)
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where w(0PT) is the weight of the optimum cut
and W™ is the total negative weight in the graph
in absolute value. Based on the graph construc-
tion in this case, W~ = m as every constraint
contributed a —1 edge. We just note that the
numerical values 0.143 and 0.857 sum to 1, and
they just arise from the rounding scheme used to
obtain an integral solution from the relaxation.

e Now that we have a lower bound for w(.9, S) based
on the optimum cut, in order to conclude the al-
gorithm’s cut is large (and hence satisfies many
constraints), we need to lower bound the opti-
mum’s cut weight w(OPT). To do this we consider
the weight of a median directed cut: the median
cut is defined to be the one that assigns the first
n/2 labels in the optimum ordering for MAS, on
one side of the cut, and the rest n/2 labels to the
other side of the cut. Since the labels for the con-
straints according to our stochastic model were
chosen at random, a counting argument implies
that with high probability ~ %m of the generated
constraints are satisfied by the median cut and
hence also by OPT. To see this, observe that for
nearly half of the a < b constraints, a belongs to
the first n/2 labels of the median cut, whereas b
belongs to the remaining n/2 labels. Since OPT is
by definition even better than the median cut, we
get that it has a large cut value. If we wanted to
be slightly more precise, we should say that due
to errors in an € fraction of the generated con-
straints, we actually lose a small € fraction of the
constraints (we defer details to Appendix A) but
this discounts the optimum cut only by a small
amount.

e Output of MAXCuT: Finally, we need to find
a good permutation overall, not just a good top
split. Our algorithm starts by finding an approxi-
mate MAXCUT (5, 5) in G and then proceeds by
outputting a random permutation on the items in
S and in S and concatenating them. Finally, we
can compute the overall value of ALG (dropping
the notation with (S, 9)):

ALG = mg + im, =

=mg+3(m—ms—m,) = tm+3(w(S,5)) (3)

where m,, are the constraints that were unaffected
by the (S,S) cut. By eq. (3), we already see
that we get some advantage over the %m baseline
which is optimal in the worst-case (and is achieved
by a random permutation on all n items).

Remark 4. A natural question is to attempt to use
MaxCut repeatedly on each of the two generated parts

of the first split. However analyzing the repeated Mazx-
Cut approach is not that simple, as once the first ap-
prozimate MaxCut is performed, there is no random-
ness in the two generated subgraphs that we can exploit.
Analogous difficulties arise in dissimilarity-based and
quartets-based hierarchical clustering Charikar et al.
(2019a); Snir and Yuster (2012); Ahmadian et al.
(2020). Finally, we want to point out that such analy-
ses are also known to be challenging from the literature
on Random Forests for decision trees (e.g., Scornet
et al. (2015)) where a similar (data-dependent) two-
step analysis has been elusive.

3.2 Extensions to Other Problems

The same proof template as presented here can be
modified to deal with the remaining problems: BTw,
NON-BTw, forbidden and desired triplets, forbidden
and desired quartets. As each of these constraints, in-
volve 3 or 4 points, the construction and analyses be-
come more involved. We present briefly the main mod-
ifications for the graph construction (see Appendix A
for details).

For a BTw constraint {a|b|c}, we add undirected
edges: +2 for (a,c) and —1 for (b,a), (b,c). The edges
capture that a cut violates the constraint if it sep-
arates b from a,c. For a NON-BTW constraint {ab|c}
indicating that ¢ should not be between a, b in the final
ordering, we add the following 3 undirected edges:+1
for pairs (c,a),(c,b) and -2 for the pair (a,b). Recall,
that for BTw and NON-BTw, the ultimate goal is to
beat the factors 1 and 2 which are currently optimal

3
in the worst-case:

Theorem 2. Given m = Q(logn) noisy constraints
on n items, variations of MAXCUT satisfy at least
(0.402 — 0.329¢)m and (0.845 — 0.329¢)m. constraints
w.h.p. for BTW and NON-BTW, respectively, where €
is the fraction of erroneous constraints.

For Correlation Clustering, for each CANNOT-LINK
constraint ab, we add a +1 for (a,b), and for each
MusT-LINK constraint ab, we add —3.2735 for edge
(a,b). The chosen numerical value —3.2735 depends
on the current best 0.766-approximation for Correla-
tion Clustering (Swamy, 2004) (see Appendix A).

Theorem 3. Given m = Q(logn) noisy “must-
link/cannot-link” constraints on n items, MAXCUT
(modified appropriately) satisfies at least (0.8226 —
0.775¢)m constraints w.h.p., where € is the fraction of
erroneous constraints.

Analogous theorems hold for the Triplets/Quartets
consistency problems. Due to space constraints, we
omit the statements but we refer the reader to Table 1
for the final ratios and to Appendix A for the proofs.
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Algorithm 1 Our MAXCUT template as instantiated
for Mas.

Input: m pairwise constraints for MAS.

1. For each a < b constraint, insert a +1 arc directed
from a — b and another arc with negative weight —1
directed from b — a. Call the resulting graph G.

2. Run our approximate MAXCUT algorithm suit-
able for directed graphs with negative weights to get
a first split (S, S), satisfying eq. (2).

3. Construct a random permutation 71 on the nodes
in S and a random permutation w5 on the nodes in
S. Let 7 be the ranking obtained by concatenating
71 and then .

4. Return 7.

4 Hardness for CSPs on Trees

Negative Results: As mentioned, previous
work (Byrka et al., 2010; Jiang et al., 2001; Bryant,
1997; He et al., 2006; Steel, 1992) tried to get better
approximations for triplets/quartets consistency
compared to trivial baselines. Recall, that the trivial
baseline is to simply output a random tree (either
rooted or unrooted depending on the problem). In our
paper, near optimal hardness of approximation results
for the maximum desired/forbidden triplets/quartets
consistency problems (4 problems in total) are pre-
sented shedding light to why, despite significant efforts
from different communities, no improvement had been
made for nearly thirty years. As a consequence, we
get the first tight hardness for an ordering problem
on trees, thus extending the work of Guruswami
et al. (2011) from orderings on the line to hierarchical
clustering.

Specifically, for maximizing forbidden triplets, we
show that no polynomial time algorithm can achieve a
constant better than %—approximation. Similar to Gu-
ruswami et al. (2008, 2011) this is assuming the Unique
Games Conjecture, however for maximizing desired
triplets, we show a threshold of %, assuming P % NP.
The above also implies that forbidden triplets is ap-
proximation resistant as a random tree also achieves a
% factor. In fact our hardness results for all 4 problems
are stronger, as we show it’s not possible to distinguish
almost perfectly consistent inputs from inputs where
the optimum solution achieves almost the same as a
random solution.

Technically, in order to get the hardness results,
we give algorithms to obtain permutations on the
leaves of a tree, such that if the tree obeyed
many triplet/quartet constraints, then the permuta-
tion would also obey a large fraction of them when
viewed as appropriate ordering constraints. Specifi-
cally, we prove that under the UGc, it is hard to ap-
proximate the Forbidden Triplets Consistency problem

better than a factor of %, even in the unweighted case.

Fact 1. Let K be the total number of triplets con-
straints in an instance of BTW. For any ¢ > 0, it
is UGC-hard to distinguish between BTW instances of
the following two cases:

YES: val(n*) > (1 — €)K, i.e. the optimal permuta-
tion satisfies almost all constraints.

NO: val(7*) < (3 +€)K, i.e. the optimal permutation
does not satisfy more than 1/3 fraction.

Given the above fact from Guruswami et al. (2011),
we prove our %—inapproximability result for Forbidden
Triplets:

Theorem 4. Let K be the total number of the triplet
constraints in an instance of Forbidden Triplets Con-
sistency. For any § > 0, it is UGC-hard to distinguish
between the following two cases:

YES: val(T*) > (1 — §)K, i.e. the optimal tree satis-
fies almost all the triplet constraints.

NO: val(T*) < (34 0)K, i.e. the optimal tree does
not satisfy more than % fraction of triplets.

Proof. Start with a YES instance of the BTw problem
with optimal permutation 7* and val(7*) > (1 —¢)K.
Viewing each BTw constraint a|blc as a forbidden
triplet ac|b, we show how to construct a tree T such
that val(T) > (1 — 6(e)) K. In fact, the construction
is straightforward: simply assign the n labels, in the
order they appear in 7*, as the leaves of a caterpil-
lar tree (every internal node has its left child being
a leaf). Observe that this caterpillar tree satisfies:
val(T) > (1 — e)K. This is because if a BTW con-
straint a|b|c was obeyed by 7*, it will also be avoided
(viewed as a forbidden triplet ac|b) by the caterpillar
tree above: if a appears first in the permutation then
the caterpillar will avoid ac|b as a gets separated first,
otherwise if ¢ appears first, then again the caterpillar
tree will avoid ac|b as ¢ gets separated first.

The NO instance is more challenging. Start with a NO
instance of the BTw problem with optimal 7* of value
val(m*) < (3 + €)K. Viewing the BTW constraints as
forbidden triplets, we show that the optimum tree 7%
cannot achieve better than > (2/3 + 2¢)K, because
this would imply that val(7*) > (3 + €)K, which is
a contradiction. For this, assume that some tree T
scored a value val(T) > (2/3 + 2¢)K. We will con-
struct a permutation 7 from the tree T° with value
val(r) > (1/3 + €)K, a contradiction. Notice that
there are forbidden triplets that may be avoided by
the tree, yet obeyed by the permutation: for example
for a forbidden triplet ¢ = ac|b, the tree R that first
removes a and then splits b, ¢ will successfully avoid
t, however the permutation acb can come from R by
projection, however acb does not obey the BTw con-
straint a|b|c. Hence directly projecting the leaves of T
onto a line may not satisfy > (1/3 4 2¢) K, since every
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forbidden triplet ac|b avoided by T', can be ordered by
this projected permutation in a way that would not
obey the corresponding BTw constraint a|blc. How-
ever, just by randomly swapping each left and right
child for every internal node in the tree before we
do the projection to the permutation, would satisfy
1/2-(2/342¢)K = (1/3+ ¢) K number of constraints.
To see this, note that with probability % a forbidden
aclb avoided by T will be mapped to the desired abc
(and not acb) or cba (and not cab) ordering.

Finally, we get val(m*) > wal(m) > (1/3 + ¢)K, a
contradiction that we were given a NO instance. To
conclude, %-inapproximability follows from the gap of
these two instances. O

For the Desired Triplets problem, the proof proceeds
in a similar fashion. One main difference is that we
prove hardness of % under P # NP, without assuming
Ucc. The reason is that we reduce from the NON-BTwW
problem that is known to be approximation resistant,
subject only to P #£ NP. Of course, one open question is
to close the gap between this % factor and the current
best approximation of %

Theorem 5. Let K be the total number of the triplet
constraints in an instance of Desired Triplets Consis-
tency. For any 6 > 0, it is NP-hard to distinguish:
YES: val(T*) > (3 — 6)K

NO: val(T*) < (2 + 6K

Switching to quartet problems, our reductions are
more challenging. The first challenge is that con-
straints are on 4 items so we need to resort to an order-
ing CSP of arity 4, that we term 4-SEPARATEDNESS.
Next, trees are unrooted and we want to generate an
ordering on their leaves. To do this we first root the
tree at some internal node and then follow a similar
strategy for randomly reordering their children. For
desired quartets we show hardness of % and for forbid-
den quartets a hardness of % (see App. A for state-
ments). Recall that the best approximations are % and
% respectively, achieved by a random (unrooted) tree.
Remark 5. Note that our hardness results give op-
timal results when restricted to (rooted or unrooted)
caterpillar trees, an important tree family, where each
internal node has at least one leaf as a child.

5 Conclusion

We studied ranking, correlation clustering and hier-
archical clustering under qualitative constraints and
we presented a simple algorithm based on MAxCuT
that is able to overcome known hardness results un-
der a random model. We also provided the first tight
hardness of approximation for CSPs on trees shedding
light to basic problems in computational biology and
extending previous results by Guruswami et al. (2011)

from ordering CSPs to trees. We believe that a nice
open question is to prove that the two most important
families of CSPs on trees (triplets and quartets consis-
tency) are approximation resistant. Here we showed
this for the case of forbidden triplets. More generally,
it is conceivable that all non-trivial CSPs on trees are
in fact approximation resistant, implying that the in-
approximability results of Guruswami et al. (2011) can
be extended from linear orderings to trees.
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