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Supplementary materials for

“CADA: Communication-Adaptive Distributed Adam"

In this supplementary document, we first present some basic inequalities that will be used frequently in this
document, and then present the missing derivations of some claims, as well as the proofs of all the lemmas and
theorems in the paper, which is followed by details on our experiments. The content of this supplementary
document is summarized as follows.
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6 Supporting Lemmas

Define the o-algebra ©F =

Fact 1. Assume that X1, X5, ..

{#',1 < | < k}. For convenience, we also initialize parameters as
=P, 0=P+1 .. 671 =0°. Some basic facts used in the proof are reviewed as follows.

., X, € RP are independent random variables, and EX; =--- = EX,, = 0. Then

E[H Zj;XZ 2] - gﬂi (102 -

Fact 2. (Young’s inequality) For any 6,05 € RP, e > 0,

As a consequence, we have

1
101+ 612 < (14 2 ) 62]12 + (1 + )16

Fact 3. (Cauchy-Schwarz inequality) For any 61,65, ...,60,, € RP, we have

hag

2 n
<ny_ |6
i=1

(18)

(19)

(20)
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Lemma 4. For k — Tax <1 <k — D, if {0F} are the iterates generated by CADA, we have

B [(VL@Y), (1 + 74P) 7 (Veeheh) - vueh ™) )]

D
ZIE [||0k+17d - kadHQ} +6DLaye 20> (22)

m

and similarly, we have

E [(VL), (eI + VEP) 73 (VL (8) = Ve 05 ) )]

=

Le™
<

<Toar 2E [loF+1=4 — 6¥=9||2] 4 3DLage 202,. (23)

D
=1

d
Proof: We first show the following holds.
E[(VL(@), (eI + V*=P) 7} (vee'; k) — vee'sen ™) )]
W [B[(VL0), (1 + VF-P)4 (Veo'seh) - v en ™) Hle]

1 o)

O [(VL(0)), (e + V*P) 3R] V(0 €h) — Ve en )
=B [(VLO), (eI + VEP) 73 (VL (0) = VL (0Y) )] =0 (24)

where (a) follows from the law of total probability, and (b) holds because V¥~ is deterministic conditioned on
©! when k — D <.

We first prove by decomposing it as
E[(VL6*), (1 + V4-P)4 (Veeh ek - ves e ™)) )]

Ok [(VL(0) - VL@, (eI + VD)2 (Vees k) - vee'sen ™)) )]

(d) ~ 1 ~ 1 —Th

<LE [||(e1 + VEP) |65 — o [[¢er + vE-P)E (Veistseh) - veetsen ™) ||

(e) LEié k 2 6DLO‘]€€7% l. ¢~k L. k:_T’::L 2

< Doy LI — 017 +2==3 = B Ivets et - e &) (2)
Il Iz

where (c) holds due to (24), (d) uses Assumption I} and (e) applies the Young’s inequality.
Applying the Cauchy-Schwarz inequality to I;, we have

k—1 2
e e
d=1
o) k—l E[||9k+l—d _ Gk_dHQ} <D iE[HGkJ’_l_d _ 9k—d||2 ) (26)
d=1 d=1

Applying Assumption 2] to I», we have

I =E[||[Ve(e's ) - Ve e )

]

=k [|[ve'seh)|] +E[[vee’ i)

2} <202 (27)

where the last inequality uses Assumption [2} Plugging and into , it leads to .
Likewise, following the steps to , it can be verified that also holds true.
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Lemma 5. Under Assumption@ the parameters {h* 9%} of CADA in Algom'thm satisfy
|h¥|| <o, Vk; oOF <o? ki

where 0 := 3 > f O

Proof: Using Assumption 2, it follows that

1 _sk k1P
IR

meM

Therefore, from the update , we have

W4T < BullRM 4+ (1 = BOIVHI < BullB¥] + (1 = Bu)o

V¥ =

meM meM

Since ||h!| < o, if follows by induction that ||R**!|| < o, Vk.

k—rk | ck—Th :
UCAET S

2

Using Assumption 2, it follows that

/\

IN

(vz (6 7))

E\H i\

k _r 2
|vee ;¢ r’%)H _ 1 02 < o2,

IA

ZM
=

Similarly, from the update , we have
of < max{of, By0f + (1= B2)(VE)?} < max{0f, B0 + (1~ fa)o}.

Since v} = 9} < o2, if follows by induction that ﬁf“ < o2
Lemma 6. Under Assumption@ the iterates {6%} of CADA in Algom'thm satisfy

H0k+1 _ 9k”2 < a2p(l—B2)" (1 - Bs)
where p is the dimension of 0, 1 < /B2 < 1, and B3 := 32/ Bs.
Proof: Choosing 31 < 1 and defining 33 := 37/, it can be verified that
B = |Bihf + (1= B1)VE| BulRf] + V]
< Br (Balh T+ Vi) + V]

k k
k=l —k—
<D BTIVI=Y VB VB |V
1=0 1=0

" k 3 k 3
e (Zﬁg’f‘l) <Zﬂ§‘l(V§)2>
=0 =0

k 2
<=7t ()
1=0
where (a) follows from the Cauchy-Schwartz inequality.
For 9F, first we have that 9} > (1 — 5)(V})2. Then since

05T 2 Bt} + (1= Bo)(V5)?

< 3 v g < 5 Y on =0
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by induction we have
k
ot > (1= 82) )BTV (33)
Using and , we have
k
(R < (1= )™ (Z ﬁ§—l<vé)2>
1=0

<(1=B2) (1= B3)tortt,
From the update , we have

p
||0k+1 _9k||2 o? Z 6+’Uk+1 |hi_c+1|2
i=1
< agp(l—B2) M (1= ps) 7 (34)

which completes the proof.

7 Missing Derivations in Section
The analysis in this part is analogous to that in [I2]. We define an auxiliary function as
Vn(0) = Ln(0) = Ln(0%) = (VL (67).6 = 6%)
where 0* is a minimizer of £. Assume that V/(0;¢&,,) is L-Lipschitz continuous for all &,,, we have
IVE(6:6) = VEO* E)]1* < 2L (£0:6m) — £O":6) = (VO :6m).0 "))
Taking expectation with respect to &,,, we can obtain
Ee,, [[VE(0: €m) = VO &m)12) < 2L (L£10(60) = Ln(07) = (VL(67),0 = 0°) ) = 2Lto (6).
Note that V£, is also L-Lipschitz continuous and thus

1L (6) = VLm0 < 2L(Lm(8) — L (0°) = (VL(0%),0 = 67)) = 2Lt (6).

7.1 Derivations of @

By , we can derive that
161 + 02 < 2[161 1 + 2/6I?

which also implies [0 > (|61 + 62[* — [|62]*.
As a consequence, we can obtain
E[IVee*; ek - vee s en )|
E%E[H(Vé(e’“;gfn) — VLn(8) + (VL (6" 70) — V(0 k™)) |
- E[chm (0%) = VL (6" ]
1 77'19 *T.,I?L T
7IE[HV£ (0*365) = VL (@] + SE[[IVEO" 3 €07™) = Lm (6" 7m)|]]

+E [<W(ek;gm)fvzm(e’“),wm(e’“*ﬂ’%)fve(ek”fn;gq’:fﬁz)>] —E[[VLn(0") = VLm0 ™)|]

I3

where we used the fact that I3 = 0 to obtain @, that is

Iy = B[ (B[VA(8"5€5,)|0"] = VL (67), V(6 0) — Ve(6" 565 ))| = 0.
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7.2 Derivations of @D
Recall that

k—rk

Bt — BT =(VHO8 €5) — VE(G: €6) + VLm(0)) — (VEO 5 €8777) = VUG €0T) + VL (0))

= (VU085 €5) — VUG5 €5) + Vi (8)) — (VL(OF ™3 €577m) = V(@ €577) + Vb (8)) -

L ] L 1
k k
g k—T1;
m 9m

~ ~ k
And by (21)), we have [|6%, — S ™12 < 20195112 + 2llgm m||2 We decompose the first term as

Elllgn[I”] <2E[|VE(0%;&),) — V08 €5)(1%] + 2E[[[VE(G; &5,) — VL0 €5) — Vb (0)]|°]
=2E[E[[|VE(6%; &) — VE(©O*;65)1%10M)]
+2E[[|VE(0; &5,) — VE(O";E5) — E[VEB; E7,) — V(0% 65,)10%]|°]
<ALE,, (0%) + 2E[|[VE(6; £5,) — Ve €5)17)
=4LE, (0%) + 2B[E[|V(; &h,) — V(%5 €8 [1P104])
<ALEY,, (0%) + ALEY,, (0).

By nonnegativity of v,,, we have

Ellgh|?] <4L Y B (0%) +4L Y By, (6)
meM meM
= AML(EL(%) — £(6%)) + 4AML(EL(H) — L(0%)).
Similarly, we can prove
Ellgh ™ 2] < 4ML(EL(9F ) — £(6%)) + 4AML(EL(G) — £(8*)).
Therefore, it follows that
E[13%, — 55 ™ |12
< SML(EL(6F) — L£(6%)) + SML(EL(* ™) — £(6*)) + 16 ML(EL(0) — L(6*)).

7.3 Derivations of

The LHS of can be written as

VUO8; €h,) = VOO gk ) =(VE(OF; k) — V0K €8) + VL (057T)) = VL, (05 )

=(VUO*5€h) — TUOF T €8) + Vi, (057)) — Vi (07 70).

Similar to , we can obtain
E[|VE(6*; €5) — Ve(6F 5 €8) 4 Vi (677 ||2)
< AML(EL(0F) — £(6*)) + AML(EL(0* ™) — L(6%)).
Combined with the fact

E[| Ve (05 )|2] = E[|[ VL (0¥ m) = VL, (6%)]7]
< 2LEW, (05 ™) < 2ML(EL(6" ™) — L(67))

we have

E[|[VE(6"; k) — Ve(6* ;¢ )[2] < SMLEL(Y) — £(6%)) + 12ML(EL(9* ™) — L(6Y)).
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8 Proof of Lemma [

Using the smoothness of £(#) in Assumption [} we have
L") < £0%) + (TL(69), 0 — 0 ) + %Ho’@“ Sk
=L(6%) - ak<V£(9k)7 (el + V’f+1)—%h’€+1> - gne’@“ —6*|, (37)
We can further decompose the inner product as
— (VL(0), (e + VFH1)~hpbt1 )
- (1- 51)<vc(9k)7 (e + V’f)-%vk> —51<vc(ek), (e + Vk)—%hk>

L ]
Iy

—(VLO%), (el + VEH)TE — (eI + VF)~H) i) (38)

15
where we again decompose the first inner product as
—(1= B{ VL"), (eI + VF)THTH) = —(1 = B1)(VLEY), (I + VD)5 )

Iy

—(1- 51)<v£(9’“), ((d+ VEY=3 — (el + V’“‘D)‘%) Vk>. (39)

Iy

Next, we bound the terms I{‘“, I§, I§, L’f separately.

Taking expectation on IF conditioned on ©, we have
E[IF | 0% = —E [51<vc(ek), (e + Vk)—%hk> | eﬂ
- 751<V/3(9’“*1), (eI + V’“)*%hk> - 5l<vc(ak) VLR, (el + V’“)*%hk>
< g (VL. (e + V) + ot L0k - 0
Lo (B T T apl BL0% — 641 (40)

where follows from the L-smoothness of £(6) implied by Assumption |1} and (b) uses again the decomposition

and (50).

Taking expectation on I¥ over all the randomness, we have
IE[I;“] :E_ - <V£(0’“)7 ((eI + f/’fﬂ)fé (el + ‘A/—;g),%) hk+1>}

Ezp: V. L(0F)hET ((e + )7 — (e + "A’fﬂ)*%)}

Ce[IveE Y e+ o8t — e+ o)1)
(202]143[217: ((e+of)—% _ (6+@§+1)_%)} )

i=1

where (d) follows from the Cauchy-Schwarz inequality and (e) is due to Assumption
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Regarding I¥, we will bound separately in Lemma

Taking expectation on I} over all the randomness, we have

E[I}] ZE{ - (1- ﬂ1)<V£(9’“), ((eI +VE)TE (el + Vk—D)—%) Vk>]

M=

=~ (1= BE| Y VL) Vi ((e + 357 — (e 4ol "))

2

Il
_

<(1= BOE[IVE@NIVHI S (e +65P) % — e+ a8) )]

=1

[N

-

<(1-B)o%E[ Y ((e+087P)

~(e+5)71)). (42)

=1

Taking expectation on over all the randomness, and plugging , , and , we have
E[L(0%+)] — E[L(0%)] < — o [<vc(ak), (el + V’““)*%h’““ﬂ + gm [||o’€+1 - 9k||2}
L
=B [} + 1§ + If + If] + SE [0+ — ¥
< —ap(1—BIE [<v5(9’f), (eI + V’C—D)—%v’fﬂ

— apBE [<vc(e’f—1)7 (el + V’“)‘%hkﬂ

+ Oékng[

(1=
/N
—
[
_|_
<>
ST
~—
|
ol
I
—~
(@)
_l’_
<>
S
+
=
~—
|
N
N—
[E——

@
Il
-

+ag(1 - 51)02E[zp: ((6 +0f7P)TE — (e+ 65)7%)}

i=1

L -
+ (2 +agai !l BiL ) E 05 —6%|17] . (43)

P

<@- BB Y ((e+8f2) 78 — (e+ ol ) H)]. (44)

i=1

Plugging into leads to the statement of Lemma
9 Proof of Lemma 2]

We first analyze the inner produce under CADA2 and then CADAI.
First recall that V* = L3 | Ve(0*;¢r,). Using the law of total probability implies that
E [<vz(9k), (el + f/k—D>—%v’f>} —E [E [<vc(9k), (el + Vk—D)—%Vk> | @kH
—E [<vc(9k), (el + VD) "3E [V | ©F] >}

=E [[|VLO") {14 p0-0)-1 ] (45)
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Taking expectation on <V£ , (eI + yk-D )~ éV’“> over all randomness, we have
—E[(VLO"), (eI + VEP)~ivh)]
—E[(VLOY), (e + VD)~ hvh)]
k— D %i k—1F, /c T k. ¢k
E[<w: (el +V ey (w G ) — VU0 ¢ )) >}
2B [IVLO) [ pnry-1]
- ﬁ E [<vc(ek), (el + Vh=D)=3 (W(ek—fﬁ;gﬁfi) —vie*; g,’;)) >} (46)
meM

where (a) uses (45).
Decomposing the inner product, for the CADA?2 rule , we have

- E[<vc<9k> (el + V=P) = (Voo s 607 = Ve0%:€) ) )
—E| (Ve s e ) — v ) ) )
—E[(VL©"), (el + VD) =% (Ve(or i €h) - veorseh) ) )]

M\»—l

<vc (0%, (eI + VE=P)~

6
12ak

D
STE[0M1 " — 0*9|?] + 6DLage 202,
d=1

—E[(VL(8), (e + VFP) 7 (Ve(e" =6k — Ve(6": b)) | (47)

where (b) follows from Lemma
Using the Young’s inequality, we can bound the last inner product in as

—E[(VL(0"), (el + VEP) 7 (Ve(0r k) - Vieok; k) ) )|

Lag N 1.1 ork—Dy—1 k—rF . ek k. ck H2
<- — ™ - _ .
=1\ ] Y SB[ 1+ Vi) ~H|| (veer ek - veetieh) | ]
(D1 _r PNIE 1 1 A Dy—1 k—F ok NI
< = - Tm, - _ .
<SE[[vL@)| . oeny] +2E[ (el + V=) b || et gl - Vet eh)|| |
M1 _r 2 ] ma
SIgllveen | ]+ ||+ )R D e | }

2 L (eI+Vk=-D)72 ] Armax d=1
@1 _r NIk 1 et & k+1-d  pk—d|?
<SE[IVE@) , orors] * maxz [[jg 1= o= (48)

=1

where (g) follows from the Cauchy-Schwarz inequality, and (h) uses the adaptive communication condition
in CADA2, and (i) follows since Vk=D is entry-wise nonnegative and HG’”‘l_d— (9’“_d||2 is nonnegative.

Similarly for CADA1’s condition (7), we have

<VL‘ (%), (eI + VF—P)=% (W(e’f They ghoTmy W(ek;g,’;)) >}
(W<é~ ) = Vb)) )
<V£ (0%, (eI + VF=P)~3 (5’“ ™ 3k )) >]

Nl=

-E|
=~ E[(VL(E"), (eI + V*P)"
-E|

: _1 D
QL Y E[|6* ¢ = 65)°] + 6DLage %oy, — E [<vc(9’“), (el +VE=P)=2 (Sf;‘”k” - 5§)>] (49)
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where (j) follows from Lemma since 6 is a snapshot among {6, --. =D},

And the last product in is bounded by
~E [<vc(9k), (eI + VF—D)=3 (5’“ ™ 3k m

[ch (%)

(el + VD)

dmax
¢ k+1—d_ pk—d 2}
crviimt) T 58] > oot
1 D

(14 0k D)_,} m; Z “|9k+1—d_ ek—dH2] 50)

=1

Combining (46)-(50) leads to the desired statement for CADA1 and CADA2.

<3E[lvee

10 Proof of Lemma [3]
For notational brevity, we re-write the Lyapunov function as

VE 1= £(0%) = £(07) = e (VLO" ), (e + V)7 30F)

D p D
Foe DY e+ 0FTNTE LD pyfloh e — gh )2 (51)

d=0 i=1 d=1
where {cj} are some positive constants.

Therefore, taking expectation on the difference of V¥ and V**! in , we have (with ppy1 =0)
E[VE+1] — E[VF] =E[£(6F1)] — E[L(0%)] — cpiiE [<vc(9k), (el + V’““)*%h’““ﬂ

+oE [<vc(9k*1), (eI + V’“)*%hkﬂ

D p D p
+bk+1zz Ak+1 d % —kaZ(G-i"lA)fid)_%
d=0 i=1 d=0 i=1
D
+ ,011[*3 [||9k+1 _ GkH + Z Pds1 — “|9k+1 d 9k—d||2]
d=1

(a)
<(ok+e)E[IF + 5+ 15+ If] — B [I7 ' + I+ I3+ I

+bk+1zp:E[e+vk+1 %]—kaE{e—Fﬁk Dy ]
i=1

P

D 1 .
* Z(ka — bi) ZE[(E +0;7 d)ﬁ] + <2 + pl) E [|l6"+! — 6% |12]

d=1 i=1

D
+ Y (pas = pa) B850 — 6+)2] (52)

.
Il
—

where (a) uses the smoothness in Assumption (1| and the definition of I¥, I¥ I} Ik in and (39).

Note that we can bound (o +cx41)E [I{“ + I+ 1F + L’f] the same as in the proof of Lemma In addition,
Lemma [2] implies that

1—
Elf) < - -

E VL6042, pe 3]

L < 6D Loge?
-1 k4+l—d _ pk—d|2 _ k€ 2 2
#0=0 (ap * ga) TEIO - PR S  )

=1 meM
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Therefore, plugging Lemma with oy replaced by ay + cx41 into , together with 7 leads to

BV BV < Gt (S5 B 1920

i L
+ (o + cr1) (1 = Br)e (12%+ 57 max) Z]E [[loF 1= — gF=)12]

6D Love 2
+(on +enp) (1= fr) = — > o
meM

+ (o +eep1)Br— c)E [+ B+ I+ I

+ (a + crp1)(2 — ﬁl)a%[i ((e+0872) 7 — (e 4 ab+1)H)]

i=1
p
S R RS )
D ) =1 1
+ Z(karl — b) ZE[(E + vk+1 d) 5}
d;l i=1
+ Z(Pd—H — p)E [||oF 1= — gk 2]

i
l\D‘h»—\

iy

o0 .
Select ap < a1 and ¢ := > oz]ﬂ{_kH < (1 — 1) tag so that (g + cpy1)B1 = ¢ and
=k

+p1+ (g + ckH)a,;}lﬂlL) E [0 — 6% |°] . (54)

+ (1= B1) tagg1) (1 — Br)

(o + cr1)(1 = B1) < (o
ap(l4 (1= 81) ") (1= B1) = an(2— B).

<
<

In addition, select by to ensure that by < bg. Then it follows from that

) 6DL 3
E[VEH] — E[VY] < — (2 ) E[IVEO 1y gnopy-3] + 2= Bad"—— 3 2

meM

@B (121;ék+2dmax)Z]E [|6*+1 =2 — gF=||2]
+(((21_%))2ak02_bk>E{i((€+@fD)‘5 (e+aft)74)]

+(§+p1+ (1-p)" )IE[||9’<+1—9'<||2]

D
+ 3 (pass — pa)E [||0FF1 — g+~ (55)
d=1

where we have also used the fact that — (o + cp41) (1_251) < *M since cgy1 > 0.



Tianyi Chen, Ziye Guo, Yuejiao Sun, Wotao Yin

If we choose oy, < % for k=1,2..., K, then it follows from that

E[V””l] _ E[V"”‘}
< — Oék(lz— B1) (6 n 1 0252)2[@ [”vﬁ(ek)HQ} . BI)GQ%DJML'S_; Z .
meM
+<<(1_%11)) UQ—bk)E[i((e—i—vk D) %—(6—&-65*1)—%)}
- y =1
+ (g +p+(1- ﬂ1)_1L> E “|9k+1 B akHQ]

D

1 (L cay _ _

+ g (2 - 61)6 2 (12 + 2dmax) + pd+1 _Pd) E [||9k+1 4 g d||2] .
d=1, 1

k
Bd

To ensure A¥ < 0 and B% <0, it is sufficient to choose {bx} and {p4} satisfying (with pp,1 = 0)

92 _ 2
((lﬁﬂl))aka?—bkgo, k=1, ,K
- M1
1 (L ca,
2 — = — < =1,---,D.
(2—PB1)e 2(12+2dmax>+pd+l pa <0, d=1,---,

Solve this system of linear equations and get

2-/)7 o2,

b k=1, K
T -BL

=(2-p)e: L, _c¢ (D—d+1), d=1 D
pd = VT \12 T 2Lda Cu T

plugging which into leads to the conclusion of Lemma

11 Proof of Theorem [I]

From the definition of V¥, we have for any k, that

D
E[V] > £(65) = £(8") — e (VLB ), (el + VF)10F) + 3 pallg™+1-2 — g2
d=1
> —fex] | VLO )| || (e + T7F)~ 0|
> —(1-p1) togo 273

where we use Assumption [2] and Lemma [5]
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By taking summation on over k=10,---,K — 1, it follows from that

—1 K
(7)ol

ED'] - [VK+1] +(2_61)6a2DLe—% Y ot 2-p)?

meM

L 1 &
(2+P1+ 1-51)" )KZE ||t9kJrl 9’“|H

_1
o?pDe 2

(1-51) K

<

M K (1-p1)

meM

+ (5 PG m)lL) p(1 = F2)7H(1 = ) "o

where (a) follows from and Lemma [6]

Specifically, if we choose a constant stepsize o := #, where n > 0 is a constant, and define

Cy:=(2— B1)6DLe =

and
1, 2-p)7 0 s
02—(1_51) +(1_ﬂ1)D
and
Coim (5ot (1= )] (L= ) )
and

N

-~ 2 -
04::;(1_[31)(”10@)

we can obtain from that

K—1 LOY—L06*) | & 2 2 A 2 a A 2
1 S Y 00+ Copo® £+ Cspor
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12 Proof of Theorem 2

By the PL-condition of £(6), we have
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where (a) uses the definition of Cy in ([66), and (b) uses Assumption [2 and Lemma
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and choose B, B2, € to ensure that 1 — @ > 0.
Then we have
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If we choose ap = where K is a sufficiently large constant to ensure that «y satisfies the
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from which the proof is complete.

13 Additional Numerical Results

13.1 Logistic regression.

Data pre-processing. For ijenni and covtype datasets, they are imported from the popular library LIBSVME]
without further preprocessing. For MNIST, we normalize the data and subtract the mean. We uniformly
partition #jcnnl dataset with 91,701 samples and MNIST dataset with 60,000 samples into M = 10 workers. To
simulate the heterogeneous setting, we partition covtype dataset with 581,012 samples randomly into M = 20
workers with different number of samples per worker.

For covtype, we fix the batch ratio to be 0.001 uniformly across all workers; and for ijenn! and MNIST, we fix
the batch ratio to be 0.01 uniformly across all workers.

Choice of hyperparameters. For the logistic regression task, the hyperparameters in each algorithm are
chosen by hand to roughly optimize the training loss performance of each algorithm. We list the values of
parameters used in each test in Tables

Algorithm H stepsize a \ momentum weight 3 \ averaging interval H/D
FedAdam a; = 100 as = 0.02 0.9 H =10
Local momentum 0.1 0.9 H =10
ADAM 0.005 B1=0.9 B2 = 0.999 /
CADA1&2 0.005 £1=0.9 B2 =0.999 D =100, dpax =10
Stochastic LAG 0.1 / Amax = 10

Table 1: Choice of parameters in covtype.
"https://www.csie.ntu.edu.tw/ cjlin/libsvm/
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Algorithm H stepsize a \ momentum weight 3 \ averaging interval H/D
FedAdam a; = 100 as = 0.03 0.9 H =10
Local momentum 0.1 0.9 H =20
ADAM 0.01 £1=0.9 B> = 0.999 /
CADA 0.01 B1=0.9 B2 = 0.999 D =100, dpax =10
Stochastic LAG 0.1 / Amax = 10

Table 2: Choice of parameters in jcnnl.

13.2 Training neural networks.

For training neural networks, we use the cross-entropy loss but with different neural network models.

Neural network models. For MNIST dataset, we use a convolutional neural network with two convolution-
ELUmaxpooling layers (ELU is a smoothed ReLU) followed by two fully-connected layers. The first convolution
layer is 5 x 5 x 20 with padding, and the second layer is 5 x 5 x 50 with padding. The output of second layer is
followed by two fully connected layers with one being 800 x 500 and the other being 500 x 10. The output goes
through a softmax function. For CIFAR10 dataset, we use the popular neural network architecture ResNet20 E]
which has 20 and roughly 0.27 million parameters. We do not use a pre-trained model.

Data pre-processing. We uniformly partition MNIST and CIFAR10 datasets into M = 10 workers. For
MNIST, we use the raw data without preprocessing. The minibatch size per worker is 12. For CIFARI10, in
addition to normalizing the data and subtracting the mean, we randomly flip and crop part of the original image
every time it is used for training. This is a standard technique of data augmentation to avoid over-fitting. The
minibatch size for CIFAR10 is 50 per worker.

Choice of hyperparameters. For MNIST dataset which is relatively easy, the hyperparameters in each
algorithm are chosen by hand to optimize the performance of each algorithm. We list the values of parameters
used in each test in Table Bl

Algorithm H stepsize a \ momentum weight 3 \ averaging interval H/D
FedAdam a; = 0.1 ag = 0.001 0.9 H=38
Local momentum 0.001 0.9 H=8
ADAM 0.0005 51 =0.9 B2 =0.999 /
CADA1&2 0.0005 B1=0.9 B2 =0.999 D =50, dnax = 10
Stochastic LAG 0.1 / Amax = 10

For CIFAR10 dataset, we search the best values of hyperparameters from the following search grid on a per-
algorithm basis to optimize the testing accuracy versus the number of communication rounds. The chosen values

Table 3: Choice of parameters in multi-class MNIST.

of parameter are listed in Table
FedAdam: o, € {0.1,0.01,0.001}; oy € {1,0.5,0.1}; H € {1,4,6,8,16}.
Local momentum: « € {0.1,0.01,0.001}; H € {1,4,6,8,16}.
CADA1: « € {0.1,0.01,0.001}; ¢ € {0.05,0.1,0.3,0.6,0.9,1.2,1.5, 1.8}.
CADA2: « € {0.1,0.01,0.001}; ¢ € {0.05,0.1,0.3,0.6,0.9,1.2, 1.5, 1.8}.
LAG: a € {0.1,0.01,0.001}; ¢ € {0.05,0.1,0.3,0.6,0.9,1.2,1.5,1.8}.

2https://github.com/akamaster /pytorch resnet cifarl0
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Figure 6: Performance of FedAdam and local momentum on MNIST under different averaging interval H.
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Figure 7: Performance of FedAdam and local momentum on CIFARI10 under different averaging interval H.

Algorithm | stepsize « | momentum weight 3 | averaging interval H/D
FedAdam a;=0.1a,=0.1 0.9 H=2_8
Local momentum 0.1 0.9 H=28
CADA1 0.1 B =09 B2 = 0.99 D =50, dmax =2
CADA2 0.1 B1=0.9 B, =0.99 D =50, dpax=2
Stochastic LAG 0.1 / dmax = 2

Table 4: Choice of parameters in CIFAR10.

Additional results. In addition to the results presented in the main paper, we report a new set of simulations
on the performance of local update based algorithms under different averaging interval H. Since algorithms
under H = 4,6 do not perform as good as H = 8, we only plot H = 1,8,16 in Figures [f] and [7] to ease the
comparison. Figure [6] compares the performance of FedAdam and local momentum on MNIST dataset under
different averaging interval H. Figure[7]compares the performance of FedAdam and local momentum on CIFAR10

dataset under different H.

Figure [7] compares the performance of FedAdam and local momentum on CIFARI0 dataset under different
averaging interval H. FedAdam and local momentum under a larger averaging interval H have faster convergence
speed at the initial stage, but they reach slightly lower testing accuracy. This reduced test accuracy is common
among local SGD-type methods, which has also been studied theoretically; see e.g., [14].



