
CADA: Communication-Adaptive Distributed Adam

Tianyi Chen Ziye Guo Yuejiao Sun Wotao Yin

Rensselaer Polytechnic Institute University of California, Los Angeles

Abstract

Stochastic gradient descent (SGD) has taken
the stage as the primary workhorse for large-
scale machine learning. It is often used
with its adaptive variants such as AdaGrad,
Adam, and AMSGrad. This paper pro-
poses an adaptive stochastic gradient descent
method for distributed machine learning,
which can be viewed as the communication-
adaptive counterpart of the celebrated Adam
method — justifying its name CADA. The
key components of CADA are a set of new
rules tailored for adaptive stochastic gradi-
ents that can be implemented to save commu-
nication upload. The new algorithms adap-
tively reuse the stale Adam gradients, thus
saving communication, and still have conver-
gence rates comparable to original Adam. In
numerical experiments, CADA achieves im-
pressive empirical performance in terms of
total communication round reduction.

1 Introduction

Stochastic gradient descent (SGD) method [40] is
prevalent in solving large-scale machine learning prob-
lems during the last decades. Although simple to use,
the plain-vanilla SGD is often sensitive to the choice of
hyper-parameters and sometimes suffer from the slow
convergence. Among various efforts to improve SGD,
adaptive methods such as AdaGrad [11], Adam [24]
and AMSGrad [38] have well-documented empirical
performance, especially in training deep neural net-
works.

To achieve “adaptivity," these algorithms adaptively
adjust the update direction or tune the learning rate,

Proceedings of the 24th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2021, San Diego,
California, USA. PMLR: Volume 130. Copyright 2021 by
the author(s).

or, the combination of both. While adaptive SGD
methods have been mostly studied in the setting where
data and computation are both centralized in a single
node, their performance in the distributed learning set-
ting is less understood. As this setting brings new chal-
lenges to machine learning, can we add an additional
dimension of adaptivity to Adam in this regime?

In this context, we aim to develop a fully adaptive SGD
algorithm tailored for the distributed learning. We
consider the setting composed of a central server and
a set of M workers in M := {1, . . . ,M}, where each
worker m has its local data ξm from a distribution Ξm.
Workers may have different data distributions {Ξm},
and they collaboratively solve the following problem

min
θ∈Rp

L(θ) = 1

M

∑

m∈M
Lm(θ) (1a)

with Lm(θ) :=Eξm [ℓ(θ; ξm)] ,m ∈ M (1b)

where θ ∈ Rp is the sought variable and {Lm,m∈M}
are smooth (but not necessarily convex) functions. We
focus on the setting where local data ξm at each worker
m can not be uploaded to the server, and collaboration
is needed through communication between the server
and workers. This setting often emerges due to the
data privacy concerns, e.g., federated learning [31, 19].

To solve (1), we can in principle apply the single-node
version of the adaptive SGD methods such as Adam
[24]: At iteration k, the server broadcasts θk to all the
workers; each worker m computes ∇ℓ(θk; ξkm) using a
randomly selected sample or a minibatch of samples
{ξkm} ∼ Ξm, and then uploads it to the server; and
once receiving stochastic gradients from all workers,
the server can simply use the aggregated stochastic
gradient ∇̄k = 1

M

∑
m∈M ∇ℓ(θk; ξkm) to update the pa-

rameter via the plain-vanilla single-node Adam. When
∇ℓ(θk; ξkm) is an unbiased gradient of Lm(θ), the con-
vergence of this distributed implementation of Adam
follows from the original ones [38, 8]. To implement
this, however, all the workers have to upload the fresh
{∇ℓ(θk; ξkm)} at each iteration. This prevents the effi-
cient implementation of Adam in scenarios where the
communication uplink and downlink are not symmet-

CADA: Communication-Adaptive Distributed Adam

ric, and communication especially upload from work-
ers and the server is costly; e.g., cellular networks [35].
Therefore, our goal is to endow an additional dimen-
sion of adaptivity to Adam for solving the distributed
problem (1). In short, on top of its adaptive learn-
ing rate and update direction, we want Adam to be
communication-adaptive.

1.1 Related work

To put our work in context, we review prior contribu-
tions that we group in two categories.

1.1.1 SGD with adaptive gradients
A variety of SGD variants have been developed re-
cently, including momentum and acceleration [36, 33,
13]. However, these methods are relatively sensitive
to the hyper-parameters such as stepsizes, and require
significant efforts on finding the optimal parameters.

Adaptive learning rate. One limitation of SGD is
that it scales the gradient uniformly in all directions by
a pre-determined constant or a sequence of constants
(a.k.a. learning rates). This may lead to poor per-
formance when the training data are sparse [11]. To
address this issue, adaptive learning rate methods have
been developed that scale the gradient in an entry-wise
manner by using past gradients, which include Ada-
Grad [11, 52], AdaDelta [58] and other variants [26].
This simple technique has improved the performance
of SGD in some scenarios.

Adaptive SGD. Adaptive SGD methods achieve the
best of both worlds, which update the search direc-
tions and the learning rates simultaneously using past
gradients. Adam [24] and AMSGrad [38] are the rep-
resentative ones in this category. While these methods
are simple-to-use, analyzing their convergence is chal-
lenging [38, 48]. Their convergence in the nonconvex
setting has been settled only recently [8, 9]. However,
most adaptive SGD methods are studied in the single-
node setting where data and computation are both
centralized. Recently, adaptive SGD has been studied
in the shared memory setting [55], where data is still
centralized and the communication is not adaptive.

1.1.2 Communication-efficient distributed
optimization

Popular communication-efficient distributed learning
methods belong to two categories: c1) reduce the num-
ber of bits per communication round; and, c2) save the
number of communication rounds.
For c1), methods are centered around the ideas of
quantization and sparsification.
Reducing communication bits. Quantization has
been successfully applied to distributed machine learn-
ing. The 1-bit and multi-bits quantization methods

have been developed in [41, 2, 46]. More recently,
signSGD with majority vote has been developed in [4].
Other advances of quantized gradient schemes include
error compensation [54, 23], variance-reduced quan-
tization [59, 15], and quantization to a ternary vec-
tor [53, 39]. Sparsification amounts to transmitting
only gradient coordinates with large enough magni-
tudes exceeding a certain threshold [44, 1]. To avoid
losing information of skipping communication, small
gradient components will be accumulated and trans-
mitted when they are large enough [29, 42, 3, 51, 17].
Other compression methods also include low-rank ap-
proximation [47] and sketching [16]. However, all these
methods aim to resolve c1). In some cases, other laten-
cies dominate the bandwidth-dependent transmission
latency. This motivates c2).
Reducing communication rounds. One of the
most popular techniques in this category is the pe-
riodic averaging, e.g., elastic averaging SGD [60], local
SGD (a.k.a. FedAvg) [32, 28, 20, 43, 49, 57, 22, 14] or
local momentum SGD [56, 50]. In local SGD, work-
ers perform local model updates independently and
the models are averaged periodically. Therefore, com-
munication frequency is reduced. However, except
[20, 49, 14], most of local SGD methods follow a pre-
determined communication schedule that is nonadap-
tive. Some of them are tailored for the homogeneous
settings, where the data are independent and identi-
cally distributed over all workers. To tackle the hetero-
geneous case, FedProx has been developed in [25] by
solving local subproblems, which pays the price of in-
creasing local gradient computation. Communication-
efficient optimization has also been studied in the con-
trol literature under the name event-triggered control;
see e.g., [10, 34, 30]. However, this line of work pri-
marily focuses on the consensus-based control tasks.

The most related line of work to this paper is the
lazily aggregated gradient (LAG) approach [6]. In
contrast to periodic communication, the communica-
tion in LAG is adaptive and tailored for the hetero-
geneous settings. Parameters in LAG are updated at
the server, and workers only adaptively upload infor-
mation that is determined to be informative enough.
Unfortunately, while LAG has good performance in
the deterministic settings (e.g., with full gradient), as
shown in the recent work [7], its performance will be
significantly degraded in the stochastic settings. In
[7], LAG has been extended to the stochastic setting
by incorporating the plain-vanilla SGD update. Con-
sidering the popularity of adaptive SGD in practice,
this paper generalizes LAG to the regime of running
distributed adaptive SGD such as Adam. Very re-
cently, FedAvg with local adaptive SGD update has
been proposed in [37], which sets a strong benchmark
for communication-efficient learning. When the new

Tianyi Chen, Ziye Guo, Yuejiao Sun, Wotao Yin

algorithm in [37] achieves the sweet spot between lo-
cal SGD and adaptive momentum SGD, the proposed
algorithm is very different from ours, and the averag-
ing period and the selection of participating workers
are nonadaptive.

1.2 Our approach

We develop a new adaptive SGD algorithm for dis-
tributed learning, called Communication-Adaptive
Distributed Adam (CADA). Akin to the dynamic
scaling of every gradient coordinate in Adam, the key
motivation of adaptive communication is that during
distributed learning, not all communication rounds be-
tween the server and workers are equally important.
So a natural solution is to use a condition that decides
whether the communication is important or not, and
then adjust the frequency of communication between a
worker and the server. If some workers are not commu-
nicating, the server uses their stale information instead
of the fresh ones. We will show that this adaptive com-
munication technique can considerably reduce the less
informative communication of distributed Adam.

Analogous to the original Adam [24] and its modi-
fied version AMSGrad [38], our new CADA approach
also uses the exponentially weighted stochastic gradi-
ent hk+1 as the update direction of θk+1 , and lever-
ages the weighted stochastic gradient magnitude vk+1

to inversely scale the update direction hk+1 . Different
from the direct distributed implementation of Adam
that incorporates the fresh (thus unbiased) stochas-
tic gradients ∇̄k = 1

M

∑
m∈M∇ℓ(θk; ξkm), CADA expo-

nentially combines the aggregated stale stochastic gra-
dients ∇k = 1

M

∑
m∈M∇ℓ(θ̂km; ξ̂km), where ∇ℓ(θ̂km; ξ̂km)

is either the fresh stochastic gradient ∇ℓ(θk; ξkm), or
an old copy when θ̂km ̸= θk; ξ̂km ̸= ξkm. Informally, with
αk > 0 denoting the stepsize at iteration k, CADA has
the following update

hk+1 =β1h
k+(1−β1)∇k, with ∇k=

1

M

∑

m∈M
∇ℓ(θ̂km; ξ̂km)

(2a)

vk+1 = β2 v̂
k + (1− β2)(∇k)2 (2b)

θk+1 = θk − αk(ϵI + V̂ k+1)−
1
2hk+1 (2c)

where β1 ,β2 > 0 are the momentum weights, V̂ k+1 :=
diag(v̂k+1) is a diagonal matrix whose diagonal vec-
tor is v̂k+1 := max{vk+1 , v̂k}, the constant is ϵ > 0,
and I is an identity matrix. To reduce the memory
requirement of storing all the stale stochastic gradi-
ents {∇ℓ(θk; ξkm)}, we can obtain ∇k by refining the
previous aggregated stochastic gradients ∇k−1 stored
in the server via

∇k = ∇k−1 +
1

M

∑

m∈Mk

δkm (3)

Figure 1: The CADA implementation.

where δkm := ∇ℓ(θk; ξkm) − ∇ℓ(θ̂km; ξ̂km) is the stochas-
tic gradient innovation, and Mk is the set of workers
that upload the stochastic gradient to the server at it-
eration k. Henceforth, θ̂km = θk; ξ̂km = ξkm, ∀m ∈ Mk

and θ̂km = θ̂k−1
m ; ξ̂km = ξ̂k−1

m , ∀m /∈ Mk. See CADA’s
implementation in Figure 1.

Clearly, the selection of subset Mk is both critical and
challenging. It is critical because it adaptively deter-
mines the number of communication rounds per itera-
tion |Mk|. However, it is challenging since 1) the stal-
eness introduced in the Adam update will propagate
not only through the momentum gradients but also
the adaptive learning rate; 2) the importance of each
communication round is dynamic, thus a fixed or non-
adaptive condition is ineffective; and 3) the condition
needs to be checked efficiently without extra overhead.
To overcome these challenges, we develop two adaptive
conditions to select Mk in CADA.

With details deferred to Section 2, the contributions
of this paper are listed as follows.
c1) We introduce a novel communication-adaptive dis-
tributed Adam (CADA) approach that reuses stale
stochastic gradients to reduce communication for dis-
tributed implementation of Adam.
c2) We develop a new Lyapunov function to estab-
lish convergence of CADA under both the nonconvex
and Polyak-Łojasiewicz (PL) conditions even when the
datasets are non-i.i.d. across workers. The conver-
gence rate matches that of the original Adam.
c3) We confirm that our novel fully-adaptive CADA
algorithms achieve at least 60% performance gains in
terms of communication upload over some popular al-
ternatives using numerical tests on logistic regression
and neural network training.

2 CADA: Communication-Adaptive
Distributed Adam

In this section, we revisit the recent LAG method
[6] and provide insights why it does not work
well in stochastic settings, and then develop our
communication-adaptive distributed Adam approach.
To be more precise in our notations, we henceforth

CADA: Communication-Adaptive Distributed Adam

use τkm ≥ 0 for the staleness or age of the information
from worker m used by the server at iteration k, e.g.,
θ̂km = θk−τk

m . An age of 0 means “fresh."

2.1 The ineffectiveness of LAG with
stochastic gradients

The LAG method [6] modifies the distributed gradi-
ent descent update. Instead of communicating with
all workers per iteration, LAG selects the subset of
workers Mk to obtain fresh full gradients and reuses
stale full gradients from others, that is

θk+1 = θk− ηk
M

∑

m∈M\Mk

∇Lm(θk−τk
m)− ηk

M

∑

m∈Mk

∇Lm(θk)

(4)
where Mk is adaptively decided by comparing the gra-
dient difference ∥∇Lm(θk)−∇Lm(θk−τk

m)∥. Following
this principle, the direct (or “naive") stochastic ver-
sion of LAG selects the subset of workers Mk to ob-
tain fresh stochastic gradients ∇Lm

(
θk; ξkm

)
, m ∈ Mk.

The stochastic LAG also follows the distributed
SGD update, but it selects Mk by: if worker m
finds the innovation of the fresh stochastic gradient
∇ℓ(θk; ξkm) is small such that it satisfies

∥∥∥∇ℓ(θk; ξkm)−∇ℓ(θk−τk
m ; ξ

k−τk
m

m)
∥∥∥
2

≤ c

dmax

dmax∑

d=1

∥∥θk+1−d − θk−d
∥∥2 (5)

where c ≥ 0 and dmax are pre-fixed constants, then
worker m reuses the old gradient, m ∈ M\Mk, and
sets the staleness τk+1

m = τkm + 1; otherwise, worker m
uploads the fresh gradient, and sets τk+1

m = 1.

If the stochastic gradients were full gradients, LAG
condition (5) compares the error induced by using the
stale gradients and the progress of the distributed gradi-
ent descent algorithm, which has proved to be effective
in skipping redundant communication [6]. Neverthe-
less, the observation here is that the two stochastic
gradients (5) are evaluated on not just two different
iterates (θk and θk−τk

m) but also two different samples
(ξkm and ξ

k−τk
m

m) thus two different loss functions.

This subtle difference leads to the ineffectiveness of
(5). We can see this by expanding the left-hand-side
(LHS) of (5) by (see details in supplemental material)

E
[
∥∇ℓ(θk; ξkm)−∇ℓ(θk−τk

m ; ξ
k−τk

m
m)∥2

]
(6a)

≥ 1

2
E
[∥∥∇ℓ(θk; ξkm)−∇Lm(θk)

∥∥2
]

(6b)

+
1

2
E
[[∥∥∇ℓ(θk−τk

m ; ξ
k−τk

m
m)−∇Lm(θk−τk

m)
∥∥2]

]
(6c)

− E[∥∇Lm(θk)−∇Lm(θk−τk
m)∥2]. (6d)

Even if θk converges, e.g., θk → θ∗, and thus the right-
hand-side (RHS) of (5)

∥∥θk+1−d−θk−d
∥∥2 →0, the LHS

of (5) does not, because the variance inherited in (6b)
and (6c) does not vanish yet the gradient difference
at the same function (6d) diminishes. Therefore, the
key insight here is that the non-diminishing variance of
stochastic gradients makes the LAG rule (5) ineffective
eventually. This will also be verified in our simulations
when we compare CADA with stochastic LAG.

2.2 Algorithm development of CADA

In this section, we formally develop our CADA
method, and present the intuition behind its design.

To overcome the limitations of LAG in stochastic set-
tings, the key of the CADA design is to reduce the
variance of the innovation measure in the adaptive
condition. We introduce two CADA variants, both
of which follow the update (2), but they differ in the
variance-reduced communication rules.

The first one termed CADA1 will calculate two
stochastic gradient innovations with one δ̃km :=
∇ℓ(θk; ξkm) − ∇ℓ(θ̃; ξkm) at the sample ξkm, and one
δ̃
k−τk

m
m := ∇ℓ(θk−τk

m ; ξ
k−τk

m
m)−∇ℓ(θ̃; ξ

k−τk
m

m) at the sam-
ple ξk−τk

m
m , where θ̃ is a snapshot of the previous iterate

θ that will be updated every D iterations. As we will
show in (8), δ̃km− δ̃

k−τk
m

m can be viewed as the difference
of two variance-reduced gradients calculated at θk and
θk−τk

m . Using δ̃km− δ̃
k−τk

m
m as the error induced by using

stale information, CADA1 will exclude worker m from
Mk if worker m finds

∥∥∥δ̃km − δ̃
k−τk

m
m

∥∥∥
2

≤ c

dmax

dmax∑

d=1

∥∥θk+1−d − θk−d
∥∥2 . (7)

In (7), we use the change of parameter θk averaged
over the past dmax consecutive iterations to measure
the progress of algorithm. Intuitively, if (7) is satisfied,
the error induced by using stale information will not
large affect the learning algorithm. In this case, worker
m does not upload, and the staleness of information
from worker m increases by τk+1

m = τkm + 1; other-
wise, worker m belongs to Mk, uploads the stochastic
gradient innovation δkm, and resets τk+1

m = 1.

The rationale of CADA1. In contrast to the non-
vanishing variance in LAG rule (see (6)), the CADA1
rule (7) reduces its inherent variance. To see this,
we can decompose the LHS of (7) as the difference of
two variance reduced stochastic gradients at iteration
k and k − τkm. Using the stochastic gradient in SVRG

Tianyi Chen, Ziye Guo, Yuejiao Sun, Wotao Yin

Algorithm 1 Pseudo-code of CADA; red lines are
run only by CADA1; blue lines are implemented
only by CADA2; not both at the same time.
1: Input: delay counter {τ 0m}, stepsize αk, constant

threshold c, max delay D.
2: for k = 0, 1, . . . ,K − 1 do
3: Server broadcasts θk to all workers.
4: All workers set θ̃ = θk if k modD=0.
5: for Worker m = 1, 2, . . . ,M do in parallel
6: Compute ∇ℓ(θk; ξkm) and ∇ℓ(θ̃; ξkm).

7: Check condition (7) with stored δ̃
k−τk

m
m .

8: Compute ∇ℓ(θk; ξkm) and ∇ℓ(θ
k−τk

m
m ; ξkm).

9: Check condition (10).
10: if (7) or (10) is violated or τkm ≥ D then
11: Upload δkm. ◃ τk+1

m = 1
12: else
13: Upload nothing. ◃ τk+1

m = τkm + 1
14: end if
15: end for
16: Server updates {hk, vk} via (2a)-(2b).
17: Server updates θk via (2c).
18: end for

as an example [18], the innovation can be written as

δ̃km − δ̃
k−τk

m
m (8)

=
(
∇ℓ(θk; ξkm)−∇ℓ(θ̃; ξkm) +∇Lm(θ̃)

)

−
(
∇ℓ(θk−τk

m ; ξ
k−τk

m
m)−∇ℓ(θ̃; ξ

k−τk
m

m) +∇Lm(θ̃)
)
.

Define the minimizer of (1) as θ⋆. With derivations
given in the supplementary document, the expectation
of the LHS of (7) can be upper-bounded by

E
[∥∥δ̃km − δ̃

k−τk
m

m

∥∥2
]
= O

(
E[L(θk)]− L(θ⋆)

+ E[L(θk−τk
m)]− L(θ⋆) + E[L(θ̃)]− L(θ⋆)

)
. (9)

If θk converges, e.g., θk, θk−τk
m , θ̃ → θ∗, the RHS of (9)

diminishes, and thus the LHS of (7) diminishes. This
is in contrast to the LAG rule (6) lower-bounded by
a non-vanishing value. Notice that while enjoying the
benefit of variance reduction, our communication rule
does not need to repeatedly calculate the full gradient
∇Lm(θ̃), which is only used for illustration purpose.

In addition to (7), the second rule is termed CADA2.
The key difference relative to CADA1 is that CADA2
uses ∇ℓ(θk; ξkm) − ∇ℓ(θ

k−τk
m

m ; ξkm) to estimate the er-
ror of using stale information. CADA2 will reuse the
stale stochastic gradient ∇ℓ(θ

k−τk
m

m ; ξ
k−τk

m
m) or exclude

worker m from Mk if worker m finds
∥∥∇ℓ(θk; ξkm)−∇ℓ(θ

k−τk
m

m ; ξkm)
∥∥2

≤ c

dmax

dmax∑

d=1

∥∥θk+1−d − θk−d
∥∥2 . (10)

If (10) is satisfied, then worker m does not upload, and
the staleness increases by τk+1

m = τkm + 1; otherwise,
worker m uploads the stochastic gradient innovation
δkm, and resets the staleness as τk+1

m = 1. Notice that
different from the naive LAG (5), the CADA condition
(10) is evaluated at two different iterates but on the
same sample ξkm.

The rationale of CADA2. Similar to CADA1, the
CADA2 rule (10) also reduces its inherent variance,
since the LHS of (10) can be written as the difference
between a variance reduced stochastic gradient and a
deterministic gradient, that is

∇ℓ(θk; ξkm)−∇ℓ(θk−τk
m ; ξkm)

=
(
∇ℓ(θk; ξkm)−∇ℓ(θk−τk

m ; ξkm) +∇Lm(θk−τk
m)

)

−∇Lm(θk−τk
m). (11)

With derivations deferred to the supplementary docu-
ment, similar to (9) we also have that E[∥∇ℓ(θk; ξkm)−
∇ℓ(θk−τk

m ; ξkm)∥2] → 0 as the iterate θk → θ⋆.

For either (7) or (10), worker m can check it locally
with small memory cost by recursively updating the
RHS of (7) or (10). In addition, worker m will update
the stochastic gradient if the staleness satisfies τkm ≥
D. We summarize CADA in Algorithm 1.

Computational, memory and download cost. In
CADA, checking (7) and (10) will double the computa-
tional cost (gradient evaluation) per iteration. Aware
of this fact, we have compared the number of iterations
and gradient evaluations in simulations (see Figures 2-
5), which will demonstrate that CADA requires fewer
iterations and also fewer gradient queries to achieve
a target accuracy. Thus the extra computation is
small. In addition, the extra memory for large dmax is
low. To compute the RHS of (7) or (10), each worker
only stores the norm of model changes (dmax scalars).
Also note that the current CADA1 and CADA2 only
save communication upload during distributed learn-
ing, but they can be extended to save both upload and
download by adapting the server’s rules of LAG [6].

3 Convergence Analysis of CADA

We present the convergence results of CADA. For all
the results, we make some basic assumptions.
Assumption 1. The loss function L(θ) is smooth with
the constant L.

CADA: Communication-Adaptive Distributed Adam

Assumption 2. Samples ξ1m, ξ2m, . . . are indepen-
dent, and the stochastic gradient ∇ℓ(θ; ξkm) satisfies
Eξkm

[∇ℓ(θ; ξkm)] = ∇Lm(θ) and ∥∇ℓ(θ; ξkm)∥ ≤ σm.

Note that Assumptions 1-2 are standard in analyzing
Adam and its variants [24, 38, 8, 55].

3.1 Key steps of Lyapunov analysis

The convergence results of CADA critically builds on
the subsequent Lyapunov analysis. We will start with
analyzing the expected descent in terms of L(θk) by
applying one step CADA update.

Lemma 1. Under Assumptions 1 and 2, if αk+1 ≤ αk,
then {θk} generated by CADA satisfy

E[L(θk+1)]− E[L(θk)]

≤ −αk(1− β1)E
[〈

∇L(θk), (ϵI + V̂ k−D)−
1
2∇k

〉]

− αkβ1E
[〈

∇L(θk−1), (ϵI + V̂ k)−
1
2hk

〉]

+

(
L

2
+ β1L

)
E
[
∥θk+1 − θk∥2

]

+ αk(2−β1)σ
2E

[p∑

i=1

(
(ϵ+v̂k−D

i)−
1
2 − (ϵ+v̂k+1

i)−
1
2

)]

(12)

where p is the dimension of θ, σ is defined as σ :=
1
M

∑
m∈M σm, and β1 , ϵ are parameters in (2).

Lemma 1 contains four terms in the RHS of (12): the
first two terms quantify the correlations between the
gradient direction ∇L(θk) and the stale stochastic gra-
dient ∇k as well as the state momentum stochastic
gradient hk; the third term captures the drift of two
consecutive iterates; and, the last term estimates the
maximum drift of the adaptive stepsizes over D + 1
iterations.

From Lemma 1, analyzing the progress of L(θk) un-
der CADA is challenging especially when the effects of
staleness and the momentum couple with each other.
Because the the state momentum gradient hk is recur-
sively updated by ∇k, we will first need the following
lemma to characterize the regularity of the stale ag-
gregated stochastic gradients ∇k, which lays the theo-
retical foundation for incorporating the properly con-
trolled staleness into the Adam’s momentum update.

Lemma 2. Under Assumptions 1 and 2, if the step-

sizes satisfy αk+1 ≤ αk ≤ 1/L, then we have

− αkE
[〈

∇L(θk), (ϵI + V̂ k−D)−
1
2∇k

〉]

≤ −αk

2
E
[∥∥∇L(θk)

∥∥2
(ϵI+V̂ k−D)−

1
2

]
+
6DLα2

kϵ
− 1

2

M

∑

m∈M
σ2
m

+ ϵ−
1
2

(
L

12
+

c

2Ldmax

) D∑

d=1

E
[
∥θk+1−d − θk−d∥2

]
.

(13)

Lemma 2 justifies the relevance of the stale yet prop-
erly selected stochastic gradients. Intuitively, the first
term in the RHS of (13) resembles the descent of us-
ing SGD with the unbiased stochastic gradient, and
the second and third terms will diminish if the step-
sizes are diminishing since E

[
∥θk − θk−1∥2

]
= O(α2

k).
This is achieved by our designed communication rules.

In view of Lemmas 1 and 2, we introduce the following
Lyapunov function:

Vk := L(θk)− L(θ⋆)

−
∞∑

j=k

αjβ
j−k+1
1

〈
∇L(θk−1), (ϵI + V̂ k)−

1
2hk

〉

+ bk

D∑

d=0

p∑

i=1

(ϵ+ v̂k−d
i)−

1
2 +

D∑

d=1

ρd∥θk+1−d − θk−d∥2

(14)

where θ⋆ is the solution of (1), {bk}Kk=1 and {ρd}Dd=1
are constants that will be specified in the proof.

The design of Lyapunov function in (14) is motivated
by the progress of L(θk) in Lemmas 1-2, and also cou-
pled with our communication rules (7) and (10) that
contain the parameter difference term. We find this
new Lyapunov function can lead to a much simple
proof of Adam and AMSGrad, which is of independent
interest. The following lemma captures the progress of
the Lyapunov function.
Lemma 3. Under Assumptions 1-2, if {bk}Kk=1 and
{ρd}Dd=1 in (14) are chosen properly, we have

E[Vk+1]− E[Vk]

≤ −αk(1− β1)

2

(
ϵ+

σ2

1− β2

)− 1
2

E
[∥∥∇L(θk)

∥∥2
]
+ α2

kC0

(15)

where the constant C0 depends on the CADA and prob-
lem parameters c,β1 ,β2 , ϵ, D, and L, {σ2

m}.

The first term in the RHS of (15) is strictly negative,
and the second term is positive but potentially small
since it is O(α2

k) with αk → 0. This implies that the

Tianyi Chen, Ziye Guo, Yuejiao Sun, Wotao Yin

Figure 2: Logistic regression training loss on covtype dataset averaged over 10 Monte Carlo runs.

function Vk will eventually converge if we choose the
stepsizes appropriately. Lemma 3 is a generalization
of SGD’s descent lemma. If we set β1 = β2 = 0 in
(2) and bk = 0, ρd = 0, ∀d, k in (14), then Lemma 3
reduces to that of SGD in terms of L(θk); see e.g., [5,
Lemma 4.4].

3.2 Main convergence results

Building upon our Lyapunov analysis, we first present
the convergence in nonconvex case.

Theorem 1 (nonconvex). Under Assumptions 1, 2, if
we choose αk = α = O(1√

K
) and β1 <

√
β2 < 1, then

the iterates {θk} generated by CADA satisfy

1

K

K−1∑

k=0

E
[
∥∇L(θk)∥2

]
= O

(
1√
K

)
. (16)

From Theorem 1, the convergence rate of CADA in
terms of the average gradient norms is O(1/

√
K),

which matches that of the plain-vanilla Adam [38,
8]. Unfortunately, due to the complicated nature
of Adam-type analysis, the bound in (16) does not
achieve the linear speed-up as analyzed for asyn-
chronous nonadaptive SGD such as [27]. However,
our analysis is tailored for adaptive SGD and does not
make any assumption on the asynchrony, e.g., the set
of uploading workers are independent from the past or
even independent and identically distributed.

Next we present the convergence results under a
slightly stronger assumption on the loss L(θ).
Assumption 3. The loss function L(θ) satisfies the
Polyak-Łojasiewicz (PL) condition with the constant
µ > 0, that is L(θ)− L(θ∗) ≤ 1

2µ ∥L(θ)∥2 .
The PL condition is weaker than the strongly convex-
ity, which does not even require convexity [21]. And it
is satisfied by a wider range of problems such as least
squares for underdetermined linear systems, logistic
regression, and also certain types of neural networks.

We next establish the convergence of CADA under this
condition.
Theorem 2 (PL-condition). Under Assumptions 1-
3, if we choose the stepsize as αk = 2

µ(k+K0)
for a

given constant K0 , then θK generated by Algorithm 1
satisfies

E
[
L(θK)

]
− L(θ⋆) = O

(
1

K

)
. (17)

Theorem 2 implies that under the PL-condition of the
loss function, the CADA algorithm can achieve the
global convergence in terms of the loss function, with a
fast rate O(1/K). Compared with the previous analy-
sis for deterministic gradient-based LAG [6] and quan-
tized LAG [45], as we highlighted in Section 3.1, the
analysis for CADA is more involved, since it needs to
deal with not only the outdated gradients but also the
stochastic momentum gradients and the adaptive ma-
trix learning rates. We tackle this issue by i) consid-
ering a new set of communication rules (7) and (10)
with reduced variance; and, ii) incorporating the ef-
fect of momentum gradients and the drift of adaptive
learning rates in the new Lyapunov function (14).

4 Simulations

In order to verify our analysis and show the empirical
performance of CADA, we conduct simulations using
logistic regression and training neural networks. Data
are distributed across M = 10 workers during all tests.
We benchmark CADA with some popular methods
such as Adam [24], stochastic version of LAG [6], local
momentum [56] and the state-of-the-art FedAdam [37].
For local momentum and FedAdam, workers perform
model update independently, which are averaged over
all workers every H iterations. In simulations, critical
parameters are optimized for each algorithm by a grid-
search. All experiments are run on a workstation with
an Intel i9-9960x CPU with 128GB memory and four
NVIDIA RTX 2080Ti GPUs each with 11GB memory

CADA: Communication-Adaptive Distributed Adam

Figure 3: Logistic regression training loss on ijcnn1 dataset averaged over 10 Monte Carlo runs.

Figure 4: Training Neural network for classification on mnist dataset.

using Python 3.6. Due to space limitation, please see
the detailed choice of parameters in the supplementary
document. The code can be found in

https://github.com/ChrisYZZ/CADA-master

4.1 Logistic regression

For CADA, the maximal delay is D = 100 and dmax =
10. For local momentum and FedAdam, we manually
optimize the averaging period as H = 10 for ijcnn1
and H = 20 for covtype. Results are averaged over 10
Monte Carlo runs.

Tests on logistic regression are reported in Figures 2-3.
In our tests, two CADA variants achieve the similar
iteration complexity as the original Adam and out-
perform all other baselines in most cases. Since our
CADA requires two gradient evaluations per iteration,
the gradient complexity (e.g., computational complex-
ity) of CADA is higher than Adam, but still smaller
than that of other baselines. For logistic regression
task, CADA1 and CADA2 save the number of commu-
nication uploads by at least one order of magnitude.

4.2 Training neural networks

We train a neural network with two convolution-ELU-
maxpooling layers followed by two fully-connected lay-

ers for 10 classes classification on mnist. We use
the popular ResNet20 model on CIFAR10 dataset,
which has 20 and roughly 0.27 million parameters.
We searched the best values of H from the grid
{1,4, 6, 8, 16} to optimize the testing accuracy vs com-
munication rounds for each algorithm. In CADA, the
maximum delay is D = 50 and the average interval
dmax = 10. See tests under different H in the supple-
mentary material.

Tests on training neural networks are reported in Fig-
ures 4-5. In mnist, CADA1 and CADA2 save the num-
ber of communication uploads by roughly 60% than
local momentum and slightly more than FedAdam.
In cifar10, CADA1 and CADA2 achieve competitive
performance relative to the state-of-the-art algorithms
FedAdam and local momentum. We found that if we
further enlarge H, FedAdam and local momentum con-
verge fast at the beginning, but reached worse test
accuracy (e.g., 5%-15%). It is also evident that the
CADA1 and CADA2 rules achieve more communica-
tion reduction than the direct stochastic version of
LAG, which verifies the intuition in Section 2.1.

5 Conclusions

While Adaptive SGD methods have been widely ap-
plied in the single-node setting, their performance in

Tianyi Chen, Ziye Guo, Yuejiao Sun, Wotao Yin

Figure 5: Training Neural network for classification on cifar10 dataset.

the distributed learning setting is less understood.
In this paper, we have developed a communication-
adaptive distributed Adam method that we term
CADA, which endows an additional dimension of
adaptivity to Adam tailored for its distributed imple-
mentation. CADA method leverages a set of adaptive
communication rules to detect and then skip less infor-
mative communication rounds between the server and
workers during distributed learning. All CADA vari-
ants are simple to implement, and have convergence
rate comparable to the original Adam.

Acknowledgment

The work of T. Chen and Z. Guo was partially sup-
ported by the RPI-IBM Artificial Intelligence Research
Collaboration (AIRC). The work of Y. Sun was par-
tially supported by ONR Grant N000141712162 and
AFOSR MURI FA9550-18-1-0502.

References

[1] Alham Fikri Aji and Kenneth Heafield. Sparse
communication for distributed gradient descent.
In Proc. Conf. Empirical Methods Natural Lan-
guage Process., pages 440–445, Copenhagen, Den-
mark, Sep 2017.

[2] Dan Alistarh, Demjan Grubic, Jerry Li, Ry-
ota Tomioka, and Milan Vojnovic. QSGD:
Communication-efficient SGD via gradient quan-
tization and encoding. In Proc. Conf. Neural Info.
Process. Syst., pages 1709–1720, Long Beach, CA,
Dec 2017.

[3] Dan Alistarh, Torsten Hoefler, Mikael Johansson,
Nikola Konstantinov, Sarit Khirirat, and Cédric
Renggli. The convergence of sparsified gradient
methods. In Proc. Conf. Neural Info. Process.
Syst., pages 5973–5983, Montreal, Canada, Dec
2018.

[4] Jeremy Bernstein, Yu-Xiang Wang, Kamyar
Azizzadenesheli, and Animashree Anandkumar.
SignSGD: Compressed optimisation for non-
convex problems. In Proc. Intl. Conf. Machine
Learn., pages 559–568, Stockholm, Sweden, Jul
2018.

[5] Léon Bottou, Frank E Curtis, and Jorge No-
cedal. Optimization methods for large-scale ma-
chine learning. Siam Review, 60(2):223–311, 2018.

[6] Tianyi Chen, Georgios Giannakis, Tao Sun, and
Wotao Yin. LAG: Lazily aggregated gradient
for communication-efficient distributed learning.
In Proc. Conf. Neural Info. Process. Syst., pages
5050–5060, Montreal, Canada, Dec 2018.

[7] Tianyi Chen, Yuejiao Sun, and Wotao Yin.
LASG: Lazily aggregated stochastic gradients
for communication-efficient distributed learning.
arXiv preprint:2002.11360, February 2020.

[8] Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi
Hong. On the convergence of a class of Adam-type
algorithms for non-convex optimization. In Proc.
Intl. Conf. Learn. Representations, New Orleans,
LA, May 2019.

[9] Alexandre Défossez, Léon Bottou, Francis Bach,
and Nicolas Usunier. On the convergence of Adam
and Adagrad. arXiv preprint:2003.02395, March
2020.

[10] Dimos V Dimarogonas, Emilio Frazzoli, and
Karl H Johansson. Distributed event-triggered
control for multi-agent systems. IEEE Trans.
Automatic Control, 57(5):1291–1297, November
2011.

[11] John Duchi, Elad Hazan, and Yoram Singer.
Adaptive subgradient methods for online learning
and stochastic optimization. J. Machine Learning
Res., 12(Jul):2121–2159, 2011.

CADA: Communication-Adaptive Distributed Adam

[12] Saeed Ghadimi and Guanghui Lan. Stochas-
tic first-and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Opti-
mization, 23(4):2341–2368, 2013.

[13] Saeed Ghadimi and Guanghui Lan. Accelerated
gradient methods for nonconvex nonlinear and
stochastic programming. Mathematical Program-
ming, 156(1-2):59–99, 2016.

[14] Farzin Haddadpour, Mohammad Mahdi Kamani,
Mehrdad Mahdavi, and Viveck Cadambe. Local
sgd with periodic averaging: Tighter analysis and
adaptive synchronization. In Proc. Conf. Neural
Info. Process. Syst., pages 11080–11092, Vancou-
ver, Canada, December 2019.

[15] Samuel Horváth, Dmitry Kovalev, Kon-
stantin Mishchenko, Sebastian Stich, and Peter
Richtárik. Stochastic distributed learning with
gradient quantization and variance reduction.
arXiv preprint:1904.05115, April 2019.

[16] Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Ion
Stoica, Raman Arora, et al. Communication-
efficient distributed SGD with sketching. In Proc.
Conf. Neural Info. Process. Syst., pages 13144–
13154, Vancouver, Canada, December 2019.

[17] Peng Jiang and Gagan Agrawal. A linear speedup
analysis of distributed deep learning with sparse
and quantized communication. In Proc. Conf.
Neural Info. Process. Syst., pages 2525–2536,
Montreal, Canada, Dec 2018.

[18] Rie Johnson and Tong Zhang. Accelerating
stochastic gradient descent using predictive vari-
ance reduction. In Proc. Conf. Neural Info. Pro-
cess. Syst., pages 315–323, 2013.

[19] Peter Kairouz, H Brendan McMahan, Bren-
dan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Keith Bonawitz, Zachary
Charles, Graham Cormode, Rachel Cummings,
et al. Advances and open problems in federated
learning. arXiv preprint:1912.04977, December
2019.

[20] Michael Kamp, Linara Adilova, Joachim Sicking,
Fabian Hüger, Peter Schlicht, Tim Wirtz, and
Stefan Wrobel. Efficient decentralized deep learn-
ing by dynamic model averaging. In Euro. Conf.
Machine Learn. Knowledge Disc. Data.,, pages
393–409, Dublin, Ireland, 2018.

[21] Hamed Karimi, Julie Nutini, and Mark Schmidt.
Linear convergence of gradient and proximal-
gradient methods under the polyak-łojasiewicz
condition. In Proc. Euro. Conf. Machine Learn.,
pages 795–811, Riva del Garda, Italy, September
2016.

[22] Sai Praneeth Karimireddy, Satyen Kale, Mehryar
Mohri, Sashank J Reddi, Sebastian U Stich, and
Ananda Theertha Suresh. SCAFFOLD: Stochas-
tic controlled averaging for on-device federated
learning. In Proc. Intl. Conf. Machine Learn.,
July 2020.

[23] Sai Praneeth Karimireddy, Quentin Rebjock, Se-
bastian Stich, and Martin Jaggi. Error feed-
back fixes signsgd and other gradient compression
schemes. In Proc. Intl. Conf. Machine Learn.,
pages 3252–3261, Long Beach, CA, June 2019.

[24] Diederik P Kingma and Jimmy Ba. Adam:
A method for stochastic optimization. arXiv
preprint:1412.6980, December 2014.

[25] Tian Li, Anit Kumar Sahu, Manzil Zaheer,
Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous
networks. arXiv preprint arXiv:1812.06127, 2018.

[26] Xiaoyu Li and Francesco Orabona. On the con-
vergence of stochastic gradient descent with adap-
tive stepsizes. In Proc. Intl. Conf. on Artif. Intell.
and Stat., pages 983–992, Okinawa, Japan, April
2019.

[27] Xiangru Lian, Huan Zhang, Cho-Jui Hsieh, Yi-
jun Huang, and Ji Liu. A comprehensive linear
speedup analysis for asynchronous stochastic par-
allel optimization from zeroth-order to first-order.
In Proc. Conf. Neural Info. Process. Syst., pages
3054–3062, Barcelona, Spain, December 2016.

[28] Tao Lin, Sebastian U Stich, Kumar Kshitij Patel,
and Martin Jaggi. Don’t use large mini-batches,
use local SGD. In Proc. Intl. Conf. Learn. Repre-
sentations, Addis Ababa, Ethiopia, April 2020.

[29] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and
William J Dally. Deep gradient compression:
Reducing the communication bandwidth for dis-
tributed training. In Proc. Intl. Conf. Learn. Rep-
resentations, Vancouver, Canada, Apr 2018.

[30] Yaohua Liu, Cameron Nowzari, Zhi Tian, and
Qing Ling. Asynchronous periodic event-triggered
coordination of multi-agent systems. In Proc.
IEEE Conf. Decision and Control, pages 6696–
6701, Melbourne, Australia, December 2017.

[31] Brendan McMahan, Eider Moore, Daniel Ram-
age, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-efficient learning of deep net-
works from decentralized data. In Proc. Intl.
Conf. Artificial Intell. and Stat., pages 1273–
1282, Fort Lauderdale, FL, April 2017.

Tianyi Chen, Ziye Guo, Yuejiao Sun, Wotao Yin

[32] Brendan McMahan, Eider Moore, Daniel Ram-
age, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-efficient learning of deep
networks from decentralized data. In Proc. Intl.
Conf. on Artif. Intell. and Stat., pages 1273–1282,
Fort Lauderdale, Florida, Apr 2017.

[33] Yurii E Nesterov. A method for solving the con-
vex programming problem with convergence rate
o(1/k2). In Doklady AN USSR, volume 269, pages
543–547, 1983.

[34] Cameron Nowzari, Eloy Garcia, and Jorge Cortés.
Event-triggered communication and control of
networked systems for multi-agent consensus. Au-
tomatica, 105:1–27, July 2019.

[35] Jihong Park, Sumudu Samarakoon, Mehdi Ben-
nis, and Mérouane Debbah. Wireless network
intelligence at the edge. Proc. of the IEEE,
107(11):2204–2239, November 2019.

[36] Boris T Polyak. Some methods of speeding up the
convergence of iteration methods. Computational
Mathematics and Mathematical Physics, 4(5):1–
17, 1964.

[37] Sashank Reddi, Zachary Charles, Manzil Za-
heer, Zachary Garrett, Keith Rush, Jakub
Konečnỳ, Sanjiv Kumar, and H Brendan McMa-
han. Adaptive federated optimization. arXiv
preprint:2003.00295, March 2020.

[38] Sashank Reddi, Satyen Kale, and Sanjiv Kumar.
On the convergence of adam and beyond. In
Proc. Intl. Conf. Learn. Representations, Vancou-
ver, Canada, April 2018.

[39] Amirhossein Reisizadeh, Hossein Taheri,
Aryan Mokhtari, Hamed Hassani, and Ramtin
Pedarsani. Robust and communication-efficient
collaborative learning. In Proc. Conf. Neural
Info. Process. Syst., pages 8386–8397, Vancouver,
Canada, December 2019.

[40] Herbert Robbins and Sutton Monro. A stochastic
approximation method. Annals of Mathematical
Statistics, 22(3):400–407, September 1951.

[41] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and
Dong Yu. 1-bit stochastic gradient descent and its
application to data-parallel distributed training of
speech DNNs. In Proc. Conf. Intl. Speech Comm.
Assoc., Singapore, Sept 2014.

[42] Sebastian U. Stich, Jean-Baptiste Cordonnier,
and Martin Jaggi. Sparsified SGD with memory.
In Proc. Conf. Neural Info. Process. Syst., pages
4447–4458, Montreal, Canada, Dec 2018.

[43] Sebastian Urban Stich. Local SGD converges fast
and communicates little. In Proc. Intl. Conf.
Learn. Representations, New Orleans, LA, May
2019.

[44] Nikko Strom. Scalable distributed DNN training
using commodity GPU cloud computing. In Proc.
Conf. Intl. Speech Comm. Assoc., Dresden, Ger-
many, September 2015.

[45] Jun Sun, Tianyi Chen, Georgios Giannakis,
and Zaiyue Yang. Communication-efficient dis-
tributed learning via lazily aggregated quantized
gradients. In Proc. Conf. Neural Info. Process.
Syst., page to appear, Vancouver, Canada, Dec
2019.

[46] Hanlin Tang, Shaoduo Gan, Ce Zhang, Tong
Zhang, and Ji Liu. Communication compression
for decentralized training. In Proc. Conf. Neural
Info. Process. Syst., pages 7652–7662, Montreal,
Canada, December 2018.

[47] Thijs Vogels, Sai Praneeth Karimireddy, and
Martin Jaggi. PowerSGD: Practical low-rank
gradient compression for distributed optimiza-
tion. In Proc. Conf. Neural Info. Process. Syst.,
pages 14236–14245, Vancouver, Canada, Decem-
ber 2019.

[48] Guanghui Wang, Shiyin Lu, Weiwei Tu, and Lijun
Zhang. SAdam: A variant of adam for strongly
convex functions. In Proc. Intl. Conf. Learn. Rep-
resentations, 2020.

[49] Jianyu Wang and Gauri Joshi. Cooperative SGD:
A unified framework for the design and analy-
sis of communication-efficient SGD algorithms.
In ICML Workshop on Coding Theory for Large-
Scale ML, Long Beach, CA, June 2019.

[50] Jianyu Wang, Vinayak Tantia, Nicolas Bal-
las, and Michael Rabbat. SlowMo: Improv-
ing communication-efficient distributed SGD with
slow momentum. In Proc. Intl. Conf. Learn. Rep-
resentations, 2020.

[51] Jianqiao Wangni, Jialei Wang, Ji Liu, and
Tong Zhang. Gradient sparsification for
communication-efficient distributed optimization.
In Proc. Conf. Neural Info. Process. Syst., pages
1299–1309, Montreal, Canada, Dec 2018.

[52] Rachel Ward, Xiaoxia Wu, and Leon Bottou.
Adagrad stepsizes: Sharp convergence over non-
convex landscapes. In Proc. Intl. Conf. Machine
Learn., pages 6677–6686, Long Beach, CA, June
2019.

CADA: Communication-Adaptive Distributed Adam

[53] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu,
Yandan Wang, Yiran Chen, and Hai Li. Tern-
grad: Ternary gradients to reduce communication
in distributed deep learning. In Proc. Conf. Neu-
ral Info. Process. Syst., pages 1509–1519, Long
Beach, CA, Dec 2017.

[54] Jiaxiang Wu, Weidong Huang, Junzhou Huang,
and Tong Zhang. Error compensated quan-
tized sgd and its applications to large-scale dis-
tributed optimization. In Proc. Intl. Conf. Ma-
chine Learn., pages 5325–5333, Stockholm, Swe-
den, Jul 2018.

[55] Yangyang Xu, Colin Sutcher-Shepard, Yibo
Xu, and Jie Chen. Asynchronous parallel
adaptive stochastic gradient methods. arXiv
preprint:2002.09095, February 2020.

[56] Hao Yu, Rong Jin, and Sen Yang. On the lin-
ear speedup analysis of communication efficient
momentum SGD for distributed non-convex op-
timization. In Proc. Intl. Conf. Machine Learn.,
pages 7184–7193, Long Beach, CA, June 2019.

[57] Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel
restarted SGD with faster convergence and less
communication: Demystifying why model aver-
aging works for deep learning. In Proc. AAAI
Conf. Artificial Intell., volume 33, pages 5693–
5700, 2019.

[58] Matthew D Zeiler. Adadelta: an adaptive learn-
ing rate method. arXiv preprint:1212.5701, De-
cember 2012.

[59] Hantian Zhang, Jerry Li, Kaan Kara, Dan Alis-
tarh, Ji Liu, and Ce Zhang. Zipml: Training linear
models with end-to-end low precision, and a little
bit of deep learning. In Proc. Intl. Conf. Machine
Learn., pages 4035–4043, Sydney, Australia, Aug
2017.

[60] Sixin Zhang, Anna E Choromanska, and Yann Le-
Cun. Deep learning with elastic averaging SGD.
In Proc. Conf. Neural Info. Process. Syst., pages
685–693, Montreal, Canada, Dec 2015.

