Communication Efficient Primal-Dual Algorithm for Nonconvex
Nonsmooth Distributed Optimization

Congliang Chen'-? Jiawei Zhang!?
congliangchen@link.cuhk.edu.cn 216019001@link.cuhk.edu.cn
Li Shen? Peilin Zhao? Zhi-Quan Luo'?
mathshenli@gmail.com masonzhao@tencent.com luozq@cuhk.edu.cn
IThe Chinese University of Hong Kong, Shenzhen ?Shenzhen Research Institute of Big Data *Tencent AI Lab



Communication Efficient Primal-Dual Algorithm for Nonconvex Nonsmooth Distributed Optimization

1 PROOF OF THEOREM 1

Notation 1. Define
Np
gi (T, 2i) = fi (i) + hi (w5) + oY 2 — 24|,

1 Y
g(z,2) = N Zgi (is 2i) ,
i=1

d(y,z) = min K (z,y,2)+ h(x),

zeRN
T (y,z) =arg min K (x,y,z) + h(a:) ,
CEGR"N
. p ,
M = ( h Py ) ’
(2) O f (@) +h(x) + Gz~ |

N : Py, _ 2
o () =arg_min (f (@) +h(@)+ Gla—2),

First, we bound the compression error e in the following lemma.

Lemma 1. The following equality always holds:

T 2 T

(1-14) _
Dol < e Y llat =t
t=1 t=1

Proof. Using the definition of e;, we can obtain:
et = fla® — & = fla* — &' = € (' — &) |
<(1=8) =3 = (1= 0) o —a' 4 (2 =)
< (1 =0) =" ="M+ (1= 8) [l M),
where the first inequality is due to the assumption on the compression function.

By the induction, we can get

t
lefll <D0 (=8 ' — 2.
=1

Then, using the convexity of square function and rearranging the summation terms, we can obtain
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The proof is finished. O

Then, we give the lower bound on the change of primal function when updating iterates.
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Lemma 2. For anyt >0, if ¢ < ﬁ, the following inequality always holds:

h (xt) o <VIK (l’t,yt,Zt) ,1’t+1 _ l’t> —h ($t+1) _ 2ic th-i-l _ l't||2
> int—i-l _xt||2 N (Ajt-ﬁ-l)TAwt-i-l + p |2 _Zt+1||2.

— 2c %
Proof. Recall the update iteration of zt*!:
1
'™ = arg min ((VwK («",9',2") ,z — ") + h(z) + % Hx — xtH2> .
By the optimality condition of strongly convex function, we obtain

1

h(zt) — (VoK (af,yt,2t) , at+! — oty — h (at+1) — = thﬂ B xtHQ S intH — 2.

2c — 2c

Besides, because K (z, z,y) has Lipschitz gradient with respect to x, we can obtain

K (xt,yt, zt) +h (xt) - K (th,yt, zt) —h (mtﬂ)

>h (xt) _p (xt+1) — (VK (xt,yt,zt) Lot xt> _ LTK ||xt+1 . th2
1

>h (xt) _p (J:tH) — (VK (xt,yt7zt) Lottt xt> -5

o+ 2

1
Z §||It+1 o :Et||2.
C

Next, according to the update of y'*!, ie. y*t! =y’ + adxz'*!, we can obtain

K (mt+1,yt,zt) - K (Jct"'l,y“‘l,zt) = —a (A.ft—i_l)TAl‘H_l.

In addition, by using the update of 2/, i.e., 2! = 2* 4 3 (27! — 2'), we can obtain

P S l (Zt+1 _ Zt) 7

B

Pttt 1-5 (Zt+1 _ Zt) .

B

By using above two equalities, we have
K ($t+1’ yt+1, Zt) - K (ﬂ?t+1,yt+1, Zt+1)

_ g (”xt-s-l _ ZtHQ _ th+1 _ Zt+1||2)

_ g (Zt+1 _ Zt)T ((xt+1 _ Zt) n ($t+1 _ Zt+1))

L @/B-1) " — P

Y%

%Hzt — 22,
Then, by combining inequalities , and , we obtain the desired result.

O

To bound the dual function and proximal function, we first give the bound on difference of dual function and

proximal function during update in the following Lemma.

Lemma 3. Suppose p > —%, then for any y,y' € R™™ | the following inequality holds:

ly = /'ll = oullz (y,2) — 2 (v, 2) Il

o4 = (Np—L)

where N

(4)
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Proof. First, we define K (z,y,z) = K (z,y,z) + h (). Note that K (z,y, z) is a strongly convex function with
respect to x. Then, it holds that

K (‘T (y,Z) ’y/’ Z) - K (‘T (y/’ Z) 7y/7 Z)
=K (@0 (y2).9:9) - K @ ,2).0.2) — (K@ ,2),92) - K (@0 ,2),5.2))

+ (K (@ (y.2),0/,2) ~ K (@(5,2),0,2))

=K (x(y,2),9,2) — K (@¥,2),5.2) — (¢ =) Ac(y,2) + ( — )" Az (y.2)

< BBy ) 2.2 P4 6 -9 A (7). 2)
< —%ux(yw 2w I+ VAl vl 0.2 2 (.2 |

Then, using the strongly convexity of K (z,y,z) on = with modular N%L, we obtain

K (z(y,2).y.2) —K(x(y.2),y,2) = Cle (9.2) — 2 (0, ) 12

p—
2N
Then, combining the above two inequalities, we can obtain

Iy =yl 2 e )~ 0.9 I

The proof is finished. O
Lemma 4. Suppose p > —%, then for any z, 2" € R™V, the following inequalities hold:
Iz = 2| = os]la” (2) — =™ (') ||, (5)

Iz =2l Z o5z (y, 2) — 2 (y,2) ], (6)

Np—L
Np -~

where o5 =

Proof. According to the strongly convexity of function g, we can obtain:
g(z* (2) 72/) —g(z” (Z,) 72/)
=g(@"(2),2) —g(@" (),2) = (9(2" () ,2) —gi (2" () ,2))
+(9(@" (2),2) — g (" (2),2))
= (9" (2),2) =g (@ (),2) = & (<2’ =2 &" () + 12112 = |?)

+2 (2 -2 @+ 1)1 - 1:12)

= (g (z" (2) 2) =g (@ (2),2) +p (2 —2) (" () — 2" (2))
Np — w01\ (12 / T/ %/ *
<-—N ||$()—$(Z)|| +p('—2) (" (¢) — 2" (2)).

On the other hand, using the strongly convexity of g, it holds that

* ’ * () 1 Np—L * * 0 1\ (12
9@ (2),2) =g (2" (+),2") 2 — 55— lla" (2) = =" () [I”

Hence, we have
Np—L

/ T/ s/ *
p(z'=2) (@ () - 2" (2)) 2 —

lz* (2) — 2" (/) |I*.

Further, according to Cauchy-Schwarz inequality, it implies that

2" (2) — 2" () || <

NP -z
Np—L ’
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With the same proof as it is used to prove , we directly get

Np

A

— <

2 (y, 2) =2 (3. 2) | < 5=
O

With the above two lemmas, we give the bound on the difference of the dual function and the proximal function
during the algorithm, as follows.

Lemma 5. For any t > 0, it holds that
d (yt+17zt+1) _d (yt7zt)

>a (AjtJ“l)T Ax (yt7 Zt+1) \/7

HA t+1||2 ( t+1 Zt)T (Zt+1 + Zt — 92 (yt,ZHl)) .

Proof. First, with the definition of z(yt, 2!™1), we have

d(yt7 t-‘rl) _ d(yt72t)

IS

= K (x (52 ) 0 ) (e (02 Y) - K (2 (0 2) ) (e (0 2)

> K (x (yt,ZtJrl) 7yt,zt+1) K (x (yt7zt+1) 2 -
= P (e (o 2) - 2 e (u, 2 - 21))

= g (thrl — zt)T (Zt+1 + 2t -2z (yt, zt'H)) .

Besides, we can compute the gradient of d (y, z) as
Vyd(y,z) = Az (y, 2) .
Then, for any y,%’, we have
IV (5.2) ~ Vyd (. 2) | = 142 (y,2) — Az (', 2) | < (Via/o) =

which is equivalent to say that d(y, z) has Lipschitz gradient with respect to y with Lipschitz constant v/A;/o4.
According to the gradient Lipschitz continuity of d(y, z), it holds

d (yt+1’zt+1) —d (yt’zt+1)

VAL 2

> ('t =yt Ax (vt ) — 20s

« (AﬁctH)T Az (yt, th) - a2§|AJEt+1H2~

Combining (7)) and (8], we get the desired result. O
Lemma 6. For anyt > 0, it holds that

M () = M () < p () = )T (= ot () + Bt = 2,

Np

where L = NpoL T 1.

Proof. Recall the definition of M (z), we can compute the gradient of M (z) as follows:
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Then using Lemma [4] we can obtain
VM (2) = VM () || = llp (z = 2" () =p(z = 2" (') |

<p(lz =2+ lle" (z) = 2" ()
<p(l+1/os)

|z — 2|

Therefore, M (z) is a gradient Lipschitz continuous function with Lipschitz constant p (1 + 1/05). Then, the
result directly holds. O

The following lemmas give the dual error bound and primal approximation error bound.

Lemma 7. For anyy € R™™ if Azx(y,z) = r, then x(y, z) = arg ming. ap—, g(x, 2).

Proof. Recall the definition of x (y, 2):

z (y,2) = argmin{g (z, 2) + y” Az}.

Together with Ax (y,z) = r, x (y, z) satisfies the optimality condition of the optimization problem. O

Therefore, we define z* (r, z) = x (y, 2), if Az (y,2) =r.

Lemma 8. For any r € Range (A) there exists unique v; (1), i =2,3,--- , N, such that for any x that satisfies
Ax = r. In addition, it holds that

z; =x1 + v (r).

Moreover, defining v(r) = (vi(r)T,va(r)T, - ,un(r)T)T, it holds that

()| < iurn,

for some Az > 0.

Proof. Based on the construction of matrix A, it can be easily verify that when G is connected, rank ([l) =
n(N —1).
Besides, for equation Az = r, we can give the solution set as follows:
x; =v; (1) + b,
where b is an arbitrary vector in R™, and v is a solution with v; = 0.
Therefore, for any vector x that satisfies Az = r, it can be written as x; = 1 + v;(r), ¢ =1,2,3,--- | N.

In addition, we can solve v by solving equation flv(r) = (TT, OZ)T, where

- A
A= .
|:In 0n><77,(N—1):|

When G is connected, it can be easily verified that rank ([1) = nN, then v(r) is unique.

Let W be the matrix generated by removing the first column of W and v(r) = (vér)T, v3(r) T, Jon ()T

Then, because of the connectivity of the graph, rank(W) = N — 1, which is a full column rank matrix.
Because v, = 0, it holds that (W ® I,)v = (W ® I,,)o = r and |jv|| = ||7].

In addition, we define A = WTW, which is equivalent to remove the first column and first row of WTW, and we
define A3 as the smallest eigenvalue of A.
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We can obtain
Vsllo(r)l] = v Asl[o(r (W @ L,)a (r) | = |Ir]]-
Hence, we get

v(r)] < T
[o(r) \ﬁll I
for A3 > 0. O

Lemma 9. Suppose p > —L/N, then for any y € R™ and z € R™ it holds that
[z (y, 2) — 2" (2) || < o]l Az(y, 2)||,

(3Np—L+y/N?2p?—L2)
2v/A3(Np—L)

where o1 =

Proof. Let ¥ (u,2) = + Zfil 9i (u,2;), ¥, (u) = + Zil gi (u+v; (r),z).
Then, because of the uniqueness of v; (1), it is straightforward to obtain
x7 (r, 2) = arg min U, (u)
z] () = arg muin U (u).

Because p > —L/N, g;(u, z;) is a strongly convex function with modular —L 4+ Np. Thus ¥ and ¥, are strongly
convex. Using the strong convexity of ¥ and ¥,., we obtain

U (21 (r,2)) = ¥ (27 (2)) > (=L + Np) ||z} (r,2) — a7 (2) ||*
U, (27 (2)) = W, (27 (r,2)) > (=L + Np) ||z} (r,2) — 21 (2) ||*.
Combining the above two inequality we can obtain
2(~L + Np) [l2] (r,2) — 27 (2) ||?
SV (a1 (r,2)) = V(27 (2) + ¥, (27 (2)) = ¥ (27 (r, 2))
=V (] (r,2)) = Up (27 (1, 2)) — (¥ (271 (2)) — ¥ (27 (2))).-
Then, using the smoothness and strongly convexity of g; for i = 2,3, ..., N, we obtain

U (a7 (r,2)) = W (27 (1, 2)) = (U (27 (2)) = ¥r (27 (2)))

1 < 1
=5 D gi (@5 (r,2),20) — gi (27 (r,2) +0i (1), 21)) — N Z (9i (27 (2), 2) — gi (2] (2) +vi (1), 21))
1=2 1=

(90001 12 #0000 00+ 5 1) = 5 D (00 ) 01 00— 0)

A
=]~
-

@
||
N

(L+Np)

A
=] =
M-

&
||
N

(L + Np)lla (r,2) = 27 (2) [lllv (r) | + == lvi () ||*.

Then, using the convexity of square function we obtain
levz )l < VN|o(r)]].

Together with the above inequalities, we obtain

2(=L+ Np) ||z} (r,2) — 27 (2) ||?

< B2t () — 0 ) o () 1+ P () P
< LA 1 ) el + S .

— m ||$>{ (Tv Z) -
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By solving the above quadratic inequality, we can obtain

(L+Np+ N2p? — L2)
2V N3 (Np — L)

21 (r,2) =21 (2) || < 17

*

By the definition of v, we have xz(y,z) = z* (r,z) = (xl (r,2)" 2% (r, 2
T
w (AT (AT w (T
(st 2t ()2t (2))

Therefore, with triangular inequality, we have

T
)T7...7x»1«(7.72>T) + v and .T*(Z):

lz (y,2) = 2" (2) || < VN7 (r,2) =27 (2) || + ol < oullr]| = 01| Ax(y, 2)]],

(3Np—L+

2
VRS (VoI ) . Then, the proof is finished. U

where o1 =

Lemma 10 (Smooth version of Lemma@. Suppose p > —L/N and h(-) = 0, then for any y € R™™ and z € R"V,
it holds that

lz (y,2) — 2" (2) | < o1]|Az(y, 2)|,
(SNp7L+ NZpLL?)

where o1 = VA (Np—L)

Proof. First, we define T = % Zfil x;, similar to Lemma [§| for any » € Range (4) there exists a unique
v; (r), i=1,2,3,--- , N, such that for any z that satisfies Az = r, it holds that

x; =T+ v (r).

Tz — (z7,zT,--- ,27)T) = 0. Then, it holds uTv = 0.

7 ) )

For any vector v with Au = 0, we have u

Therefore, it holds that
1

1
< — A = —
ol < 54wl = 5l
where ), is the smallest nonzero eigenvalue of AT A.

Similar to the proof of Lemma EI, we define ¥(u,2) = & Zfil gi(u,2;), ¥p(u) = %sz\; gi(u + vi(r), z;),
z*(r,z) = argmin, ¥, (u) and z*(z) = arg min,, ¥(u).

With the same decomposition in Lemma [J] it holds that

L+ Np+/N2p2 — L?)

|Z* (r,2) —Z" (2) || < (

NN
Together with the definition of 2*(r,z) = (z*(r,2)T,2"(r,2)T, -+ ,2*(r,2)1)T + v and 2%(z) =
(z* ()T, 2% ()T, - ,2*(2)T)7T, we can get the result. O

Lemma 11. For a differentiable convex function f (defined on the R™) with L-Lipschitz gradient, the following
inequality always holds

TIVI@) ~ VI < (V@) V). ).

Proof. For fix x, we define function I'(z) = f(z) — (V f(x), 2).

Then T'(2) is a convex function with L-Lipschitz gradient. Beside, the minimum value of function I'(:) will be
[(z) = f(z) = (V[(z), ).

Meanwhile, using the Lipschitz smoothness of T'(+), for fix y, we have

I(z) <T(y) + (VL(y), 2 —y) + %Hz — |
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Therefore, we can obtain

F(a) — (Y f(@),2) = minT(2) < min{T(y) + (VT(w), 2 ~ ) + 5 2 — 9%}

<ST() ~ 57 IVTW)I? = £(0) = (V(@),0) + 57 V)~ V@)

By rearranging the terms, we can obtain

S IV ) = VI < fl) — f() + (Vf(),x— ).

By swapping x and y, we have

IV )~ VI < F(a) — Fl) + (V). — ).

Thus, adding up @D and , we can attain the result.

1 _ _N

Lemma 12. Suppose p > —% and ¢ < Ix = T+Np’

2 = 2| Z oalla’ = (y',2") |,

[+t = 2t = o3l — 2 (y", ) ||,

where

0'3202/(1—0'2).

then the following inequalities hold:

_c(Np-—1)

g9 —

Proof. For (1), we define g(z;v) = ||lz[|? — 2270 + h(z), v1 = 2! — ¢V, K(2',y", 2") and vo = z(y', 2") —

CVxK(x(ytv Zt)a yta Zt)~
Then, with the update iteration of x* we have

t+1

T = argmin §(x, v1).
xT

Beside, with the definition of z(y¢, 2!) we have

£y, 2") = argmin g (x, vs)

It is obvious that g(-,v) is a strongly convex function with modular 1. Then, using the strong convexity of g(-, v),

we have

On the other hand, by the definition of §, we have

g hu1) — (e vg) = = (@ v — va),

gz’ 2)v) — gla(y’, 24);v2) = —((y’, 2"), 01 — va).

Combining , , and , we have

lz" — 2y, 2P < (@ — 2y’ 2Y), 01 — o).

Then, using Cauchy—Schwartz inequality, we have

o+ = a(y", 2 < Jlor = vel-

v2) > [l —a(y’, 27,

;UQ) 7g(x(yt7
gy’ 2" ) 01) = gl o) > |2 = 2(y’, 212

(13)
(14)
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On the other hand, using the definition of v; and v, it holds that
Hvl - 1)2“2 = ||xt - x(yt7 Zt)||2 - 26<It - x(yta Zt)7 vafK(Ita ytv Zt) - vﬂCK(l‘(yta Zt)7yt7 Zt)>

19
VLK (gt o) — VoK (s ), ot o) 2 19)

According to the Lipschitz continuity of VK (-,y, z) and convexity of K(-,y, z), and Lemma we have

N
m“vw[(<xtayt7zt> - va(x<yt7Zt)aytazt)H2 S <xt - x(yt?zt)vva<xtayt7Zt> - VZK(x<yt7Zt)aytazt)>'

Substituting the above inequality into , we have
[or = va |
< ot = a(y', 2P — (2 ~ N a' —a(y',2"), VoK (2 ¢ 2") = VoK (2(y', 2), 4", 2))
< ot =2y’ 2P = cla® —a(y',2"), Vo K (2, ', 2") = VoK (2(y", 2%), 4, 2Y)),

2 L+ Np
N
where the last ineqaulity holds because ¢ <

_N_
L+Np*

Then, because K (-,y, z) is a convex function with (p — £)-Lipschitz gradient, according to Lemma we have

L
<xt - x(yt»zt)7sz<mt7ytazt) - VwK(x<yt7zt)aytazt)> > (p - N)th - x(yt7zt)||2'

Therefore, we have

o1 — va?
<ot — 2y, 2)|° = e(a’ —z(y', 2"), Vo K (2", 4", 2") — V. K (z(y', 2"), 4", 2"))

L
<1 =clp— )l =2y, 2%
Note that 1 —c(p — %) < (1 — ¢(p — %)/2)?. Then we have

L
lor = val* < (1 = e(p — ) lle* = x(y", ")

N
Hence,
L
[zt = 2(y", 2| < flor —vall < (1 —e(p — /2" =2y, 2. (20)
Besides, according to triangular inequality, we have
[
> lat =2y’ 2] = 2" =y, 20|
clp— %)
2 TNth - x(yt7 Zt)”?
which yields Eq. .
In addition, by , we have
[
L
olp — L
S ]
L
clp—x)/2
> P gy,
—cp-L))2
02
= 1_702”‘%#'_1 - x(yta Zt)H’

which gives the result . 0
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Proof of Theorem 1. Let ® (x,y,2) = K (x,y,2) + h(x) — 2d (y, 2) + 2M (z).
Recall the definition of d (y, z) and M (z)

d(y,2) = min K (z,y,2) +h(z),

_ - p
M) = _min (] @)+ h(@)+ Gle— =),

it holds that

Then,
@(w,y,z):K(:c,y,z)Jrh(x) 2d ( )+2M(Z)
> K (z,y,2) + h(x) —d(y,2) + M (2) —d(y,z) + M (2) > M (2)
> min{f(x) + h(a)} > .

Using Lemmas and [0 it holds that

P (It,yt, Zt) ) (:L,t+1’ yt+1’ Zt+1)

1
> %”xtﬂ - 37t||2 N (Ai,t+1)TAxt+1 + %Hzt . Zt+1||2 + %2 (Ai,t-t,-l)TAx (yt,zt+1)

o WHA t+1H2_|_p( t+1 _Zt)T (Zt+1 42t 2 (yt7zt+1))

— % (Zt+1 _ Zt)T (Zt _ ozt (Zt)) prHZt _ Zt+1H2

> gellet =t T = R (A A~ () — et
(AT Ap (5, 2) — S (A (a0 () P A A (5,2 )
+ 2« (Axt“)T Ax (yt, ztﬂ) +p (z“r1 — zt)T (z”l — 2t -2 (x (y”l, z”l) —z* (zt))) — pi”zt — 22
> ol = a2 Bt - s = a4 (0 = o () | - ol et
2
— oAl A 3, 24) = SR (1 (5, 2 12 4 MR A (5,2 )
+ 2« (A:Bt“)T Ax (yt, z“l) +p (Zt+1 — zt)T (z”l — 2t =2 (m (yt, z”l) —z* (zt))) — pﬂ”zt — 22

(21)

First, we can bound the terms related to the ef*1:

RIZIVAN
_ a\/7||6t+1||||A( t+1 ( t t+1)) ” B a\/7‘|€t+1||||Ax (Z-,I ’ t+1) H . 040;/71>\1”6t+1”2

«a A (! to_t+l 2 @ A to_tH1Y |12 3()‘2)‘?/2 t+112
*§|| (" =z (v ) | *§|| z(y', 2" |17 - T+a>\1 e [I%.
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Then, for the terms related to A, we can obtain

_ a\/>Het+1||||A( t+1 (yt7zt+1)) ” _ aHAxtHHZ + 20 (AxtH)TAx (yt7zt+1)

— o/l Az (o, 2 | = VAL (A (@81 (1, ) 2 4 A+ s (o, ) |2)
4

o t+1 tot+1)\) 2 ¢ to_t+1Y |12 3a2)\3/2 t+12
A = () P - w2 ) 12— (2 e ) e
4
_ (a”Azt+1”2 — %2 (Azt+1)T e (yt,thrl) +a||Ax (yt,ZtJrl) H2) + a||A:17 (yt,zt+1) ”2

= BOVRL (a1 (42 1P e () )

04

— (520 s e (j - 3“”1/2) 4G (5, 2P - (3“0“ +aA1> e+
> (g 3a2\ﬁ> | Az ( bt Hg <a2 3042)\3/2> |zt —x(yt,th) 2 - <3f120/f)/2 +a)\1> et L2
_ (Zz 3a2xﬁ> (yt’zt-t,-l ”2 <<12 3a2)\3/2> 2! — z(yt, 2t) + z(yt, ) — @ (yt72t+1) I2
<3a2)\§/2 > et+1J2
> (4 - 20 g ) - ( M+ 6a223/2> 41— alaf, )P
— (a)q 6a2w2> l(y*s ") — @ (y', 27 12 = (‘%‘2?/2 +a>\1> et )2
> (4 - 20 g ) - (‘jﬁ - 6‘;5) [ (Ojf - %) b+t = 2t

04

3022372
- ( - : +a>\1 ||€t+1H27

where the last inequality is due to Lemma [I2] and Lemma [4]

Further, for the terms related to z, we have

p(zt—H _ Zt)T (Zt+1 _ st 9 (x (yt7zt+l) * (Zt))) —pl~/||zt _ Zt+1||2 + £||Zt _ Zt+1||2

20
=p (Zt+1 _ Zt)T (Zt+1 Lt 9 (x (yt,zHl) _ x*(zt+1)) _9 (x*(z”l) gt (Zt)))
TNt g2 . P oy 412
pLii =217 + Lot 24|
<2,8 +p— pL) 2t — Zt+1||2 —2p (Zt+1 _ Zt)T (x (yt7zt+1) e (Zt+1))

Cop (A Zt)T (" (=+1) — 2* (1))
> <2pﬁ +p- pL> [2f — 22 = 2p||2ttt — 2 ||z (v, 2 ) — 2t () |

= 2|2 = [l () — 2 ().
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By using Lemma [ and Lemma 3] it further holds that

P (Zt—i-l _ Zt)T (Zt-i-l _ ot 9 (x (yt7zt+1) = (Zt))) —pint — 22 4 %Hzt — 2

Fp—pD) ot — 22— O e e O () g () 2
Zﬂ a 402 ’

2p i1 )12
g5llz 2| (23)
p 7 41’2‘7% 2p St1)2 «@ tt+1 w (41 )12
> (= L — — -— -
(5 4p=pb= 7= 2 ot - P - o (o 24) 0 (1))
~ 4p20% 2p ‘ «
> = I — _ SN2 L0 A (o 2L |12
(5 4p=pE= 7= 2 ot - P - G o (4,541 |
Besides, by taking o and 8 sufficient small so that we can obtain
o 30[2\/
8 04
1 ah 6a2xf/2 (1—6)% (32232 o) s
- A _ o il
2c o3 0403 02 o4 L= 4c’ (24)
4p20? 2 ah;  6a2AY?
7+p poﬂfipf 714,71 Z£7
273 o o5 o5 0405 4p
B<1

Then combining , , , , and Lemma we can obtain
P (xoayoa ZO) - i

T-1
> P (mt’yt7zt) _ & (xt-&-l)yt-&-l,zt—i-l)
t=0
T-1 3/2 2
1 aAp 6a2)\ a 3oty
Z ? il S T ”xt-',-l _ xt”2 + (4 o= vAal ||A$ (yt’zt-&-l) ||2
=0 ¢ 03 0403 04
3a2A3/2 P
o A1 A 2, Pyt 412
- (BEA o) bt Bt - 0
T-1 3/2 2 213/2
1 A 602\ 1-96 3af A
> LoaAar batyy _( > ) a”A +a) ||£L't+1—1'tH2
pare 2¢ o3 0403 ) 04
+ gz (o 2 I+ gl = 2
-1 o »
> 2ttt — 212 4+ K Ag (vt ) 12 4 Pogat — 2
> 3 gl =P Gl (0 I et -

According to the above inequality, we define C' = ¢ (xo, Y0, zo) — f, then it holds that for any 7' > 0, there exists
ans € {0,1,---,T — 1} such that

2% — 2*H|* < 4eC/T,
8
14z (y°, 2" ) |* < —C/T,

4
||33s+1 s||2 s+1 25”2 S FC/T’
p

52”2
4
(B z‘"‘||2 < ?/BC/T.
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Besides, recall the update of z°™!, i.e. 2t = argmin, ((V,, K (2,9, 2") ,2; — a!) + h; (z;) + ||z — 2|?),
with the optimally condition we can obtain

0eV,K (Is,ys,ZS) + % (strl 7‘%5) + Oh (IS+1) .

Therefore, let
v=V,K (a:s+1,ys7zs) — V. K (z°,y°%, %) — % (xS'H — xs) —-p (mS'H — zs) .

we can obtain that
veVf(z)+ ATy  +0on ().

o< (5 +»
(s ) RS

On the other hand, it holds that

Moreover, we have

. . 1, . . . .
Yl =l e = 2] 4 gl - |

A= U] < [l Az (y*, 2" ) |+ 14 (@ — 2 (1", 2%) [ + [ A (", 2°) — 2(y*, 2")|

v>\14c VAN B
<f/f(f \/505 ).

Hence, letting

b (e ) ) s BB o

Then, (z°*1,y°) is a B/V/T -solution. O

Proof of Corollary 1. In the smooth case, we define v = i—; and in non-smooth case we define v = i—; > i—;
It is easy to check a and 8 in corollary 1 that satisfy inequalities .
By plugging ¢, p, a and 8 in to equation , we can get the result in smooth case.

With :\\—; > i—; we can get the result in the nonsmooth case.

2 Proof of Remark 1

Proof of Remark 1. The proof will only consider the smooth case, because the definition of 2¢-stationary points
in Hong et al.| (2017) and 4€2-stationary points in [Tang et al.| (2019) are in the setting of smooth objective
function.

First we show that our definition is the sufficient condition for 2e?-stationary points in Hong et al.| (2017), i.e
1% iy V(@) 12 + a5 Sigyen los — a5ll? < 22
From Definition 1, we have

NV f(z)+ATy|* < .

Besides, recall that pu = (u1, 2, , ) = ATy in the algorithm and A1 = 0.
Thus, Zfil pi = 0.
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Then, it holds that

LN
N vai(xi) + i
=1

<N (LS il
< m zx1)+/~%”

1 Y ’
N vai(%‘)
=1

= N|[Vf(z) + ATy|* < €.

On the other hand, we have

Hence, it holds that
2
2 2 €
o 3 Ml = el < S

Because L can take arbitrary large value, we can assume L > 1 and the following statement holds:

N
1
i=1

(i,j)EE

Then, for the 4e?-stationary point in [Tang et al. (2019), it is defined as

2

X
sz.fl(f) S 462,
i=1
_ N
where 7 = + Y10, ;.
Let 2 = (z7,z7,--- ,z1)T ¢ RV,
Recall the definition of x = (27,21, 2%)T and A, then we obtain if Av =0 then v7(Z — z) = 0.

Besides, we have Az = 0.

Therefore, with definition of Ao (the smallest nonzero eigenvalue of AT A), we have

N

_ - 1 N 1
> Nz -] = & - 2)* < =A@ - 2)|° = Az,
A2 A2

i=1
Combining the above inequality and the Lipschitz gradient of f;, it holds that

LN
N vai(f)
=1

2 2

1 N
= Z V(@) — Vi) + V fiz)

N
<o (NQ S IV fila |2> ¥ 2 VA - VAP

i=1

2L2 _
< NIV + AT+ 2 S o
7 op2, 2L 2
<2N|Vf(z) + ATyl + 1Azl
N
< 462

Hence, our definition is the sufficient condition for the 2¢2-solution in [Hong et al. (2017) and the 4¢2-solution in
Tang et al.| (2019). O
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