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Communication Efficient Primal-Dual Algorithm for Nonconvex Nonsmooth Distributed Optimization

1 PROOF OF THEOREM 1

Notation 1. Define

gi (xi, zi) = fi (xi) + hi (xi) +
Np

2
‖xi − zi‖2,

g (x, z) =
1

N

N∑
i=1

gi (xi, zi) ,

d (y, z) = min
x∈RnN

K (x, y, z) + h (x) ,

x (y, z) = arg min
x∈RnN

K (x, y, z) + h (x) ,

M (z) = min
x∈RnN ,Ax=0

(
f (x) + h (x) +

p

2
‖x− z‖2

)
,

x∗ (z) = arg min
x∈RnN , Ax=0

(
f (x) + h (x) +

p

2
‖x− z‖2

)
,

et = xt − x̂t.

First, we bound the compression error et in the following lemma.
Lemma 1. The following equality always holds:

T∑
t=1

‖et‖2 ≤ (1− δ)2

δ2

T∑
t=1

‖xt − xt−1‖2.

Proof. Using the definition of et, we can obtain:

‖et‖ = ‖xt − x̂t‖ = ‖xt − x̂t−1 − C
(
xt − x̂t−1

)
‖

≤ (1− δ) ‖xt − x̂t−1‖ = (1− δ) ‖xt − xt−1 +
(
xt−1 − x̂t−1

)
‖

≤ (1− δ) ‖xt − xt−1‖+ (1− δ) ‖et−1‖,

where the first inequality is due to the assumption on the compression function.

By the induction, we can get

‖et‖ ≤
t∑
i=1

(1− δ)t−i+1 ‖xi − xi−1‖.

Then, using the convexity of square function and rearranging the summation terms, we can obtain

T∑
t=1

‖et‖2 ≤
T∑
t=1

(
t∑
i=1

(1− δ)t−i+1 ‖xi − xi−1‖

)2

≤
T∑
t=1

(
t∑
i=1

(1− δ)t−i+1

)
t∑
i=1

(1− δ)t−i+1 ‖xi − xi−1‖2

≤ 1− δ
δ

T∑
t=1

t∑
i=1

(1− δ)t−i+1 ‖xi − xi−1‖2

≤ 1− δ
δ

T∑
i=1

(
T∑
t=i

(1− δ)t−i+1

)
‖xi − xi−1‖2

≤ (1− δ)2

δ2

T∑
t=1

‖xt − xt−1‖2.

The proof is finished.

Then, we give the lower bound on the change of primal function when updating iterates.
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Lemma 2. For any t ≥ 0, if c ≤ 1
LK

, the following inequality always holds:

h
(
xt
)
− 〈∇xK

(
xt, yt, zt

)
, xt+1 − xt〉 − h

(
xt+1

)
− 1

2c

∥∥xt+1 − xt
∥∥2

≥ 1

2c
‖xt+1 − xt‖2 − α

(
Ax̂t+1

)T
Axt+1 +

p

2β
‖zt − zt+1‖2.

Proof. Recall the update iteration of xt+1:

xt+1 = arg min
x

(
〈∇xK

(
xt, yt, zt

)
, x− xt〉+ h (x) +

1

2c

∥∥x− xt∥∥2) .
By the optimality condition of strongly convex function, we obtain

h
(
xt
)
− 〈∇xK

(
xt, yt, zt

)
, xt+1 − xt〉 − h

(
xt+1

)
− 1

2c

∥∥xt+1 − xt
∥∥2 ≥ 1

2c
‖xt+1 − xt‖2.

Besides, because K (x, z, y) has Lipschitz gradient with respect to x, we can obtain

K
(
xt, yt, zt

)
+ h

(
xt
)
−K

(
xt+1, yt, zt

)
− h

(
xt+1

)
≥ h

(
xt
)
− h

(
xt+1

)
− 〈∇xK

(
xt, yt, zt

)
, xt+1 − xt〉 − LK

2

∥∥xt+1 − xt
∥∥2

≥ h
(
xt
)
− h

(
xt+1

)
− 〈∇xK

(
xt, yt, zt

)
, xt+1 − xt〉 − 1

2c

∥∥xt+1 − xt
∥∥2

≥ 1

2c
‖xt+1 − xt‖2.

(1)

Next, according to the update of yt+1, i.e. yt+1 = yt + αAxt+1, we can obtain

K
(
xt+1, yt, zt

)
−K

(
xt+1, yt+1, zt

)
= −α

(
Ax̂t+1

)T
Axt+1. (2)

In addition, by using the update of zt+1, i.e., zt+1 = zt + β
(
x̂t+1 − zt

)
, we can obtain

xt+1 − zt =
1

β

(
zt+1 − zt

)
,

xt+1 − zt+1 =
1− β
β

(
zt+1 − zt

)
.

By using above two equalities, we have

K
(
xt+1, yt+1, zt

)
−K

(
xt+1, yt+1, zt+1

)
=
p

2

(
‖xt+1 − zt‖2 − ‖xt+1 − zt+1‖2

)
=
p

2

(
zt+1 − zt

)T ((
xt+1 − zt

)
+
(
xt+1 − zt+1

))
=
p

2
(2/β − 1) ‖zt − zt+1‖2

≥ p

2β
‖zt − zt+1‖2.

(3)

Then, by combining inequalities (1), (2) and (3), we obtain the desired result.

To bound the dual function and proximal function, we first give the bound on difference of dual function and
proximal function during update in the following Lemma.
Lemma 3. Suppose p > − L

N , then for any y, y′ ∈ RnM , the following inequality holds:

‖y − y′‖ ≥ σ4‖x (y, z)− x (y′, z) ‖, (4)

where σ4 = (Np−L)
N
√
λ1

.



Communication Efficient Primal-Dual Algorithm for Nonconvex Nonsmooth Distributed Optimization

Proof. First, we define K̂ (x, y, z) = K (x, y, z) + h (x). Note that K̂ (x, y, z) is a strongly convex function with
respect to x. Then, it holds that

K̂ (x (y, z) , y′, z)− K̂ (x (y′, z) , y′, z)

= K̂ (x (y, z) , y, z)− K̂ (x (y′, z) , y, z)−
(
K̂ (x (y′, z) , y′, z′)− K̂ (x (y′, z) , y, z)

)
+
(
K̂ (x (y, z) , y′, z)− K̂ (x (y, z) , y, z)

)
= K̂ (x (y, z) , y, z)− K̂ (x (y′, z) , y, z)− (y′ − y)

T
Ax (y′, z) + (y′ − y)

T
Ax (y, z)

≤ − (Np− L)

2N
‖x (y′, z)− x (y, z) ‖2 + (y′ − y)

T
A (x (y, z)− x (y′, z))

≤ − (Np− L)

2N
‖x (y′, z)− x (y, z) ‖2 +

√
λ1‖y′ − y‖‖x (y, z)− x (y′, z) ‖.

Then, using the strongly convexity of K̂ (x, y, z) on x with modular Np−L
N , we obtain

K̂ (x (y, z) , y′, z)− K̂ (x (y′, z) , y′, z) ≥ Np− L
2N

‖x (y, z)− x (y′, z) ‖2.

Then, combining the above two inequalities, we can obtain

‖y − y′‖ ≥ (Np− L)

N
√
λ1
‖x (y, z)− x (y′, z) ‖.

The proof is finished.

Lemma 4. Suppose p > − L
N , then for any z, z′ ∈ RnN , the following inequalities hold:

‖z − z′‖ ≥ σ5‖x∗ (z)− x∗ (z′) ‖, (5)
‖z − z′‖ ≥ σ5‖x (y, z)− x (y, z′) ‖, (6)

where σ5 = Np−L
Np .

Proof. According to the strongly convexity of function g, we can obtain:

g (x∗ (z) , z′)− g (x∗ (z′) , z′)

= g (x∗ (z) , z)− g (x∗ (z′) , z)− (g (x∗ (z′) , z′)− gi (x∗ (z′) , z))

+ (g (x∗ (z) , z′)− g (x∗ (z) , z))

= (g (x∗ (z) , z)− g (x∗ (z′) , z))− p

2

(
−2 (z′ − z)T x∗ (z′) + ‖z′‖2 − ‖z‖2

)
+
p

2

(
−2 (z′ − z)T x∗ (z) + ‖z′‖2 − ‖z‖2

)
= (g (x∗ (z) , z)− g (x∗ (z′) , z)) + p (z′ − z)T (x∗ (z′)− x∗ (z))

≤ −Np− L
2N

‖x∗ (z)− x∗ (z′) ‖2 + p (z′ − z)T (x∗ (z′)− x∗ (z)) .

On the other hand, using the strongly convexity of g, it holds that

g (x∗ (z) , z′)− g (x∗ (z′) , z′) ≥ Np− L
2N

‖x∗ (z)− z∗ (z′) ‖2.

Hence, we have

p (z′ − z)T (x∗ (z′)− x∗ (z)) ≥ Np− L
N

‖x∗ (z)− x∗ (z′) ‖2.

Further, according to Cauchy-Schwarz inequality, it implies that

‖x∗ (z)− x∗ (z′) ‖ ≤ Np

Np− L
‖z − z′‖.
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With the same proof as it is used to prove (5), we directly get

‖x (y, z)− x (y, z′) ‖ ≤ Np

Np− L
‖z − z′‖.

With the above two lemmas, we give the bound on the difference of the dual function and the proximal function
during the algorithm, as follows.

Lemma 5. For any t ≥ 0, it holds that

d
(
yt+1, zt+1

)
− d

(
yt, zt

)
≥ α

(
Ax̂t+1

)T
Ax
(
yt, zt+1

)
− α2

√
λ1

2σ4
‖Ax̂t+1‖2 +

p

2

(
zt+1 − zt

)T (
zt+1 + zt − 2x

(
yt, zt+1

))
.

Proof. First, with the definition of x(yt, zt+1), we have

d
(
yt, zt+1

)
− d

(
yt, zt

)
= K

(
x
(
yt, zt+1

)
, yt, zt+1

)
+ h

(
x
(
yt, zt+1

))
−K

(
x
(
yt, zt

)
, yt, zt

)
+ h

(
x
(
yt, zt

))
≥ K

(
x
(
yt, zt+1

)
, yt, zt+1

)
−K

(
x
(
yt, zt+1

)
, yt, zt

)
=
p

2

(
‖x
(
yt, zt+1

)
− zt+1‖2 − ‖x

(
yt, zt+1

)
− zt‖2

)
=
p

2

(
zt+1 − zt

)T (
zt+1 + zt − 2x

(
yt, zt+1

))
.

(7)

Besides, we can compute the gradient of d (y, z) as

∇yd (y, z) = Ax (y, z) .

Then, for any y, y′, we have

‖∇yd (y, z)−∇yd (y′, z) ‖ = ‖Ax (y, z)−Ax (y′, z) ‖ ≤
(√

λ1/σ4

)
‖y − y′‖,

which is equivalent to say that d(y, z) has Lipschitz gradient with respect to y with Lipschitz constant
√
λ1/σ4.

According to the gradient Lipschitz continuity of d(y, z), it holds

d
(
yt+1, zt+1

)
− d

(
yt, zt+1

)
≥ 〈yt+1 − yt, Ax

(
yt, zt+1

)
〉 −
√
λ1

2σ4
‖yt+1 − yt‖2

≥ α
(
Ax̂t+1

)T
Ax
(
yt, zt+1

)
− α2

√
λ1

2σ4
‖Ax̂t+1‖2.

(8)

Combining (7) and (8), we get the desired result.

Lemma 6. For any t ≥ 0, it holds that

M
(
zt+1

)
−M

(
zt
)
≤ p

(
zt+1 − zt

)T (
zt − x∗

(
zt
))

+
pL̃

2
‖zt − zt+1‖2,

where L̃ = Np
Np−L + 1.

Proof. Recall the definition of M (z), we can compute the gradient of M (z) as follows:

∇M (z) = p (z − x∗ (z)) .
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Then using Lemma 4, we can obtain

‖∇M (z)−∇M (z′) ‖ = ‖p (z − x∗ (z′))− p (z − x∗ (z′)) ‖
≤ p (‖z − z′‖+ ‖x∗ (z)− x∗ (z′) ‖)
≤ p (1 + 1/σ5) ‖z − z′‖.

Therefore, M (z) is a gradient Lipschitz continuous function with Lipschitz constant p (1 + 1/σ5). Then, the
result directly holds.

The following lemmas give the dual error bound and primal approximation error bound.

Lemma 7. For any y ∈ RnM , if Ax(y, z) = r, then x(y, z) = arg minx:Ax=r g(x, z).

Proof. Recall the definition of x (y, z):

x (y, z) = arg min
x
{g (x, z) + yTAx}.

Together with Ax (y, z) = r, x (y, z) satisfies the optimality condition of the optimization problem.

Therefore, we define x∗ (r, z) = x (y, z), if Ax (y, z) = r.

Lemma 8. For any r ∈ Range (A) there exists unique vi (r) , i = 2, 3, · · · , N , such that for any x that satisfies
Ax = r. In addition, it holds that

xi = x1 + vi (r) .

Moreover, defining v(r) = (v1(r)T , v2(r)T , · · · , vN (r)T )T , it holds that

‖v(r)‖ ≤ 1

λ3
‖r‖,

for some λ3 > 0.

Proof. Based on the construction of matrix A, it can be easily verify that when G is connected, rank
(
Ã
)

=

n (N − 1).

Besides, for equation Ax = r, we can give the solution set as follows:

xi = vi (r) + b,

where b is an arbitrary vector in Rn, and v is a solution with v1 = 0.

Therefore, for any vector x that satisfies Ax = r, it can be written as xi = x1 + vi(r), i = 1, 2, 3, · · · , N .

In addition, we can solve v by solving equation Ãv(r) =
(
rT , 0Tn

)T , where
Ã =

[
A

In 0n×n(N−1)

]
.

When G is connected, it can be easily verified that rank
(
Ã
)

= nN , then v(r) is unique.

Let W̃ be the matrix generated by removing the first column of W and ˜v(r) = (v
(
2r)

T , v3(r)T , · · · , vN (r)T )T .

Then, because of the connectivity of the graph, rank(W̃ ) = N − 1, which is a full column rank matrix.

Because v1 = 0, it holds that (W ⊗ In)v = (W̃ ⊗ In)ṽ = r and ‖v‖ = ‖ṽ‖.

In addition, we define Ã = W̃T W̃ , which is equivalent to remove the first column and first row of WTW , and we
define λ3 as the smallest eigenvalue of Ã.
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We can obtain √
λ3‖v(r)‖ =

√
λ3‖ṽ (r) ‖ ≤ ‖(W̃ ⊗ In)ṽ (r) ‖ = ‖r‖.

Hence, we get

‖v(r)‖ ≤ 1√
λ3
‖r‖,

for λ3 > 0.

Lemma 9. Suppose p > −L/N , then for any y ∈ RnM and z ∈ RnN , it holds that

‖x (y, z)− x∗ (z) ‖ ≤ σ1‖Ax(y, z)‖,

where σ1 =

(
3Np−L+

√
N2p2−L2

)
2
√
λ3(Np−L)

.

Proof. Let Ψ (u, z) = 1
N

∑N
i=1 gi (u, zi) , Ψr (u) = 1

N

∑N
i=1 gi (u+ vi (r) , zi).

Then, because of the uniqueness of vi (r), it is straightforward to obtain

x∗1 (r, z) = arg min
u

Ψr (u)

x∗1 (z) = arg min
u

Ψ (u) .

Because p > −L/N , gi(u, zi) is a strongly convex function with modular −L+Np. Thus Ψ and Ψr are strongly
convex. Using the strong convexity of Ψ and Ψr, we obtain

Ψ (x∗1 (r, z))−Ψ (x∗1 (z)) ≥ (−L+Np) ‖x∗1 (r, z)− x∗1 (z) ‖2

Ψr (x∗1 (z))−Ψr (x∗1 (r, z)) ≥ (−L+Np) ‖x∗1 (r, z)− x∗1 (z) ‖2.

Combining the above two inequality we can obtain

2 (−L+Np) ‖x∗1 (r, z)− x∗1 (z) ‖2

≤ Ψ (x∗1 (r, z))−Ψ (x∗1 (z)) + Ψr (x∗1 (z))−Ψr (x∗1 (r, z))

= Ψ (x∗1 (r, z))−Ψr (x∗1 (r, z))− (Ψ (x∗1 (z))−Ψr (x∗1 (z))) .

Then, using the smoothness and strongly convexity of gi for i = 2, 3, ..., N , we obtain

Ψ (x∗1 (r, z))−Ψr (x∗1 (r, z))− (Ψ (x∗1 (z))−Ψr (x∗1 (z)))

=
1

N

N∑
i=2

(gi (x∗1 (r, z) , zi)− gi (x∗1 (r, z) + vi (r) , zi))−
1

N

N∑
i=2

(gi (x∗1 (z) , zi)− gi (x∗1 (z) + vi (r) , zi))

≤ 1

N

N∑
i=2

(
〈∇gi (x∗1 (r, z) + vi (r)) ,−vi (r)〉+

L+Np

2
‖vi (r) ‖2

)
− 1

N

N∑
i=2

〈∇gi (x∗1 (z) + vi (r)) ,−vi (r)〉

≤ 1

N

N∑
i=2

(L+Np)‖x∗1 (r, z)− x∗1 (z) ‖‖vi (r) ‖+
(L+Np)

2
‖vi (r) ‖2.

Then, using the convexity of square function we obtain
N∑
i=1

‖vi(r)‖ ≤
√
N‖v(r)‖.

Together with the above inequalities, we obtain

2 (−L+Np) ‖x∗1 (r, z)− x∗1 (z) ‖2

≤ L+Np√
N
‖x∗1 (r, z)− x∗1 (z) ‖‖v (r) ‖+

(L+Np)

2N
‖v (r) ‖2

≤ L+Np√
Nλ3

‖x∗1 (r, z)− x∗1 (z) ‖‖r‖+
(L+Np)

2Nλ3
‖r‖2.
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By solving the above quadratic inequality, we can obtain

‖x∗1 (r, z)− x∗1 (z) ‖ ≤

(
L+Np+

√
N2p2 − L2

)
2
√
Nλ3(Np− L)

‖r‖.

By the definition of v, we have x(y, z) = x∗ (r, z) =
(
x∗1 (r, z)

T
, x∗1 (r, z)

T
, · · · , x∗1 (r, z)

T
)T

+ v and x∗ (z) =(
x∗1 (z)

T
, x∗1 (z)

T
, · · · , x∗1 (z)

T
)T

.

Therefore, with triangular inequality, we have

‖x (y, z)− x∗ (z) ‖ ≤
√
N‖x∗1 (r, z)− x∗1 (z) ‖+ ‖v‖ ≤ σ1‖r‖ = σ1‖Ax(y, z)‖,

where σ1 =

(
3Np−L+

√
N2p2−L2

)
2
√
λ3(Np−L)

. Then, the proof is finished.

Lemma 10 (Smooth version of Lemma 9). Suppose p > −L/N and h(·) = 0, then for any y ∈ RnM and z ∈ RnN ,
it holds that

‖x (y, z)− x∗ (z) ‖ ≤ σ1‖Ax(y, z)‖,

where σ1 =

(
3Np−L+

√
N2p2−L2

)
2
√
λ2(Np−L)

.

Proof. First, we define x̄ = 1
N

∑N
i=1 xi, similar to Lemma 8 for any r ∈ Range (A) there exists a unique

vi (r) , i = 1, 2, 3, · · · , N , such that for any x that satisfies Ax = r, it holds that

xi = x̄+ vi (r) .

For any vector u with Au = 0, we have uT (x− (x̄T , x̄T , · · · , x̄T )T ) = 0. Then, it holds uT v = 0.

Therefore, it holds that

‖v‖ ≤ 1

λ2
‖Av‖ =

1

λ2
‖r‖,

where λ2 is the smallest nonzero eigenvalue of ATA.

Similar to the proof of Lemma 9, we define Ψ(u, z) = 1
N

∑N
i=1 gi(u, zi), Ψr(u) = 1

N

∑N
i=1 gi(u + vi(r), zi),

x̄∗(r, z) = arg minu Ψr(u) and x̄∗(z) = arg minu Ψ(u).

With the same decomposition in Lemma 9, it holds that

‖x̄∗ (r, z)− x̄∗ (z) ‖ ≤

(
L+Np+

√
N2p2 − L2

)
2
√
Nλ2(Np− L)

‖r‖.

Together with the definition of x∗(r, z) = (x̄∗(r, z)T , x̄∗(r, z)T , · · · , x̄∗(r, z)T )T + v and x∗(z) =
(x̄∗(z)T , x̄∗(z)T , · · · , x̄∗(z)T )T , we can get the result.

Lemma 11. For a differentiable convex function f (defined on the Rn) with L-Lipschitz gradient, the following
inequality always holds

1

L
‖∇f(x)−∇f(y)‖2 ≤ 〈∇f(x)−∇f(y), x− y〉.

Proof. For fix x, we define function Γ(z) = f(z)− 〈∇f(x), z〉.

Then Γ(z) is a convex function with L-Lipschitz gradient. Beside, the minimum value of function Γ(·) will be
Γ(x) = f(x)− 〈∇f(x), x〉.

Meanwhile, using the Lipschitz smoothness of Γ(·), for fix y, we have

Γ(z) ≤ Γ(y) + 〈∇Γ(y), z − y〉+
L

2
‖z − y‖2.
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Therefore, we can obtain

f(x)− 〈∇f(x), x〉 = min
z

Γ(z) ≤ min
z
{Γ(y) + 〈∇Γ(y), z − y〉+

L

2
‖z − y‖2}

≤ Γ(y)− 1

2L
‖∇Γ(y)‖2 = f(y)− 〈∇f(x), y〉+

1

2L
‖∇f(y)−∇f(x)‖2.

By rearranging the terms, we can obtain

1

2L
‖∇f(x)−∇f(y)‖2 ≤ f(y)− f(x) + 〈∇f(x), x− y〉. (9)

By swapping x and y, we have

1

2L
‖∇f(x)−∇f(y)‖2 ≤ f(x)− f(y) + 〈∇f(y), y − x〉. (10)

Thus, adding up (9) and (10), we can attain the result.

Lemma 12. Suppose p > − L
N and c ≤ 1

LK
= N

L+Np , then the following inequalities hold:

‖xt+1 − xt‖ ≥ σ2‖xt − x (yt, zt) ‖, (11)
‖xt+1 − xt‖ ≥ σ3‖xt+1 − x (yt, zt) ‖, (12)

where
σ2 =

c (Np− L)

2N
,

σ3 = σ2/ (1− σ2) .

Proof. For (11), we define ĝ(x; v) = ‖x‖2 − 2xT v + h(x), v1 = xt − c∇xK(xt, yt, zt) and v2 = x(yt, zt) −
c∇xK(x(yt, zt), yt, zt).

Then, with the update iteration of xt we have

xt+1 = arg min
x
ĝ(x, v1).

Beside, with the definition of x(yt, zt) we have

x(yt, zt) = arg min
x
ĝ(x, v2).

It is obvious that ĝ(·, v) is a strongly convex function with modular 1. Then, using the strong convexity of ĝ(·, v),
we have

ĝ(xt+1; v2)− ĝ(x(yt, zt); v2) ≥ ‖xt+1 − x(yt, zt)‖2, (13)
ĝ(x(yt, zt); v1)− ĝ(xt+1; v1) ≥ ‖xt+1 − x(yt, zt)‖2. (14)

On the other hand, by the definition of ĝ, we have

ĝ(xt+1; v1)− ĝ(xt+1; v2) = −〈xt+1, v1 − v2〉, (15)
ĝ(x(yt, zt); v1)− ĝ(x(yt, zt); v2) = −〈x(yt, zt), v1 − v2〉. (16)

Combining (13), (14), (15) and (16), we have

‖xt+1 − x(yt, zt)‖2 ≤ 〈xt+1 − x(yt, zt), v1 − v2〉. (17)

Then, using Cauchy–Schwartz inequality, we have

‖xt+1 − x(yt, zt)‖ ≤ ‖v1 − v2‖. (18)
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On the other hand, using the definition of v1 and v2, it holds that

‖v1 − v2‖2 = ‖xt − x(yt, zt)‖2 − 2c〈xt − x(yt, zt),∇xK(xt, yt, zt)−∇xK(x(yt, zt), yt, zt)〉
+ c2‖∇xK(xt, yt, zt)−∇xK(x(yt, zt), yt, zt)‖2.

(19)

According to the Lipschitz continuity of ∇xK(·, y, z) and convexity of K(·, y, z), and Lemma 11, we have

N

L+Np
‖∇xK(xt, yt, zt)−∇xK(x(yt, zt), yt, zt)‖2 ≤ 〈xt − x(yt, zt),∇xK(xt, yt, zt)−∇xK(x(yt, zt), yt, zt)〉.

Substituting the above inequality into (19), we have

‖v1 − v2‖2

≤ ‖xt − x(yt, zt)‖2 − (2c− c2L+Np

N
)〈xt − x(yt, zt),∇xK(xt, yt, zt)−∇xK(x(yt, zt), yt, zt)〉

≤ ‖xt − x(yt, zt)‖2 − c〈xt − x(yt, zt),∇xK(xt, yt, zt)−∇xK(x(yt, zt), yt, zt)〉,

where the last ineqaulity holds because c ≤ N
L+Np .

Then, because K(·, y, z) is a convex function with (p− L
N )-Lipschitz gradient, according to Lemma 11, we have

〈xt − x(yt, zt),∇xK(xt, yt, zt)−∇xK(x(yt, zt), yt, zt)〉 ≥ (p− L

N
)‖xt − x(yt, zt)‖2.

Therefore, we have

‖v1 − v2‖2

≤ ‖xt − x(yt, zt)‖2 − c〈xt − x(yt, zt),∇xK(xt, yt, zt)−∇xK(x(yt, zt), yt, zt)〉

≤ (1− c(p− L

N
))‖xt − x(yt, zt)‖2.

Note that 1− c(p− L
N ) < (1− c(p− L

N )/2)2. Then we have

‖v1 − v2‖2 ≤ (1− c(p− L

N
))2‖xt − x(yt, zt)‖2.

Hence,

‖xt+1 − x(yt, zt)‖ ≤ ‖v1 − v2‖ ≤ (1− c(p− L

N
)/2)‖xt − x(yt, zt)‖. (20)

Besides, according to triangular inequality, we have

‖xt − xt+1‖
≥ ‖xt − x(yt, zt)‖ − ‖xt+1 − x(yt, zt)‖

≥
c(p− L

N )

2
‖xt − x(yt, zt)‖,

which yields Eq. (11).

In addition, by (20), we have

‖xt − xt+1‖

≥
c(p− L

N )

2
‖xt − x(yt, zt)‖

≥
c(p− L

N )/2

1− c(p− L
N )/2

‖xt+1 − x(yt, zt)‖

=
σ2

1− σ2
‖xt+1 − x(yt, zt)‖,

which gives the result (12).
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Proof of Theorem 1. Let Φ (x, y, z) = K (x, y, z) + h (x)− 2d (y, z) + 2M (z).

Recall the definition of d (y, z) and M (z)

d(y, z) = min
x∈RnN

K (x, y, z) + h (x) ,

M(z) = min
x∈RnN ,Ax=0

(
f (x) + h (x) +

p

2
‖x− z‖2

)
,

it holds that

M (z) ≥ d (y, z) ,

K (x, y, z) + h(x) ≥ d (y, z) .

Then,

Φ (x, y, z) = K (x, y, z) + h (x)− 2d (y, z) + 2M (z)

≥ K (x, y, z) + h (x)− d (y, z) +M (z)− d (y, z) +M (z) ≥M (z)

≥ min
x
{f(x) + h(x)} ≥ f.

Using Lemmas 2, 5, and 6, it holds that

Φ
(
xt, yt, zt

)
− Φ

(
xt+1, yt+1, zt+1

)
≥ 1

2c
‖xt+1 − xt‖2 − α

(
Ax̂t+1

)T
Axt+1 +

p

2β
‖zt − zt+1‖2 + 2α

(
Ax̂t+1

)T
Ax
(
yt, zt+1

)
− α2

√
λ1

σ4
‖Ax̂t+1‖2 + p

(
zt+1 − zt

)T (
zt+1 + zt − 2x

(
yt, zt+1

))
− 2p

(
zt+1 − zt

)T (
zt − x∗

(
zt
))
− pL̃‖zt − zt+1‖2

≥ 1

2c
‖xt+1 − xt‖2 +

p

2β
‖zt − zt+1‖2 + α

(
Aet+1

)T
A
(
xt+1 − x

(
yt, zt+1

))
− α‖Axt+1‖2

− α
(
Aet+1

)T
Ax
(
yt, zt+1

)
− 3α2

√
λ1

σ4

(
‖A
(
xt+1 − x

(
yt, zt+1

))
‖2 + ‖Aet+1‖2 + ‖Ax

(
yt, zt+1

)
‖2
)

+ 2α
(
Axt+1

)T
Ax
(
yt, zt+1

)
+ p

(
zt+1 − zt

)T (
zt+1 − zt − 2

(
x
(
yt+1, zt+1

)
− x∗

(
zt
)))
− pL̃‖zt − zt+1‖2

≥ 1

2c
‖xt+1 − xt‖2 +

p

2β
‖zt − zt+1‖2 − α

√
λ1‖et+1‖‖A

(
xt+1 − x

(
yt, zt+1

))
‖ − α‖Axt+1‖2

− α
√
λ1‖et+1‖‖Ax

(
yt, zt+1

)
‖ − 3α2

√
λ1

σ4

(
‖A
(
xt+1 − x

(
yt, zt+1

))
‖2 + λ1‖et+1‖2 + ‖Ax

(
yt, zt+1

)
‖2
)

+ 2α
(
Axt+1

)T
Ax
(
yt, zt+1

)
+ p

(
zt+1 − zt

)T (
zt+1 − zt − 2

(
x
(
yt, zt+1

)
− x∗

(
zt
)))
− pL̃‖zt − zt+1‖2.

(21)

First, we can bound the terms related to the et+1:

− α
√
λ1‖et+1‖‖A

(
xt+1 − x

(
yt, zt+1

))
‖ − α

√
λ1‖et+1‖‖Ax

(
yt, zt+1

)
‖ − 3α2

√
λ1

σ4
λ1‖et+1‖2

≥ −α
2
‖A
(
xt+1 − x

(
yt, zt+1

))
‖2 − α

2
‖Ax

(
yt, zt+1

)
‖2 −

(
3α2λ

3/2
1

σ4
+ αλ1

)
‖et+1‖2.
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Then, for the terms related to A, we can obtain

− α
√
λ1‖et+1‖‖A

(
xt+1 − x

(
yt, zt+1

))
‖ − α‖Axt+1‖2 + 2α

(
Axt+1

)T
Ax
(
yt, zt+1

)
− α

√
λ1‖et+1‖‖Ax

(
yt, zt+1

)
‖ − 3α2

√
λ1

σ4

(
‖A
(
xt+1 − x

(
yt, zt+1

))
‖2 + λ1‖et+1‖2 + ‖Ax

(
yt, zt+1

)
‖2
)

≥ −α
2
‖A
(
xt+1 − x

(
yt, zt+1

))
‖2 − α

2
‖Ax

(
yt, zt+1

)
‖2 −

(
3α2λ

3/2
1

σ4
+ αλ1

)
‖et+1‖2

−
(
α‖Axt+1‖2 − 2α

(
Axt+1

)T
Ax
(
yt, zt+1

)
+ α‖Ax

(
yt, zt+1

)
‖2
)

+ α‖Ax
(
yt, zt+1

)
‖2

− 3α2
√
λ1

σ4

(
‖A
(
xt+1 − x

(
yt, zt+1

))
‖2 + ‖Ax

(
yt, zt+1

)
‖2
)

=

(
α

2
− 3α2

√
λ1

σ4

)
‖Ax

(
yt, zt+1

)
‖2 −

(
α

2
+

3α2λ
1/2
1

σ4

)
‖A(xt+1 − x

(
yt, zt+1

)
)‖2 −

(
3α2λ

3/2
1

σ4
+ αλ1

)
‖et+1‖2

≥
(
α

2
− 3α2

√
λ1

σ4

)
‖Ax

(
yt, zt+1

)
‖2 −

(
αλ1

2
+

3α2λ
3/2
1

σ4

)
‖xt+1 − x

(
yt, zt+1

)
‖2 −

(
3α2λ

3/2
1

σ4
+ αλ1

)
‖et+1‖2

=

(
α

2
− 3α2

√
λ1

σ4

)
‖Ax

(
yt, zt+1

)
‖2 −

(
αλ1

2
+

3α2λ
3/2
1

σ4

)
‖xt+1 − x(yt, zt) + x(yt, zt)− x

(
yt, zt+1

)
‖2

−

(
3α2λ

3/2
1

σ4
+ αλ1

)
‖et+1‖2

≥
(
α

2
− 3α2

√
λ1

σ4

)
‖Ax

(
yt, zt+1

)
‖2 −

(
αλ1 +

6α2λ
3/2
1

σ4

)
‖xt+1 − x(yt, zt)‖2

−

(
αλ1 +

6α2λ
3/2
1

σ4

)
‖x(yt, zt)− x

(
yt, zt+1

)
‖2 −

(
3α2λ

3/2
1

σ4
+ αλ1

)
‖et+1‖2

≥
(
α

2
− 3α2

√
λ1

σ4

)
‖Ax

(
yt, zt+1

)
‖2 −

(
αλ1
σ3

+
6α2λ

3/2
1

σ4σ3

)
‖xt+1 − xt‖2 −

(
αλ1
σ5

+
6α2λ

3/2
1

σ4σ5

)
‖zt+1 − zt‖2

−

(
3α2λ

3/2
1

σ4
+ αλ1

)
‖et+1‖2,

(22)
where the last inequality is due to Lemma 12 and Lemma 4.

Further, for the terms related to z, we have

p
(
zt+1 − zt

)T (
zt+1 − zt − 2

(
x
(
yt, zt+1

)
x∗
(
zt
)))
− pL̃‖zt − zt+1‖2 +

p

2β
‖zt − zt+1‖2

= p
(
zt+1 − zt

)T (
zt+1 − zt − 2

(
x
(
yt, zt+1

)
− x∗(zt+1)

)
− 2

(
x∗(zt+1)− x∗

(
zt
)))

− pL̃‖zt − zt+1‖2 +
p

2β
‖zt − zt+1‖2

≥
(
p

2β
+ p− pL̃

)
‖zt − zt+1‖2 − 2p

(
zt+1 − zt

)T (
x
(
yt, zt+1

)
− x∗

(
zt+1

))
− 2p

(
zt+1 − zt

)T (
x∗
(
zt+1

)
− x∗

(
zt
))

≥
(
p

2β
+ p− pL̃

)
‖zt − zt+1‖2 − 2p‖zt+1 − zt‖‖x

(
yt, zt+1

)
− x∗

(
zt+1

)
‖

− 2p‖zt+1 − zt‖‖x∗(zt+1)− x∗(zt)‖.
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By using Lemma 4 and Lemma 3, it further holds that

p
(
zt+1 − zt

)T (
zt+1 − zt − 2

(
x
(
yt, zt+1

)
x∗
(
zt
)))
− pL̃‖zt − zt+1‖2 +

p

2β
‖zt − zt+1‖2

≥
(
p

2β
+ p− pL̃

)
‖zt − zt+1‖2 − 4p2σ2

1

α
‖zt+1 − zt‖2 +

α

4σ2
1

‖x
(
yt, zt+1

)
− x∗

(
zt+1

)
‖2

− 2p

σ5
‖zt+1 − zt‖2

≥
(
p

2β
+ p− pL̃− 4p2σ2

1

α
− 2p

σ5

)
‖zt − zt+1‖2 − α

4σ2
1

‖x
(
yt, zt+1

)
− x∗

(
zt+1

)
‖2

≥
(
p

2β
+ p− pL̃− 4p2σ2

1

α
− 2p

σ5

)
‖zt − zt+1‖2 − α

4
‖Ax

(
yt, zt+1

)
‖2.

(23)

Besides, by taking α and β sufficient small so that we can obtain

α

8
≥ 3α2

√
λ1

σ4
,

1

2c
− αλ1

σ3
− 6α2λ

3/2
1

σ4σ3
− (1− δ)2

δ2

(
3α2λ

3/2
1

σ4
+ αλ1

)
≥ 1

4c
,

p

2β
+ p− pL̃− 4p2σ2

1

α
− 2p

σ5
−

(
αλ1
σ5

+
6α2λ

3/2
1

σ4σ5

)
≥ p

4β
,

β ≤ 1.

(24)

Then combining (21), (22), (23), (24), and Lemma 1, we can obtain

Φ
(
x0, y0, z0

)
− f

≥
T−1∑
t=0

Φ
(
xt, yt, zt

)
− Φ

(
xt+1, yt+1, zt+1

)
≥
T−1∑
t=0

(
1

2c
− αλ1

σ3
− 6α2λ

3/2
1

σ4σ3

)
‖xt+1 − xt‖2 +

(
α

4
− 3α2

√
λ1

σ4

)
‖Ax

(
yt, zt+1

)
‖2

−

(
3α2λ

3/2
1

σ4
+ αλ1

)
‖et+1‖2 +

p

4β
‖zt − zt+1‖2

≥
T−1∑
t=0

(
1

2c
− αλ1

σ3
− 6α2λ

3/2
1

σ4σ3
− (1− δ)2

δ2

(
3α2λ

3/2
1

σ4
+ αλ1

))
‖xt+1 − xt‖2

+
α

8
‖Ax

(
yt, zt+1

)
‖2 +

p

4β
‖zt − zt+1‖2

≥
T−1∑
t=0

1

4c
‖xt+1 − xt‖2 +

α

8
‖Ax

(
yt, zt+1

)
‖2 +

p

4β
‖zt − zt+1‖2.

According to the above inequality, we define C = Φ
(
x0, y0, z0

)
− f , then it holds that for any T > 0, there exists

an s ∈ {0, 1, · · · , T − 1} such that

‖xs − xs+1‖2 ≤ 4cC/T,

‖Ax
(
ys, zs+1

)
‖2 ≤ 8

α
C/T,

‖xs+1 − zs‖2 =
1

β2
‖zs+1 − zs‖2 ≤ 4

βp
C/T,

‖zs+1 − zs‖2 ≤ 4β

p
C/T.
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Besides, recall the update of xs+1, i.e. xs+1 = arg minx
(
〈∇xiK (xt, yt, zt) , xi − xti〉+ hi (xi) + 1

2c‖xi − x
t
i‖2
)
,

with the optimally condition we can obtain

0 ∈ ∇xK (xs, ys, zs) +
1

c

(
xs+1 − xs

)
+ ∂h

(
xs+1

)
.

Therefore, let

ν = ∇xK
(
xs+1, ys, zs

)
−∇xK (xs, ys, zs)− 1

c

(
xs+1 − xs

)
− p

(
xs+1 − zs

)
.

we can obtain that
ν ∈ ∇f (x) +AT ys + ∂h

(
xs+1

)
.

Moreover, we have

‖v‖ ≤
(
L

N
+ p

)
‖xs+1 − xs‖+

1

c
‖xs+1 − xs‖+ p‖xs+1 − zs‖

≤
((

L

N
+ p+

1

c

)√
4c+

2
√
p

√
β

)√
C

T
.

On the other hand, it holds that

‖Axs+1‖ ≤ ‖Ax
(
ys, zs+1

)
‖+ ‖A

(
xs+1 − x (ys, zs)

)
‖+ ‖A(x(ys, zs)− x(ys, zs+1))‖

≤
√
C/
√
T (

8√
α

+

√
λ14c

σ3
+

√
4λ1β√
pσ5

).

Hence, letting

B =

(((
L

N
+ p+

1

c

)√
4c+

2
√
p

√
β

)√
N +

L√
Nλ2

(
8√
α

+

√
λ14c

σ3
+

√
4βλ1√
pσ5

)

)√
C. (25)

Then,
(
xs+1, ys

)
is a B/

√
T -solution.

Proof of Corollary 1. In the smooth case, we define γ = λ1

λ2
and in non-smooth case we define γ = λ1

λ3
≥ λ1

λ2
.

It is easy to check α and β in corollary 1 that satisfy inequalities (24).

By plugging c, p, α and β in to equation (25), we can get the result in smooth case.

With λ1

λ3
≥ λ1

λ2
we can get the result in the nonsmooth case.

2 Proof of Remark 1

Proof of Remark 1. The proof will only consider the smooth case, because the definition of 2ε2-stationary points
in Hong et al. (2017) and 4ε2-stationary points in Tang et al. (2019) are in the setting of smooth objective
function.

First we show that our definition is the sufficient condition for 2ε2-stationary points in Hong et al. (2017), i.e.
‖ 1
N

∑N
i=1∇fi(xi)‖2 + L

Nλ2

∑
(i,j)∈E ‖xi − xj‖2 ≤ 2ε2.

From Definition 1, we have
N‖∇f(x) +AT y‖2 ≤ ε2.

Besides, recall that µ = (µ1, µ2, · · · , µN ) = AT y in the algorithm and A1 = 0.

Thus,
∑N
i=1 µi = 0.
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Then, it holds that ∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xi)

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xi) + µi

∥∥∥∥∥
2

≤ N

(
1

N2

N∑
i=1

‖∇fi(xi) + µi‖2
)

= N‖∇f(x) +AT y‖2 ≤ ε2.

On the other hand, we have
L2

Nλ2
‖Ax‖2 ≤ ε2.

Hence, it holds that
L

Nλ2

∑
(i,j)∈E

‖xi − xj‖2 =
L

Nλ2
‖Ax‖2 ≤ ε2

L
.

Because L can take arbitrary large value, we can assume L > 1 and the following statement holds:∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xi)

∥∥∥∥∥
2

+
L

Nλ2

∑
(i,j)∈E

‖xi − xj‖2 ≤ 2ε2.

Then, for the 4ε2-stationary point in Tang et al. (2019), it is defined as∥∥∥∥∥ 1

N

N∑
i=1

∇fi(x̄)

∥∥∥∥∥
2

≤ 4ε2,

where x̄ = 1
N

∑N
i=1 xi.

Let x̃ = (x̄T , x̄T , · · · , x̄T )T ∈ RnN .

Recall the definition of x = (xT1 , x
T
2 , · · · , xTN )T and A, then we obtain if Av = 0 then vT (x̃− x) = 0.

Besides, we have Ax̃ = 0.

Therefore, with definition of λ2 (the smallest nonzero eigenvalue of ATA), we have

N∑
i=1

‖x̄− xi‖2 = ‖x̃− x‖2 ≤ 1

λ2
‖A(x̃− x)‖2 =

1

λ2
‖Ax‖2.

Combining the above inequality and the Lipschitz gradient of fi, it holds that∥∥∥∥∥ 1

N

N∑
i=1

∇fi(x̄)

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(x̄)−∇fi(xi) +∇fi(xi)

∥∥∥∥∥
2

≤ 2N

(
1

N2

N∑
i=1

‖∇fi(xi)‖2
)

+
2

N

N∑
i=1

∇fi(x̄)−∇fi(xi)‖2

≤ 2N‖∇f(x) +AT y‖2 +
2L2

N

N∑
i=1

‖x̄− xi‖2

≤ 2N‖∇f(x) +AT y‖2 +
2L2

Nλ2
‖Ax‖2

≤ 4ε2.

Hence, our definition is the sufficient condition for the 2ε2-solution in Hong et al. (2017) and the 4ε2-solution in
Tang et al. (2019).
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