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Abstract

Decentralized optimization frequently appears
in large scale machine learning problems.
However, few works have been focused on solv-
ing the decentralized optimization problems
under the difficult nonconvex nonsmooth set-
ting. In this paper, we propose a distributed
primal-dual algorithm to solve this type of
problems in a decentralized manner and the
proposed algorithm can achieve an O(1/ε2)
iteration complexity to attain an ε-solution,
which is the well-known lower iteration com-
plexity bound for nonconvex optimization.
Furthermore, to reduce communication over-
head, we also modify our algorithm by com-
pressing the vectors exchanged between nodes.
The iteration complexity of the algorithm with
compression is still O(1/ε2). To our knowl-
edge, it is the first algorithm achieving this
rate under a nonconvex, nonsmooth decentral-
ized setting with compression. Besides, we
apply the proposed algorithm to solve noncon-
vex linear regression problem and train a deep
learning model, both of which demonstrate
the efficacy of the proposed algorithms.

1 Introduction

In this work, we consider the following nonconvex dis-
tributed optimization problem:

min
w∈Rn

1

N

N∑
i=1

fi(w).
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Usually a network with N nodes is involved to solve
this problem. We represent the network by an undi-
rected graph G = (V,E), where V is a node set and E
is the set of edges. We denote |V | = N and |E| = M .
The node i can only asscess its own local function
fi and communicate with its immediate neighbors j,
i.e. (i, j) ∈ E. Moreover, to embed some prior knowl-
edge or tackle over-fitting problem, some regularization
terms, which may be nonsmooth functions, will come
into the formulation, such as adding constraints in
Convolutional Neural Network (Pathak et al., 2015).
Besides, as the growing size of models such as deep
neural network, people consider to reduce the model
size (He et al., 2017), some nonsmooth terms (such as
sparsity terms (Yun et al., 2019), group sparsity terms
(Wen et al., 2016), etc.) will be also formulated in the
objective function. Then, the problem becomes:

min
w∈Rn

1

N

N∑
i=1

fi(w) + hi(w), (1)

where hi can be a non-smooth function(e.g. `1 regu-
larization or indicator function of some constraints on
x), and here we assume hi is a convex function. To
efficiently solve the above problem, a common way is
to introduce N local variables x1, x2,· · · ,xN and de-
fine x = (xT1 , x

T
2 , · · · , xTN )T , then problem (1) can be

formulated as follows:

min
x1,··· ,xN

1

N

N∑
i=1

fi(xi) + hi(xi)

s.t. xi = xj , ∀(i, j) ∈ E.

(2)

In general, we can use different regularization terms
in different nodes, however, because of the consensus
constraint xi = xj , we can combine all the hi’s to the
first node, and the rest of hi are zeros in this paper.

To solve problem (2), lots of methods have been pro-
posed including many second-order methods (Roosta-
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Khorasani & Mahoney, 2016b,a). However, because of
intolerable computation complexity for higher-order al-
gorithms, first-order methods are more popular for solv-
ing large-scale problems. In general, to solve problem
(2), there are two different types of first-order methods.
One is the gradient descent based method, where each
node performs gradient steps and then averages xi with
its neighbors. Some works change the gradient steps by
adding momentum (Yu et al., 2019), adaptive learning
rate (Nazari et al., 2019) or adding gradient tracking
variables (Scaman et al., 2018) and some works change
the average step by other average schemes of xi (e.g.
weighted average (Tang et al., 2019)). The other kind
of method is the primal-dual-based method, where dual
variables (y) are introduced into the algorithm and us-
ing primal-dual type methods to seeking the saddle
points of its Lagrangian function. Generally speaking,
primal-dual methods consist of two parts, the primal
update, and the dual update. The primal step is to
minimize the Lagrangian function by a local update of
primal variables and the dual step is to perform a dual
ascent by using the consensus residual, where commu-
nications with neighbors are involved. The primal-dual
method is usually more efficient than the gradient-
based method, which is well-studied in convex cases
(Chang et al., 2014) and nonconvex smooth cases (Hong
et al., 2017). Also in Hong et al. (2016), they show that
the ADMM algorithm, which is a primal-dual method,
converges for consensus problems with a nonsmooth
term in the centralized setting, where a central node
controls the consensus, and achieves the O(1/ε2) itera-
tion complexity. However, it is still unknown whether
we can use the primal-dual method to solve problem
(2) in the decentralized setting. More importantly, to
our knowledge, it is still unclear whether there exists
a decentralized primal-dual optimization algorithm to
solve problem (2) that can achieve the O(1/ε2) itera-
tion complexity, which is the well-known lower bound
for the iteration complexity for solving nonconvex op-
timization problems using first-order method (Carmon
et al., 2019).

Furthermore, with the success of large models such
as deep neural networks, communication among nodes
becomes an important factor influencing the speed of
the optimization algorithms. A popular strategy to
reduce communication complexity is to compress the
vectors exchanged by neighbor nodes. Various kinds of
compression functions (Koloskova et al., 2019) are used
in these scenarios such as quantization functions and
sparsification functions. Therefore, another important
problem is whether we can design a communication
efficient algorithm for solving problem (2) with low
communication overhead.

In this paper, we give affirmative answers to both of the

above two problems. Concretely speaking, we propose
a smoothed proximal-primal-dual algorithm for solving
problem (2) under the nonconvex nonsmooth setting.
The algorithm can achieve an ε-solution of problem (2)
within O(1/ε2) iteration complexity in terms of KKT-
residual. Furthermore, to reduce the communication
cost, we use a compressor when nodes communicate
with their neighbors. We prove that our algorithm
with compression of information exchanged between
neighbor nodes can also achieve an O(1/ε2) iteration
complexity if the compression is in sufficiently high
accuracy. To our knowledge, it is the first algorithm
achieving the lower iteration complexity bound for
nonconvex nonsmooth optimization with compression
during communication.

2 Related Work

Distributed optimization methods have been studied
for many years. For convex cases, many algorithms
have been proposed to solve distributed optimization
problems, including the distributed subgradient method
(Nedic & Ozdaglar, 2009), consensus ADMM method
(Chang et al., 2014; Shi et al., 2014). Recently, non-
convex distributed optimization problems have also
attracted more attention. Yuan et al. (2016) extend
the decentralized gradient descent algorithm to the
nonconvex smooth case and it achieves O(1/ε4) iter-
ation complexity. Lian et al. (2017) give the conver-
gence analysis of a gradient-based algorithm under the
nonconvex but smooth setting with O(1/ε3) iteration
complexity. Di Lorenzo & Scutari (2016) propose a
decentralized gradient-based algorithm for solving prob-
lems in the nonconvex nonsmooth setting, they show
the convergence of their algorithm without establishing
its iteration complexity.

On the other hand, it is well-known that in convex cases,
primal-dual algorithms are usually more efficient than
decentralized gradient-based methods (Lan et al., 2020;
Scaman et al., 2018; Wei & Ozdaglar, 2012). Though
primal-dual methods are well-studied for convex prob-
lems, the related convergence rate for nonconvex cases
is still unclear for many problems. Recently, some pa-
pers analyze the primal-dual algorithms for nonconvex
cases. Hong et al. (2017) give the primal-dual algorithm
and show the convergence rate under the nonconvex
setting with the optimal order. For nonconvex, non-
smooth settings, Hong et al. (2016) analyze ADMM
algorithm for a special type of graph with a center
point. They prove that the iteration complexity can
also achieve the order of O(1/ε2). Also, the gradient
tracking algorithm proposed by Sun et al. (2019) can
solve nonconvex, nonsmooth decentralized problems
and can achieve O(1/ε2) iteration complexity.
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Methods Smooth Obj. Smooth Obj. Nonsmooth Obj. Nonsmooth Obj.
Compressed Comm. Compressed Comm.

Yuan et al. (2016) O(ε−4) - - -
Tang et al. (2019) O(ε−3) O(ε−3) - -
Koloskova et al. (2019) O(ε−3) O(ε−3) - -
Di Lorenzo & Scutari (2016)

√
-

√
-

Hong et al. (2017) O(ε−2) - - -
Scaman et al. (2018) O(ε−2) - O(ε−2) -
Ours O(ε−2) O(ε−2) O(ε−2) O(ε−2)

Table 1: Comparison among different methods. ‘-’ represents the setting is not considered. ‘
√

’ represents the
setting is considered but iteration complexity is not given.

Later, to reduce the overhead of communication, peo-
ple usually add a compression when communicating.
For example, Ye et al. (2020) and Nedic & Ozdaglar
(2009) discuss using quantization function during com-
munication. For nonconvex case, Tang et al. (2018a)
introduce the compression functions into decentralized
gradient descent, and still give the iteration complex-
ities at the order of O(ε−3), but the algorithm only
works for carefully designed compressors. In addition,
Tang et al. (2019) and Koloskova et al. (2019) give
the algorithms working for more general compression
functions. However, the iteration complexity merely
achieves the order of O(ε−3). To our knowledge, there
is no work in the literature achieving the optimal it-
eration complexity O(1/ε2) iteration complexity for
nonconvex, nonsmooth decentralized optimization us-
ing compression when doing communication.

Different from previous work, we propose a primal-dual
method that can achieve the optimal rate under the
nonconvex nonsmooth setting. Besides, by adding the
compression function in the communication, we reduce
the communication overhead and show it will not hurt
the convergence speed. For a better comparison, we
summarize the most related works in Table 1.

3 Algorithm

To solve problem (2), we first reformulate it into a
more compact form. Specifically, we first define the
edge-agent incident matrix W ∈ RM×N . The kth row
of W represents the kth edge of the graph G. If (i, j) is
the kth edge in the graph, we set Wk,i = 1, Wk,j = −1,
and the rest entries in the kth row are zeros.

For example, if the network graph G contains 4 nodes
which are connected as shown in Fig. 1, then

W =


1 −1 0 0
0 1 −1 0
0 0 1 −1
−1 0 0 1

 .
To match the dimension of xi, we let A = W ⊗ In.

Figure 1: A network structure graph.

Then, we rewrite the consensus constraints of problem
(2) as Ax = 0. The problem (2) can be reformulated
as the following form

min
x∈RnN

f(x) + h(x)

s.t. Ax = 0,

where f(x) = 1
N

∑N
i=1 fi(xi) and h(x) =

1
N

∑N
i=1 hi(xi). The Lagrangian function of above prob-

lem is defined as follows:

L(x, y) = f(x) + h(x) + yTAx.

Then, solving problem (2) is equivalent to finding the
saddle points of this Lagrange function, which can
be done simply by a primal-dual algorithm. When
the strong convexity is absent, to solve the Lagrange
function, people usually add (variant) augmented terms
to give more stability of the primal-dual algorithm
and the resulting algorithm is called the augmented
Lagrangian method (ALM). However, the Augmented
Lagrangian method (ALM) (Bertsekas, 1997) still does
not guarantee to converge for nonconvex nonsmooth
problems.

Inspired by Zhang & Luo (2020), we use the proximal-
primal-dual framework to solve the Lagrangian func-
tion. For each iteration, we include a proximal term to
the Lagrange function centered at an auxiliary sequence
{zt}, which is an exponentially weighted sequence of
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the primal iterates. Then we use primal-dual type al-
gorithm to approximately solve the saddle point of the
proximal Lagrangian function and update zt by taking
a weighted average of zt and xt+1. Specifically, let

K(x, y, z) = f(x) + yTAx+
p

2
‖x− z‖2. (3)

The steps of the algorithm can be written as:

xt+1 = arg minx(〈∇xK(xt, yt, zt), x− xt〉
+h(x) + p

2‖x− z
t‖2 + 1

2c‖x− x
t‖2);

yt+1 = yt + αAxt+1;

zt+1 = zt + β(xt+1 − zt).

Compared with ALM, here we do not use the aug-
mented term in the Lagrangian function. The dis-
tributed implementation of the above steps is given in
Algorithm 1. We need to see how to implement the
above steps distributedly. However, because y ∈ RMn,
it can not be allocated to the N agents directly.
Fortunately, when we update xt using the gradient
∇xK(x, y, z) = ∇f(x) + AT y + p(x − z) , we only
need the vector AT y instead of y itself. So we do
not need to store y directly but store µ = AT y in-
stead. Further as µ ∈ RNn, we can easily allocate
µ to the N agents. Let µ = (µT1 , · · · , µTN )T and
Ki(xi, µi, zi) = fi(xi) + p

2‖xi − zi‖
2 + µTi xi.

Algorithm 1 Distributed Primal-Dual Algorithm

1: Select c > 0, α > 0, 0 < β ≤ 1, and p ≥ 0;
2: Initialize x0i , µ

0
i and z0i ;

3: for t = 0, 1, 2, · · · , T do
4: xt+1

i = arg minxi

(
〈∇xiKi (xti, µ

t
i, z

t
i) , xi − xti〉

+hi (xi) + 1
2c‖xi − x

t
i‖2
)
;

5: Send xt+1
i to N (i) and receive xt+1

j from j ∈
N (i);

6: µt+1
i = µti + α

(
dix

t+1
i −

∑
j∈N(i) x

t+1
j

)
;

7: zt+1
i = zti + β

(
xt+1
i − zti

)
;

8: end for

In each iteration, first, we update xti in parallel by
performing proximal gradient method with Ki + hi.
Then, we exchange xt+1

i ’s with its neighbors. After
that, we update µi using xt+1

i and the xt+1
j ’s from its

neighbours. Lastly, we update zti by taking average
of zti and xt+1

i . Then, xi, µi, zi can be updated in
distributed manner.
To reduce the communication overhead, we add com-
pression at each iteration when the agents communicate
with their neighbours. To keep track of the true xti, any
neighbour of i needs to control a tracking variable x̂ti
of xti and update x̂ti by using the compressed difference
C
(
xt+1
i − x̂ti

)
. The compressed primal-dual algorithm

is given in Algorithm 2.

Algorithm 2 Communication Efficient Distributed
Primal-Dual Algorithm

1: Select c > 0, α > 0, 0 < β ≤ 1, p ≥ 0 and
compression function C (·);

2: Initialize x0i , x̂
0
i = x0i , µ

0
i and z0i ;

3: for t = 0, 1, 2, · · · , T do
4: xt+1

i = arg minxi

(
〈∇xi

Ki (xti, µ
t
i, z

t
i) , xi − xti〉

+hi(xi) + 1
2c‖xi − x

t
i‖2
)
;

5: Send C
(
xt+1
i − x̂ti

)
to N (i) and receive

C
(
xt+1
j − x̂tj

)
from j ∈ N (i);

6: x̂t+1
i = x̂ti + C

(
xt+1
i − x̂ti

)
;

7: x̂t+1
j = x̂tj + C

(
xt+1
j − x̂tj

)
, for j ∈ N (i);

8: µt+1
i = µti + α

(
dix̂

t+1
i −

∑
j∈N(i) x̂

t+1
j

)
;

9: zt+1
i = zti + β

(
xt+1
i − zti

)
;

10: end for

3.1 The intuition of our algorithms and the
error-bound-based framework

To overcome the nonconvexity, we add a proximal term
p
2‖x− z‖

2 to the objective function and then the fol-
lowing problem is equivalent to problem (2):

min
x,z∈RnN

f(x) +
p

2
‖x− z‖2 + h(x)

s.t. Ax = 0.

Let M(z) = minx:Ax=0 f(x) + p
2‖x− z‖

2 + h(x). Then
solving (2) is equivalent to solve

min
z
P (z). (4)

We denote x∗(z) = arg minx:Ax=0(f(x) +h(x) + p
2‖x−

z‖2). By Danskin’s Theorem, the gradient of M(z) is
given by

∇zM(z) = p(z − x∗(z)).

Furthermore, in Algorithm 1, the updates for xt and yt

can be viewed as approximately solving x∗(zt) with an
error xt+1−x∗(zt). Let x(y, z) = arg minx(K(x, y, z)+
h(x)), then the error can be further decomposed as
the sum of a primal error xt+1 − x(yt, zt) and a dual
error x(yt, zt)− x∗(zt). Moreover, when updating the
dual variables, we also suffer from a communication
error xt − x̂t in Algorithm 1. The primal error occurs
because we use only one step of proximal gradient
when minimizing K(x, yt, zt) +h(x) and the dual error
appears since yt is not an optimal dual vector. The
communication error is because of the compression.
According to the above analysis, when updating x, y,
we can reduce some primal-dual potential function and
when updating z, we approximately reduce M(z). Let

d(y, z) = min
x
K(x, y, z) + h(x)
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and define the potential function as

φ(x, y, z) = K(x, y, z) + h(x))− 2d(y, z) + 2M(z).

We want to prove that φt = φ(xt, yt, zt) is decreasing
and bounded below. To prove the decrease of the
potential function, we need to carefully bound the
errors. Here, we give lemmas for the error bounds
above.

Lemma 1 (The primal error bound). Suppose p > − L
N

and c ≤ N
L+Np , it holds that

‖xt+1 − x(yt, zt)‖ ≤ 1− σ2
σ2

‖xt+1 − xt‖,

where σ2 = c(Np−c)
2N .

Lemma 2 (The dual error bound). For all y ∈ RMn

and all z ∈ RNn, it holds that

‖x(y, z)− x∗(z)‖ ≤ σ4‖Ax(y, z)‖,

where σ4 is related to the p, L and the graph property
on the first node.

The remaining part is to deal with the compression
error. We bound the compression error by the difference
on xt and xt+1, which we give in the following Lemma.

Lemma 3. With the definition of x and x̂ in Algorithm
2, the following equality always holds:

T∑
t=1

‖xt − x̂t‖2 ≤ (1− δ)2

δ2

T∑
t=1

‖xt − xt−1‖2.

Equipped with these error bounds, we can prove that
our potential function is decreasing and this implies
the convergence of our algorithm. The formal theorem
will be given in the next section. Due to the space
limitation, the proofs of the above lemmas are placed
in the supplementary file (Lemma 12, Lemma 3 and
Lemma 1).

4 Theoretical Analysis

In this section, we establish the convergence result of
Algorithm 1 and Algorithm 2.

4.1 The stationary solution of problem (2)

First, we give the definition of stationary point and the
approximate stationary points of problem (2).

We say that x is a (first-order) stationary point of prob-
lem (2) if x satisfies the first-order (KKT) condition,
i.e. if there exists a y such that

0 ∈ ∂h(x) +∇f(x) +AT y

Ax = 0

We then define the ε-stationary point as follows:

Definition 1. (x, y) is called ε-stationary point if
L√
Nλ2
‖Ax‖ ≤ ε and there exists ν, such that ν ∈

∇f(x) +∂h(x) +AT y and
√
N‖ν‖ ≤ ε, where λ2 is the

smallest nonzero eigenvalue of ATA. Also we let λ1 to
be the largest eigenvalue of ATA for later use.

Remark 1. The ε-stationary point in Definition
1 is an ε2-solution in Hong et al. (2017); Tang
et al. (2019), where the ε2-solution in Hong et al.

(2017) is defined to be an x with ‖ 1
N

∑N
i=1∇fi(xi)‖2 +

L
Nλ2

∑
(i,j)∈E ‖xi − xj‖2 ≤ ε2, and the ε2-solution in

Tang et al. (2019) is defined to be the point with

‖ 1
N

∑N
i=1∇fi

(
1
N

∑N
i=1 xi

)
‖2 ≤ ε2. The detailed proof

can be found in the supplementary file due to the
limited space.

4.2 Assumptions

In this subsection, we state our assumptions for the
functions f and h, compression function C(·), and the
connectivity of communication network, which will be
used in the theoretical analysis.

Assumption 1. For the functions f and h, we assume:

1. There exists an w∗ ∈ Rn such that for all w ∈
Rn,

∑N
i=1 fi(w

∗) +
∑N
i=1 hi(w

∗) ≤
∑N
i=1 fi(w) +∑N

i=1 hi(w). Let f = f(w∗) + h(w∗)

2. Function fi is differentiable function with L-
Lipschitz continuous gradient, i.e., for all i, we
have

‖∇fi (w)−∇fi (w′) ‖ ≤ L‖w−w′‖, ∀w,w′ ∈ Rn.

3. hi is a proper convex, closed function.

By the gradient Lipschitz continuity of f , it is easy to
check that K(x, y, z) defined in (3) also has a Lipschitz-
continuous gradient with respect to variable x. Here, we
denote its Lipschitz constant as LK = L/N + p. Next,
we give the assumption of the cmpression function C(·).
Assumption 2. The compression function C (·) sat-
isfies the following inequality:

‖C(w)−w‖ ≤ (1−δ) ‖w‖ for some δ > 0, and ∀w ∈ Rn.

Remark 2. We give two examples of compression
function:

• Top k function, which preserves top k values of
vector x and sets the rest of entries to be zero,
satisfies the Assumption 2 and has been used in
Koloskova et al. (2019).
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Ring Grid Complete Star

Figure 2: Network structure in Table 2.

• Define I(x,∆) =

 −1, x < −∆
1, x > ∆
0, otherwise

. Then,

function ‖x‖∞I(x, ‖x‖∞/2) is a compression func-
tion satisfying Assumption 2, which maps Rn to
R × {−1, 0, 1}n and has been used in Wen et al.
(2017).

For the communication network, we assume that it is
connected so that the information can be sent through
different nodes.

Assumption 3. The graph G is connected.

4.3 The main theoretical result

Under the above assumptions, we have the following
main theoretical result:

Theorem 1. Suppose the parameters c ≤ 1
LK

, p >
−L/N , and α, β are chosen below some thresholds.
Then it holds that for any T > 0, there exists s ∈
{0, 1, · · · , T − 1} such that

(
xs+1, ys

)
is a B/

√
T -

solution, where

B = O
(√(

Φ (x0, y0, z0)− f
)
(f1(c) + f2(α) + f3(β))

)
,

f1(c) =
((

(1 +
√
λ1√
λ2c

+ p
)√

N + L√
N

)√
c,

f2(α) = L√
Nλ2α

, and f3(β) =
(√

p+
√
λ1βL√
λ2pN

)
1√
β

.

Remark 3. The thresholds of α and β are related to p,
δ, c, L and connectivity of the graph, which are defined
in the proof of the theorem in the supplementary file.

Remark 4. Using the result in the Theorem 1, to
achieve ε-stationary point, O( 1

ε2 ) iterations are needed,
which is the well-known lower bound of iteration com-
plexity for the nonconvex case (Carmon et al., 2019).

Corollary 1. Suppose we choose the parameters

c = N
3L , p = 2L

N , α = Lδ2

24λ1(2δ2+(1−δ)2)) and

β = δ2

1536γ((1−δ)2+2δ2)+12δ2 , where γ is a constant

related to the structure of the graph. For any
T > 0, there exists s ∈ {0, 1, · · · , T − 1}, such

that (xs+1, ys) is a B1/
√
T -solution, where B1 =

O
(√(

Φ (x0, y0, z0)− f
)√Lγ((1−δ)2+1)

δ2

)
, where γ is

a constant related to connection of graph.

Remark 5. For the smooth case where h(·) = 0, γ is
just the spectral gap of the Laplacian matrix defined as
λ1/λ2, the division of the largest eigenvalue with the
smallest non-zero eigenvalue which is widely used in
the distributed optimization (Sun & Hong, 2019).

For the nonsmooth case, we define L̃ as an (N − 1)n×
(N − 1)n matrix generating by eliminating the rows
and the columns corresponding to the first agent of
the Laplacian matrix. Then the γ is the division of
the largest eigenvalue of the Laplacian matrix with the
smallest eigenvalue of L̃.

In the following Table 2, we calculate parameter γ for
four types of graph structures defined in the Fig. 2 as
instance in smooth and nonsmooth settings, respectively.

Graph Structure Smooth Nonsmooth
Ring(10 nodes) 3.9021 10.4721

Grid(3× 3) 6 33.9973
Complete(10 nodes) 1 10

Star(10 nodes) 10 10

Table 2: Different γ under different settings.

Remark 6. By taking δ=1 in Theorem 1 and Corol-
lary 1, we get the convergence result of Algorithm 1.

5 Experimental Results

In this section, we conduct extensive experiments
to demonstrate the efficacy of the proposed Algo-
rithms 1 and 2. We compare our proposed algorithms
with a decentralized gradient descent based algorithm
CHOCO(S)GD (Koloskova et al., 2019), a primal-dual
algorithm Prox PDA (Hong et al., 2017) and a gradient-
tracking algorithm D2 (Tang et al., 2018b) on two
tasks. First, we implement the algorithms to solve a
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nonconvex linear regression, and then we implement
the algorithm to train a deep neural network.

5.1 Nonconvex Linear Regression

To show the efficacy of our proposed algorithms, we
start with a least square linear regression problem with
a nonconvex regularizer. Specifically, we set

fi(w) =
1

2
‖Biw − bi‖2 + 5

n∑
j=1

w2
j

w2
j + 1

,

where the regularizer is a sparsity-inducing term.

In the experiment we randomly generate data pairs
(Bi, bi) ∈ R100×100 × R100. Two graph network struc-
tures are used in the experiment: a ring with 10
nodes and a 3× 3 grid graph in Figure 2. The hyper-
parameters of all compared algorithms are tuned by
grid search. We report the experimental results with
10 times repeat.

ring grid

Figure 3: Results on Smooth and Full Precision Set-
tings.

In Fig. 3, we only consider smooth objective func-
tion f , and give the results on the consensus residual∑N
i=1 ‖xi − x̄‖2, the norm of gradient of

∑N
i=1 fi(x̄)

and the function value evaluated at x̄, where x̄ =
1
N

∑N
i=1 xi. In the view of consensus residual and

gradient norm, the primal-dual methods and D2 can
converge much faster than gradient descent method
(CHOCOGD), and can attain a more accurate solution.
Besides, our algorithm converges with similiar speed to
Prox PDA but slower than D2. For the function value,

three methods can converge to the similar function
value but CHOCOGD is slowest.

ring grid

Figure 4: Results on Smooth and Compressed Settings.

Next, we add compression to the communication vari-
ables by using top k sparsification function (Koloskova
et al., 2019). We select k to be 5 and give the experi-
mental results of different algorithms in Fig. 4. Still,
we evaluate the solution with consensus residuals, gra-
dient norms, and the function values as before. As it is
shown in Fig. 4, our methods and prox PDA can attain
better solutions than CHOCOGD and D2. Moreover,
due to our error-bound-based design, our algorithm
performs fairly better than the compressed version of
prox PDA.

Next, we consider a nonsmooth objective, where the
nonsmooth term h(w) is chosen to be the indicator

function: of the unit ball: h(w) =

{
0, ‖x‖ ≤ 1
∞, ‖x‖ > 1

.

In other word, we add a unit-ball constraint to the
optimization variables. Because D2 does not consider
the nonsmooth case, we don’t compare our algorithms
with D2.

For the CHOCOGD and Prox PDA, because only
smooth versions are proposed, we simply extend these
two methods by replacing gradient descent step with
gradient projection step. We still calculate the consen-
sus residual of xi’s and the function values evaluated
at x̄. To estimate the stationarity of the solution x̄,
we plot the norm of the proximal gradient. Concretely
speaking, we perform a gradient projection step on
x̄ with stepsize 1, and denote the point attained by
gradient projection by x̂. Then ‖x̂ − x̄‖ is used as a
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ring (full precision) grid (full precision) ring (compressed) grid (compressed)

Figure 5: Results on Nonsmooth Settings.

Figure 6: Results on CIFAR10 with Full Precision Communication.

measure of stationarity. We show the results for the
nonconvex nonsmooth objective in Fig. 5. In Fig. 5,
the upper row is the results on consensus, the middle
row is the results on stationarity and the bottom row
shows the results on function values. Although in our
algorithm, the constraint is only added in the first node,
our algorithm can converge faster than CHOCOGD
and Prox PDA. Moreover, for both the nonsmooth and
compression setting, our algorithm converges much
faster than Prox PDA.

5.2 Neural Network Case

In this section, we show the results on training
ResNet-18 (He et al., 2016) on the dataset CIFAR10
(Krizhevsky et al., 2009). Still, we use the top k spar-
sification function as a compression function, and set
k to be 0.1n, where n is the dimension of weight x.
We use a ring with 10 nodes as the communication
network structure. For the hyper-parameter, all three

algorithms use the learning rate 1e−2, in our algorithm
we use p = 5 for ‖x− z‖ term, and the rest parameters
are tuned by grid search with respect to the training
accuracy. We use batch size as 32, and simply extend
our method and Prox PDA to the stochastic version
by replacing the gradient with the stochastic gradient
(mini-batch gradient). To measure the performance of
the compared algorithms, we plot the training loss on
the first node and the classification accuracy on the test
set. We do not have a comparable result on algorithm
D2, we illustrate results of CHCOSGD, Prox PDA, and
our algorithm only. Experimental results are illustrated
in Figures 6-7.

Fig. 6 shows the results with full precision communica-
tion. The left figure shows the training loss, the middle
figure shows the test accuracy, and the right figure
shows the zooming-in version of the accuracy curve in
the last few iterations. It can be seen that our algo-
rithm converges slower than SGD and Prox PDA at
the beginning iterations, because the proximal term in-
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troduces more errors at the beginning. But finally, our
algorithm becomes faster and can get a better solution
than CHOCOSGD and Prox PDA in 200 epochs.

Besides, in Fig. 7, we show the results of Algorithm
2 with compressed communication. The left figure is
the training loss and the right figure is test accuracy.
Unfortunately, Prox PDA fails to get a good solution,
we do not draw the curve of Prox PDA in Fig. 7. Al-
though our algorithm converges a little bit slower than
CHOCOSGD because of the inexact of dual variables
and large proximal error in the initial phase, our al-
gorithm becomes faster than CHOCOSGD in about
20,000 iterations and finally gets higher accuracy in
the 200 epochs compared to CHOCOSGD.

Figure 7: Results on CIFAR10 with Compressed Com-
munication.

6 Conclusion

In this paper, we proposed a decentralized primal-
dual algorithm to solve the nonconvex nonsmooth dis-
tributed optimization problems. To reduce the com-
munication overhead we use the compression function
during the communication. We show that for the non-
convex nonsmooth case the algorithm can converge to
the ε-stationary point with O( 1

ε2 ) iterations, which is
a well-known lower bound for nonconvex optimization.
The experimental results on nonconvex linear regres-
sion and deep neural networks show the efficacy of the
proposed algorithms.
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