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A Proofs for upper bounds

A.1 Proof of Theorem 1

We provide the proof of Theorem 1 in this section. We focus on regret and query complexity bounds on one domain Iu,
and sum over domain u to obtain Theorem 1. Recall that we define the interaction history between the learner and the
environment up to time t be Ht = {x1:t, f1:t, ξ1:t}; we abbreviate E[·|xt, Ht−1] as Et−1[·].

The following lemma upper bounds the regret with sum of uncertainty estimates, ∆t = η̃2 min

(
1, ‖xt‖2M−1

t

)
. A similar

lemma has appeared in Cesa-Bianchi et al. (2009, Lemma 1).

Lemma 1. In the setting of Theorem 1, with probability 1− δ
2 , for all t ∈ [T ], (ŷt − 〈θ∗, xt〉)2 = Õ (∆t).

Proof of Lemma 1. Denote the value of M,Q at the beginning of round t as Mt,Qt. Let λ = 1/C2, Vt = Mt − λI =∑
s∈Qt xsx

>
s . Therefore, θ̂t = M−1t (

∑
s∈Qt xsys) = M−1t (Vtθ

∗ +
∑
s∈Qt ξsxs), and

〈xt, θ̂t − θ∗〉 =
∑
s∈Qt

ξs(x
>
t M

−1
t xs)− λx>t M−1t θ∗. (2)

The first term is a sum over a set of independent sub-Gaussian random variables, so it is (ησ)2-sub-Gaussian with
σ2 =

∑
s∈Qt x

>
t M

−1
t xsx

>
s M

−1
t xt ≤ x>t M−1t xt. Define event

Et =


∣∣∣∣∣∣
∑
s∈Qt

ξs(x
>
t M

−1
t xs)

∣∣∣∣∣∣ ≤ η
√

2 ln
4T

δ
‖xt‖M−1

t

 .

By standard concentration of subgaussian random variables, we have P(Et) ≥ 1 − δ
2T . Define E = ∩Tt=1Et. By union

bound, we have P(E) ≥ 1− δ
2 . We henceforth condition on E happening, in which case the first term of Equation (2) is

bounded by η
√

2 ln (4T/δ)‖xt‖M−1
t

at every time step t.

Meanwhile, the second term of Equation (2) can be bounded by Cauchy-Schwarz:∣∣∣λx>t M−1t θ∗
∣∣∣ = λ

∣∣∣〈M−1/2t xt,M
−1/2
t θ∗〉

∣∣∣ ≤ λ‖xt‖M−1
t
‖θ∗‖M−1

t
≤
√
λ‖θ∗‖2‖xt‖M−1

t
,

which is at most ‖xt‖M−1
t

, since ‖θ∗‖2 ≤ C and λ = 1/C2. Using the basic fact that (A+B)2 ≤ 2A2 + 2B2,

(〈xt, θ̂t〉 − 〈xt, θ∗〉)2 ≤ (4η2 ln (4T/δ) + 2)‖xt‖2M−1
t
.

Since ŷt = clip(〈xt, θ̂t〉) ∈ [−1, 1] and
∣∣〈xt, θ∗〉∣∣ ≤ 1, we also trivially have (ŷt − 〈θ∗, xt〉)2 ≤ 4. Therefore,

(ŷt − 〈θ∗, xt〉)2 ≤ min
(

4, (4η2 ln (4T/δ′) + 2)‖xt‖2M−1
t

)
≤ (4η2 ln (2T/δ′) + 4) ·min

(
1, ‖xt‖2M−1

t

)
≤ Õ

(
η̃2 min

(
1, ‖xt‖2M−1

t

))
= Õ(∆t).
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The following lemma bounds the sum of uncertainty estimates for k queried examples in a domain:

Lemma 2. Let a1, . . . , ak be k vectors in Rd. For i ∈ [k], define Ni = λI +
∑i−1
j=1 aja

>
j . Then, for any S ⊆ [k],∑

i∈S min

(
1, ‖ai‖2N−1

i

)
≤ ln(det(λI +

∑
i∈S aia

>
i )/ det(λI)).

Proof of Lemma 2. We denote by Ni,S = λI +
∑
j∈S:j≤i−1 aja

>
j . As S is a subset of [k], we have that Ni,S � Ni.

Consequently, ‖ai‖N−1
i
≤ ‖ai‖N−1

i,S
. Therefore,

∑
i∈S

min
(

1, ‖ai‖2N−1
i

)
≤
∑
i∈S

min

(
1, ‖ai‖2N−1

i,S

)
≤ ln

(
det(λI +

∑
i∈S aia

>
i )

det(λI)

)
,

where the second inequality is well-known (see e.g. Lattimore and Szepesvári, 2018, Lemma 19.4).

Proof of Theorem 1. Let pt = min(1, α∆t) be the learner’s query probability at time t; it is easy to see that Et−1 [qt] = pt.

Let random variable Zt = qt∆t. We have the following simple facts:

1. Zt ≤ η̃2,

2. Et−1Zt = pt∆t,

3. Et−1Z2
t ≤ η̃2 · Et−1Zt ≤ η̃2pt∆t.

For every u ∈ [m], define event

Fu =


∣∣∣∣∣∣
∑
t∈Iu

pt∆t −
∑
t∈Iu

qt∆t

∣∣∣∣∣∣ ≤ O
η̃√∑

t∈Iu

pt∆t ln
T

δ
+ η̃2 ln

T

δ


 . (3)

Applying Freedman’s inequality to {Zt}t∈Iu (see e.g. Bartlett et al., 2008, Lemma 2), we have that P(Fu) ≥ 1− δ
4m .

Similarly, define

G =


∣∣∣∣∣∣
T∑
t=1

pt −
T∑
t=1

qt

∣∣∣∣∣∣ ≤ O

√√√√ T∑

t=1

pt ln
T

δ
+ ln

T

δ


 . (4)

Applying Freedman’s inequality to {qt}t∈Iu , we have that P(G) ≥ 1− δ
4 .

Furthermore, define H = E ∩ (∩mu=1Fu) ∩ G, where E is the event defined in the proof of Lemma 1. By union bound,
P(H) ≥ 1− δ. We henceforth condition on H happening.

By the definition of Fu, Solving for
∑
t∈Iu pt∆t in Equation (3), we get that

∑
t∈Iu

pt∆t = Õ

∑
t∈Iu

qt∆t + η̃2

 . (5)

Using Lemma 2 with {ai}ki=1 = {xt}t∈QT , and S = Iu ∩QT , we get that

∑
t∈Iu

qt∆t ≤ η̃2 · ln det

I + C2
∑

t∈Iu∩QT

xtx
>
t


≤ 2η̃2du ln

(
1 + C2Tu/du

)
= Õ(η̃2du).

In combination with Equation (5), we have
∑
t∈Iu pt∆t = Õ(η̃2du).
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We divide the examples in domain u into high and low risk subsets with index sets Iu,+ and Iu,− (abbrev. I+ and I−
hereafter). Formally,

I+ = {t ∈ Iu : α∆t > 1}, I− = I − I+.

We consider bounding the regrets and the query complexities in these two sets respectively:

1. For every t in I+, as pt = 1, label yt is queried, so∑
t∈I+

∆t =
∑
t∈I+

qt∆t ≤
∑
t∈Iu

qt∆t = Õ(η̃2du).

Since for every t in I−, ∆t > 1/α, we have
∑
t∈I+ ∆t > |I+|/α. This implies that

∑
t∈I+ pt = |I+| = Õ(αη̃2du).

2. For every t in I−, pt = α∆t. Therefore,
∑
t∈I− α∆2

t =
∑
t∈I− pt∆t ≤

∑
t∈Iu pt∆t = Õ(η̃2du). By Cauchy-

Schwarz, and the fact that|I−| ≤ Tu, we get that
∑
t∈I− ∆t ≤

√
|I−| · (

∑
t∈I− ∆2

t ) = Õ(η̃
√
duTu/α).

Consequently,
∑
t∈I− pt =

∑
t∈I− α∆t ≤ Õ(η̃

√
αduTu).

Summing over the two cases, we have∑
t∈Iu

pt ≤ Õ
(
αη̃2du + η̃

√
αduTu

)
,
∑
t∈Iu

∆t ≤ Õ
(
η̃2du + η̃

√
duTu/α

)
,

If α ≤ 1
η̃2

Tu
du

, we have αη̃2du ≤ η̃
√
αduTu, otherwise we use the trivial bound

∑
t∈Iu pt ≤ Tu. Therefore, the above

bounds can be simplified to∑
t∈Iu

pt ≤ Õ
(

min{Tu, η̃
√
αduTu}

)
,
∑
t∈Iu

∆t ≤ Õ
(

max{η̃2du, η̃
√
duTu/α}

)
. (6)

For the query complexity, from the definition of event G, applying AM-GM inequality on Equation (4), we also have

Q =

T∑
t=1

qt = Õ

 T∑
t=1

pt + 1

 = Õ

 m∑
u=1

min{Tu, η̃
√
αduTu}+ 1

 .

For the regret guarantee, we have by the definition of event E and Lemma 1 that

T∑
t=1

(ŷt − 〈θ∗, xt〉)2 ≤ Õ

 T∑
t=1

∆2
t

 = Õ

 m∑
u=1

∑
t∈Iu

∆2
t


 .

Using the second inequality of Equation (6), we get

T∑
t=1

(ŷt − 〈θ∗, xt〉)2 ≤ Õ

 m∑
u=1

max{η̃2du, η̃
√
duTu/α}

 .

The theorem follows.

A.2 Proof of Theorem 2

Before going into the proof, we set up some useful notations. Define I = {0, 1, . . . , k} as the index set of the αi’s of interest.
Recall the number of copies k = 1 + d3 log T e ≤ 2 + 3 log T . Recall also that B′ = bB/kc is the label budget for each
copy.

Let pit = min(1, αi∆t) be the intended query probability of copy i at time step t; let rit ∼ Bernoulli(pit) be the attempted
query decision of copy i at time step t; let Ait = 1

[∑t−1
j=1 r

i
j < B′

]
, i.e. the indicator that copy i has not reached its budget

limit at time step t. Using this notation, the actual query decision of copy i, qit, can be written as ritA
i
t.

We have the following useful observation that gives a sufficient condition for copy i to be within its label budget:
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Lemma 3. Given i ∈ [k], if
∑T
t=1A

i
tr
i
t < B′, the following items hold:

1.
∑T
t=1 r

i
t < B′.

2. For all t ∈ [T ], Ait = 1, i.e. copy i does not run of label budget throughout.

Proof. Suppose for the sake of contradiction that
∑T
t=1 r

i
t ≥ B′. Consider the first B′ occurrences of rij = 1; call them

J = {j1, . . . , jB′}. It can be seen that for all j ∈ J , Aij = 1. Therefore,

T∑
t=1

Aitr
i
t ≥

∑
j∈J

Aijr
i
j ≥|J | = B′,

which contradicts with the premise that
∑T
t=1A

i
tr
i
t < B′.

The second item immediately follows from the first item, as
∑T
j=1 r

i
j < B′ implies that

∑t−1
j=1 r

i
j < B′ for every t ∈ [T ].

Complementary to the above lemma, we can also see that for every i ∈ [k],
∑T
t=1A

i
tr
i
t =

∑T
t=1 q

i
t ≤ B′ is trivially true.

We next give a key lemma that generalizes Theorem 1, and upper bounds
∑T
t=1A

i
tr
i
t for all i’s beyond the above trivial B′

bound.

Lemma 4. There exists C = polylog(T, 1δ ) ≥ 1, such that with probability 1− δ/2,

T∑
t=1

Ait∆t ≤ C · η̃
∑
u

√
duTu/

√
αi, and

T∑
t=1

Aitr
i
t ≤ C · η̃

√
αi
∑
u

√
duTu,

for every i ∈ I such that αi ∈

[
1
η̃2

(
1∑

u

√
duTu

)2

, 1
η̃2 minu∈[m]

Tu
du

]
.

Proof. Applying Freedman’s inequality to the martingale difference sequence {Ait(rit−pit)}Tt=1, we get that with probability
1− δ/4,

T∑
t=1

Aitr
i
t = Õ

 T∑
t=1

Aitp
i
t + 1

 . (7)

Applying Freedman’s inequality to {Ait(rit − pit)∆t1[t ∈ Iu]}Tt=1, and take a union bound over all u ∈ [m], we get that
with probability 1− δ/4, ∑

t∈Iu

Aitp
i
t∆t = Õ

∑
t∈Iu

Aitr
i
t∆t + η̃2

 .

Using Lemma 2 with {ai}ki=1 = {xt}t∈QT , and S = Iu ∩ QT we get that, deterministically,
∑
t∈Iu A

i
tr
i
t∆t ≤∑

t∈Iu qt∆t = Õ(η̃2du). So with probability 1− δ/4,∑
t∈Iu

Aitp
i
t∆t = Õ(η̃2dI). (8)

We henceforth condition on Equations (7) and (8) occuring, which happens with probability 1− δ/2 by union bound. Let
I+ = {t ∈ Iu : αi∆j > 1}, and I− = Iu − I+.

1. For I+, by Equation (8),
∑
t∈I+ A

i
j∆j = Õ(η̃2du) =⇒

∑
j∈I+ A

i
jp
i
j = Õ(αiη̃

2du).

2. For I−, by Equation (8),
∑
j∈I− A

i
jαi∆

2
j =

∑
j∈I− A

i
jpj∆j = Õ(η̃2du); this implies that

∑
j∈I− A

i
j∆j =

Õ(η̃
√
duTu/αi). In this event, we also have

∑
j∈I− A

i
jp
i
j =

∑
j∈I− A

i
jαi∆j = Õ(η̃

√
duTuαi).
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Summing over the two cases, we have∑
t∈Iu

Aitp
i
t ≤ Õ(αiη̃

2du + η̃
√
αiduTu),

∑
t∈Iu

Ait∆t ≤ Õ(η̃2du + η̃
√
duTu/αi),

By the assumption that αi ≤ 1
η̃2 minu

Tu
du

, for every u, we have, αiη̃2du ≤ η̃
√
αiduTu. This implies that∑

t∈Iu

Aitp
i
t ≤ Õ(η̃

√
αiduTu),

∑
t∈Iu

Ait∆t ≤ Õ(η̃
√
duTu/αi). (9)

Summing over u ∈ [m], we get

T∑
t=1

Aitp
i
t ≤ Õ(η̃

m∑
u=1

√
αiduTu),

T∑
t=1

Ait∆t ≤ Õ(η̃

m∑
u=1

√
duTu/αi).

Therefore, using Equation (7), we have

T∑
t=1

Aitr
i
t ≤ Õ

 T∑
t=1

Aitp
i
t + 1

 ≤ Õ
η̃ m∑

u=1

√
αiduTu + 1

 ≤ Õ
η̃ m∑

u=1

√
αiduTu

 ,

where the last inequality uses the assumption that αi ≥ 1
η̃2

(
1∑

u

√
duTu

)2

. The lemma follows.

We are now ready to prove Theorem 2.

Proof of Theorem 2. First, the query complexity of Fixed-Budget QuFUR is B by construction, as the algorithm maintains
k copies of QuFUR, and each copy consumes at most B′ = bB/kc labels.

We now bound the regret of Fixed-Budget QuFUR. We consider B = Ck(
∑
u

√
duTu) · minu∈[m]

√
Tu/du =

Õ
(

(
∑
u

√
duTu) ·minu∈[m]

√
Tu/du

)
, where C = polylog(T, 1δ ) ≥ 1 is defined in Lemma 4. We will show that if

B ∈ (0, B], with probability 1− δ, the regret of Fixed-Budget QuFUR is at most Õ
(
η̃2(

∑
u

√
duTu)

2

B

)
.

If B < 2Cη̃2k, the regret of the algorithm is trivially upper bounded by 4T , which is clearly Õ

(
η̃2(

∑
u

√
duTu)

2

B

)
.

Therefore, throughout the rest of the proof, we consider B ∈ [2Cη̃2k,B].

Recall that I =
{

2i

T 2 : i ∈ {0, 1, . . . , k}
}

. We denote by αmin = 1
T 2 the minimum element of I , and αmax = 2k

T 2 ≥ T the
maximum element of I .

Denote by

iB = max

i ∈ I : Cη̃
√
αi

m∑
u=1

√
duTu < B′

 = max

i ∈ I : αi <

(
B′

Cη̃
∑
u

√
duTu

)2
 .

AsB ∈ [2Cη̃2k,B], we have
(

B′

Cη̃
∑
u

√
duTu

)2

∈ (αmin, αmax]. Indeed,
(

B′

Cη̃
∑
u

√
duTu

)2

≤
(

B
Ckη̃

∑
u

√
duTu

)2

≤ T ≤

αmax,
(

B′

Cη̃
∑
u

√
duTu

)2

≥
(

η̃∑
u

√
duTu

)2

> αmin, as
∑
u

√
duTu ≤

∑
u Tu = T .

Therefore, by the definition of iB , we have

αiB ∈

1

2

(
B′

Cη̃
∑
u

√
duTu

)2

,

(
B′

Cη̃
∑
u

√
duTu

)2
 (10)
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Again by our assumption on B, 1
2

(
B′

Cη̃
∑
u

√
duTu

)2

≥ η̃2
(

1∑
u

√
duTu

)2

≥ 1
η̃2

(
1∑

u

√
duTu

)2

,
(

B′

Cη̃
∑
u

√
duTu

)2

≤(
B

Ckη̃
∑
u

√
duTu

)2

≤ 1
η̃2 minu∈[m]

Tu
du

. Therefore,

αiB ∈

 1

η̃2

(
1∑

u

√
duTu

)2

,
1

η̃2
min
u∈[m]

Tu
du

 .
Hence, the premises of Lemma 4 is satisfied for i = iB ; this gives that with probability 1− δ/2,

T∑
t=1

AiBt ∆t ≤ C · η̃
∑
u

√
duTu/

√
αiB , (11)

and
T∑
t=1

AiBt r
iB
t ≤ C · η̃

√
αiB

∑
u

√
duTu. (12)

Now from Equation (12) and the definition of iB , we have

T∑
t=1

AiBt r
iB
t ≤ C · η̃

√
αiB

∑
u

√
duTu < B′.

Applying Lemma 3, we deduce that for all t in [T ], AiBt = 1. Plugging this back to Equation (11), we have

T∑
t=1

∆t =

T∑
t=1

AiBt ∆t

≤C · η̃
∑
u

√
duTu/

√
αiB

≤Õ

(
η̃2(
∑
u

√
duTu)2

B

)
.

where the second inequality is from the lower bound of αiB in Equation (10).

Combining the above observation with Lemma 1, along with the union bound, we get that with probability 1− δ,

R =

T∑
t=1

(ŷt − 〈θ∗, xt〉)2 = Õ

 T∑
t=1

∆t

 = Õ

(
η̃2(
∑
u

√
duTu)2

B

)
.

A.3 Proof of Theorem 4

Define

βk = βk(F , δ) := 8η2 log (4N (F , 1/T 2, ‖ · ‖∞)/δ) + 2k/T 2(16 +
√

2η2 ln (16k2/δ)), (13)

and
Ru :=

Tu
T 2

+ 4 min(d′u, Tu) + 4d′uβT lnTu = Õ
(
η2d′u logN (F , T−2, ‖ · ‖∞)

)
.

Analogous to Theorem 1, the following theorem provides the query and regret guarantees of of Algorithm 3.

Theorem 5. Suppose the example sequence {xt}Tt=1 has the following structure: [T ] has an admissible partition{
Iu : u ∈ [m]

}
, where for each u, |Iu| = Tu, and the eluder dimension of F w.r.t. {xt}t∈Iu is d′u. Suppose

α ≤ 1
η̃2 minu∈[m]

Tu
Ru

. With probability 1− δ, Algorithm 3 satisfies:

1. Its query complexity Q = Õ(η̃ ·
√
α
∑
u

√
RuTu).

2. Its regret R = Õ(η̃ ·
∑
u

√
RuTu)/

√
α.
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We shall prove Theorem 4 directly below; the proof of Theorem 5 follows as a corollary, using the same argument in the proof
of Theorem 2; we note that the admissibility condition on domain partition {Iu}mu=1 ensures that {Ait(rit − pit)1[t ∈ I]}Tt=1

and {Ait(rit − pit)∆t1[t ∈ I]}Tt=1 are still martingale difference sequences in our proof.

Proof of Theorem 4. We focus on proving the analogues of Lemma 1 and Lemma 2; the rest of the proof follows the same
argument as the proof of Theorem 2 and is therefore omitted.

Lemma 5 (Analogue of Lemma 1). With probability 1− δ/2, R ≤
∑T
t=1 ∆t.

Proof. Recall that the confidence set at time t is Ft = {f ∈ F :
∑
i∈Qt (f(xi)− f̂t(xi))2 ≤ β|Qt|(F , δ)}. By Russo and

Van Roy (2013, Proposition 2), we have that with probability 1− δ/2, f∗ ∈ Ft, for all t ∈ [T ].

Meanwhile, if f∗ ∈ Ft, for all t ∈ [T ], (f̂t(xt)− f∗(xt))2 ≤ supf1,f2∈Ft(f1(xt)− f2(xt))
2 = ∆t. This implies that the

regret is bounded by R ≤
∑T
t=1 ∆t.

Lemma 6 (Analogue of Lemma 2).
∑
t∈Iu qt∆t ≤ Ru.

Proof. Let k = |Iu ∩QT | and write d = d′u as a shorthand. Let (D1, . . . , Dk) be {∆t : t ∈ Iu ∩ QT } sorted in
non-increasing order. We have

∑
t∈Iu∩QT

∆t =

k∑
j=1

Dj =

k∑
j=1

Dj1[Dj ≤ 1/T 4] +

k∑
j=1

Dj1[Dj > 1/T 4].

Clearly,
∑k
j=1Dj1[Dj ≤ 1/T 4] ≤ Tu

T 2 .

We know for all j ∈ [k], Dj ≤ 4. In addition, Dj > ε2 ⇐⇒
∑
t∈Iu∩QT 1[∆t > ε2] ≥ j. By Lemma 7 below, this can

only occur if j < (4βT /ε
2 + 1)d. Thus, when Dj > ε2, j < (4βT /ε

2 + 1)d, which implies ε2 < 4βT d
j−d . This shows that if

Dj > 1/T 4, Dj ≤ min
{

4, 4βT dj−d

}
. Therefore

∑
j Dj1[Dj > 1/T 4] ≤ 4d+

∑k
j=d+1

4βT d
j−d ≤ 4d+ 4dβT log Tu.

Consequently, ∑
t∈Iu

qt∆t =
∑

t∈Iu∩QT

∆t ≤ min

{
4Tu,

Tu
T 2

+ 4d′u + 4d′uβT log Tu

}
≤ Ru.

The following lemma generalizes Russo and Van Roy (2013, Proposition 3), in that it considers a subsequence of examples
coming from a subdomain of X . We define dimE

I as the eluder dimension of F with respect to support {xt : t ∈ I}. It can
be easily seen that dimE

Iu ≤ dimE
u .

Lemma 7. Fix I ⊆ [T ]. If {βt ≥ 0}Tt=1 is a nondecreasing sequence and Ft := {f ∈ F :
∑
i∈Qt (f(xi)− f̂t(xi))2 ≤

β|Qt|(F , δ)}, then

∀ε > 0,
∑

t∈I∩QT

1[∆t > ε2] <

(
4βT
ε2

+ 1

)
dimEI (F , ε).

Proof. Let k = |I ∩QT |, (a1, . . . , ak) = (xt : t ∈ I ∩QT ), and (b1, . . . , bk) = (∆t : t ∈ I ∩QT ). First, we show that if
bj > ε2 then aj is ε-dependent on fewer than 4βT /ε

2 disjoint subsequences of (a1, . . . , aj−1), for j ≤ k, in other words, if
there exist K disjoint subsequences of (a1, . . . , aj−1) such that aj is ε-dependent on all of them, then K < 4βT

ε2 .

Indeed, suppose bj > ε2 and aj = xt, there are f1, f2 ∈ Ft such that f1(aj) − f2(aj) > ε. By definition, if aj is
ε-dependent on a subsequence (ai1 , . . . , aip) of (a1, . . . , aj−1), then

∑p
l=1 (f1(ail)− f2(ail))

2 > ε2. Thus, if aj = xt is
ε-dependent on K subsequences of (a1, . . . , aj−1), then

∑
i∈Qt (f1(xi)− f2(xi))

2 > Kε2. By the triangle inequality,√∑
i∈Qt

(f1(xi)− f2(xi))2 ≤
√∑
i∈Qt

(f1(xi)− f∗(xi))2 +

√∑
i∈Qt

(f2(xi)− f∗(xi))2 ≤ 2
√
βT .
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Algorithm 4 Fixed-budget QuFUR for general function class

Require: Hypotheses set F , time horizon T , label budget B, parameter δ, noise level η.
1: Labeled dataset Q ← ∅.
2: k ← 3dlog2 T e.
3: for i = 0 to k do
4: Parameter αi ← 2i/T 2.
5: for t = 1 to T do
6: Predict f̂t ← argminf∈F

∑
i∈Q (f(xi)− yi)2.

7: Confidence set Ft ← {f ∈ F :
∑
i∈Q (f(xi)− f̂(xi))

2 ≤ β|Q|(F , δ)},
8: where βk := 8η2 log (4N (F , 1/T 2, ‖ · ‖∞)/δ) + 2k/T 2(16 +

√
2η2 ln (16k2/δ)).

9: Uncertainty estimate ∆t = supf1,f2∈Ft
∣∣f1(xt)− f2(xt)

∣∣2.
10: for i = 0 to k do
11: if

∑t−1
j=1 q

i
j < bB/kc then

12: With probability min {1, αi∆t}, set qit = 1.
13: if

∑
i q
i
t > 0 then

14: Query yt. Q ← Q
⋃
{t}.

Thus, K < 4βT /ε
2.

Next, we show that in any sequence of elements in I , (c1, . . . , cτ ), there is some cj that is ε-dependent on at least τ/d− 1
disjoint subsequences of (c1, . . . , cj−1), where d := dimE

I (F , ε). For any integer K satisfying Kd+ 1 ≤ τ ≤ Kd+ d, we
will construct K disjoint subsequences C1, . . . , CK . First let Ci = (ci) for i ∈ [K]. If cK+1 is ε-dependent on C1, . . . , CK ,
our claim is established. Otherwise, select a Ci such that cK+1 is ε-independent and append cK+1 to Ci. Repeat for all
j > K + 1 until cj is ε-dependent on each subsequence or j = τ . In the latter case

∑
|Ci| ≥ Kd, and|Ci| = d. In this case,

cτ must be ε-dependent on each subsequence, by the definition of dimE
I .

Now take (c1, . . . , cτ ) to be the subsequence (at1 , . . . , atτ ) of (a1, . . . , ak) consisting of elements aj for which bj > ε2.
We proved that each atj is ε-dependent on fewer than 4βT /ε

2 disjoint subsequences of (a1, . . . , atj−1). Thus, each cj is
ε-dependent on fewer than 4βT /ε

2 disjoint subsequences of (c1, . . . , cj−1).5 Combining this with the fact that there is
some cj that is ε-dependent on at least τ/d− 1 disjoint subsequences of (c1, . . . , cj−1), we have τ/d− 1 < 4βT /ε

2. Thus,
τ < (4βT /ε

2 + 1)d.

A.4 Analysis of uniform query strategy for online active linear regression with oblivious adversary

Theorem 6. With probability 1 − δ, the uniformly querying strategy with probability µ achieves E[R] = Õ
(
η̃2d
µ

)
and

E[Q] = µT .

Proof sketch. As Q =
∑T
t=1 qt is a sum of T iid Bernoulli random variables with means µ, E[Q] = µT .

We now bound the regret of the algorithm. We still define ∆t = η̃2 min{1, ‖xt‖2M−1
t

}.

Using Lemma 2 with {ai}ki=1 = {xt}Tt=1, and S = QT ,
∑
t qt∆t = Õ(η̃2d). Let Zt = qt∆t. We have Zt ≤ ∆t ≤ η̃2,

Et−1Zt = µ∆t, and Et−1Z2
t ≤ η̃2µ∆t. Applying Freedman’s inequality, with probability 1− δ/2,

T∑
t=1

µ∆t −
T∑
t=1

qt∆t = O

η̃
√√√√ T∑

t=1

µ∆t ln (lnT/δ) + η̃2 ln (lnT/δ))

 .

The above inequality implies that
∑T
t=1 ∆t = Õ

(
η̃2d
µ

)
. Now, applying Lemma 1 and take the union bound, we have that

5To see this, observe that if c is ε-dependent on a sequence S, then c must also be ε-dependent on any supersequence of S.
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with probability 1− δ,

R = Õ

 T∑
t=1

∆t

 = Õ

(
η̃2d

µ

)
.

Use the basic relationship between the expectation and tail probability E[R] =
∫∞
0

P(R ≥ a)da, we conclude that

E[R] = Õ
(
η̃2d
µ

)
.

B Proofs for lower bounds

B.1 Proof of Theorem 3

Theorem 3. For any η ≥ 1, any set of positive integers
{

(du, Tu)
}m
u=1

and integer B that satisfy

du ≤ Tu,∀u ∈ [m],

m∑
u=1

du ≤ d, B ≥
m∑
u=1

du,

there exists an oblivious adversary such that:
1. It uses a ground truth linear predictor θ? ∈ Rd such that ‖θ∗‖2 ≤

√
d, and

∣∣〈θ∗, xt〉∣∣ ≤ 1; in addition, the noises {ξt}Tt=1

are sub-Gaussian with variance proxy η2.
2. It shows example sequence {xt}Tt=1 such that [T ] can be partitioned into m disjoint nonempty subsets {Iu}mu=1, where
for each u, |Iu| = Tu, and {xt}t∈Iu lie in a subspace of dimension du.
3. Any online active learning algorithm A with label budget B has regret Ω((

∑m
u=1

√
duTu)2/B).

Proof. Our proof is inspired by Vovk (2001, Theorem 2). For u ∈ [m] and i ∈ [du], define cu,i = e∑u−1
v=1 dv+i

, where ej
denotes the j-th standard basis of Rd. It can be easily seen that all cu,i’s are orthonormal. In addition, for a vector θ ∈ Rd,
denote by θu,i = θ∑u−1

v=1 dv+i
.

For task u, we construct domain Xu = span(cu,i : i ∈ [du]). The sequence of examples shown by the adversary is
the following: it is divided to m blocks, where the u-th block occupies a time interval Iu = [

∑u−1
v=1 Tv + 1,

∑u
v=1 Tv];

Each block is further divided to du subblocks, where for i ∈ [du − 1], subblock (u, i) spans time interval Iu,i =

[
∑u−1
v=1 Tv + (i− 1)bTu/duc+ 1,

∑u−1
v=1 Tv + ibTu/duc], and subblock (u, du) spans time interval Iu,du = [

∑u−1
v=1 Tv +

(du − 1)bTu/duc+ 1,
∑u−1
v=1 Tv + Tu]. At block u, examples from domain Xu are shown; furthermore, for every t in Iu,i,

i.e. in the (u, i)-th subblock, example cu,i is repeatedly shown to the learner. Observe that (u, i)-th subblock contains at
least bTudu c ≥

Tu
2du

examples, as Tu ≥ du.

We first choose θ∗ from distribution Dθ, such that for every coordinate j ∈ [d], θ∗i ∼ Beta(1, 1), which is also the
uniform distribution over [0, 1]. Given θ∗, the adversary reveals labels using the following mechanism: given xt, it draws
yt ∼ Bernoulli(〈θ∗, xt〉) independently and optionally reveals it to the learner upon learner’s query. Specifically, given θ∗,
if t ∈ Iu,i, yt ∼ Bernoulli(θ∗u,i). By Hoeffding’s Lemma, ξt = yt − θ∗u,i is zero mean subgaussian with variance proxy
1
4 ≤ η

2.

Denote by Nu,i(t) =
∑
s∈Iu,i:s≤t qs the number of label queries of the learner in domain (u, i) up to time t. Because the

learner satisfies a budget constraint of B under all environments, we have

E

 m∑
u=1

du∑
i=1

Nu,i(T ) | θ∗
 ≤ B.

Adding 2
∑m
u=1 du on both sides and by linearity of expectation, we get

m∑
u=1

du∑
i=1

E
[
(Nu,i(T ) + 2) | θ∗

]
≤ B + 2

m∑
u=1

du ≤ 3B. (14)

On the other hand, we observe that the expected regret of the algorithm can be written as follows:

E [R] = E

 m∑
u=1

du∑
i=1

∑
t∈Iu,i

(ŷt − θ∗u,i)2
 ,
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where the expectation is with respect to both the choice of θ∗ and the random choices of A.

We define a filtration {Ft}Tt=1, where Ft is the σ-algebra generated by
{

(xs, qs, ysqs)
}t
s=1

, which encodes the informative
available to the learner up to time step t.6 We note that ŷt is Ft−1-measurable. Denote by N+

u,i(t) =
∑
s∈Iu,i:s≤t qs ·

1 (ys = 1), which is the number of 1 labels seen on example cu,i by the learner up to round t − 1. Observe that both
N+
u,i(t− 1) and Nu,i(t− 1) are Ft−1-measurable.

Observe that conditioned on the interaction logs (xs, qs, ysqs)
t−1
s=1, the posterior distribution of θ∗u,i is Beta(1 +N+

u,i(t−

1), 1 + Nu,i(t − 1) − N+
u,i(t − 1)). Therefore, define random variable ŷ∗t = E

[
θ∗u,i | Ft−1

]
=

1+N+
u,i

2+Nu,i
, we have by

bias-variance decomposition,

E
[
(ŷt − θu,i)2 | Ft−1

]
= E

[
(ŷ∗t − θ∗u,i)2 | Ft−1

]
+ (ŷt − ŷ∗t )2

≥ E
[
(ŷ∗t − θ∗u,i)2 | Ft−1

]
Summing over all time steps, we have

E [R] ≥ E

 m∑
u=1

du∑
i=1

∑
t∈Iu,i

(ŷ∗t − θ∗u,i)2
 .

On the other hand, from Lemma 8, we have for all t ∈ Iu,i,

E
[
(ŷt − θ∗u,i)2 | Nu,i(T ), θ∗

]
≥

f(θ∗u,i)

2(Nu,i(T ) + 2)
,

where f(γ) = min(γ · (1− γ), (2γ − 1)2).

By the tower property of conditional expectation and conditional Jensen’s inequality, we have

E
[
(ŷt − θu,i)2 | θ∗

]
≥ E

[
f(θ∗u,i)

Nu,i(T ) + 2
| θ∗
]
≥

f(θ∗u,i)

2(E
[
Nu,i(T ) | θ∗

]
+ 2)

.

Summing over all t in Iu,i, and then summing over all subblocks (u, i) : u ∈ [m], i ∈ [du], and using the aforementioned
fact that the (u, i) subblock has at least Tu

2du
examples, we have

E
[
R | θ∗

]
=

m∑
u=1

du∑
i=1

∑
t∈Iu,i

E
[
(ŷt − θu,i)2 | θ∗

]

≥
m∑
u=1

du∑
i=1

Tu/du · f(θ∗u,i)

4(E
[
Nu,i(T ) | θ∗

]
+ 2)

. (15)

Combining the above inequality with Equation (14), we have:

3B · E
[
R | θ∗

]
≥

 m∑
u=1

du∑
i=1

Tu/du · f(θ∗u,i)

4(E
[
Nu,i(T ) | θ∗

]
+ 2)

 ·
 m∑
u=1

du∑
i=1

E
[
(Nu,i(T ) | θ∗

]
+ 2)


≥ 1

4

 m∑
u=1

du∑
i=1

(√
Tu/du ·

√
f(θ∗u,i)

)2

.

6This notion should be distinguished from the history notion Ht defined before, in that it does not include the labels not queried by the
learner up to time step t. For s in [t], we use ysqs to indicate the labeled data information acquired at time step s; if qs = 1, ysqs = ys,
encoding the fact that the learner has access to label ys; otherwise qs = 0, ysqs is always 0, meaning that the learner does not have label
ys available.
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where the second inequality is from Cauchy-Schwarz. Now taking expectation over θ, using Jensen’s inequality and
Lemma 9 that E

√
f(θ∗u,i) ≥ 1

25 , and some algebra yields

3B · E [R] ≥ 1

2

 m∑
u=1

du∑
i=1

(√
Tu/du · E

[√
f(θ∗u,i)

])2

≥ 1

2500

 m∑
u=1

√
duTu

2

.

In conclusion, we have

E [R] ≥

(∑m
u=1

∑du
i=1

√
Tu/du

)2
7500 ·B

.

As the above expectation is over θ∗ chosen randomly from Dθ, there must exists an θ∗ from supp(Dθ) = [0, 1]d such that

E
[
R | θ∗

]
≥

(∑m
u=1

∑du
i=1

√
Tu/du

)2
7500 ·B

holds. This θ∗ has `2 norm at most
√∑d

j=1(θ∗j )2 ≤
√
d.

Lemma 8. If t is in Iu,i, then

E
[
(ŷ∗t − θ∗u,i)2 | Nu,i(T ), θ∗

]
≥

f(θ∗u,i)

2(Nu,i(T ) + 2)
,

where f(γ) = min
(
γ(1− γ), (2γ − 1)2

)
.

Proof. We condition on Nu,i(T ) = m, and a value of θ∗. Recall that ŷ∗t =
1+N+

u,i

2+Nu,i
=

1+N+
u,i

2+m , where N+
u,i can be seen as

drawn from the binomial distribution Bin(m, θ∗u,i).

E
[
(ŷ∗t − θ∗u,i)2 | Nu,i(T ) = m, θ∗

]
=E

(1 +N+
u,i

2 +m
− θ∗u,i

)2

| Nu,i(T ) = m, θ∗


=
mθ∗u,i(1− θ∗u,i)

(m+ 2)2
+

(2θ∗u,i − 1)2

(m+ 2)2

≥ m+ 1

(m+ 2)2
f(θ∗u,i) ≥

f(θ∗u,i)

2(m+ 2)
.

Lemma 9. Suppose Z ∼ Beta(1, 1). Then E
[√

f(Z)
]
≥ 1

25 .

Proof. We observe that

E
[√

f(Z)
]

=

∫
[0,1]

√
f(z)dz ≥

∫
[ 15 ,

2
5 ]

√
f(z)dz,

Now, for all z ∈ [ 15 ,
2
5 ],
√
f(z) ≥

√
1
25 = 1

5 , which implies that the above integral is at least 1
25 .

B.2 Lower bound for unstructured domains

We have the following lower bound in the case when there is no domain structure.

Theorem 7. For any set of positive integers d, T,B such that d ≤ T and d ≤ B, there exists an oblivious adversary such
that:

1. it uses a ground truth linear predictor θ? ∈ Rd such that ‖θ∗‖2 ≤
√
d, and

∣∣〈θ∗, xt〉∣∣ ≤ 1.
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2. any online active learning algorithm A with label budget B has regret at least Ω
(
dT
B

)
.

Proof. This is an immediate consequence of Theorem 3, by setting m = 1, d1 = d, T1 = T , and the label budget equal to
B.

C The c-cost model for online active learning

We consider the following variant of our learning model, which models settings where the cost ratio between a unit of
square loss regret and a label query is c to 1. In this setting, the interaction protocol between the learner and the environment
remains the same, with the goal of the learner modified to minimizing the total cost, formally W = cR+Q. We call the
above model the c-cost model. We will show that Algorithm 1 achieves optimal cost up to constant factors, for a wide range
of values of η and c.

Theorem 8. For any η ≥ 1, set of positive integers
{

(du, Tu)
}m
u=1

such that du ≤ Tu,∀u ∈ [m],
∑m
u=1 du ≤ d, cost ratio

c ≥ maxu
du
Tu

, there exists an oblivious adversary such that:

1. it uses a ground truth linear predictor θ? ∈ Rd such that ‖θ∗‖2 ≤
√
d, and

∣∣〈θ∗, xt〉∣∣ ≤ 1; in addition, the subgaussian
variance proxy of noise is η2.

2. it shows example sequence {xt}Tt=1 such that [T ] can be partitioned into m disjoint nonempty subsets {Iu}mu=1, where
for each u, |Iu| = Tu, and {xt}t∈Iu lie in a subspace of dimension du.

3. any online active learning algorithm A has total cost Ω
(√

c · (
∑m
u=1

√
duTu)

)
.

Proof. Consider any algorithm A. Same as in the proof of Theorem 3, we will choose θ∗ randomly where each of its
coordinates is drawn independently from the Beta(1, 1) distribution, and show the exact same sequence of instances {xt}Tt=1

and reveals the labels the same say as in that proof. It can be seen that the ηt’s are subgaussian with variance proxy 1, which
is also subgaussian with variance proxy η2.

As A can behave differently under different environments, we define E
[
Q | θ∗

]
as A’s query complexity conditioned on the

adversary choosing ground truth linear predictor θ∗.

We conduct a case analysis on the random variable E
[
Q | θ∗

]
:

1. If there exists some θ∗ ∈ [0, 1]d, E
[
Q | θ∗

]
≥
√
c
(∑m

u=1

√
duTu

)
, then we are done: under the environment

where the ground truth linear predictor is θ∗, the total cost of A, E
[
W | θ∗

]
, is clearly at least E

[
Q | θ∗

]
≥

Ω

(
√
c
(∑m

u=1

√
duTu

))
.

2. If for every θ∗ ∈ [0, 1]d, E
[
Q | θ∗

]
≤
√
c
(∑m

u=1

√
duTu

)
, A can be viewed as an algorithm with label budget

B =
√
c
(∑m

u=1

√
duTu

)
. By the premise that c ≥ maxu

du
Tu

, we get that B ≥
∑m
u=1

√
duTu ·

√
du
Tu

=
∑m
u=1 du.

Therefore, from the proof of Theorem 3, we get that there exists a θ∗ in [0, 1]d, such that

E
[
R | θ∗

]
≥

(
∑
u

√
duTu)2

B
≥ Ω

 1√
c

(∑
u

√
duTu

) ,

which implies that the total cost of A, under the environment where the ground truth linear predictor is θ∗, E
[
W | θ∗

]
,

is at least c · E
[
R | θ∗

]
≥ Ω

(
√
c
(∑

u

√
duTu

))
.

In summary, in both cases, there is an oblivious adversary that uses θ∗ in [0, 1]d, under which A has a expected cost of

Ω

(
√
c
(∑

u

√
duTu

))
.
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In the theorem below, we discuss the optimality of Algorithm 1 in the c-cost model for a range of problem parameters.

Theorem 9. Suppose η ∈ [1, O(1)]; in addition, consider a set of
{

(Tu, du)
}m
u=1

, such that minu Tu/du ≥ η. Fix
c ∈ [maxu

du
Tu
, 1
η2 minu

Tu
du

]. We have

1. Under all environments with domain dimension and duration
{

(Tu, du)
}m
u=1

, such that ‖θ∗‖ ≤ C and
maxt∈[T ]

∣∣〈θ∗, xt〉∣∣ ≤ 1, QuFUR(c) (with the knowledge of norm bound C) has the guarantee that

W ≤ Õ

(
√
c ·
∑
u

√
Tudu

)
,

2. For any algorithm, there exists an environment with domain dimension and duration
{

(Tu, du)
}m
u=1

such that ‖θ∗‖ ≤√
d and maxt∈[T ]

∣∣〈θ∗, xt〉∣∣ ≤ 1, under which the algorithm must have the following cost lower bound:

W ≥ Ω

(
√
c ·
∑
u

√
Tudu

)
,

Proof. We show the two items respectively:

1. As c ≤ η̃2 minu
Tu
du

, and c ≥ maxu
du
Tu
≥ 1

η̃2 ( 1
(
∑
u

√
duTu)2

), applying Theorem 1, we have that QuFUR(c) achieves
the following regret and query complexity guarantees:

Q ≤ O

(
η̃
√
c
∑
u

√
Tudu

)
, R ≤ O

(
η̃
∑
u

√
Tudu/

√
c

)
.

This implies that

W = cQ+R ≤ O

(
η̃
∑
u

√
Tudu ·

√
c

)
= O

(
√
c ·
∑
u

√
Tudu

)
.

2. By the condition that c ≥ maxu
du
Tu

, applying Theorem 8, we get the item.

D The regret definition

Recall that in the main text, we define the regret of an algorithm as R =
∑T
t=1(ŷt − f∗(xt))2. This is different from the

usual definition of regret in online learning, which measures the difference between the loss of the learner and that of the
predictor f∗: Reg =

∑T
t=1(ŷt − yt)2 −

∑T
t=1(f∗(xt)− yt)2.

We show a standard result in this section that the expectation of these two notions coincide.

Theorem 10. E[R] = E[Reg].

Proof. Denote by Ft−1 be the σ-algebra generated by all observations up to time t− 1, and xt. As a shorthand, denote by
Et−1[·] = E[· | Ft−1].

Let Zt = (ŷt − yt)2 − (f∗(xt)− yt)2; we have

Et−1Zt = Et−1
[
(ŷt − f∗(xt) + f∗(xt)− yt)2 − (f∗(xt)− yt)2

]
= Et−1

[
(f∗(xt)− ŷt)2 + 2(ŷt − f∗(xt))(f∗(xt)− yt)

]
= (f∗(xt)− ŷt)2

where the last inequality uses the fact that Et−1(f∗(xt) − yt) = 0 and ŷt − f∗(xt) is Ft−1-measurable. Consequently,
EZt = E(f∗(xt)− ŷt)2. The theorem is concluded by summing over all time steps t from 1 to T .
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E Online to batch conversion

In this section we show that by an standard application of online to batch conversion Cesa-Bianchi et al. (2004a) on QuFUR,
we obtain new results on active linear regression under the batch learning setting.

First we recall a standard result on online to batch conversion; for completeness we provide its proof here.

Theorem 11. Suppose online active learning algorithm A sequentially receives a set of iid examples (xt, yt)
T
t=1 drawn

from D, and at every time step t, it outputs predictor f̂t : X → Y . In addition, suppose ` : Y × Y → R is a loss function.
Define regret Reg =

∑T
t=1 `(f̂t(xt), yt)−

∑T
t=1 `(f

∗(xt), yt), and define `D(f) = E(x,y)∼D`(f(x), y). If E [Reg] ≤ R0,
then,

E
[
Ef∼uniform(f̂1,...,f̂T )

`D(f)
]
− `D(f∗) ≤ R0

T
.

Proof. As Reg =
∑T
t=1 `(f̂t(xt), yt)−

∑T
t=1 `(f

∗(xt), yt), We have

R0 ≥ E [Reg] =

T∑
t=1

E
[
`D(f̂t)

]
− E

 T∑
t=1

`(f∗(xt), yt)


= T ·

 1

T

T∑
t=1

E
[
`D(f̂t)

]
− E(x,y∼D`(f

∗(x), y).


The theorem is proved by dividing both sides by T and recognizing that

1

T

T∑
t=1

E
[
`D(f̂t)

]
= Ef∼uniform(f̂1,...,f̂T )

`D(f).

Combining Theorem 11 with Theorem 2, we have the following adaptive excess loss guarantee of Fixed-Budget QuFUR
(Algorithm 2) when run on iid data with hidden domain structure.

Theorem 12. Suppose the unlabeled data distribution DX is a mixture distribution: DX =
∑m
u=1 puDu, where Du

is a distribution supported on a subspace of Rd of dimension du and is a subset of
{
x : ‖x‖2 ≤ 1,

∣∣〈θ∗, x〉∣∣ ≤ 1
}

. The

conditional distribution of y given x is y = 〈θ∗, x〉 + ξ where ξ is a subgaussian with variance proxy η2. In addition,

suppose we are given integer B, T0 such that T0 ≥ Ω

(
max

(
B∑

u

√
dupu·minu

√
pu
du

, lnm
minu pu

))
. If Algorithm 2 is given

dimension d, time horizon T ≥ T0, label budget B, norm bound C, noise level η as input, then:
1. It uses T unlabeled examples.
2. Its query complexity Q is at most B.
3. Denote by `(ŷ, y) = (ŷ − y)2 the square loss. We have,

E
[
Ef∼uniform(f̂1,...,f̂T )

`D(f)
]
− `D(f∗) ≤ O

(
η̃2(
∑
u

√
dupu)2

B

)
.

Proof sketch. From Theorem 11 it suffices to show that

E [Reg] ≤ O

(
η̃2T · (

∑
u

√
dupu)2

B

)
.

By Theorem 10, E [Reg] = E [R], it therefore suffices to show that

E [R] ≤ O

(
η̃2T · (

∑
u

√
dupu)2

B

)
.
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We first show a high probability upper bound of R. Given a sequence of unlabeled examples {xt}Tt=1, we denote by Su the
subset of examples drawn from component Du, and denote by Tu the size of Su. From the assumption of Du, we know that
Su all lies in a subspace of dimension du.

Define event E as follows:

E =

{
∀u ∈ [m] � Tu ∈

[
Tpu

2
, 2Tpu

]}
.

From the assumption that T ≥ T0 ≥ Ω( lnm
minu pu

), we have that by Chernoff bound and union bound, P(E) ≥ 1− 1
T 2 .

Conditioned on event E happening, we have that by the assumption that T ≥ T0 ≥ B∑
u

√
dupu·minu

√
pu
du

,

B ≤ Õ

(
T ·
∑
u

√
dupu min

u

√
pu
du

)
≤ Õ

(∑
u

√
duTu min

u

√
Tu
du

)
.

Therefore, applying Theorem 2, we have that conditioned on event E happening, with probability 1− 1
T 2 over the draw of

{yt}Tt=1,

R ≤ O

(
η̃2 · (

∑
u

√
duTu)2

B

)
≤ O

(
η̃2T · (

∑
u

√
dupu)2

B

)
.

Combining the above two equations and using union bound, we conclude that with probability 1− 2
T 2 ,

R ≤ O

(
η̃2T · (

∑
u

√
dupu)2

B

)
.

Observe that with probability 1, ŷt ∈ [−1, 1] and 〈θ∗, xt〉 ∈ [−1, 1]. Therefore, R =
∑T
t=1(ŷt − 〈θ∗, xt〉)2 ∈ [0, 4T ].

Hence,

E[R] ≤
(

1− 2

T 2

)
·O

(
η̃2T · (

∑
u

√
dupu)2

B

)
+

2

T 2
· 4T = O

(
η̃2T · (

∑
u

√
dupu)2

B

)
.

The theorem follows.

F Kernelisation of QuFUR

We extend QuFUR (α) to kernel regression, following an approach similar to Valko et al. (2013). Assume mapping
φ : Rd → H maps the data to a reproducing kernel Hilbert space. Assume ‖θ∗‖ ≤ C = Õ(1), and ‖φ(x)‖ ≤ 1,
〈φ(x), θ∗〉2 ≤ 1, for all x. Define the kernel function k(x, x′) = φ(x)>φ(x′),∀x, x′ ∈ Rd. Assume the ground-truth label
is generated via yt = φ(xt)

>θ∗ + ξt.

The kernelised QuFUR algorithm is as follows: Let Qt denote the set of indices of the queried examples up to round
t − 1. Denote Mt = λI + Kt where Kt is the kernel matrix [k(x, x′)]x,x′∈Qt , and λ = 1/C2. Define column vector
kt = [k(xt, x)]>x∈Qt . We predict ŷt = clip(k>t M

−1
t YQt). Uncertainty estimate ∆t = η̃2 min{1, ‖kt‖2M−1

t

)}, where

‖kt‖2M−1
t

= 1
λ (k(xt, xt)− k>t M−1t kt). We still query with probability min {1, α∆t}.

A trivial regret and query guarantee is similar to Theorem 1, with du replaced by the dimension of the support of φ(x) for x
in domain u, which is possibly infinite. Below we obtain a trade-off dependent on the effective dimension d̃u of Xu defined
in equation (16). For example, d̃u = Õ((log Tu)du+1) for the RBF kernel (Srinivas et al., 2009).

Theorem 13. Suppose the inputs {xt}Tt=1 have the following structure: [T ] can be partitioned into m disjoint nonempty
subsets {Iu}mu=1, where for each u, |Iu| = Tu, and the effective dimension of {xt}t∈Iu is d̃u. If kernelised QuFUR receives
inputs dimension d, time horizon T , norm bound C = Õ(1), noise level η, parameter α, then, with probability 1− δ:

1. Its query complexity Q = Õ
(∑m

u=1 min{Tu, η̃
√
αd̃uTu}+ 1

)
.

2. Its regret R = Õ

(∑m
u=1 max{η̃2d̃u, η̃

√
d̃uTu/α}

)
.
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Let S denote the set of indices for queried examples in domain u. Suppose |S| = s. If the i-th queried example in domain u
happens at time t, we define ai,u = φ(xt), Φi = [φ(x)>]>x∈Qt , Φi,u = [φ(x)>]>x∈Qt∩Iu , Ni,u = Φi,u

>Φi,u + λI , for all
i ∈ [s]. Note that ‖kt‖2M−1

t

= a>i,u(Φ>i Φi + λI)ai,u ≤ ‖ai,u‖2N−1
i,u

. We still have that

∑
t∈Iu

qt∆t =
∑
i∈S

η̃2 min
(

1, ‖kt‖2M−1
t

)
≤ η̃2

∑
i∈S

min

(
1, ‖ai,u‖2N−1

i,u

)
.

We now focus on bounding ‖ai,u‖2N−1
i,u

. We use the following lemma:

Lemma 10 (Lemma 3 of Valko et al. (2013)). For all i ∈ [s], the eigenvalues of Ni,u can be arranged so that λj,i−1 ≤ λj,i
for all j ≥ 1; λj,i ≤ λj−1,i for all j ≥ 2; λj,0 = λ for all j, and

‖ai,u‖2N−1
i,u

≤
(

4 +
6

λ

) i∑
j=1

λj,i − λj,i−1
λj,i−1

.

Let Λs,j =
∑
i>j(λi,s − λ). The effective dimension of domain u is defined as follows:

d̃u = min{j : jλ ln s > Λs,j}. (16)

The effective dimension is a proxy for the number of principle directions over which the projection of xt’s in domain u in
the RKHS is spread. If they fall in a subspace ofH of dimension d̃′, then d̃′u ≤ d̃′. More generally it captures how quickly
the eigenvalues of Φi,u

>Φi,u decrease.

We prove Lemma 10 below for completeness. We use the following lemma as a black box:

Lemma 11 (Lemma 19 of Auer (2002)). Let λ1 ≥ · · · ≥ λd ≥ 0. The eigenvalues ν1, . . . , νd of the matrix
diag(λ1, . . . , λd) + zz> with ‖z‖ ≤ 1 can be arranged such that there are yh,j ≥ 0, 1 ≤ h < j ≤ d, and the
following holds:

νj ≥ λj (17)

νj = λj + z2j −
j−1∑
h=1

yh,j +

d∑
k=j+1

yj,k (18)

j−1∑
h=1

yh,j ≤ z2j (19)

d∑
j=h+1

yh,j ≤ νh − λh (20)

d∑
j=1

νj =

d∑
j=1

λj + ‖z‖2 (21)

and if λh > λj + 1 then

yh,j <
z2j z

2
h

λh − λj − 1
. (22)

Proof of Lemma 10. We omit the domain index subscript u for clarity. Assume φ = φE where E is some basis forH. Let B
be any basis of H extended from a maximal linearly independent subset of {aj}j≤i. If QBE denotes the change of basis
matrix from B to E then ΦE,i = ΦB,iQBE and

Φ>E,iΦE,i = Q>BEΦ
>
B,iΦB,iQBE

where ΦB,i, ΦE,i denote Φi with respect to the basis B, E . Thus the eigenvalues of Φ>E,iΦE,i do not depend on the basis, and
we can focus on Φ>B,iΦB,i, which has zeros everywhere outside its top-left i× i-submatrix. Denote this submatrix as Ci.
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We apply Lemma 11 by setting d = i, λ1 ≥ · · · ≥ λd ≥ λ as the eigenvalues of Ci + λIi, and z as the first i entries of the
vector Q>BE

−1
ai. Our target turns into

‖ai‖2N−1
i

=

d∑
j=1

z2j
λj

For any 1 ≤ h < j ≤ d, if λh > λj + 3, by inequality (22), we have

yh,j ≤
1

2
z2j z

2
h,

and since ‖z‖ ≤ 1,

∑
h:h<j,λh>λj+3

yh,j ≤
z2j
2

∑
h:h<j,λh>λj+3

z2h ≤
z2j
2
.

If λh ≤ λj + 3, since λj ≥ λ, λj ≥ λ
λ+3λh, so

d∑
j=1

∑
h<j:λh≤λj+3

yh,j
λj
≤ λ+ 3

λ

d∑
j=1

∑
h<j:λh≤λj+3

yh,j
λh

≤ λ+ 3

λ

d∑
h=1

d∑
j=h+1

yh,j
λh

≤ λ+ 3

λ

d∑
j=1

νj − λj
λj

where the last step is due to inequality (20).

By Equation (18),

z2j ≤ νj − λj +

j−1∑
h=1

yh,j = νj − λj +
∑

h<j,λh>λj+3

yh,j +
∑

h<j,λh≤λj+3

yh,j

≤ νj − λj +
z2j
2

+
∑

h<j,λh≤λj+3

yh,j ,

so

d∑
j=1

z2j
λj
≤ 2

d∑
j=1

νj − λj
λj

+ 2

d∑
j=1

∑
h<j:λh≤λj+3

yh,j
λj

≤
(

2 + 2 · λ+ 3

λ

) d∑
j=1

νj − λj
λj

=

(
4 +

6

λ

) d∑
j=1

νj − λj
λj

,

or equivalently,

‖ai‖2N−1
i

≤
(

4 +
6

λ

) i∑
j=1

λj,i − λj,i−1
λj,i−1

.
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The proof of Theorem 13 is similar to that of Theorem 1. We only prove the following analogue to Lemma 2.

Lemma 12.
∑
i∈S min

(
1, ‖ai,u‖2N−1

i,u

)
≤ Õ(d̃u).

Proof. By Equation (10),

∑
i∈S
‖ai,u‖2N−1

i,u

≤
(

4 +
6

λ

) s∑
i=1

i∑
j=1

λj,i − λj,i−1
λj,i−1

≤
(

4 +
6

λ

) s∑
i=1

 d̃u∑
j=1

λj,i − λj,i−1
λj,i−1

+

s∑
j=d̃u+1

λj,i − λj,i−1
λj,i−1


Since we assume C = Õ(1), we have 4 + 6

λ = Õ(1). To bound the second term, since the denominators are at least λ,

s∑
i=1

s∑
j=d̃u+1

λj,i − λj,i−1
λj,i−1

≤ 1

λ

s∑
i=1

s∑
j=d̃+1

(λj,i − λj,i−1)

=
1

λ

s∑
j=d̃u+1

(λj,s − λ)

≤ d̃u ln s

where the last inequality follows from Definition 16.

To bound the first term, define αj,i = λj,i − λj,i−1, so the first term becomes

s∑
i=1

d̃u∑
j=1

αj,i∑i−1
p=1 αj,p + λ

.

To upper bound this term, we solve the following relaxed optimization program

max


s∑
i=1

d̃u∑
j=1

αj,i∑i−1
p=1 εj,p + λ


s.t.∀i ∈ [s],

d̃u∑
j=1

αj,i =

d̃u∑
j=1

εj,i ≤ 1.

The optimal solution is αj,i = εj,i = 1/d̃u, for all j, i. We verify this via the KKT conditions below. Write the Lagrangian

L(α, ε, µ, g) =

s∑
i=1

d̃u∑
j=1

αj,i∑i−1
p=1 εj,p + λ

−
s∑
i=1

(µi(
∑
j

αj,i −
∑
j

εj,i))−
s∑
i=1

(gi(
∑
j

αj,i − 1))

∂L

∂αj,i
=

1∑i−1
p=1 εj,p + λ

− µi − gi

∂L

∂εj,i
= −

s∑
q=i+1

αj,q

(
∑q−1
p=1 εj,p + λ)2

+ µi

Plugging in αj,i = εj,i = 1/d̃u, for all j, i,

µi =

s∑
q=i+1

d̃u

(q − 1 + λd̃u)2
≥ 0

gi =
d̃u

i− 1 + λd̃u
− µi ≥ 0
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Therefore the maximum objective value is d̃u
∑s
i=1

1
i−1+λd̃u

= Õ(d̃u log( s
λd̃u

+ 1)).

Summing up both terms completes the proof.

G Comparison of oracle baseline and QuFUR in large budget settings

Consider the optimization program

min
µ

m∑
u=1

du/µu, s.t.
m∑
u=1

µuTu ≤ B,µu ∈ [0, 1],∀u ∈ [m]. (23)

Theorem 14. The solution to 23, {µu}mu=1, has the following structure: there exists a constant C, such that

µu = min

(
1, C

√
du
Tu

)
.

Proof. Since the constraints are linear, define the Lagrangian L(µ, λ, γ) =
∑
u
du
µu

+ λ(
∑
u Tuµu − B) + γ>(µ − 1),

where λ ∈ R, γ ∈ Rm. By the complementary slackness condition,

1. If γu > 0, µu = 1. In this case γu = du − λTu.

2. If µ < 1, γu = 0. In this case µu =
√

du
λTu

.

The proof is complete by taking C = 1/
√
λ.

Theorem 14 implies that for B >
∑
u

√
duTu min

√
Tu/du, if we always query each domain with a fixed probability, the

optimal solution is to query all Tu examples from domain u when
√
du/Tu > τ , and query with probability proportional

to
√
du/Tu for the rest of the domains. With this setting of µ, in domain u, the total query complexity is Tuµu =

min
(
Tu, C

√
duTu

)
; the regret is η̃2 duµu = max

(
η̃2du,

η̃2

C

√
duTu

)
.

We observe that QuFUR(α) (query w.p. min{1, α∆t}) achieves the same upper bound. Specifically, for every setting of
C, consider α = (Cη̃ )2. Define U1 =

{
u : C2du > Tu

}
, and U2 =

{
u : C2du ≤ Tu

}
. In other words, U1 (resp. U2) is the

collection of domains where the domain-aware uniform sampling baseline uses query probability µu is = 1 (resp. < 1).
Observe that U1 and U2 constitutes a partition of [m].

1. For u ∈ U1, the domain-aware uniform querying baseline sets µu = 1 and has query complexity Tu and regret
η̃2du. On the other hand, QuFur(α) has the same query complexity bound of Tu trivially, and has a regret of
η̃2
(
du + 1

C

√
duTu

)
= O(η̃2du), matching the baseline performance.

2. For u ∈ U2, the baseline sets µu = C
√

du
Tu

, and has query complexity C
√
duTu and regret η̃2 1

C

√
duTu. On

the other hand, QuFur(α) has the query complexity bound of C2du + C
√
duTu = C

√
duTu, and has a regret of

η̃2
(
du + 1

C

√
duTu

)
≤ η̃2 1

C

√
duTu, matching the baseline performance.

H Additional experimental details

For linear classification experiments, we use the same query strategy as Algorithm 1, i.e. querying with probability
min{1, α∆t}. As to prediction strategy, we train a linear model with NLL loss and Adam optimizer (learning rate 0.003,
weight decay 0.001). After each new query, we train the model on all queried data for 3 additional epochs, with batch size
64.

Figure 4 shows the tradeoff curves for alternative domain setups on different datasets. QuFUR maintains competitive
performance when we reverse the order of domains (Figures 4a 4c 4e), interleave domains (Figure 4d), and make the
domains homogeneous in duration (Figure 4f), with the exception of randomly shuffled inputs from all domains (Figure 4b).
In this case, since the inputs are iid, greedy queries are the optimal strategy. However, greedy is unlikely to perform well
whenever there is domain shift.
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(a) Amazon reviews dataset with video games topic duration 1200 +
grocery topic duration 600 + automobile topic duration 300.

(b) Amazon reviews dataset with randomly shuffled inputs from all
3 topics.

(c) Rotated MNIST dataset with 60◦-rotation duration 125 + 30◦-
rotation duration 250 + no-rotation duration 500.

(d) Rotated MNIST dataset with 60◦-rotation duration 250 + 30◦-
rotation duration 250 + 60◦-rotation duration 125 + no-rotation
duration 125 + 60◦-rotation duration 125.

(e) Portraits dataset when we use the first 32, 64, 128, 256, 512
images from each time period. (f) Portraits dataset with the first 200 images from all domains.

Figure 4: Tradeoff curves for alternative domain setups.


