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Abstract

Online machine learning systems need to adapt
to domain shifts. Meanwhile, acquiring label at
every timestep is expensive. Motivated by these
two challenges, we propose a surprisingly sim-
ple algorithm that adaptively balances its regret
and its number of label queries in settings where
the data streams are from a mixture of hidden
domains. For online linear regression with oblivi-
ous adversaries, we provide a tight tradeoff that
depends on the durations and dimensionalities of
the hidden domains. Our algorithm can adaptively
deal with interleaving spans of inputs from dif-
ferent domains. We also generalize our results
to non-linear regression for hypothesis classes
with bounded eluder dimension and adaptive ad-
versaries. Experiments on synthetic and realistic
datasets demonstrate that our algorithm achieves
lower regret than uniform queries and greedy
queries with equal labeling budget.

1 Introduction

In statistical learning, model performance often significantly
drops when the testing distribution drifts away from the
training distribution (Torralba and Efros, 2011; Recht et al.,
2018, 2019; Engstrom et al., 2020). Online learning ad-
dresses worst-case domain shift by assuming the data is
given by an adversary (Hazan, 2016). However, practical
deployments of fully-online learning systems have been
somewhat limited, because labels are expensive to obtain;
see (Strickland, 2018) for an example in fake news detection.
A label budget linear in time is too much of a luxury.

Cesa-Bianchi et al. (2004b) study label-efficient online learn-
ing for prediction with expert advice. Their algorithm
queries the label of every example with a fixed probabil-
ity, which, as they show, achieves minimax-optimal regret
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and query complexity for this problem. However, querying
with uniform probability does not take into account the al-
gorithm’s uncertainty on each individual example, and thus
can be suboptimal when the problem has certain favorable
structures. For example, a sequence of online news may
come from the mixture of a few topics or trends, and some
news topics may require more samples to categorize well
compared to others.

We aim to improve label-efficiency in online learning by
exploiting hidden domain structures in the data. We assume
that each input is from one of m unknown and potentially
overlapping domains (e.g. news topics). For each input,
the learner makes a prediction, incurs a loss, and decides
whether to query its label. The regret of the learner is defined
as the difference between its cumulative loss and that of the
best fixed predictor in hindsight. Our goal is to trade off
between regret and query complexity: given a fixed label
budget, we hope to incur the smallest regret possible.

In statistical learning, domains usually refer to data distri-
butions. One commonly-studied type of domain shift is
covariate shift (see e.g. Sugiyama et al., 2007), where the
conditional distribution P (y|x) is fixed, but the marginal
distribution P (x) changes across domains. In online learn-
ing, however, the inputs are usually not independently drawn
from a distribution, and can even be adversarially chosen
from a certain support. We thus propose to study support
shift in online learning as the natural counterpart of covari-
ate shift in statistical learning. Specifically, we assume that
inputs from each domain u ∈ [m] have an unknown support
Xu and an unknown total duration Tu, and inputs from dif-
ferent domains are interleaved as a stream fed to the online
learner.

Support shift is common for high-dimensional vision / lan-
guage datasets where domain supports have little overlap.
As a motivating example, consider an online regression task
of sentiment prediction for twitter feeds. Here, a domain is a
(not necessarily contiguous) subsequence of tweets around
a certain topic. Different topics contain disjoint keywords.
As the hot topics change over time, we likely receive inputs
from different domains for varying time periods.

Similar to covariate shift, we assume realizability, i.e., there
exists a predictor that is Bayes optimal across all the do-
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mains. Realizability is a reasonable assumption in modern
machine learning for two reasons. First, high-dimensional
features are usually of high quality; for example, adding
only one additional output layer to pre-trained embeddings
such as BERT obtain state-of-the-art results on many lan-
guage tasks (Devlin et al., 2018). Second, models are often
overparameterized (Zhang et al., 2016). Thus, the model
can rely on different features in different domains. In the
sentiment regression task, the model can combine positive
or negative words in all domains to predict well. In statis-
tical learning, domain adaptation methods assuming that a
single model can perform well on different domains (Ganin
et al., 2016) indeed have been empirically successful on
high-dimensional datasets.

Under this setup, we propose QuFUR (Query in the Face
of Uncertainty for Regression), a surprisingly simple query
scheme based on uncertainty quantification. We start with
online linear regression from Rd to R with an oblivious
adversary. With additional regularity conditions, we pro-
vide the following regret guarantee of QuFUR with la-
bel budget B: for any m and any partition of [T ] into
domains I1, . . . , Im, with Tu being the number of exam-
ples from domain Iu and du being the dimension of the
space spanned by these examples, the regret of is QuFUR is
Õ((
∑m
u=1

√
duTu)2/B) (Theorem 2).1

When choosing m = 1 and I1 = [T ], we see that the re-
gret of QuFUR is at most Õ(dT/B), matching minimax
lower bounds (Theorem 7) in this setting. The advantage
of QuFUR’s adaptive regret guarantees becomes significant
when the domains have heterogeneous time spans and di-
mensions: (

∑m
u=1

√
duTu)2 can be substantially less than

dT when the Tu/du’s are heterogeneous across different
u’s. For example, if m = 2, d1 = d, d2 = 1, T1 = d,
and T2 = T − d, then the resulting regret bound is of
order O(T + d2) which can be much smaller than dT
when 1 � d � T . Using standard online-to-batch con-
version (Cesa-Bianchi et al., 2004a), we also obtain novel
results in batch active learning for regression (Theorem 12).
Furthermore, we also define a stronger notion of minimax
optimality, namely hidden domain minimax optimality, and
show that QuFUR is optimal in this sense (Theorem 3), for
a wide range of domain structure specifications.

We generalize our results to online regression with general
hypothesis classes against an adaptive adversary. We obtain
a similar regret-query complexity tradeoff, where the ana-
logue of du is (roughly) the eluder dimension (Russo and
Van Roy, 2013) of the hypotheses class with respect to the
support of domain u (Theorem 4).

Experimentally, we show that our algorithm outperforms
the baselines of uniform and greedy query strategies, on a
synthetic dataset and three high-dimensional language and

1Throughout this paper, [n] denotes the set {1, . . . , n}; nota-
tions Õ and Ω̃ hide logarithmic factors.

image datasets with realistic support shifts. Our code is
available online at https://github.com/cynnjjs/
online_active_AISTATS.

2 Related works

Active learning. We refer the readers to Balcan et al.
(2009); Hanneke (2014); Dasgupta et al. (2008); Beygelz-
imer et al. (2010) and the references therein for background
on active learning. For classification, a line of works (Das-
gupta and Hsu, 2008; Minsker, 2012; Kpotufe et al., 2015;
Locatelli et al., 2017) performs hierarchical sampling for
nonparametric active learning. The main idea is to maintain
a hierarchical partitioning over the instance domain (either
a pre-defined dyadic partition or a pre-clustering over the
data), and performs adaptive label querying with partition-
dependent probabilities. For regression, many works (Fe-
dorov and Hackl, 2012; Chaudhuri et al., 2015) study the
utility of active learning for maximum likelihood estima-
tion in the realizable setting. Recent works also study ac-
tive linear regression in nonrealizable (Drineas et al., 2006;
Derezinski et al., 2018; Dereziński and Warmuth, 2018;
Sabato and Munos, 2014) and heteroscedastic (Chaudhuri
et al., 2017; Fontaine et al., 2019) settings. These works
do not consider domain structures except for Sabato and
Munos (2014), who propose a domain-aware stratified sam-
pling scheme. Their algorithm needs to know the domain
partition a priori, whose quality is crucial to ensure good
performance.

Active learning for domain adaptation. The empirical
works of Rai et al. (2010); Saha et al. (2011); Xiao and
Guo (2013) study stream-based active learning when inputs
comes from pre-specified source and target distributions. Su
et al. (2020) combine domain adversarial neural network
(DANN) with active learning, where the discriminator in
DANN serves as a density ratio estimator that guides active
sampling. In contrast, our algorithm handles multiple do-
mains, does not assume iid-ness for inputs from a domain,
and does not require knowledge of which domain the inputs
come from.

Active online learning. Earlier works on selective sam-
pling when iid data arrive in a stream and a label querying
decision has to be made after seeing each example (Cohn
et al., 1994; Dasgupta et al., 2008; Hanneke, 2011) implic-
itly provide online regret and label complexity guarantees.
Works on worst-cast analysis of selective sampling for linear
classification (Cesa-Bianchi et al., 2006) provide regret guar-
antees similar to that of popular online linear classification
algorithms such as Perceptron and Winnow, but their label
complexity guarantees are runtime-dependent and there-
fore cannot be easily converted to a guarantee that only
involves problem parameters defined apriori. Subsequent
works (Cesa-Bianchi et al., 2009; Dekel et al., 2010; Cav-
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allanti et al., 2011; Agarwal, 2013) study the setting where
there is a parametric model on P (y|x, θ) with unknown
parameter θ, and the x’s shown can be adversarial. Under
those assumptions, they obtain regret and query complexity
guarantees dependent on the fraction of examples with low
margins. Yang (2011) gives a worst-case analysis of active
online learning for classification with drifting distributions,
under the assumption that the Bayes optimal classifier is in
the learner’s hypothesis class. In contrast, our work gives
adaptive regret guarantees in terms of the hidden domain
structure in the data, and focuses on regression instead of
classification.

KWIK model. In the KWIK model (Li et al., 2011), at
each time step, the algorithm is asked to either abstain from
prediction and query the label, or predict an output with
at most ε error. In contrast, in our setting, the learner’s
goal is to minimize its cumulative regret, as opposed to
making pointwise-accurate predictions. Cesa-Bianchi et al.
(2009) study linear regression in the KWIK model, and
propose the BBQ sampling rule; our work can be seen as
analyzing a variant of BBQ and showing its adaptivity to
domain structures. Szita and Szepesvári (2011) propose an
algorithm that works in an agnostic setting, where the error
guarantee at every round depends on the agnosticity of the
problem. A relaxed KWIK model that allows a prespecified
number of mistakes has been studied in Sayedi et al. (2010);
Zhang and Chaudhuri (2016).

Adaptive/Switching Regret. Adaptive regret (Hazan and
Seshadhri, 2007; Daniely et al., 2015) is the excessive loss
of an online algorithm compared to the locally optimal so-
lution over any continuous timespan. Our algorithm can
be interpreted as being competitive with the locally opti-
mal solution on every domain, even if the timespans of
the domains are not continuous, which is closer to the con-
cept of switching regret with long-term memory studied
in e.g, (Bousquet and Warmuth, 2002; Zheng et al., 2019).
Switching regret bounds typically have a polynomial de-
pendence on the number of domain switches, which does
not appear in our bounds. However, the above works al-
low target concept to shift over time, whereas our bounds
require realizability and thus compete with a fixed optimal
concept. Overall, we achieve a stronger form of guarantee
under more assumptions.

Online linear regression. Literature on fully-supervised
online linear regression has a long history (Vovk, 2001;
Azoury and Warmuth, 2001). As is implicit in Cesa-Bianchi
et al. (2004b), we can reduce from fully-supervised online
regression to active online regression by querying uniformly
randomly with a fixed probability. Combining this reduc-
tion with existing online linear regression algorithms (Hazan
et al., 2007), we get Õ(dT/B) regret with O(B) queries for
any B ≤ T . Our bound matches this in the realizable and

oblivious setting when there is one domain, and is poten-
tially much better with more domain structures.

3 Setup and Preliminaries

3.1 Setup

Active online regression with domain structure. Let
F = {f : X → [−1, 1]} be a hypothesis class. We consider
a realizable setting where yt = f∗(xt)+ξt for some f∗ ∈ F
and random noise ξt. The adversary decides f∗ ∈ F before
the interaction starts, and ξt’s are independent zero-mean
sub-Gaussian random variables with variance proxy η2.

The example sequence {xt}Tt=1 has the following domain
structure unknown to the learner: [T ] can be partitioned into
m disjoint nonempty subsets {Iu}mu=1, where for each u,
|Iu| = Tu, and {xt}t∈Iu lie in a subspace of dimension du.

The interaction between the learner and the adversary fol-
lows the protocol below.

For each t = 1, . . . , T :

1. Example xt is revealed to the learner.

2. The learner predicts ŷt = f̂t(xt) using predictor f̂t :
X → [−1, 1], incurring loss (ŷt − yt)2.

3. The learner sets a query indicator qt ∈ {0, 1}. If qt =
1, yt is revealed.

The performance of the learner is measured by its num-
ber of queries Q =

∑T
t=1 qt, and its regret R =∑T

t=1 (ŷt − f∗(xt))2. By our realizability assumption, our
notion of regret coincides with the one usually used in on-
line learning when expectations are taken; see Appendix D.
Our goal is to design a learner that has low regret R subject
to a budget constraint: Q ≤ B, for some fixed budget B.

Oblivious vs. adaptive adversary. In the oblivious set-
ting, the adversary decides the sequence {xt}Tt=1. In the
adaptive setting, the adversary can choose xt depending on
the history Ht−1 = {x1:t−1, f̂1:t−1, ξ1:t−1}.

Miscellaneous notations. For a vector v ∈ Rd and
a positive semi-definite matrix M ∈ Rd×d, define
‖v‖M :=

√
v>Mv. For vectors {zt}Tt=1 ⊆ Rl, and

S = {i1, . . . , in} ⊆ [T ], denote by ZS the n × l
matrix whose rows are z>i1 , . . . , z

>
in

. Define clip(z) :=
min(1,max(−1, z)) and η̃ := max{1, η}. For a set of
vectors S, define span(S) as the linear subspace spanned
by S.

3.2 Baselines for linear regression

We first study linear regression with an oblivious adversary,
and then generalize to the non-linear case with an adap-
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tive adversary in Section 5. For now, hypothesis class F is
{〈x, θ〉 : θ ∈ Rd, ‖θ‖2 ≤ C}. Let the ground truth hypothe-
sis be f∗(x) = 〈θ∗, x〉, where θ∗ ∈ Rd, and input space X
be a subset of {x ∈ Rd : ‖x‖2 ≤ 1, 〈x, θ∗〉 ≤ 1}.2

Uniform querying is minimax-optimal with no domain
structure. As a starter, consider an algorithm that queries
every label and predicts using the regularized least squares
estimator θ̂t = argminθ

∑t−1
i=1 (〈θ, xi〉 − yi)2 + λ‖θ‖2,

where λ = 1/C2. It is well-known from (Vovk, 2001;
Azoury and Warmuth, 2001) that (a variant of) this fully-
supervised algorithm achieves R = Õ(η̃2d) with Q = T .
Consider an active learning extension of the above algo-
rithm that queries labels independently with probability
B/T , and predicts with the regularized least squared es-
timator computed based on all queried examples θ̂t =
argminθ

∑
i∈[t−1],qi=1 (〈θ, xi〉 − yi)2 + λ‖θ‖2. We show

that the above active online regression strategy achieves
E[R] = Õ(η̃2dT/B) with E[Q] = B in Appendix A.4. As
shown in Theorem 7, this tradeoff is minimax optimal if η̃ is
a constant. Although this guarantee is optimal in the worst
case, one major weakness is that it is too pessimistic: as
we will see next, when the data has certain hidden domain
structure, the learner can achieve substantially better regret
guarantees than the worst case if given access to auxiliary
domain information.

Oracle baseline when domain structure is known. Sup-
pose the learner is given the following piece of knowledge
from an oracle: there are m domains; for each u in [m],
there are a total of Tu examples from domain u from a sub-
space of Rd of dimension du. In addition, for every t, the
learner is given the index of the domain to which example xt
belongs. In this setting, the learner can combine the afore-
mentioned regularized least squares linear predictor with the
following domain-aware querying scheme: for any exam-
ple in domain u, the learner queries its label independently
with probability µu ∈ (0, 1]. Within domain u, the learner
incurs O(µuTu) queries and Õ(η̃2du/µu) regret. Summing
over all m domains, its achieves a label complexity of
O(
∑m
u=1 µuTu) and a regret bound of Õ(η̃2

∑m
u=1 du/µu).

This motivates the following optimization problem:

min
µ

m∑
u=1

du/µu, s.t.
m∑
u=1

µuTu ≤ B,µu ∈ [0, 1],∀u ∈ [m].

i.e., we choose domain-dependent query probabilities that
minimize the learner’s total regret guarantee, subject to
its query complexity being controlled by B. When
B ≤ (

∑m
u=1

√
duTu) minu

√
Tu/du, the optimal µu is√

du/Tu · B∑m
u=1

√
duTu

, i.e. µu is proportional to
√
du/Tu.3

This yields a regret guarantee of O(η̃2(
∑
u

√
duTu)2/B).

2The constraint ‖x‖2 ≤ 1 can be relaxed by only increasing the
logarithmic terms in the regret and query complexity guarantees.

3For larger budget B >
∑m

u=1

√
duTu ·minu

√
Tu/du, there

exists a threshold τ such that the optimal solution is µu = 1 for

Algorithm 1 Query in the Face of Uncertainty for Regres-
sion (QuFUR(α))

Require: Total dimension d, time horizon T , θ∗’s norm
bound C, noise level η, parameter α.

1: M ← 1
C2 I , queried dataset Q ← ∅.

2: for t = 1 to T do
3: Compute regularized least squares solution θ̂t ←
M−1X>QYQ.

4: Let f̂t(x) = clip(〈θ̂t, x〉) be the predictor at time t,
and predict ŷt ← f̂t(xt).

5: Uncertainty estimate ∆t ← η̃2 min{1, ‖xt‖2M−1}.
6: With probability min {1, α∆t}, set qt ← 1; other-

wise set qt ← 0.
7: if qt = 1 then
8: Query yt. M ←M + xtx

>
t , Q ← Q

⋃
{t}.

Although this strategy can sometimes achieve much smaller
regret than uniform querying (as we discuss in Section 1,
(
∑
u

√
duTu)2 could be substantially smaller than dT ), it

has two clear drawbacks: first, it is not clear if this guaran-
tee is always no worse than uniform querying, especially
when

∑m
u=1 du � d; second, the domain memberships

of examples are rarely known in practice. In the next sec-
tion, we develop algorithms that match the performance this
domain-aware query scheme without these drawbacks.

4 Active online learning for linear
regression: algorithms, analysis, and
matching lower bounds

We start by presenting a parameterized algorithm in Sec-
tion 4.1, where the parameter α has a natural cost inter-
pretation. We then present a fixed-budget variant of it
in Section 4.2. Section 4.3 shows that our algorithm is
minimax-optimal under a wide range of domain structure
specifications.

4.1 Main Algorithm: Query in the Face of
Uncertainty for Regression (QuFUR)

We propose QuFUR (Query in the Face of Uncertainty for
Regression), shown in Algorithm 1. At each time step t, the
algorithm first computes θ̂t, a regularized least squares esti-
mator on the labeled data obtained so far, then predict using
f̂t(x) = clip(〈θ̂t, x〉). It makes a label query with proba-
bility proportional to ∆t, a high-probability upper bound
of the instantaneous regret (ŷt − 〈θ∗, xt〉)2 (see Lemma 1
for details), which can also be interpreted as an uncertainty
measure of xt. Intuitively, when the algorithm is already
confident about the current prediction, it saves its label-
ing budget for learning from less certain inputs in the fu-

{u ∈ [m] :
√
du/Tu ≥ τ}, and µu ∝

√
du/Tu for {u ∈ [m] :√

du/Tu < τ}; see Appendix G.
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ture. More formally, ∆t := η̃2 min(1, ‖xt‖2M−1
t

), where

Mt = λI +
∑
i∈Qt xix

>
i , and Qt is the set of labeled ex-

amples seen up to time step t− 1. QuFUR queries the label
yt with probability min {1, α∆t}, where α is a parameter
that trades off between query complexity and regret.

Perhaps surprisingly, the simple query strategy of QuFUR
can leverage hidden domain structure, as shown by the fol-
lowing theorem.
Theorem 1. Suppose the example sequence {xt}Tt=1 has the
following structure: [T ] can be partitioned into m disjoint
nonempty subsets {Iu}mu=1, where for each u, |Iu| = Tu,
and {xt}t∈Iu lie in a subspace of dimension du. If Algo-
rithm 1 receives as inputs dimension d, time horizon T ,
norm bound C, noise level η, and parameter α, then, with
probability 1− δ:
1. Its query complexity is

Q = Õ

 m∑
u=1

min
{
Tu, η̃

√
αduTu

}
+ 1

 .

2. Its regret is R = Õ
(∑m

u=1 max{η̃2du, η̃
√
duTu/α}

)
.

The proof of the theorem is deferred to Section A.1.
For better intuition, we focus on the regime of α ∈[

1
η̃2

(
1∑

u

√
duTu

)2

, 1
η̃2 minu∈[m]

Tu
du

]
, where the bounds

become Q = Õ(η̃ ·
√
α
∑
u

√
duTu), and R = Õ(η̃ ·∑

u

√
duTu/

√
α). We make a series of remarks below for

this range of α:

Novel notion of adaptive regret. The above tradeoff is
novel in that it holds for any meaningful domain parti-
tions. Our proof actually shows that for any (not neces-
sarily contiguous) subsequence I ⊆ [T ], QuFUR ensures
Q = Õ(η̃ ·

√
dI |I| ·

√
α) andR = Õ(η̃

√
dI |I|)/

√
α within

I , where dI is the dimension of span({xt : t ∈ I}). This
type of guarantee is different from the adaptive regret guar-
antees provided by e.g. Hazan and Seshadhri (2007), where
the regret guarantee is only with respect to continuous inter-
vals. However, note that the results in Hazan and Seshadhri
(2007) do not require realizability.

Matching uniform querying baseline and minimax op-
timality. Our tradeoff is never worse than the uniform
querying baseline; this can be seen by applying the theorem
with the trivial partition {[T ]}, yielding Q = Õ(η̃

√
αdT )

and R = Õ(η̃
√
dT/α). Therefore, same as the uniform

query baseline, this guarantee is also minimax optimal for
constant η, in light of Theorem 7 in Appendix B.2.

Matching oracle baseline and domain structure-aware
minimax optimality. QuFUR matches the domain-aware
oracle baseline discussed in 3.2 even without prior knowl-
edge of domain structure. Furthermore, as we will see, we

Algorithm 2 Fixed-Budget QuFUR

Require: Total dimension d, time horizon T , label budget
B, θ∗’s norm bound C, noise level η.

1: k ← d3 log2 T e.
2: for i = 0 to k do
3: Parameter αi ← 2i/T 2.
4: Initialize M ← 1

C2 I , Q ← ∅.
5: for t = 1 to T do
6: Compute regularized least squares solution θ̂t ←
M−1X>QYQ.

7: Let f̂t(x) = clip(〈θ̂t, x〉) be the predictor at time t,
and predict ŷt ← f̂t(xt).

8: Uncertainty estimate ∆t ← η̃2 min{1, ‖xt‖2M−1}.
9: for i = 0 to k do

10: Set qit = 0.
11: if

∑t−1
j=1 q

i
j < bB/kc then

12: With probability min {1, αi∆t}, set qit = 1.
13: if

∑k
i=0 q

i
t > 0 then

14: Query yt. M ←M + xtx
>
t , Q ← Q

⋃
{t}.

show in Theorem 3 that in a wide range of problem specifica-
tions, this baseline, as well as QuFUR, is minimax-optimal
in our problem formulation with domain structure.

Fixed-cost-ratio interpretation. The tradeoff in Theo-
rem 1 can be interpreted in a fixed-cost-ratio formulation.
Suppose a practitioner decides that the cost ratio between
1 unit of loss and 1 label query is c : 1. The performance
of the algorithm is then measured by its total cost cR+Q.
Theorem 1 shows that QuFUR(α) balances the cost incurred
by prediction and the cost incurred by label queries, in that
Q ≈ αR. We show in Appendix C that QuFUR with input
α = c achieves near-optimal total cost, for a wide range of
domain structure parameters.

Dependence on η. Our query complexity and regret
bounds have a dependence on η̃ = max(η, 1). Similar
dependence also appears in online least-squares regression
literature (Vovk, 2001; Azoury and Warmuth, 2001).

Running time and extension to kernel regression. The
most computationally intensive operation in QuFUR is cal-
culating ∆t for each time, leading to a total time complexity
of O(Td2) (since the update of M−1 can be done in O(d2)
via the Sherman-Morrison formula). For high dimensional
problems with d� n, we can kernelise Algorithm 1 follow-
ing an approach similar to Valko et al. (2013), which has a
time complexity of O(TQ2k), assuming that evaluating the
kernel function takes O(k) time. See Appendix F.
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4.2 QuFUR with a fixed label budget

The label complexity bound in Theorem 1 involve parame-
ters {(du, Tu)}mu=1, which may be unknown in advance. In
many practical settings, the learner is given a label budget
B. For such settings, we propose a fixed-budget version of
QuFUR, Algorithm 2, that takes B as input, and achieves
near-optimal regret bound subject to the budget constraint,
under a wide range of domain structure specifications.

Algorithm 2 is a master algorithm that aggregates over k =
O(log T ) copies of QuFUR (α). Each copy uses a different
value of α from an exponentially increasing grid {2i/T 2 :
i = 0, . . . , k}. The grid ensures that each copy still has
label budget bB/kc = Ω̃(B), and there is always a copy
that takes full advantage of its budget to achieve low regret.
The algorithm queries whenever one of the copies issues a
query, and predicts using a model learned on all historical
labeled data. A copy can no longer query when its budget
is exhausted. In the realizable setting, the regret of the
master algorithm is no worse that of the copy running on a
parameter αi that make Θ̃(B) queries when run on its own;
this insight yields the following theorem.

Theorem 2. Suppose the example sequence {xt}Tt=1 has the
following structure: [T ] can be partitioned into m disjoint
nonempty subsets {Iu}mu=1, where for each u, |Iu| = Tu,
and {xt}t∈Iu lie in a subspace of dimension du. Also sup-

pose B ≤ Õ
(∑

u

√
duTu minu∈[m]

√
Tu/du

)
. If Algo-

rithm 2 receives as inputs dimension d, time horizon T ,
label budget B, norm bound C, and noise level η, then:
1. Its query complexity Q is at most B.
2. With probability 1− δ, its regret is

R = Õ

(
η̃2
(∑

u

√
duTu

)2
/B

)
.

The proof of the theorem is deferred to Ap-
pendix A.2. We now compare the guarantee of
QuFUR with the oracle baseline in Section 3.2: for
any budget B ≤ Õ(

∑
u

√
duTu minu

√
Tu/du),

Fixed-Budget QuFUR achieves a regret guarantee no
worse than that of domain-aware uniform sampling,
while being agnostic to

{
(du, Tu)

}m
u=1

and the do-
main memberships of the examples. For larger budget
B > Õ(

∑
u

√
duTu minu

√
Tu/du), QuFUR still matches

the oracle baseline; we defer the discussion to Appendix G.

4.3 Lower bound

Our development so far establishes domain structure-
aware regret upper bounds R = Õ(η̃2(

∑
u

√
duTu)2/B),

achieved by Fixed-Budget QuFUR and domain-aware uni-
form sampling baseline (the latter requires extra knowledge
about the domain structure and domain membership of each
example, whereas the former does not). In this section,

we study optimality properties of the above upper bounds.
Specifically, we show via Theorem 3 that they are tight up
to logarithmic factors, for a wide range of domain structure
specifications. Its proof can be found in Appendix B.1.

Theorem 3. For any noise level η ≥ 1, set of positive
integers

{
(du, Tu)

}m
u=1

and integer B that satisfy

du ≤ Tu,∀u ∈ [m],

m∑
u=1

du ≤ d,

B ≥
m∑
u=1

du, (1)

there exists an oblivious adversary such that:
1. It uses a ground truth linear predictor θ? ∈ Rd such that
‖θ∗‖2 ≤

√
d, and for all t,

∣∣〈θ∗, xt〉∣∣ ≤ 1; in addition, the
noises {ξt}Tt=1 are sub-Gaussian with variance proxy η2.
2. It shows example sequence {xt}Tt=1 ⊂

{
x : ‖x‖2 ≤ 1

}
,

such that [T ] can be partitioned into m disjoint nonempty
subsets {Iu}mu=1, where for each u, |Iu| = Tu, and
{xt}t∈Iu lie in a subspace of dimension du.
3. Any online active learning algorithmA with label budget
B has regret Ω((

∑m
u=1

√
duTu)2/B).

The above theorem is a domain structure-aware refinement
of the Ω(dT/B) minimax lower bound (Theorem 7 in Ap-
pendix B.2), in that it further constrains the adversary to
present sequences of examples with domain structure param-
eterized by

{
(du, Tu)

}m
u=1

. In fact, the Ω(dT/B) minimax
lower bound is a special case of the lower bound of Theo-
rem 3, by taking m = 1, d1 = d, and T1 = T .

To discuss the tightness of the upper and lower bounds we
obtained so far in more detail, we first set up some useful no-
tations. Denote by E = E(

{
(du, Tu)

}m
u=1

) the set of oblivi-
ous adversaries that shows example sequences with domain
structures specified by

{
(du, Tu)

}m
u=1

. Additionally, denote
by A(B) the set of online active learning algorithms that
uses a label budget of B. Finally, for an algorithm A and
an oblivious adversary E , define R(A, E) as the expected
regret of A in the environment induced by E . Theorem 3
shows that for all

{
(du, Tu)

}m
u=1

and B such that Eq. (1)
holds, we have

min
A∈A(B)

max
E∈E

R (A, E) ≥ Ω


 m∑
u=1

√
duTu

2

/B

 .

On the other hand, Theorem 2 says for all
{

(du, Tu)
}m
u=1

and B ≤ Õ
(∑

u

√
duTu minu∈[m]

√
Tu/du

)
, we have

max
E∈E

R
(
QuFUR(B), E

)
≤ Õ


 m∑
u=1

√
duTu

2

/B

 .
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This shows that, for a wide range of domain structure spec-
ifications

{
(du, Tu)

}m
u=1

and budgets B (i.e.,
∑m
u=1 du ≤

B = Õ(
∑
u

√
duTu minu∈[m]

√
Tu/du)), the regret guar-

antee of Fixed-Budget QuFUR is optimal; furthermore, the
algorithm requires no knowledge on the domain structure.
We call this property of Fixed-Budget QuFUR its hidden-
domain minimax optimality.

5 Extensions to realizable non-linear
regression with an adaptive adversary

QuFUR’s design principle, namely querying with proba-
bility proportional to uncertainty estimates of unlabeled
data, can be easily generalized to deal with other active
online learning problems. We demonstrate this by general-
izing QuFUR to non-linear regression with adaptive adver-
saries, using the concept of eluder dimension from Russo
and Van Roy (2013).

In this section, we relax the assumption in Section 4 that
domain structure is fixed before interaction starts — we
allow each input and its domain membership to depend
on past history. Formally, we require the domain partition{
Iu : u ∈ [m]

}
to be admissible, defined as:

Definition 1. The partition
{
Iu : u ∈ [m]

}
is admissible,

if the domain membership of the t-th example, ut ∈ [m]
depends on the interaction history up to t−1 and unlabeled
example xt; formally, ut is σ(Ht−1, xt)-measurable.

Domain complexity measure. Analogous to the dimen-
sion of the support in linear regression, we use d′u =
dimE

u (F , 1/T 2
u), the eluder dimension of F with respect to

domain u ∈ [m] with supportXu, to measure the complexity
of a domain, formally defined below.

Definition 2. An input x ∈ X is ε-dependent on a set of
inputs {xi}ni=1 ⊆ X with respect to F if for all f1, f2 ∈ F ,√∑n

i=1 (f1(xi)− f2(xi))2 ≤ ε implies f1(x)−f2(x) ≤ ε.
x is ε-independent of {xi}ni=1 with respect to F if it is not
ε-dependent on the latter.

Definition 3. The ε-eluder dimension of F with respect
to support Xu, dimE

u (F , ε), is defined as the length of the
longest sequence of elements inXu such that for some ε′ > ε,
every element is ε′-independent of its predecessors.

The above domain-dependent eluder dimension notion cap-
tures how effective the potential value of acquiring a new
label can be estimated from labeled examples in domain u.4

The Algorithm. The master algorithm, Algorithm 4 in
Appendix A.3, runs O(log T ) copies of Algorithm 3. At
round t, Algorithm 3 predicts using the empirical square
loss minimizer f̂t based on all previously queried examples.

4Appendix D in Russo and Van Roy (2013) gives upper bounds
of eluder dimensions for common function classes.

Algorithm 3 QuFUR(α) for Nonlinear Regression

Require: Hypothesis set F , time horizon T , parameters
α, δ, η.

1: Labeled dataset Q ← ∅.
2: for t = 1 to T do
3: Find f̂t ← argminf∈F

∑
i∈Q (f(xi)− yi)2.

4: Predict f̂t(xt).
5: Define confidence set

Ft ←

{
f ∈ F :

∑
i∈Q

(f(xi)− f̂t(xi))2 ≤ β|Q|(F , δ)

}
,

where β is defined in Equation (13).
6: Uncertainty ∆t = supf1,f2∈Ft

∣∣f1(xt)− f2(xt)
∣∣2.

7: With probability min {1, α∆t}, set qt = 1; other-
wise set qt = 0.

8: if qt = 1 then
9: Query yt. Q ← Q

⋃
{t}.

Same as Algorithm 1, Algorithm 3 queries with probabil-
ity min {1, α∆t}, where ∆t is an uncertainty measure of
the algorithm on example xt. To compute the uncertainty
measure, it constructs a confidence set Ft, so that with high
probability, Ft contains the ground truth f∗. The uncer-
tainty measure ∆t is the squared maximum disagreement
on xt between two hypotheses in Ft. It can be shown that
with high probability, the regret and query complexity are
bounded by O(

∑T
t=1 ∆t) and O(

∑T
t=1 min {1, α∆t}), re-

spectively.

We bound the regret of the algorithm on examples from
domain u in terms of domain complexity measure Ru =
Õ(η̃2d′u logN (F , T−2, ‖ · ‖∞)), where N (F , ε, ‖ · ‖∞) is
the ε-covering number of F with respect to ‖ · ‖∞. Specifi-
cally, we prove the following theorem.

Theorem 4. Suppose the example sequence {xt}Tt=1 has
the following structure: [T ] has an admissible partition{
Iu : u ∈ [m]

}
, where for each u, |Iu| = Tu, and the

eluder dimension of F w.r.t. {xt}t∈Iu is d′u. Then, given
label budget B ≤ Õ(

∑
u

√
RuTu minu

√
Ru/Tu), Algo-

rithm 4 satisfies:
1. It has query complexity Q ≤ B;
2. With probability 1 − δ, its regret R =
Õ((
∑
u

√
RuTu)2/B).

The proof of the theorem can be found in Appendix A.3.
Specializing the theorem to linear hypothesis class F =
{〈x, θ〉 : θ ∈ Rd, ‖θ‖2 ≤ 1}, if Xu is a subset of a du-
dimensional subspace of Rd, we have dimE

u (F , 1/T 2
u) =

Õ(du) and logN (F , 1/T 2
u , ‖ · ‖∞) = Õ(d), implying

Ru = Õ(η̃2dud), which in turn implies that R =
Õ(η̃2d(

∑
u

√
duTu)2/B). Compared to Theorem 2, we

conjecture that the additional factor d is due to the increased
difficulty with adaptive adversaries.
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6 Experiments

We evaluate the query-regret tradeoffs of QuFUR, the uni-
form query baseline (Section 3.2), and naive greedy query
(i.e., always query until labeling budget is exhausted) on
two linear regression and two classification tasks. Although
QuFUR is designed for regression, experiments show that
the same query strategy also achieves competitive perfor-
mance on high-dimensional multi-class classifications tasks.
See Appendix H for more details.

Figure 1: Total squared loss (for regression tasks) / average
0-1 error (for classification tasks) vs. total number of queries
in synthetic, Amazon reviews, rotated MNIST, and portraits
datasets. Error bars show stddev across 5 runs. QuFUR has
the best tradeoffs.

Synthetic dataset is a regression task where the label is
generated via yt = x>t θ

∗ + ξt. Inputs xi’s come from 20
domains that are orthogonal linear subspaces with d = 88.
Each domain u has either Tu = 100 and du = 6, or Tu = 50
and du = 3. θ∗ is a random vector on the unit sphere in
Rd. For any xi in domain u, xi = Vuzi where Vu is an
orthonormal basis of Xu, and zi is drawn from the unit
sphere in Rdu . Noise ξt’s are iid zero-mean Gaussian with
variance η2 = 0.1.

Amazon review dataset (McAuley et al., 2015) is a regres-
sion task where we predict ratings from 1 to 5 based on
review text. Reviews come from 3 topics / domains: auto-
motive, grocery, video games. We assume that the domains
come in succession, with durations 300, 600, 1200. Each
review is encoded as a 768-dimensional vector — the av-
erage BERT embedding (Devlin et al., 2018) of each word
in the review. Each domain uses a subset of the vocabulary,
so the embeddings within the domain reside in a subspace
(Reif et al., 2019). The sub-vocabularies are of smaller size
(and largely disjoint), motivating our low-dimensional sub-
space structure for linear models. To check that realizability
is a reasonable assumption, we verify that offline linear
regression on all domains achieve an MSE of 0.62.

Figure 2: Illustration of modified portraits dataset. Block
lengths (not drawn to scale) indicate domain durations,
which are unknown to the learner. Facial features for each
gender shift over time.

Rotated MNIST dataset (LeCun et al., 2010) is a 10-way
classification task. We create 3 domains via rotating the im-
ages 60, 30, and 0 degrees. Domain durations are 500, 250,
and 125 in Figure 1. We check that a linear classifier trained
on all domains obtain 100% training accuracy.

Portraits dataset (Ginosar et al., 2015; Kumar et al., 2020)
contains photos of high school seniors taken across 1900s-
2010s, labeled by gender. We sort the photos chronolog-
ically, and divide into 5 periods with 8000 photos each.
We pick the first {512, 256, 128, 64, 32} photos from each
period to obtain 5 domains (Figure 2). We check that a
linear classifier trained on all domains obtain 99% training
accuracy.

Figure 3: QuFUR’s query probability in the rotated MNIST
experiment with domain durations 125 / 250 / 500, when
alpha is set to 0.25 (left), 0.5 (middle), 1 (right). QuFUR
queries more frequently upon domain shift.

Results. We run QuFUR(α) for α sweeping an appropri-
ate range for each dataset, and uniform queries with proba-
bility µ ∈ [0.05, 1]. Figure 1 shows that QuFUR achieves
the lowest total regret under the same labeling budget across
all datasets. Figure 3 shows that QuFUR’s query probability
abruptly rises upon domain shifts. We choose highly het-
erogeneous domain durations since our theory predicts that
QuFUR is likely to have the most savings in such situations.
We show in Appendix H that in other setups, QuFUR still
has competitive performance.

7 Conclusion

We formulate a novel task of active online learning with
latent domain structure. We propose a surprisingly simple
algorithm that adapts to domain shifts, and give matching
upper and lower bounds for a wide range of domain struc-
ture specifications for linear regression. The strategy can
be generalized to other problems, as we did for non-linear
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regression, relying on a suitable uncertainty estimate for un-
labeled data. We believe that our problem and solution can
spur future work on making online learning more practical.
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