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The outline of the appendix is stated as follows. First, some useful results along with some proofs of the
preliminaries and the main results are provided in Section 6. In Section 7 we report the detailed settings
of the experiments in the main paper. In Section 8, we further analyze the properties of our leverage score
approximation, which mirror the behavior of the true statistical leverage scores. To numerically accelerate
the computation in the multivariate case, we simplify the multiple integral for obtaining the leverage score
approximation to a single integral in Section 9. Besides, we show the error caused by density estimation is
negligible compared with the total error in approximating statistical leverage scores in Section 10. Finally, we
provide some technical facts regarding multivariate integration in Section 11.

6 USEFUL FACTS

6.1 Fourier Transform

Use Lp(Rd) =
{
f : Rd → R,

∫
Rd
∣∣f(x)

∣∣p dx <∞
}

to denote the space of all Lp integrable functions over Rd for

p ≥ 1. For any function f ∈ L1(Rd), we use F [f ] and F−1[f ] to denote its Fourier transform and its inverse
Fourier transform, which is given by

F [f ](s) =

∫
Rd
f(x) e−2π

√
−1〈x,s〉 dx, for all s ∈ Rd,F−1[f ](x) =

∫
Rd
f(s) e2π

√
−1〈x,s〉 ds, for all x ∈ Rd.

A useful property of the Fourier transform is the Parseval’s identity.

Theorem 5 (Parseval’s identity). For any f ∈ L2(Rd), the following identity holds∫
Rd

∣∣f(x)
∣∣2 dx =

∫
Rd

∣∣F [f ](s)
∣∣2 ds.

Besides, Fourier transform is closely related to kernels. For any PSD stationary kernel K : Rd × Rd → R, by
Brochner’s Theorem, it would be a Fourier transform of a Borel measure. For simplicity we abuse the notation
by using K(x) to mean K(y, y + x), ∀y ∈ Rd, since K(y, y + x) does not depend on the specific choice of y.
Specifically, the Matérn kernel Kα with smoothness parameter ν = α − d/2 > 0 can be equivalently defined
through its Fourier transform (Rasmussen, 2003, p. 84) as

mα(s) : = F [Kα](s) =

∫
Rd
Kα(x) e−2π

√
−1〈x,s〉 dx = Cα(1 +Dα‖s‖2)−α, ∀s ∈ Rd,

where Cα and Dα are some constants only dependent on α. (To simplify the statement of the theory, we would
simply take Cα = Dα = 1 when later discussing the asymptotic properties.) Throughout this appendix, we focus
on the case in which the Matérn kernel is used, since its theoretical properties have been well studied, and the
proof is easy to be extended to other stationary kernels.
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6.2 RKHS Associated with the Matérn Kernel—Proof of Theorem 1 in the Main Paper

The following theorem characterizes the RKHS Hα associated with the Matérn kernel through its Fourier trans-
form. The main body of the proof comes from the slides of Fukumizu (2008).

Lemma 6 (Fourier representation of RKHS). For any f, g ∈ Hα, we have

‖f‖2Hα =

∫
Rd

∣∣F [f ](s)
∣∣2

mα(s)
ds, and 〈f, g〉Hα =

∫
Rd

F [f ](s) ·F [g](s)

mα(s)
ds

Proof. Consider a measure space (R,B, µ), where dµ = mα(s)ds, andmα(s) is the spectral density of the invariant
Matérn kernel with smoothness parameter ν = α− d

2 . By referring to Section 3.1 in our main paper, we can check
the function mα(s) ∈ L∞ is differentiable and positive everywhere. Based on the measure µ, we define a function
space G = L2(Rd, µ) ≡ {F : Rd → C;

∫
Rd |F |

2dµ <∞}, with the inner product 〈F,G〉G :=
∫
FGdµ. Here C is

the set of all complex numbers. We can observe the form is quite similar to the frequency domain in Fourier
Transform. To construct the RKHS of interest, we further define a function H(s;x) = exp(−2π

√
−1 〈x, s〉) and

a map M (·) : L2(Rd, µ)→ T, similar to inverse Fourier Transform, given by

M (F )(x) :=

∫
F (s)H(s;x)dµ =

∫
F (s) exp(2π

√
−1 〈x, s〉)dµ, ∀x ∈ Rd

where T is the space of all functions over Rd with the pointwise-convergence topology, i.e. fn → f ⇔ fn(x) →
f(x),∀x ∈ Rd.

Now we are able to define a new function space H := {f ∈ T; ∃F ∈ L2(Rd, µ), f = M (F )}, and equip it with
the inner product 〈f, g〉H := 〈F,G〉G, where F,G satisfy f = M (F ), g = M (G). We first need to show H is an
RKHS. We can check for all f ∈ H,

f(x) = 〈F,H(·;x)〉G = 〈f,M (H(·;x))〉H

Also, the reproducing kernel of H would be:

K(x, y) = 〈M (H(·;x)),M (H(·; y))〉H = 〈H(·;x), H(·; y)〉G

=

∫
exp(−2π

√
−1 〈x, s〉) exp(2π

√
−1 〈y, s〉)dµ

=

∫
exp(2π

√
−1 〈y − x, s〉)mα(s)ds

= Kα(y − x)

where Kα is the invariant Matérn kernel with smoothness parameter α. We can confirm H is exactly the RKHS
induced by a Matérn kernel Kα.

To complete the proof, we still need to find the form of 〈f, g〉H. Note by the facts mα(s) ∈ L∞ and F ∈ L2, we
can infer F (s)mα(s) ∈ L2 as

∫
(F (s)mα(s))2ds ≤ ‖mα‖2∞

∫
F 2(s)ds. Using the Fourier isometry of L2 (Adams

and Fournier, 2003, Theorem 7.61), we obtain F (s)mα(s) = F [f ](s); i.e., F (s) = F [f ](s)/mα(s). Finally, by
the definition of the inner product, for f = M (F ) and g = M (G),

〈f, g〉H = 〈F,G〉G =

∫
F [f ](s)

mα(s)

F [g](s)

mα(s)
mα(s)ds

=

∫
F [f ](s)F [g](s)

mα(s)
ds

in which the third equality relies on the fact the mα(s) is real, and its conjugate is the same as itself. ♦

6.3 Embedding Inequalities

Let α be an integer. Following the notation of the book (Adams and Fournier, 2003), for any p ≥ 1 and subset
Ω ⊂ Rd, we use the notation Wα,p(Ω) to denote the Sobolev space as a set of functions u in Lp(Ω) such that
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u and its weak derivatives up to total order α have a finite Lp norm. With this definition, the Sobolev space
admits a norm and a seminorm

‖u‖α,p,Ω =

( ∑
|k|≤α

‖Dku‖pp,Ω
) 1
p

=

( ∑
|k|≤α

∫
Ω

∣∣Dku(t)
∣∣p dt

) 1
p

, (1)

|u|α,p,Ω =

( ∑
|k|=α

∫
Ω

∣∣Dku(t)
∣∣p dt

) 1
p

. (2)

where k = (k1, · · · , kd) is a multi-index, and Dku = ∂|k|u
∂k1x1···∂kdxd

. To more precisely describe the mixed deriva-

tive, we additionally define some notations here for future use:

• A is a subset of [d], −A := ([d]−A),

• u = IA ∈ {0, 1}d is a vector s.t. ui = 1,∀i ∈ A;ui = 0,∀i ∈ −A,

• a vector u = µ(A−1,A+1) ∈ {−1, 0, 1}d satisfies ui = −1,∀i ∈ A−1;ui = 1,∀i ∈ A+1,

• xA := (xi)i∈A, and g(xA;x−A) represents g(u) where uA = xA are the variables and u−A = x−A are taken
as the parameters fixed in the integration,

• C(y, δ) := {(x1, x2, . . . , xd);xi ∈ [yi − δ, yi + δ],∀i ∈ [d]} is a cube centered at y,

• CA(y, δ) = C(yA, δ) is the marginal cube of C(y, δ) defined as {xA;xi ∈ (yi − δ, yi + δ),∀i ∈ A}.

We will primarily work with the case p = 2 and Ω being a connected domain. For any u ∈ H, by using the fact
that F [Dku](s) = (

∏d
i=1(2π

√
−1si)

ki) ·F [u](s) and the Parseval’s identity in Theorem 5, we obtain

‖u‖2α,2,Rd =

∫
Rd

∑
|k|≤α

∣∣ d∏
i=1

(2π
√
−1si)

ki F [u](s)
∣∣2 ds.

Since there exist constants (C1, C2) such that C1(1 + ‖s‖2)α ≤
(∑

|k|≤α
∏d
i=1 s

ki
i

)2 ≤ C2(1 + ‖s‖2)α holds for

all s ∈ Rd, by Lemma 6 we can further deduce that

C1‖u‖2Hα ≤ ‖u‖
2
α,2,Rd ≤ C2‖u‖2Hα (3)

holds for any u ∈ Hα, the RKHS associated with the Matérn kernel with smoothness index ν(= α− d/2).

We first invoke the following special case of interpolation theorem of Sobolev spaceWα,p(Ω) (Adams and Fournier,
2003, Theorem 5.12).

Theorem 7 (Interpolation inequality). For any integer 0 ≤ k ≤ α, there exist two constants (c0,K) only
depending on α, such that for any u ∈Wα,2(Ω) and any ε ∈ (0, c0),

|u|k,2,Ω ≤ K
(
εα−k |u|α,2,Ω + ε−k‖u‖2,Ω

)
,

where for any function g, ‖g‖22,Ω =
∫

Ω
g2(t) dt.

We will also use the following generalization of Gagliardo–Nirenberg interpolation inequalities to bound the
sup-norm, which can be viewed as an extension of the above interpolation inequality to the sup-norm.

Theorem 8 (Sup-norm interpolation inequality). There exist two universal constants (c1,K1), such that for
any u ∈Wα,2(Ω) and any ε ∈ (0, c1),

‖u‖∞,(1−ε2)Ω : = sup
t∈(1−ε2)Ω

|u(t)| ≤ K1

(
ε−d ‖u‖2,Ω + ε2α−d |u|α,2,Ω

)
.
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Proof. From the Gagliardo–Nirenberg interpolation inequalities (Brezis and Mironescu, 2018), we have

‖g‖∞,Ω ≤ C(‖g‖2,Ω + |g|α, dα ,Ω), ∀ g ∈Wα,2(Ω),

where C is some universal constant. In fact, the last term could be further bounded by C0|g|α,2,Ω since Wα,2 =
Hα, α >

d
2 ,

d
α < 2, and the domain Ω is bounded.

Now for each fixed point y0 ∈ (1− ε2)Ω, we can obtain by the preceding display with g(t) = u(y0 + ε2t) in the
above that

‖u‖∞,B(y0,ε2) ≤ ε−d ‖u‖2,B(y0,ε2) + C0 ε
2α−d |u|α,2,B(y0,ε2) ≤ Cε−d ‖u‖2,Ω + C0 ε

2α−d |u|α,2,Ω,

where we have used the fact that B(y0, ε
2) ⊂ Ω for any y0 ∈ (1 − ε2)Ω. Finally, the claimed inequality follows

by the above derivation and the fact that

‖u‖∞,(1−ε2)Ω = sup
y0∈(1−ε2)Ω

‖u‖∞,B(y0,ε2)

♦

Theorem 7 and 8 leads to the following lemma that we will repeatedly use in our proof. Here we specifically
consider a fixed point x0 such that the density function p(x) is uniformly bounded from below by 1

2 p(x0) > 0
for any x satisfying ‖x− x0‖ < δ(x0) and some constant δ(x0) > 0 that may depend on x0. Before entering the
theorem, we define an RKHS norm ‖ · ‖λ as

‖f‖2λ =

∫
Rd
f2(x) p(x) dx+ h2α‖f‖2Hα ,

and its localized truncation ‖f‖x0,λ as

‖f‖2x0,λ
:=

∫
C(x0,δ(x0))

f2(x) p(x) dx+ h2α‖f‖2Hα .

Theorem 9 (Local interpolation for RKHS). Suppose δ(x0) ≥ Ch log(1/h) for some constant C > 0. Let
C(x0, δ(x0)) denote a cube centered at x0 with edge length 2δ(x0). If C log(1/h) > c−1

0 and
√
C log(1/h) > c−1

1 ,
where (c0, c1) are the constants in Theorems 7 and 8, then there exists a constant K ′ such that

|f |k,2,C(x0,δ(x0)) ≤ K ′h−k max
{

1,
(
p(x0)

)−1/2} ‖f‖x0,λ,

for any f ∈ Hα and k = 0, 1, . . . , α. In addition, for each k = 0, 1, . . . α, there exists some constant K ′′ > 0 and
ε < c1 such that

‖f‖k,∞,(1−ε2)C(x0,δ(x0)) ≤ K ′′h−k−d/2 max
{

1,
(
p(x0)

)−1/2} ‖f‖x0,λ,

Finally, for the case |A| = k, |A′| = k′, and A′ ⊆ A, there is also a constant K ′′′ satisfying:(∫
CA(x0,δ(x0))

∣∣D1A′ f(xA;x−A)
∣∣2dxA

) 1
2 ≤ K ′′′h−k

′−(d−k)/2 max
{

1,
(
p(x0)

)−1/2} ‖f‖x0,λ,

which generalizes the first inequality and provides a finer L2 norm control.

Proof. When k = α, the first inequality is obvious due to the the equivalence (3) between ‖ · ‖α,2,R and ‖ · ‖Hα ,
and the fact that ‖f‖x0,λ ≥ hα‖f‖Hα . Now let us consider k ≤ α − 1. Let a = δ(x0) and u(t) = f(x0 + at) for
t ∈ Ω. By applying the change of variable formula for integral and the chain rule for derivatives, we obtain (with
x = at)

|u|2k,2,Ω =
∑
|j|=k

∫
Ω

∣∣Dju(t)
∣∣2 dt =

∑
|j|=k

a2k−d
∫
C(x0,a)

∣∣Djf(x)
∣∣2 dx

= a2k−d|f |2k,2,C(x0,a), ∀ k = 0, 1, . . . , α.
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Combining this with Theorem 7 and the definition (1) of Sobolev norm yields

|f |2k,2,C(x0,δ(x0)) ≤ a
−(2k−d)

(
Kε−k

(
εα|u|α,2,Ω + ‖u‖2,Ω

))2

≤ 2K2 (aε)−2k

(
(aε)2α|f |2α,2,C(x0,δ(x0)) +

∫
C(x0,δ(x0))

∣∣f(x)
∣∣2 dx

)
≤ 2K2 (aε)−2k

(
(aε)2α|f |2α,2,Rd +

∫
C(x0,δ(x0))

∣∣f(x)
∣∣2 dx

)
.

Using the condition that p(x) ≥ p(x0)/2 for each x ∈ C(x0, δ(x0)), and the equivalence (3) between ‖ · ‖α,2,Rd
and ‖ · ‖Hα , we further obtain by choosing ε = h/δ(x0) ≤ (C log(1/h))−1 < c0 in the above that

|f |2k,2,C(x0,δ(x0)) ≤ 2K2h−2k
(
h2α ‖f‖2Hα + 2

(
p(x0)

)−1
∫
C(x0,δ(x0))

∣∣f(x)
∣∣2 p(x) dx

)
≤ K ′2h−2k max

{
1,
(
p(x0)

)−1}‖f‖2x0,λ,

which yields the first claimed inequality.

To prove the second inequality, we will apply Theorem 8. More specifically, we apply Theorem 8 with u(t) =

Djf(x0 + at), |j| = k, a = δ(x0), Ω = C(x0, δ(x0)) and set ε =
√
h/a ≤

√
1

C log(1/h) < c1 to obtain (with a

change of variable formula for integration)

‖Djf‖∞,(1−ε2)Ω = ‖u‖∞,(1−ε2)C(0,1) ≤ K1

(
ε−d ‖u‖2,C(0,1) + ε2α−2k−d|u|α−k,2,C(0,1)

)
≤ K1ε

−da−d/2 |f |k,2,Ω +K1ε
2α−2k−daα−k−d/2 |f |α,2,Ω

= K1h
−d/2 |f |k,2,Ω +K1h

α−k−d/2 |f |α,2,Ω.

Now, we can obtain by combining the above with the first inequality of this theorem,

|f |k,∞,(1−ε2)Ω . h−k−d/2 max
{

1,
(
p(x0)

)−1/2} ‖f‖x0,λ.

To prove the final inequality, we will take f(xA;x−A) as a k-d function. Analogously using the previous result,
we have:∫

CA

∣∣D1A′ f(xA;x−A)
∣∣2dxA ≤ |f |2k′,2,CA ≤ K ′2h−2k′

( ∫
CA

f2(xA;x−A)dxA + h2α|f(xA;x−A)|2α,2,CA

)
Then we take Dgf(xA;x−A) as a (d − k)-d function over C−A(x0, δ(x0)) (g is any multi-index whose nonzero
elements are in A′), and utilize the intermediate result of the second inequality:

‖Dgf(xA;x−A)‖∞,(1−ε2)C−A . h−(d−k)/2|f ||g|,2,C−A + h−(d−k)/2+(α−|g|)|f |α,2,C−A .

In that case, ∫
CA

f2(xA;x−A)dxA .
∫
CA

h−(d−k)‖f(xA;x−A)‖22,C−A + h−(d−k)+2α|f |2α,2,C−AdxA

. h−(d−k)‖f‖22,Ω + h−(d−k)+2α|f |2α,2,Ω

. h−(d−k) max
{

1,
(
p(x0)

)−1} ‖f‖2x0,λ,

The result for h2α|f(xA;x−A)|2α,2,CA could be analogously obtained. Combining the pieces together, we have∫
CA

∣∣D1A′ f(xA;x−A)
∣∣2dxA . h−2k′−(d−k) max

{
1,
(
p(x0)

)−1} ‖f‖2x0,λ

♦
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6.4 Leverage Score Approximation—Proof of Theorem 3 in the Main Paper

Proof. Let F denote the limiting cumulative distribution function of Fn, and p the density function associated
with F . Recall that the rescaled leverage approximation K̃λ(x, x0) is the minimizer of the following local
population level functional

Ax0
(f) =

p(x0)

2

∫
Rd
f2(x) dx+

λ

2
‖f‖2Hα − f(x0),

such that the following identity holds for each function u ∈ Hα, which corresponds to setting the Gateaux
derivative DAx0

of Ax0
at K̃x0

to be the zero operator,

DAx0
(K̃x0

)(u) = p(x0)

∫
Rd
K̃x0

(x)u(x) dx+ λ 〈K̃x0
, u〉Hα − u(x0) = 0,

or K̃x0
(x) : = K̃λ(x, x0) = F−1

[
1

p(x0) + h2α (1 + ‖s‖2)α

]
(x− x0), ∀x ∈ Rd.

The rescaled leverage function Gx0
is instead the minimizer of the empirical functional An,x0

, and thus the
Gateaux derivative DAn,x0

at point Gx0
should be 0 since Gx0

is the optimal function for the functional. Using
that fact,

DAn,x0
(K̃x0

)(ũ) = {DAn,x0
(K̃x0

)−DAn,x0
(G(·, x0))}(ũ)

= D2An,x0
(G(·, x0))(K̃x0

−G(·, x0), ũ)

The last equality holds due to the definition of second order functional derivative. Note the key identity that
D2An,x0(G(·, x0))(ũ, ũ) = ‖ũ‖2n,λ. By choosing u = ũ := K̃x0 − G(·, x0), we would further have (u, ũ would be
used interchangeably from now on)

DAn,x0(K̃x0
)(u) = ‖ũ‖2n,λ =

∫
Rd
ũ2(x) dFn(x) + λ ‖ũ‖2Hα ,

and our task somewhat reduces to bounding the term above DAn,x0(u) = ‖K̃x0 −G(·, x0)‖2n,λ. To do that, we

can expand the expression DAn,x0
(K̃x0

)(u):

DAn,x0(K̃x0
)(u) =

∫
Rd
K̃x0

(x) dFn(x) + λ 〈K̃x0
, u〉Hα − u(x0)

= DAx0(K̃x0)(u)︸ ︷︷ ︸
=0

+

∫
Rd
K̃x0

(x)u(x) d
(
Fn(x)− F (x)

)
︸ ︷︷ ︸

= :I1

+

∫
Rd
K̃x0

(x)u(x)
(
p(x)− p(x0)

)
dx︸ ︷︷ ︸

= :I2

,

and bound the last two terms separately.

Using Lemma 13, as u = ũ vanishes at infinity, we have

I1 = (−1)d
∫
Rd

(Fn(x)− F (x))
∂d

∂x1∂x2 · · · ∂xd
(
K̃x0

(x)u(x)
)
dx

The term |I1| can be correspondingly bounded as

|I1| ≤ τ(n)

∫
Rd

∣∣ ∂d

∂x1∂x2 · · · ∂xd
(
K̃x0

(x)u(x)
)∣∣dx

≤ τ(n)
∑

k1tk2=[d]

∫
Rd

∣∣Dk1K̃x0(x)Dk2u(x)
∣∣dx.

Using Lemma 10(2) about the exponential decay on K̃x0
and its derivatives and the local embedding inequalities
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in Theorem 9, we obtain∫
Rd

∣∣Dk1K̃x0
(x)Dk2u(x)

∣∣dx ≤ ∫
Cx0, δ(x0)

∣∣Dk1K̃x0
(x)
∣∣ ∣∣Dk2u(x)

∣∣ dx
+ |u||k2|,2,Rd

(∫
Cc
x0, δ(x0)

∣∣Dk1K̃x0
(x)
∣∣2dx

) 1
2

(i)

≤
(∫

Rd

∣∣h−|k1|(hd + h−d) e−C2 ‖x−x0‖/h
∣∣2 dx

)1/2

· |u||k2|,2,Cx0,δ(x0)

+ |u||k2|,2,Rd
(∫
‖x−x0‖≥Ch log(1/h)

∣∣h−|k1|(hd + h−d) e−C2 ‖x−x0‖/h
∣∣2dx

) 1
2

where step (i) follows by the Cauchy-Schwarz inequality and the assumption that δ(x0) ≥ Ch log(1/h). Further
bound is given as∫

Rd

∣∣Dk1K̃x0
(x)Dk2u(x)

∣∣dx . h−d/2−|k1| |u||k2|,2,Cx0,δ(x0)
+ log

d−1
2 (1/h)hC2C−d/2−|k1| |u||k2|,2,Rd

(ii)

. h−d/2−|k1|−|k2| max
{

1,
(
p(x0)

)−1/2} ‖u‖x0,λ + log
d−1
2 (1/h)hC2C−d/2−|k1| |u||k2|,2,Rd ,

where step (ii) uses the first inequality in Theorem 9 with k = |k2|. The next bound is derived as,∫
Rd

∣∣Dk1K̃x0
(x)Dk2u(x)

∣∣dx
.h−3d/2 max

{
1,
(
p(x0)

)−1/2} ‖u‖x0,λ + log
d−1
2 (1/h)hC2C−d/2−|k1| |u||k2|,2,Rd

.h−3d/2 max
{

1,
(
p(x0)

)−1/2} ‖u‖x0,λ + log
d−1
2 (1/h)hC2C−d/2−|k1|−α‖u‖x0,λ,

in which the last step utilizes the fact that ‖u‖1,2,R ≤ ‖u‖Hα ≤ h−α ‖u‖x0,λ. For C > α/C2, we can finally obtain

|I1| . τ(n)h−3d/2 max
{

1,
(
p(x0)

)−1/2} ‖u‖x0,λ.

Similarly, by using the Lipschitz property of the density function p as |p(x)− p(x0)| ≤ min
{

2Cp, Lx0‖x− x0‖
}

(where Cp = supx |p(x)| and Lx0
is the local Lipschitz constant of p around x0), the exponential decay on K̃x0

and the local embedding inequalities in Theorem 9 with k = 0, we obtain

|I2| .
∫
Cx0, δ(x0)

∣∣K̃x0
(x)
∣∣ · ‖x− x0‖ · |u(x)|dx+ ‖u‖∞,Rd

∫
Cc
x0, δ(x0)

∣∣K̃x0
(x)
∣∣dx

.
(∫

Rd

∣∣(hd + h−d) e−C2 ‖x−x0‖/h ‖x− x0‖
∣∣2 dx

)1/2

· ‖u‖2,Cx0,δ(x0)

+ ‖u‖∞,Rd
∫
‖x−x0‖≥Ch log(1/h)

∣∣(hd + h−d) e−C2 ‖x−x0‖/h
∣∣dx

. h−d/2+1 ‖u‖2,Cx0,δ(x0)
+ hC2C ‖u‖∞,Rd . h−d/2+1 max

{
1,
(
p(x0)

)−1/2} ‖u‖x0,λ + hC2C ‖u‖∞,Rd .

Putting pieces together, we obtain∣∣DAn,x0(K̃x0)(u)
∣∣ . hC2C ‖u‖∞ + max

{
1,
(
p(x0)

)−1/2} (
τ(n)h−3d/2 + h−d/2+1

)
‖u‖x0,λ.

Now we return back to the right hand side of the identity DAn,x0
(K̃x0

)(u) = ‖ũ‖2n,λ. Since Fn is nondecreasing,
we have the following bound,∫

Rd
ũ2(x) dFn(x) ≥

∫
C(x0,δ(x0))

ũ2(x) dFn(x)

=

∫
C(x0,δ(x0))

ũ2(x) dF (x) +

∫
C(x0,δ(x0))

ũ2(x) d
(
Fn(x)− F (x)

)
.
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Therefore, by the definition of the localized norm ‖ · ‖x0,λ, we have

‖ũ‖2n,λ ≥ ‖ũ‖2x0,λ +

∫
C(x0,δ(x0))

ũ2(x) d
(
Fn(x)− F (x)

)
︸ ︷︷ ︸

= :I3

.

By applying the Lemma 13 again (note ũ and ũ2 are infinitely differentiable), the second term I3 can be bounded
as (some terms are hidden)

|I3| .
∥∥ũ2(x)

(
Fn(x)− F (x)

)∥∥
∞,Cx0,δ(x0)

+ . . .

+
∥∥Fn(x)− F (x)

∥∥
∞,Cx0,δ(x0)

∫
Cx0,δ(x0)

| ∂d

∂x1∂x2 · · · ∂xd
(ũ2(x))|dx.

Now by applying the first and the second inequality in Theorem 9, and the Cauchy-Schwarz inequality, the sum
of the two terms above can be bounded up to a constant by

max
{

1,
(
p(x0)

)−1}
τ(n)h−d ‖ũ‖2x0,λ.

Putting all the pieces together, we can reach(
1− cτ(n) max

{
1,
(
p(x0)

)−1}
h−d

)
‖ũ‖2x0,λ

≤ c′ hC2C ‖ũ‖∞ + c′ max
{

1,
(
p(x0)

)−1/2} (
τ(n)h−3d/2 + h−d/2+1

)
‖ũ‖x0,λ.

It is easy to verify directly that we always have the crude bound ‖ũ‖∞ . n, so by choosing constant C sufficiently
large hC2Cn is decreasing, we can obtain from the above that

‖ũ‖x0,λ . max
{

1,
(
p(x0)

)−1/2}
(τ(n)h−3d/2 + h−d/2+1

)
.

In addition, an application of the second inequality in Theorem 9 implies

sup
x∈Cx0,(1−h)δ(x0)

|ũ(x)| . max
{

1,
(
p(x0)

)−1/2} (
τ(n)h−2d + h−d+1

)
.

Finally, by taking x = y = x0 in the integral form of K̃x0
in equation (4), we have the lower bound K̃x0

(x0) ≥
ch−d

(
p(x0)

)−1+1/(2α)
for some constant c > 0 that only depends on α. Therefore, we have the relative error

bound ∣∣K̃λ(x0, x0)−G(x0, x0)
∣∣∣∣G(x0, x0)

∣∣ . max
{

1,
(
p(x0)

)1/2−1/(2α)}√
p(x0)

(
τ(n)h−d + h

)
,

for any x0 such that the density function satisfies p(x) ≥ p(x0)/2 for all x in an h log(1/h) neighborhood of x0.
In particular, for any α ≥ 1, the relative error of estimating the leverage score remains bounded even if the local
density p(x0) tends to zero. ♦

7 MORE ON SIMULATIONS

In this section, we mainly provide the complete experiment settings and one additional figure to help illustrate
our method. We first describe all the competing methods: original kernel ridge regression; Nyström methods
with uniform sampling (hereinafter referred to as ”vanilla”); Nyström with Recursive-RLS (RC) (Musco and
Musco, 2017); Nyström with BLESS (Rudi et al., 2018); and Nyström with spectral analysis (SA, our proposed
method).
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7.1 Experiment Settings in Figure 1 in the Main Paper

In this experiment, we compare the runtime and runtime versus error trade-off among Vanilla, RC, BLESS,
and our method SA in Figure 1, under the 3-d bimodal setting (γ = 0.4) using the Matérn kernel (ν = 1.5).
Specifically, the bimodal distribution has two components: with probability n

n+nγ generating a Unif[0, 1]3; and

with probability nγ

n+nγ generating a random variable with pdf
∏3
j=1(5 − 2xj) for xj ∈ [2, 2.5], where n is the

sample size.

The sample size n ranges from 2, 000 to 500, 000. In particular, the target function is set as f∗(x) = g(‖x‖2/d)
with g(x) = 1.6|(x − 0.4)(x − 0.6)| − x(x − 1)(x − 2) − 0.5, and i.i.d. noises follow N (0, 0.25); regularization
parameter λ is set as 0.075 · n−2/3, and the bandwidth for Gaussian kernel density estimator is 0.15n−1/7. The
KDE estimator allows a 0.15 relative error. The projection dimension for all the methods is set as 5 ·n1/3, while
the sub-sampling size s for all the iteration-based Nyström methods listed is chosen as 1 · n1/3 due to high time
complexity. All the results reported in Figure 1 are averaged over 30 replicates.

7.2 Experiment Settings in Table 1 in the Main Paper

Each method above is run on the RadiusQueriesCount (Savva et al., 2018; Anagnostopoulos et al., 2018)(denoted
by RQP), HTRU2 (Lyon et al., 2016), and CCPP (Tüfekci, 2014; Kaya and Tüfekci, 2012) datasets downloaded
from the UCI ML Repository (Dua and Graff, 2017). Those datasets contain 10000, 17898, and 9568 data
points, with 3, 8, and 5 features respectively. The smoothness parameter of Matérn kernel is set as ν = 0.5, and

α := ν+ d
2 = d

2 +0.5. The regularization parameter λ is set as 0.15 ·n−
2α

2α+d . To attain the optimal error rate, the

projection dimension of all methods b2 · n
d

2α+d c; while the sub-sample size for estimating the statistical leverage

scores in RC and BLESS is set as b1 · n
d

2α+d c. We still use kernel density estimator to gain density estimation,
and the detailed setting of this estimator is almost the same as the last experiment, using Gaussian kernel and
the bandwidth 0.5 · n− 1

3 . All the results reported in Table 1 are averaged over 10 replicates.

7.3 Experiment Settings in Figure 2 in the Main Paper

We ran the experiments on the one-dimensional (for the ease of visualization) Unif[0, 1], Beta(15, 2), and a
bimodal distribution, as before, with two components: with probability n

n+nγ generating a Unif[0, 0.5]; and with

probability nγ

n+nγ generating a random variable with pdf (3− 2x) for x ∈ [1, 1.5], where n is the sample size and
γ = 0.6. In addition, the Matérn kernel with smoothness parameter ν = 1.5 is used, and density estimation is
performed by a tree-based kernel density estimator. The number of observations varies from n = 200 to 10, 000.
The regularization parameter of the KRR is set as λ = 0.45 · n−0.8.

A Gaussian kernel is used for density estimation, and the bandwidth is set to 1 · n−0.2 for Uniform[0, 1] and
0.3 ·n−1/3 for the rest two distributions. Also, we allow a 0.05 relative error tolerance for density estimation since
highly accurate density estimation is not required for Nyström methods (cf. Section 10). While implementing
our algorithm, we also apply an ad-hoc modification to avoid the potential instability with a small density value
p(xi), as mentioned in Section 3.1 in the main paper. Particularly, in the case of Beta distribution, if the density

of point xi is smaller than a threshold h = 0.3 · n−0.8, a weighted average 0.5h+p(xi)
1.5 would be used for the

subsequent leverage score approximation.

In Figure 2, we show our method provides reasonably good approximations to the rescaled leverage scores
across all settings. In particular, Unif[0, 1] is the easiest case (red curves) due to its flat density, which meets
Assumption 1 and 2 for almost all design points; while for points with low density, such as those in the smaller
cluster of the bimodal distribution and close to the boundary of Beta(15, 2), the absolute error tends to be large
due to the leading constant Cx0 in the error bound in Theorem 3. Moreover, the relative approximation error
has a clear tendency of decreasing as the sample size increases, which is also consistent with our theory.

7.4 The Additional Experiment for Gaussian Kernels

To show that our proposed method can also be extended to more kernels other than Matérn kernels, in this
subsection we compare the in-sample prediction error among the methods above in Figure 3, under a dimension-

increasing setting (d = 3, 10, 30 respectively) using a Gaussian kernel with bandwidth σ = 1.5n−
1

2d+3 . We still
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use a bimodal distribution similar to the above one: (γ = 0.4) with probability n
n+nγ generating a Unif[0, 1]d;

and with probability nγ

n+nγ generating a random variable with pdf
∏d
j=1(7− 2xj) for xj ∈ [3, 3.5], where n is the

sample size.

The sample size n ranges from 1000 to 100, 000. In particular, the target function is set as f∗(x) = g(‖x‖2/d) +
g(x1) (x1 is the first element of x) with g(x) = 1.6|(x−0.4)(x−0.6)|−x(x−1)(x−2)−0.5, and i.i.d. noises follow

N (0, 0.25), which is the same as before; regularization parameter λ is set as 0.075 · n−
d+3
2d+3 , and the bandwidth

for the used Gaussian kernel density estimator is tuned for different dimension since when d is large, the density
estimation will greatly fluctuate with the size of bandwidth. The projection dimension for all the methods is

set as 5 · n
d

2d+3 , while the sub-sampling size s for all the iteration-based Nyström methods listed is chosen as

1 · n
d

2d+3 due to high time complexity. All the results reported in Figure 1 are averaged over 20 replicates. From

Figure 3: In-sample prediction error for Gaussian kernels with increasing dimension.

Figure 3, we observe when d increases, all the leverage-based methods will be no longer significantly better than
vanilla uniform sampling, and the in-sample prediction error becomes orders of magnitude larger. We remark
here that an increasing d indeed theoretically violates the assumption of kernel methods on the dimension. For
the bad performance of KRR, we conjecture that is because in a high dimensional space the input samples get
sparser (regarding the Euclidean distance), and thus roughly speaking for a certain sample with high density it
is also hard to find some points around the sample, which is similar to the case for samples with low density.

8 APPROXIMATION PROPERTIES

In this section, we prove some useful properties of our equivalent kernel approximation introduced by Matérn
kernels. Some parts of the proof rely on the isotropy of the stationary kernels. Since the isotropy is a property
shared by most common stationary kernels, the proof is expected to be applied to other stationary kernels as
well. For the reader’s convenience, we also prove the corresponding lemmas for Gaussian kernels in Appendix 8.2.
The proof strategy across the section is as follows, we first focus on one-dimensional cases and utilize the results
to prove the conclusion for general multivariate approximation.

8.1 Matérn Kernel

For simplicity, we ignore some constants (such as p(x0) that does not change the local shape and scale of

K̃λ(·, x0)) and instead consider the rescaled leverage approximation specified by

K̃λ(x, y) = K̃λ(x− y) =

∫
Rd

e2π
√
−1〈s,x−y〉

1 + λ (1 + ‖s‖2)α
ds =

∫
Rd

cos(2π 〈s, x− y〉)
1 + λ (1 + ‖s‖2)α

ds, (4)

where λ = h2α. By the inverse Fourier transform, we have

fλ(s) =
1

1 + λ (1 + ‖s‖2)α
=

∫
Rd
K̃λ(u) e−2π

√
−1〈s,u〉 du. (5)



Yifan Chen, Yun Yang

Lemma 10. When 2α = 2ν + d ≥ d+ 1 is an integer, we have:

1. ‖K̃λ‖∞ . h−d;

2. There exists some constants C2 > 0 such that

|DjK̃λ(x, y)| ≤ (h−|j|−d) e−C2 ‖x−y‖/h, |j| = 0, 1, . . . , d.

Proof. We start with the proof for the univariate case. From equation (4), we have

‖K̃λ‖∞ ≤
∫ ∞
−∞

1

1 + λ (1 + s2)α
ds ≤

∫ ∞
−∞

1

1 + λs2α
ds . λ−1/(2α) = h−1,

which is the first claimed property.

To prove the second property, we will apply the residue theorem to the following function

g(z) =
e2π
√
−1|u|z

1 + h2α (1 + z2)α
, z ∈ C,

which is holomorphic on C \ {z1, . . . , z2α}, where z1, . . . , z2α are the 2α roots to the equation

1 + h2α (1 + z2)α = 0.

Therefore, z2k−1 and z2k, for k = 1, . . . , α, are the two roots of the equation

z2 = h−2 e
√
−1 2k−1

α π − 1,

and z2k−1 = −z2k. Without loss of generality, we assume Im(z2k−1) > 0. Direct calculations show that
| Im(z2k−1)| & h−1 and |z2k−1| . h−1 for each k = 1, . . . , α. Now we apply the residue theorem to the following
contour integral ∫

C

g(z) dz =

∫
C

e2π
√
−1|u|z

1 + h2α (1 + z2)α
dz,

where the contour C goes along the real line from −R to R and then counter-clockwise along a semicircle
centering at 0 from R to −R, for some sufficiently large constant R > 0. The residue theorem implies∫

C

g(z) dz = 2π
√
−1

α∑
k=1

e2π
√
−1|u|z2k−1

2αh2α(1 + z2
2k−1)α−1z2k−1

,

where we have used the fact that {z2k−1}αk=1 are the singularity points inside the contour C. Since 1 + h2α (1 +
z2

2k−1)α = 0, the above can be further simplified into∫
C

g(z) dz = −π
√
−1

α∑
k=1

e2π
√
−1|u|z2k−1(1 + z2

2k−1)

αz2k−1
.

Due to the aforementioned properties that | Im(z2k−1)| & h−1 and |z2k−1| . h−1, we have∣∣∣ ∫
C

g(z) dz
∣∣∣ . (h+ h−1) e−C|u|/h.

Finally, we can split the contour C into a straight part (real line) and a curved arc, so that∫
C

g(z) dz =

∫
(−R,R)

g(z) dz +

∫
arc

g(z) dz,
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where the arc part satisfies∣∣∣ ∫
arc

g(z) dz
∣∣∣ ≤ πR · sup

arc

∣∣∣ e2π
√
−1|u|z

1 + h2α(1 + z2)α

∣∣∣ ≤ πR

h2α(R2 − 1)α − 1
.

By taking R→∞ (note that α > 1/2) and putting all pieces together, we finally reach

|K̃λ(x− y)| =
∣∣∣ ∫ ∞
−∞

e2π
√
−1s(x−y)

1 + λ (1 + s2)α
ds
∣∣∣ . (h+ h−1) e−C|x−y|/h,

which is part of the second desired property.

To complete the proof of the second property, we still need to bound the derivative of the equivalent kernel.
Recall the differentiation property of Fourier transform, and F [K̃ ′λ] could be written as:

F [K̃ ′λ] =
2π
√
−1s

1 + h2α (1 + s2)α

Following a similar way, we can accordingly reset function g as:

g(z) =
e2π
√
−1|u|z2π

√
−1z

1 + h2α (1 + z2)α
, z ∈ C,

and by the same procedure obtain the following equality∫
C

g(z) dz = 4π2
α∑
k=1

e2π
√
−1|u|z2k−1(1 + z2

2k−1)z2k−1

2αz2k−1
= 2

π2

α

α∑
k=1

e2π
√
−1|u|z2k−1(1 + z2

2k−1).

As for the integral over the arc part, its value is still negligible due to a finer control. Note over the arc,
z = R cos(θ) +

√
−1R sin(θ), θ ∈ [0, π], and

∣∣∣ ∫
arc

g(z) dz
∣∣∣ =

∣∣∣2π√−1

∫ π

0

e−2π|u|R sin(θ) e
2π
√
−1|u|R cos(θ)z(θ)

1 + h2α (1 + z2(θ))α
(−R sin(θ) +

√
−1R cos(θ))dθ

∣∣∣
≤ 2π2R2

h2α(R2 − 1)α − 1
· 2
∫ π

2

0

e−2π|u|R sin(θ)dθ.

To bound the rest integral, we utilize the fact that sin(θ)/θ is decreasing in (0, π/2], and sin(θ) ≥ 2
π θ,∀θ ∈ (0, π/2].

Therefore, ∣∣∣ ∫
arc

g(z) dz
∣∣∣ ≤ 2π2R2

h2α(R2 − 1)α − 1
· 2
∫ π

2

0

e−4|u|Rθdθ ≤ C

|u|
π2R

h2α(R2 − 1)α − 1
.

By taking R→∞ (note that 2α > d = 1 here), the magnitude of the integral over the arc would vanish.

Putting all pieces together, we finally reach

|K̃ ′λ(x− y)| =
∣∣∣ ∫ ∞
−∞

e2π
√
−1s(x−y)(2π

√
−1s)

1 + λ (1 + s2)α
ds
∣∣∣ . (1 + h−2) e−C|x−y|/h,

which complete the proof of the second property for univariate cases.

The proof for the multivariate claim will utilize the univariate conclusion before. By using the polar coordinate
transform in Appendix 9, we can reduce the original multivariate integral to a univariate one (cf. equation (7)).

The rescaled leverage K̃λ(0) would be proportional to:∫ ∞
0

rd−1

1 + λ(1 + r2)α
dr.



Yifan Chen, Yun Yang

which is of the scale h−d by using the same technique as before. Therefore the first claim in this lemma has been
proved.

For the second claim, we would heavily utilize the isotropy trick to simplify the proof. By the isotropy of Matérn
kernels and our K̃λ(u), we only need to consider a special input ũ = (‖u‖, 0, . . . , 0). That is motivated by the
observation that we can always do the coordinate transformation s = T · t, where T is an orthogonal matrix and
its first row T1,· = u/‖u‖. In that case, the original mixed derivative DjK̃λ(u) could be expressed as∫

Rd

e2π
√
−1〈u,s〉

1 + h2α (1 + ‖s‖2)α

d∏
i=1

(2π
√
−1si)

jids =

∫
Rd

e2π
√
−1‖u‖t1

1 + h2α (1 + ‖t‖2)α

d∏
i=1

(2π
√
−1 〈Ti,·, t〉)jidt,

which is of the same scale as max|j′|=|j| |Dj′K̃λ(ũ)|. Under the settings above, the target considered would be
reduced to∣∣ ∫

Rd

e2π
√
−1‖u‖s1

1 + h2α (1 +
∑d−1
i=1 s

2
i + s2

d)
α

d∏
i=1

(si)
jids

∣∣ =
∣∣ ∫

Rd−1

d∏
i=2

(si)
ji

∫ ∞
−∞

e2π
√
−1‖u‖s1sj11

1 + h2α (1 + ‖s−1‖2 + s2
1)α

ds1ds−1

∣∣
≤
∫
Rd−1

d∏
i=2

|si|ji
∣∣ ∫ ∞
−∞

e2π
√
−1‖u‖s1sj11

1 + h2α (1 + ‖s−1‖2 + s2
1)α

ds1

∣∣ds−1.

The next important step is to take the expression 1 + ‖s−1‖2 as a constant, and again apply the residue theorem
to bound the internal integral as∣∣π√−1

α

α∑
k=1

e2π
√
−1‖u‖z2k−1(1 + z2

2k−1)(z2k−1)j1−1
∣∣ =

∣∣π
α

α∑
k=1

e2π
√
−1‖u‖z2k−1h−2e

√
−1 2k−1

α π(z2k−1)j1−1
∣∣,

where z2k−1 := ak +
√
−1 · bk, and if we denote θk := 2k−1

α π,

a2
k + b2k = |z2

2k−1| = (h−4 sin2(θk) + (h−2 cos(θk)− ‖s−1‖2 − 1)2)
1
2 ,

2b2k = (a2
k + b2k)− (a2

k − b2k)

= (h−4 sin2(θk) + (h−2 cos(θk)− ‖s−1‖2 − 1)2)
1
2 − (h−2 cos(θk)− ‖s−1‖2 − 1)

=
h−4 sin2(θk)

(h−4 sin2(θk) + (h−2 cos(θk)− ‖s−1‖2 − 1)2)
1
2 + (h−2 cos(θk)− ‖s−1‖2 − 1)

Note this time the magnitude of ‖s−1‖ matters a lot, and we need to divide the outside integral into two domains,
D1 := {|h−2 cos(θk)− ‖s−1‖2 − 1| ≤ 3h−2| cos(θk)|} and D2 := {|h−2 cos(θk)− ‖s−1‖2 − 1| > 3h−2| cos(θk)|}.

Over domain D1, we can imply ‖s−1‖2 ≤ 4h−2, and similar to the univariate case we can have bk & h−1 and
|z2k−1| =

√
a2
k + b2k = Θ(h−1). The corresponding integral would be bounded by a constant multiple of∫

D1

d∏
i=2

|si|jih−2e−C‖u‖bk(z2k−1)j1−1ds−1 .
∫
‖s−1‖2≤4h−2

‖s−1‖|j|−j1h−2e−C‖u‖h
−1

h−(j1−1)ds−1

.e−C‖u‖h
−1

h−(j1+1)

∫ 2h−1

0

r|j|−j1+d−2dr . e−C‖u‖h
−1

h−|j|−d.

For domain D2, we could notice bk would be much bigger than in D1 as now ‖s−1‖ tends to dominate h−1.
Specifically, 2b2k ≥ 1+‖s−1‖2 +h−2(1−cos(θk)) and thus bk ≥ C(‖s−1‖+h−1). Considering |z2k−1| = Θ(‖s−1‖),
we have∫

D2

d∏
i=2

|si|jih−2e−C‖u‖bk(z2k−1)j1−1ds−1 . h−2e−C‖u‖h
−1

∫
‖s−1‖2>c2h−2

‖s−1‖|j|−j1e−C‖u‖‖s−1‖‖s−1‖j1−1ds−1

.h−2e−C‖u‖h
−1

∫ ∞
ch−1

r|j|+d−3e−C
′‖u‖rdr . h−2e−C‖u‖h

−1

h−|j|−d+3e−C
′‖u‖h−1

. e−C‖u‖h
−1

h−|j|−d+1

.e−C‖u‖h
−1

h−|j|−d.
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Combining the two pieces, we finally have

|DjK̃λ(u)| . e−C‖u‖h
−1

h−|j|−d.

♦

8.2 Gaussian Kernel

Similarly, we specify the equivalent kernel as

K̃λ(x, y) =

∫
Rd

e2π
√
−1〈s,x−y〉

1 + λ
σd
e‖σs‖2

ds =

∫
Rd

cos(2π 〈s, x− y〉)
1 + λ

σd
e‖σs‖2

ds, (6)

where the bandwidth σ is introduced due to its importance to exponential kernels. The scale of the bandwidth is
set as O(λ

1
2α ), where α is the corresponding parameter of the most suitable Matérn kernel attaining the optimal

error rate in kernel ridge regression problems. We also define an auxiliary parameter h as h−2 ≡ ln σd

λ for
simplicity of notation. In practice, σ would be specified in a way similar to Matérn case; a parameter α > d/2

would be first chosen, and then let σ = O(λ
1
2α ) → 0, which implies h here has the magnitude O(log−

1
2 (n)). In

the following lemma, we will again start from a univariate case.

Lemma 11. Given the equivalent kernel introduced above, we have (Õ(·) means O(·) modulo poly-log terms):

1. ‖K̃λ‖∞ . σ−dh−d = Õ(σ−d);

2. There exists some constant C3 > 0 such that for |j| ≤ d,

|DjK̃λ(x, y)| . (σh)−|j|−d e−C3 |x−y|σ−1h = Õ(σ−|j|−de−C3 |x−y|σ−1h).

Proof. Again we begin with univariate cases. From equation (6), we have

‖K̃λ‖∞ ≤
∫ ∞
−∞

1

1 + λ
σ e

(σs)2
ds ≤ 2

[ ∫ σ−1h−1

0

1

1 + 0
ds+

∫ ∞
σ−1h−1

1
λ
σ e

(σs)2
ds
]

The integral is divided into two parts in which 1 and λ
σ e

(σs)2 dominate respectively. What’s more, applying the

property of error function that
∫∞
x
e−t

2

dt = O( e
−x2

x ) (it holds when x is large enough), we can further obtain

‖K̃λ‖∞ . 2
[
σ−1h−1 +

1

λ
he−h

−2
]
. σ−1h−1

which is the first claimed property.

To prove the second one, we still apply the residue theorem to the following function (|x − y| is denoted as |u|
for simplicity),

g(z) =
e2π
√
−1|u|z

1 + λ
σ e

(σz)2
, z ∈ C,

which is holomorphic on the complex plane except the roots zi, i ∈ Z to the following equation:

1 +
λ

σ
e(σz)2 = 0

Therefore, z2k−1 and z2k, for k ∈ Z, are the two roots of the equation:

σ2z2 = (h−2 +
√
−1(2k − 1)π)
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and z2k−1 = −z2k. Without loss of generality, we assume Im(z2k−1) > 0. Direct calculations roughly show that
| Im(z2k−1)| & σ−1 and |z2k−1| . σ−1 for each k ∈ Z. Further analysis would be provided later.

Note we could only focus on the case |u| > σh−1, since otherwise

|K̃λ(u)| ≤ C(σh)−1 ≤ C eC3(σh)−1e−C3|u|σ−1h,

and the claimed property would be proved automatically. Now we apply the residue theorem to the following
contour integral ∫

C

g(z) dz =

∫
C

e2π
√
−1|u|z

1 + λ
σ e

(σz)2
dz,

where the contour C goes along the real line from −R to R and then counter-clockwise along a semicircle
centering at 0 from R to −R, for some sufficiently large constant R > 0. Denote the index set AR as the set of
all the indices k that the roots {z2k−1}k are inside the contour C. The residue theorem implies∫

C

g(z) dz = 2π
√
−1

∑
k∈AR

e2π
√
−1|u|z2k−1

2σλe(σz2k−1)2z2k−1
,

Since 1 + λ
σ e

(σz)2 = 0, the above expression can be further simplified into∫
C

g(z) dz = −π
√
−1

∑
k∈AR

e2π
√
−1|u|z2k−1

σ2z2k−1
.

Note the set AR is symmetric about 0 and goes to Z as R → ∞. We can first pair the opposite k and denote
z2k−1 = ak + bk

√
−1, z1−2k = −ak + bk

√
−1 for convenience. In this case,

e2π
√
−1|u|z2k−1

σ2z2k−1
+
e2π
√
−1|u|z1−2k

σ2z1−2k
=

e−2π|u|bk

−σ2(a2
k + b2k)

2
√
−1(bk cos(2π|u|ak)− ak sin(2π|u|ak))

=
2
√
−1e−2π|u|bk

−σ2
√
a2
k + b2k

cos(2π|u|ak + arctan(ak/bk))

And hence the sequence of the integral over the semicircle C with radius R would converge to

−2π

σ2

∞∑
k=1

e−2π|u|bk√
a2
k + b2k

cos(2π|u|ak + arctan(ak/bk)) ≤ 2π

σ2

∞∑
k=1

e−2π|u|bk√
a2
k + b2k

To further analyze the scale of the infinite series, we need to uncover the form of the coefficient ak, bk. Recall
z2

2k−1 = 1
σ2 (ln σ

λ + (2k − 1)π), and the corresponding derivation is,

a2
k + b2k = σ−2(ln2 σ

λ
+ ((2k − 1)π)2)

1
2

2b2k = (a2
k + b2k)− (a2

k − b2k) = σ−2
[
(ln2 σ

λ
+ ((2k − 1)π)2)

1
2 − (ln

σ

λ
)
]

=
σ−2((2k − 1)π)2

(ln2 σ
λ + ((2k − 1)π)2)

1
2 + (ln σ

λ )

Denote H ≡ (h
−2

π + 1)/2. The curve of ak, bk could be roughly divided into two stages, k ≤ bHc and k ≥ dHe.
In the first stage, a2

k + b2k ≥ σ−2 ln σ
λ = (σh)−2 and 2b2k ≥ σ−2 ((2k−1)π)2

2 ln σ
λ

= σ−2 ((2k−1)π)2

2h−2 ; in the second stage,

a2
k+b2k ≥

√
2πσ−2(2k−1) and 2b2k ≥ σ−2 ((2k−1)π)2

3π(2k−1) = σ−2 (2k−1)π
3 . The infinite series could be therefore bounded

as

2π

σ2

bHc∑
k=1

e−2π|u|bk√
a2
k + b2k

. σ−1h

bHc∑
k=1

e−C3|u|σ−1hk

2π

σ2

∞∑
k=dHe

e−2π|u|bk√
a2
k + b2k

. σ−2
∞∑

k=dHe

e−C3|u|σ−1
√
k

σ−1
√
k
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The two series above will converge rapidly when n is large enough. The scale of the two series above will
therefore depend on their own first terms. The first series would be bounded as a constant multiple of σ−1h ·
h−2e−C3|u|σ−1h·1 = (σh)−1e−C3|u|σ−1h; due to the decreasing sequence, the last series could be bounded in the
following way (note |u| > σh−1),

σ−1
∞∑

k=dHe

e−C3|u|σ−1
√
k

√
k

≤ σ−1
[e−C3|u|σ−1

√
dHe√

dHe
+

∫ ∞
dHe

e−C3|u|σ−1√x
√
x

dx
]

≤ σ−1
[
he−C3|u|(σh)−1

+
2σ

C3|u|
e−C3|u|(σh)−1

]
. σ−1he−C3|u|(σh)−1

And hence the whole series would be bounded by (σh)−1e−C3|u|σ−1h.

Then, we split the contour C into a straight part (real line) and a curved arc, so that∫
C

g(z) dz =

∫
(−R,R)

g(z) dz +

∫
arc

g(z) dz,

where the arc part satisfies z = Re
√
−1θ, θ ∈ [0, π] and hence,∣∣∣ ∫

arc

g(z) dz
∣∣∣ =

∣∣∣ ∫ π

0

e2π
√
−1|u|Re

√
−1θ

1 + λ
σ e

σ2R2e2
√
−1θ

√
−1Re

√
−1θdθ

∣∣∣
where the module of the integrand could be bounded by e−2π|u|R sin θR

|1−λσ eσ
2R2 cos(2θ)|

. By taking R → ∞ and requiring

|u| > 0, we could observe that when sin θ is bounded away from 0 the integrand is exponentially decaying; when
sin θ is nearly zero cos 2θ = 1 − 2 sin2 θ � 0 and the integrand would also go to 0. That’s to say, the whole
integral

∫
arc
g(z) dz → 0. Putting all pieces together, we finally reach

|K̃λ(x− y)| =
∫ ∞
−∞

e2π
√
−1s(x−y)

1 + λ
σ e

(σs)2
ds . σ−1he−C3|u|σ−1h + σ−1h−1e−C3|u|σ−1h−1

,

which is part of the second desired property and similar to the conclusion in (10).

To complete the proof of the second property, we still need to bound the derivative of the equivalent kernel.
Recall the differentiation property of Fourier transform, and F [K̃ ′λ] could be written as:

F [K̃ ′λ] =
2π
√
−1s

1 + λ
σ e

(σs)2
.

With the expression above we can bound the sup norm of the derivative,

‖K̃ ′λ‖∞ ≤ 4π

∫ ∞
0

s

1 + λ
σ e

(σs)2
ds ≤ 4π

[ ∫ σ−1h−1

0

s

1 + 0
ds+

∫ ∞
σ−1h−1

s
λ
σ e

(σs)2
ds
]
.

The integral is divided into two parts in which 1 and λ
σ e

( sσ )2 dominate respectively. We can further obtain

‖K̃ ′λ‖∞ .
[
(σh)−2 +

1

2λσ
e−h

−2
]
. (σh)−2

To exactly analyze behavior of the derivative of equivalent kernels, we can accordingly reset function g as:

g(z) =
e2π
√
−1|u|z2π

√
−1z

1 + λ
σ e

(σz)2
, z ∈ C,

and by the same procedure obtain the following inequality:∫
C

g(z) dz = 2π2
√
−1

∑
k∈AR

e2π
√
−1|u|z2k−1

σ2
=

2π2

σ2

∞∑
k=1

(e2π
√
−1|u|(ak+bk

√
−1) + e2π

√
−1|u|(−ak+bk

√
−1))

=
4π2

σ2

∞∑
k=1

e−2π|u|bk(cos(2π|u|ak)) ≤ 4π2

σ2

∞∑
k=1

e−2π|u|bk .



Yifan Chen, Yun Yang

We would only focus on the case |u| > (σ/h)−1, since otherwise |K̃ ′λ(u)| ≤ C(σh)−2, which is bounded by

≤ C eC3(σh)−2e−C3|u|σ−1h, and the claimed property would be proved automatically. Due to the aforementioned
division of the series, we have (note |u| > (σ/h)−1),

∫
C

g(z) dz ≤ 4π2

σ2
(

bHc∑
k=1

e−2π|u|bk +

∞∑
k=dHe

e−2π|u|bk)

.
4π2

σ2

[
h−2e−C3|u|σ−1h + e−C3|u|σ−1h−1

+

∫ ∞
k=dHe

e−C3|u|σ−1
√
kd k

]
.

1

(σh)2

[
e−C3|u|σ−1h +

2σ

C3|u|

(
h−2e−C3|u|σ−1h−1

+
σ

C3|u|
e−C3|u|σ−1h−1

)]
.

1

(σh)2
e−C3|u|σ−1h.

As for the integral over the arc part, its value is still negligible as

∣∣∣ ∫
arc

g(z) dz
∣∣∣ ≤ ∣∣∣ ∫ π

0

e2π
√
−1|u|Re

√
−1θ

2π
√
−1Re

√
−1θ

1 + λ
σ e

σ2R2e2
√
−1θ

Rdθ
∣∣∣

where the module of the integrand could be bounded by e−2π|u|R sin θ2πR2

|1−λσ eσ
2R2 cos(2θ)|

. The bound goes to 0 when R → ∞
and |u| > 0 are assumed as before, and the integral over the arc is again negligible. Putting all pieces together,
we finally reach

|K̃ ′λ(x− y)| =
∣∣∣ ∫ ∞
−∞

e2π
√
−1s(x−y)(2π

√
−1s)

1 + λ
σ e

(σs)2
ds
∣∣∣ . (σh)−2 e−C3|u|σ−1h,

which completes the proof of the second property in univariate cases.

For multivariate cases, again by applying polar coordinate transformation, the original integral could be bounded
as

‖K̃λ‖∞ .
∫ ∞

0

rd−1

1 + λ
σd
e(σr)2

dr ≤
∫ σ−1h−1

0

rd−1

1 + 0
dr +

∫ ∞
σ−1h−1

rd−1

λ
σd
e(σr)2

dr

. (σh)−d +
1

λ

∫ ∞
h−1

rd−1e−r
2

dr . (σh)−d − 1

λ

∫ ∞
h−1

rd−2de−r
2

.

After repeatedly using integration by parts, the last term could be further bounded by (σh)−d + σ−dh−(d−2),
which validates the first claim in this lemma.

For the second claim, we would still use the same strategy, utilizing the isotropy and some other tricks, as in the
proof for Matérn kernels. Specifically, we would focus on the special case

∣∣ ∫
Rd

e2π
√
−1‖u‖s1

1 + λ
σd
eσ

2(‖s−1‖2+s21)

d∏
i=1

sjii ds
∣∣ ≤ ∫

Rd−1

d∏
i=2

|si|ji ·
∣∣ ∫ ∞
−∞

e2π
√
−1‖u‖s1 |s1|j1

1 + λ
σd
eσ

2(‖s−1‖2+s21)
ds1

∣∣ds−1,

and define h−2 := ln(σ
d

λ ), ts := |h−2 − σ2‖s−1‖2|, λ . σd . h−d. Again we divide the integral into two different
domains, D1 := {σ2‖s−1‖2 < h−2} and D2 := {σ2‖s−1‖2 ≥ h−2}. Moreover, we apply residue theorem to the
internal integral and similarly have

∣∣ ∫ ∞
−∞

e2π
√
−1‖u‖s1 |s1|j1

1 + λ
σd
eσ

2(‖s−1‖2+s21)
ds1

∣∣ =
∣∣2π√−1

∞∑
k=−∞

e2π
√
−1‖u‖z2k−1(2π

√
−1z2k−1)j1

−2σ2z2k−1

∣∣
. σ−2

∞∑
k=1

e2π
√
−1‖u‖z2k−1(z2k−1)j1−1,
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where z2k−1 = ak +
√
−1bk, and

a2
k + b2k = σ−2(t2s + ((2k − 1)π)2)

1
2

2b2k = (a2
k + b2k)− (a2

k − b2k) = σ−2
[
(t2s + ((2k − 1)π)2)

1
2 − ts

]
=

σ−2((2k − 1)π)2

(t2s + ((2k − 1)π)2)
1
2 + ts

We begin with the first domain D1, in which ‖s−1‖2 ≤ (σh)−2. We need to set a threshold H = ( tsπ + 1)/2 for
the index k. When k ≤ bHc, we have

2b2k ≥ σ−2 (2k − 1)2π2

3ts
⇒ bk & σ−1

√
ts
−1
k

σ−2ts ≤ a2
k + b2k ≤

√
2σ−2ts ⇒ |z2k−1| = Θ(σ−1

√
ts);

when k ≥ dHe, we have

2b2k ≥ σ−2 (2k − 1)2π2

3(2k − 1)π
⇒ bk & σ−1

√
k

σ−2(2k − 1)π ≤ a2
k + b2k ≤

√
2σ−2(2k − 1)π ⇒ |z2k−1| = Θ(σ−1

√
k);

and the series would be bounded by

σ−2

bHc∑
k=1

e−2π|u|bk |z2k−1|j1−1 . σ−2(σ−1
√
ts)

j1−1

bHc∑
k=1

e−C3|u|σ−1√ts−1k

. σ−(j1+1)
√
ts

j1−1
e−C3|u|σ−1√ts−1

σ−2
∞∑

k=dHe

e−2π|u|bk |z2k−1|j1−1 . σ−2
∞∑

k=dHe

e−C3|u|σ−1
√
k(σ−1

√
k)j1−1

. σ−(j1+1)(e−C3|u|σ−1
√
dHe
√
dHe

j1−1
+

∫ ∞
dHe

e−C3|u|σ−1√x√xj1−1
dx)

. σ−(j1+1)(e−C3|u|σ−1
√
dHe
√
dHe

j1−1
+ 1/(C3|u|σ−1)e−C3|u|σ−1

√
dHe
√
dHe

j1
)

. σ−(j1+1)
√
dHe

j1−1
e−C3|u|σ−1

√
dHe.

We drop one term in the last line as σ
√
dHe ≤ σh−1 . 1, and note the first series would only appear when

ts > π, and dHe = Θ(max(ts/π, 1)).

For the integral over the domain D1, it would be bounded as∫
D1

e2π
√
−1‖u‖s1

1 + λ
σd
eσ

2(‖s−1‖2+s21)

d∏
i=1

|si|jids ≤
∫
‖s−1‖≤ 1

σh

d∏
i=2

|si|ji ·
∫ ∞
−∞

e2π
√
−1‖u‖s1 |s1|j1

1 + λ
σd
eσ2‖s−1‖2eσ

2s21
ds1ds−1

.σ−(j1+1)

∫
‖s−1‖≤ 1

σh

‖s−1‖|j|−j1 · (
√
ts

j1−1
e−C3|u|σ−1√ts−1

+
√
dHe

j1−1
e−C3|u|σ−1

√
dHe)ds−1

.σ−(j1+1)
(∫ 1

σh

0

r|j|−j1+d−2
√
ts

j1−1
e−C3|u|σ−1√ts−1

dr +

∫ 1
σh

0

r|j|−j1+d−2
√
dHe

j1−1
e−C3|u|σ−1

√
dHe)dr

)
.

To bound the first integral term, we should utilize a transformation r = sin(θ)
σh , ts = h−1 cos(θ), and have∫ 1

σh

0

r|j|−j1+d−2
√
ts

j1−1
e−C3|u|σ−1√ts−1

dr

=(σh)−(|j|−j1+d−2)h−(j1−1)

∫ π/2

0

sin(θ)|j|−j1+d−2 cos(θ)j1−1e−C3|u|σ−1h/ cos(θ)d
sin(θ)

σh

≤(σh)−(|j|−j1+d−1)h−(j1−1)

∫ π/2

0

e−C3|u|σ−1hdθ . σ−(|j|−j1+d−1)h−(|j|+d−2)e−C3|u|σ−1h;
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the second integral term could be addressed by utilizing the fact dHe ≥ 1∫ 1
σh

0

r|j|−j1+d−2
√
dHe

j1−1
e−C3|u|σ−1

√
dHe)dr

≤
∫ 1

σh

σ−1(h−2−π)
1
2

r|j|−j1+d−2e−C3|u|σ−1

dr +

∫ 1
σh

0

r|j|−j1+d−2
√
ts

j1−1
e−C3|u|σ−1

dr

.(σh)−(|j|−j1+d−1)h−(j1−1)e−C3|u|σ−1

∫ π/2

0

sin(θ)|j|−j1+d−2 cos(θ)j1dθ

≤(σh)−(|j|−j1+d−1)h−(j1−1)e−C3|u|σ−1h,

which could infer the total integral over domain D1 should be O(σ−(|j|+d)h−(|j|+d−2)e−C3|u|σ−1h).

Over the second domain D2, we can similarly divide the series into two parts by the threshold H. We notice
√
ts

and
√
k would respectively dominate the scale of bk or |z2k−1| in the two parts, as

2b2k ≥ σ−2((2k − 1)π + ts)

a2
k + b2k = Θ(σ−2((2k − 1)π + ts)).

Using a similar derivation as above, the two parts would be correspondingly bounded by

σ−2

bHc∑
k=1

e−2π|u|bk |z2k−1|j1−1 . σ−(j1+1)
√
ts

j1−1bHce−C3|u|σ−1√ts

σ−2
∞∑

k=dHe

e−2π|u|bk |z2k−1|j1−1 . σ−(j1+1)
√
dHe

j1−1
e−C3|u|σ−1

√
dHe.

Since dHe & ts and dHe ≥ 1, the overall series could be bounded by a constant multiple of

σ−(j1+1)
√
dHe

j1+1
e−C3|u|σ−1

√
dHe. Therefore, by polar coordinate transformation, the integral over D2 would

be reduced to the following one,∫ ∞
1
σh

r|j|−j1+d−2
√
dHe

j1+1
e−C3|u|σ−1

√
dHe)dr =

∫ 2
σh

1
σh

r|j|−j1+d−2
√
dHe

j1+1
e−C3|u|σ−1

√
dHe)dr

+

∫ ∞
2
σh

r|j|−j1+d−2
√
dHe

j1+1
e−C3|u|σ−1

√
dHe)dr,

where we further divide the integral based on whether ts > h−2. For the first stage, utilizing dHe ≥ 1, we can
bound it as ∫ 2

σh

1
σh

r|j|−j1+d−2
√
dHe

j1+1
e−C3|u|σ−1

√
dHe)dr .

∫ 2
σh

1
σh

r|j|−j1+d−2h−(j1+1)e−C3|u|σ−1

dr

. (σh)−(|j|−j1+d−1)h−(j1+1)e−C3|u|σ−1h;

for the second stage, we could apply dHe = Θ(σ2r2), and have∫ ∞
2
σh

r|j|−j1+d−2
√
dHe

j1+1
e−C3|u|σ−1

√
dHe)dr .

∫ ∞
2
σh

r|j|−j1+d−2(σr)j1+1e−C3|u|rdr

. σj1+1(σh)−(|j|+d−1)e−C3|u|σ−1h−1

,

which implies the scale of the integral over D2 is O((σh)−(|j|+d)e−C3|u|σ−1h). The second claim can thus be
proved by simply combining the current results for D1 and D2.

♦
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9 NUMERICAL INTEGRATION

To make the algorithm end in Õ(n) time, we need to efficiently compute all the leverage approximation (6) in
the main paper. We first state an observation that the original multiple integral over Rd could be simplified
to a normal integral with only one variable. Then we propose a fast method to give the approximation of the
integral, which only requires Õ(n) time to compute all the integrals.

9.1 Simplify the Integration by Polar Coordinate Transformation

An important feature of a Matérn kernel is the isotropy that the value of the kernel function Kα(x) only depends
on the module ‖x‖2 (for simplicity ‖ · ‖2 would be denoted as ‖ · ‖ from then on in this section). The property
is shared by the corresponding spectral density mα(s), and thus the Fourier transform of our rescaled leverage

score approximation K̃λ(·, t) also inherits the isotropy. In particular, given the center point t and a point x of
interest, by Fourier transform formula,

K̃λ(x, t) =

∫
Rd

F [K̃λ(·, t)](s) exp(2π
√
−1xT s)ds =

∫
Rd

exp(2π
√
−1(x− t)T s)

p(t) + λ/mα(s)
ds. (7)

Considering the specific case x = t in computing leverage score approximation, the value of the integrand would
be the same for any s with the same module ‖s‖. By polar coordinate transformation, we obtain

K̃λ(t, t) =

∫ ∞
0

1

p(t) + λ/mα(r)
· Sd−1(r)dr

where Sd−1(r) is the surface area of a (d)-dim ball with radius r.

It is worth mentioning for the general case x 6= t, the isotropy could also be utilized to accelerate the computation.
In some geostatistics literature, for example, Hankel transform (Kleiber and Nychka, 2015) is applied to simplify
the integration into a univariate integral for two-dimensional processes with Matérn kernels. We extend this idea
to kernels with dimension more than two and represent the rescaled leverage score approximation K̃λ(x, t) as
a double integral. We notice the value of the integrand in equation (7) would be the same for any s with the
same module ‖s‖ and the same inner product (x− t)T s. Since the spectral density mα(s) only depends on ‖s‖,
we slightly abuse the notation, instead representing it as mα(‖s‖) to emphasize the isotropy. Moreover, by a

certain coordinate transformation r = ‖s‖, cos(θ) = (x−t)T s
‖x−t‖‖s‖ , we rewrite the integrand above as exp(2π

√
−1‖x−

t‖r cos(θ)), and observe that the integrand would remain unchanged with the input points from the intersection
between the (d − 1)-sphere {s ∈ Rd : ‖s‖ = r} and the cone {s ∈ Rd : (x − t)T s = ‖x − t‖‖s‖ cos(θ)} (the
intersection is indeed a (d − 2)-sphere with radius r sin(θ)). With those notations, the original d-dim integral
would thereby be calculated as

K̃λ(x, t) =

∫ ∞
0

∫ π

0

exp(2π
√
−1‖x− t‖r cos(θ))

p(t) + λ/mα(r)
· Sd−2(r sin(θ))rdθdr

where Sd−2(r sin(θ)) is the surface area of a (d− 1)-dim ball with radius r sin(θ). The same trick applies to all
the other stationary kernels with isotropic spectral density function, including Gaussian kernels.

9.2 Approximation of the Integrals

Directly, the integrals above can be computed by a reliable package QUADPACK with the specific integrator
QAWF (Piessens et al., 2012), which is targeted at Fourier cosine transform. However, the computation is
time-consuming, as QAWF implements an adaptive method so that when λ → 0 it will require more function
evaluations. To overcome the potential drawback, we propose a fast method to approximate the integration with
o(1) relative error in near-constant time.

For Matérn kernels, we would focus on the following integral of a simplified form,∫ ∞
0

xd−1

p+ λ(1 + x2)α
dx.
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Inspired by the derivation of the scale of the integral O(λ−
d
2α ), we rewrite the integral as∫ ∞

0

xd−1

p+ (λ
1
α + (λ

1
2αx)2)α

dx = λ−
d
2α

∫ ∞
0

xd−1

p+ (λ
1
α + x2)α

dx,

and intuitively want to replace (λ
1
α + x2) with x2. We would show the approximation would only result in a

small relative error of order O(λ
1
α ) = o(1) as required.

The difference between the two integrands is

λ−
d
2α (

xd−1

p+ x2α
− xd−1

p+ (λ
1
α + x2)α

) = λ−
1
2αxd−1 (λ

1
α + x2)α − x2α

(p+ x2α)(p+ (λ
1
α + x2)α)

.

When x2 ≤ λ 1
α , the numerator above would be bounded by (2α − 1)λ, and further we have

(λ
1
α + x2)α − x2α

(p+ x2α)(p+ (λ
1
α + x2)α)

≤ (2α − 1)λ

(p+ x2α)(p+ (λ
1
α + x2)α)

.
λ

1
α

p+ x2α
.

When x2 > λ
1
α , we can control the numerator by the first order Taylor approximation,

(λ
1
α + x2)α − x2α

(p+ x2α)(p+ (λ
1
α + x2)α)

.
λ

1
α (x2)α−1

(p+ x2α)(p+ (λ
1
α + x2)α)

.
λ

1
α

p+ x2α
,

where the last relation holds as (x2)α−1 . p+ (λ
1
α + x2)α.

Then the total difference between two integrals would be bounded by a constant multiple of

λ−
d
2α

∫ ∞
0

λ
1
αxd−1

p+ x2α
dx,

which is O(λ−
d
2αλ

1
α ). Considering the magnitude of the original integral is Θ(λ−

d
2α ), our claim regarding the

relative error is validated.

We utilize the formula
∫∞

0
dx

1+xa = π/a
sinπ/a to give the final approximation:∫ ∞

0

xd−1

p+ λ(1 + x2)α
dx ≈ p d

2α−1λ
− d

2α

d

π/ d
2α

sinπ/ d
2α

.

As the sampling probability is computed as the normalized leverage, we can even directly use p
d
2α−1 as the

rescaled leverage and ignore the rest factor.

For Gaussian kernels, the formula would be even easier, since there is a closed form expression for the target
integral,

2

Γ(d/2)

∫ ∞
0

td−1

p(2πσ2)d/2 + λet2
dt = −

Lid/2(−p(2πσ
2)d/2

λ )

p(2πσ2)d/2

where σ is the bandwidth of the Gaussian kernel used, and Lid/2(·) is the polylogarithm function with order
d
2 . The fast computation of the polylogarithm function has already been thoroughly studied by some previous
works (Crandall, 2006; Vepštas, 2008; Johansson, 2015), and they proposed various methods to compute Lid/2(c)

with Θ(log log n) bits of precision (Θ( 1
logn ) relative error) and a polynomial of log log n time. The total time to

compute the leverage would thus still be Õ(n).

10 DENSITY ESTIMATION

As we described in the main paper, by utilizing the distributional information, leverage scores in a KRR problem
could be efficiently approximated by our analytical method. In the case we do not have prior knowledge of
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the distribution, we propose to estimate densities of data points via kernel density estimation, which have been
discussed in the main paper that by using some recent KDE methods with a sub-optimal error rate, we can
perform the density estimation within Õ(n) time. To further justify the usage of kernel density estimation, we
imply by the following lemma that given an o(1) error in KDE, the particular error in approximating statistical
leverage scores due to the density estimation is asymptotically negligible.

Lemma 12. Under the same assumptions before, ∀x ∈ spt(p) (the support of p), given a fixed point t, the
supremum of the error caused by the density estimate p̂(t) on point t, is bounded by a constant multiple of
h−d|p(t)− p̂(t)|.

Proof. For simplicity, we first denote the leverage score approximation with estimated density as
̂̃
Kλ(x, xi).

Inserting the density estimation p̂ into the formula of rescaled leverage scores (equation 7 in the main paper),

we obtain F [
̂̃
Kλ(·, xi)](s) = e−2π

√
−1〈xi,s〉

p̂(xi)+λ(mα(s))−1 .

By triangle inequality, the supremum of the total error | ̂̃Kλ(x, xi)−G(x, xi)| could be divided into two sources, one

due to density estimation | ̂̃Kλ(x, xi)−K̃λ(x, xi)| and the other due to approximation error |K̃λ(x, xi)−Gλ(x, xi)|,
which has been thoroughly discussed in the appendix. Here we focus on the first term.

sup
x∈Rd

| ̂̃Kλ(x, xi)− K̃λ(x, xi)| = sup
x∈Rd

∣∣∣F−1
[
F [
̂̃
Kλ(·, xi)]

]
(x)−F−1

[
F [K̃λ(·, xi)]

]
(x)
∣∣∣

= sup
x∈Rd

∣∣∣F−1
[ |p̂(xi)− p(xi)|e−2π

√
−1〈xi,s〉

(p̂(xi) + λ · (mα(s))−1)(p(xi) + λ · (mα(s))−1)

]
(x)
∣∣∣

|p̂(xi)− p(xi)| could be extracted as a factor, and we solely need to deal with the rest term

sup
x∈Rd

·
∣∣∣F−1

[ e−2π
√
−1〈xi,s〉

(p̂(xi) + λ · (mα(s))−1)(p(xi) + λ · (mα(s))−1)

]
(x)
∣∣∣

= sup
x∈Rd

∣∣∣ ∫
Rd

[ e−2π
√
−1〈xi−x,s〉

(p̂(xi) + λ · (mα(s))−1)(p(xi) + λ · (mα(s))−1)

]
ds
∣∣∣

Relaxing the exponential term as 1 and using Cauchy-Schwarz inequality, we obtain∣∣∣ ∫
Rd

[ e−2π
√
−1〈xi−x,s〉

(p̂(xi) + λ · (mα(s))−1)(p(xi) + λ · (mα(s))−1)

]
ds
∣∣∣

≤
∣∣∣ ∫

Rd

[ 1

(p̂(xi) + λ · (mα(s))−1)(p(xi) + λ · (mα(s))−1)

]
ds
∣∣∣

≤
∥∥∥ 1

p̂(xi) + λ · (mα(s))−1

∥∥∥
2
·
∥∥∥ 1

p(xi) + λ · (mα(s))−1

∥∥∥
2

.h−d/2h−d/2 = h−d

The last inequality can be verified by Lemma 10. ♦

We finally remark that given the o(1) factor |p̂(xi)−p(xi)|, the error | ̂̃Kλ(x, xi)−K̃λ(x, xi)| caused by the density
estimation would therefore be o(h−d), and thus is enough to make the relative error of leverage approximation
vanish.

10.1 Missing assumptions for modified HBE

We list some advanced KDE methods in the main paper to show theoretically we can estimate the density with
time complexity at most polynomial in the dimension d. Among them, modified Hashing-Based Estimators
(HBE) (Backurs et al., 2019) is the most recent one. Taking this method as a representative, we copy the
assumption in modified HBE here for the sake of completeness.

Assumption 3 (( 1
2 ,M)-LSHable). Let Ke(x, y) be the kernel function used for KDE, for which there exists a

distribution H of hash functions and M ≥ 1 such that for every x, y ∈ Rd,

M−1 · Ke(x, y)
1
2 ≤ Ph∼H {h(x) = h(y)} ≤M · Ke(x, y)

1
2 .
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To attain the fast rate claimed by modified HBE, the core assumption above that the kernel used for KDE is
( 1

2 ,M)-LSHable for some constant M is necessary. The authors have proved that some common kernels, such as
Laplacian and exponential kernels, are ( 1

2 ,O(1))-LSHable; and thus a density estimator based on those kernels
can be efficiently approximated by modified HBE.

11 TECHNICAL RESULTS

Some tricks in multivariate integrals are heavily utilized in this work, and here we present a lemma to address
the technical details about it. We first would like to mention the notation

∫
Rd f(x)dFn(x) in our paper is not

strict in general, as the multivariate version Riemann–Stieltjes integral is not well defined. In this appendix we
just abuse the integral

∫
Rd f(x)dFn(x) to represent the summation 1

n

∑n
i=1 f(xi), and the integral

∫
Rd f(x)dF (x)

to represent the expectation
∫
Rd f(x)p(x)dx.

The lemma is presented as follows. (cf. Section 6.3 for the notations in the lemma.)

Lemma 13 (Multivariate integration by parts). Given the absolute continuous approximation F with the compact
support Ω and L∞ density p, the empirical distribution Fn, and an integrand g(·) ∈Wα,2 independent of Fn, the
certain integral of interest

∫
C(y,δ)

g(x)d(Fn − F )(x) is almost surely (considering the samples in Fn are drawn

from F ) equal to

∑
AtBtC=[d]

(−1)|A|+|B|
∫
C(yA,δ)

DIAg
(
xA;

(
y + δ · (−IB + IC)

)
BtC

)
·

(
Fn − F

)(
xA;

(
y + δ · (−IB + IC)

)
BtC

)
dxA,

where t is the notation for disjoint union. The sets B and C indeed indicate the certain dimensions to which
lower and upper limits are assigned separately. Specifically, if C(x0, δ) = Rd(δ =∞) and g(x) vanishes at infinity,∫
Rd g(x)d(Fn − F )(x) = (−1)d

∫
Rd(Fn − F )(x) ∂dg(x)

∂x1∂x2···∂xd dx; if g(x) and its mixed derivative (up to order α)
vanish at infinity and are L−Lipschitz, the claim would hold without the assumption on the independence between
g and Fn.

Proof. Without loss of generality, we would illustrate our claim by a special 2-d case to avoid the tedious
calculation. We would first prove the conclusion for an indefinitely differentiable density pn,ε(x) = 1

n

∑n
i=1 ηε(x−

xi), where the heat kernel ηε(x) := 1√
2πε

exp(− 〈x,x〉2ε ) of the Dirac delta function. (From then on in this proof, xi
means the i-th element of the vector x.) As a sketch of the proof, we would first show the lemma holds for the
integral

∫
C(y,δ)

g(x)
(
pn,ε(x) − p(x)

)
dx, and finally prove as ε → 0, the integral would converge to the claimed

expression in this lemma.

For simplicity, we denote q(x) = pn,ε(x)− p(x) and Q(x) is the corresponding distribution function. We further
denote Q1(x1;x2) :=

∫ x1

−∞ q(t, x2)dt as a 1-d distribution function with a parameter x2, so that Riemann–Stieltjes

integral is applicable to Q1(x1;x2). By definition
∫ x2

−∞Q1(x1; t)dt = Q(x1, x2), and with that we have

∫
C(y,δ)

g(x)q(x)dx =

∫ y2+δ

y2−δ

∫ y1+δ

y1−δ
g(x1, x2)q(x1, x2)dx1dx2

=

∫ y2+δ

y2−δ

∫ y1+δ

y1−δ
g(x1, x2)dQ1(x1;x2)dx2

We can safely apply integration by parts to the inside integral and obtain:∫
C(y,δ)

g(x)q(x)dx =

∫ y2+δ

y2−δ

(
g(x1, x2)Q1(x1;x2)

∣∣y1+δ

y1−δ
−
∫ y1+δ

y1−δ
Q1

∂g

∂x1
dx1

)
dx2 (8)

=

∫ y2+δ

y2−δ
g(y1 + δ, x2)Q1(y1 + δ, x2)− g(y1 − δ, x2)Q1(y1 − δ, x2)dx2 −

∫
C(y,δ)

Q1
∂g

∂x1
dx. (9)
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Now we expand the original integral into three terms. By repeatedly applying integration by parts to the first
two terms, we have:∫ y2+δ

y2−δ
g(y1 + δ, x2)Q1(y1 + δ, x2)dx2 = g(y1 + δ, y2 + δ)Q(y1 + δ, y2 + δ)

− g(y1 + δ, y2 − δ)Q(y1 + δ, y2 − δ)−
∫ y2+δ

y2−δ
Q1(y1 + δ, x2)

∂g(y1 + δ, x2)

∂x2
dx2∫ y2+δ

y2−δ
−g(y1 − δ, x2)Q1(y1 − δ, x2)dx2 = −g(y1 − δ, y2 + δ)Q(y1 − δ, y2 + δ)

+ g(y1 − δ, y2 − δ)Q(y1 − δ, y2 − δ) +

∫ y2+δ

y2−δ
Q1(y1 + δ, x2)

∂g(y1 − δ, x2)

∂x2
dx2

For the last term, we need to change the order of integration and have,

−
∫
C(y,δ)

Q1
∂g

∂x1
dx

=−
∫ y1+δ

y1−δ

∫ y2+δ

y2−δ

∂g(x1, x2)

∂x1
dQ(x1, x2)dx1 = −

∫ y1+δ

y1−δ
Q(x1, y2 + δ)

∂g(x1, y2 + δ)

∂x1
dx1

+

∫ y1+δ

y1−δ
Q(x1, y2 − δ)

∂g(x1, y2 − δ)
∂x1

dx1 +

∫
C(y,δ)

Q
∂2g

∂x1∂x2
dx

Summing up all the nine terms above, we would exactly obtain the claimed equation in the lemma. In particular,
if C(y, δ) = Rd(δ =∞) and g(x) vanishes at infinity, the first two terms in equation (9) would be dropped, and

finally the only term left is
∫
Rd g(x)q(x)dx, which is equal to (−1)d

∫
Rd Q(x) ∂dg(x)

∂x1∂x2···∂xd dx as claimed.

To complete the proof, we still need to show the convergence. We would begin with the assumption g(·)
belongs to a dense subset D ⊂ Wα,2, where D is the space of test functions. Here we simply borrow some
definitions and notations from the book (Debnath et al., 2005, Chapter 6), with respect to test functions and
weak distributional convergence. A test function is defined as an infinitely differentiable function on Rd vanishing
outside of some bounded set. We denote weak distributional convergence for a sequence of distributions (Pm)
to P as Pm → P if 〈Pm, g〉 → 〈P, g〉 ,∀g ∈ D . We can see our choice Pn,ε → Fn in the weak distributional
sense by setting Pm = Pn,1/m, and thus for the left hand side of our claim,

∫
C(y,δ)

g(x)d(Pn,1/m − F )(x) →∫
C(y,δ)

g(x)d(Fn − F )(x) by some standard techniques; For the terms in the right hand side, we would illustrate

by taking
∫
C(y,δ)

DI[d]g(x)(Pn,ε−P )(x)dx as an example. We note DIAg is still a test function, and Pn,ε converges

to Fn in L2, so that by Cauchy-Shwartz inequality we could obtain,∣∣ ∫
C(y,δ)

DI[d]g(x)(Pn,ε − Fn)(x)dx
∣∣ ≤ ( ∫

C(y,δ)

|DI[d]g(x)|2dx ·
∫
C(y,δ)

|(Pn,ε − Fn)(x)|2dx
) 1

2 → 0,

which implies our desired convergence.

The next step is to extend test functions to functions in Wα,2. An important fact is that D is a dense subspace
of Wα,2, and we can find a sequence of test functions converging to g in Wα,2 and further a subsequence
(gm) converging to g both in Wα,2 and almost everywhere, since convergence in Wα,2 implies convergence in
L2. The Cauchy-Shwartz inequality trick for the right hand side would still work as this time the L2 norm
of DI[d]

(
g(x) − gm(x)

)
goes to zero. For the left-hand side, as we assume the n samples are drawn from the

absolutely continuous distribution F , for the certain sequence above we can show

|
∫
C(y,δ)

(
g(x)− gm(x)

)
dF (x)| ≤

∫
C(y,δ)

|g(x)− gm(x)|p(x)dx

≤ ‖g(x)− gm(x)‖1,Ω · ‖p‖∞
≤ |Ω| 12 ‖p‖∞‖g(x)− gm(x)‖2 → 0,

and with probability one, over the n sample points gm would pointwisely go to g. We can thus conclude our
claim would hold for functions in Wα,2 almost surely.
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Finally, for the special case in which g(x) and its mixed derivative (up to order α) are L−Lipschitz, we are able
to construct a convergent test function sequence gm which would pointwisely converge to g over the compact
support Ω containing all the samples in Fn. We first introduce a sequence of test functions

φm :=

{
m
d(d+1)

2

ϕ e(‖m
d+1
2 x‖2−1)−1

, if ‖x‖ < m−
d+1
2 ,

0, otherwise,

where ϕ =
∫
φ1(x)dx is the normalization factor. The sequence {gm} is constructed as {φm ∗ (g · 1mΩ)}, the

convolution of the test function φm and the truncation g · 1mΩ, which is still a sequence of test functions. It can
be shown the sequence gm would go to g in Wα,2. To validate it, we need to observe the fact that for x ∈ mΩ,

|gm(x)− g(x)| = |
∫
φm(t)

(
g(x− t)− g(x)

)
dt| ≤

∫
t<m−

d+1
2

φm(t)|g(x− t)− g(x)|dt

≤ L

m
d+1
2

∫
t<m−

d+1
2

φm(t)dt =
L

m
d+1
2

,

where the second inequality holds because of the Lipschitz continuity. Therefore,∫
|gm(x)− g(x)|2dx =

∫
mΩ

|gm(x)− g(x)|2dx+

∫
Rd−mΩ

|gm(x)− g(x)|2dx

≤ L2

md+1
|mΩ|+ 2

∫
Rd−mΩ

g2(x)dx+ 2

∫
Rd−mΩ

g2
m(x)dx.

Note the first term is proportional to 1/m, and g(x) vanishes at infinity. The first two terms would both go
to zero as m → ∞. For the last term, we could utilize Jensen’s inequality and have g2

m(x) ≤
∫
φm(t)g2(x −

t)1mΩ(x− t)dt ≤
∫
φm(t)g2(x− t)dt. Then,∫

Rd−mΩ

g2
m(x)dx ≤

∫
Rd−mΩ

∫
Rd
φm(t)g2(x− t)dtdx =

∫
Rd
φm(t)

∫
Rd−mΩ

g2(x− t)dxdt

≤
∫
Rd
φm(t)

∫
(Rd−mΩ)+B(m−

d+1
2 )

g2(x)dxdt =

∫
(Rd−mΩ)+B(m−

d+1
2 )

g2(x)dx→ 0

where B(m−
d+1
2 ) is a ball with radius m−

d+1
2 , and the last convergence holds again since g(x) vanishes at infinity.

Combining the pieces above, we can see gm → g in L2 and the similar conclusion holds for all its mixed derivatives
up to order α, which means gm → g in Wα,2. In that case, the convergence for the right-hand side of our claim
would still hold as in the paragraph above. For the left hand side, this time gm would uniformly converge to
g over Ω, and we can show the integral

∫
C(y,δ)

gm(x)d(Fn − F )(x) would converge to
∫
C(y,δ)

g(x)d(Fn − F )(x),

even if g depends on the empirical distribution Fn.

♦
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