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6 APPENDIX OUTLINE

This appendix is arranged as follows. In Section 7, we introduce some useful facts to help illustrate the assump-
tions in Theorem 1 in the main paper, and some matrix inequalities to prepare for the proof in Section 8. With
those matrix inequalities, we prove Theorem 2 in the main paper, the condition to guarantee K-satisfiability
with high probability. Finally, in Section 9, we provide more details on the experiments in the main paper, and
some additional experiments to comprehensively compare our sketching method with the other candidates.

7 USEFUL FACTS

In this section, we will first introduce some preliminary knowledge of RKHS kernels, and then provide some
useful matrix inequalities heavily used later.

7.1 Preliminaries

Theorem 1 in the main paper guarantees that for a K-satisfiable sketching matrix S, with high probability the
approximation error ‖f̂S − f̂n‖2n would be bounded by λ + dλ

n . The result of this theorem is powerful, while it
relies on some assumptions on the kernel function and the sketching matrix used. The authors of the previous
work (Liu et al., 2018) have summarized three assumptions for Theorem 1, and in this subsection, we provide
the necessary introduction to the eigendecomposition of the kernel function K, to ease the explanation of the
assumptions.

In the preliminaries in the main paper, we have known that the associated kernel function K of an RKHS H is
positive semi-definite. Further by Mercer’s theorem, K has the following spectral expansion:

K(x, x′) =

∞∑
i=1

µiφi(x)φi(x
′), ∀x, x′ ∈ X ,

where µ1 ≥ µ2 ≥ · · · ≥ 0 are denoted as the eigenvalues of K, and {φi}∞i=1 actually form a basis in L2(X ), i.e.

〈φi, φj〉L2(X ) = δij , 〈φi, φj〉H = δij/µi.

The eigenvalues {µi}∞i=1 of the kernel function K are closely related to the eigenvalues {σi}ni=1 of the rescaled
empirical kernel matrix 1

nK. The eigenvalue pair (µi, σi) of the same index i would roughly have the same
magnitude, and more details can be found in the work (Braun, 2006).
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7.2 Useful Matrix Inequalities

The key step in the proof of K-satisfiability is to control the operator norm of a random matrix. Here we give
a sequence of matrix inequalities used later in Section 8. More details and proofs of those matrix inequalities
could be found in the note (Tropp, 2012).

Theorem 3 (Matrix Chernoff). Consider a finite sequence {Xk} of independent, random, self-adjoint matrices
with dimension n. Assume that each random matrix satisfies

Xk < 0 and λmax(Xk) ≤ R almost surely.

Define

µmax := λmax

(∑
k
EXk

)
.

Then for δ > 0,

P
{
λmax

(∑
k
Xk

)
≥ (1 + δ)µmax

}
≤ n ·

[
e−δ

(1 + δ)1+δ

]µmax/R

.

The matrix Chernoff inequalities describe the behavior of a sum of independent, random, positive-semidefinite
matrices. Specifically, they are well suited to study the operator norm of an arbitrary random matrix A with
independent columns ak’s, due to the fact ‖A‖2 = ‖AAT ‖ = ‖

∑
k aka

T
k ‖, and the property that (aka

T
k )’s are

independent, random, self-adjoint matrices.

We also introduce Bernstein matrix inequality to show the normal concentration near the mean of the random
matrices.

Theorem 4 (Matrix Bernstein). Consider a finite sequence {Xk} of independent, random, self-adjoint matrices
with dimension n. Assume that each random matrix satisfies

EXk = 0 and ‖Xk‖ ≤ R almost surely.

Then, for all t ≥ 0,

P
{
‖
∑

k
Xk‖ ≥ t

}
≤ 2n · exp

(
−t2/2

σ2 +Rt/3

)
where σ2 ≥

∥∥∥∑
k
E
(
X2
k

)∥∥∥ .
Similar to the ordinary Bernstein inequality for random variables, the decaying rate of the tail of the sum would
be determined by the variance of the matrix sum and the uniform bound on the maximum eigenvalue of each
summand. As in our framework, each column of S is also an accumulation of m independent columns, we further
introduce a rectangular version of the matrix Bernstein inequality, which is an immediate corollary of Theorem 4.

Theorem 5 (Matrix Bernstein: Rectangular Case). Consider a finite sequence {Zk} of independent, random
matrices with dimensions n1 × n2. Assume that each random matrix satisfies

EZk = 0 and ‖Zk‖ ≤ R almost surely.

Define

σ2 := max
{∥∥∥∑

k
E(ZkZ

∗
k)
∥∥∥ , ∥∥∥∑

k
E(Z∗kZk)

∥∥∥} .
Then, for all t ≥ 0,

P
{∥∥∥∑

k
Zk

∥∥∥ ≥ t} ≤ (n1 + n2) · exp

(
−t2/2

σ2 +Rt/3

)
.

8 MISSING PROOFS

In this section, we will present the proof for Theorem 2 in the main paper.
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Proof. The main idea of the proof is to utilize Theorem 5, the rectangular version matrix Bernstein inequality,
to control the upper bound of the column `2 norm in the sketching matrix S, and then further address the
properties of the whole matrix S.

We start with the first condition in K-satisfiability. Observing the form of the matrix UT1 SS
TU1− I, we find its

expectation is zero and thus matrix Bernstein inequality (Theorem 4) can be applied. Before that, we need to
give a high probability operator norm upper bound R for the summand UT1 SkS

T
k U1− I/d, which can be derived

from the norm upper bound for the vector UT1 Sk.

Based on Algorithm 1 in the main paper, Sk can be decomposed as

Sk =

m∑
j=1

1√
m
Sk,j , ∀k ∈ [d],

where Sk,j is a single sub-sampling column which would be 1√
dpi
ei with probability pi. We take 1√

m
UT1 Sk,j ’s

as the random matrices and apply Theorem 5 to them. We then need to specify the parameters R and σ2 in

Theorem 5. Here we let R =
√

2M
md , as M ≥ maxi

‖ψ̃i‖2
pi
≥ maxi

‖ũi‖2
2pi

, where ũi is the sub-vector of the first dδ

elements in the i-th column ui of U . We can verify R ≥ ‖ 1√
m
UT1 Sk,j‖,∀j ∈ [m]. Another parameter σ2 = dδ

d is

induced by the fact ESk,jSTk,j = 1
dI.

By Theorem 5 we have the following probability inequality

P
{
‖UT1 Sk‖ > t

}
≤ (dδ + 1) exp(

−t2/2
dδ
d +

√
2M
md t/3

),

and further by union bound we obtain

P
{

max
k∈[d]

‖UT1 Sk‖ > t

}
≤ d(dδ + 1) exp(

−t2/2
dδ
d +

√
2M
md t/3

)

P

{
max
k∈[d]

‖UT1 Sk‖ > t =
1

3
uR+

√
1

9
u2R2 + 2uσ2

}
≤ d(dδ + 1) exp(−u),

where we substitute u for t in the last inequality to better control the probability. After the substitution, we
upper bound the right hand side by ρ/4, and have u ∼ log n

ρ . Thus with probability 1− ρ
4 , we upper bound the

vector norm ‖UT1 Sk‖ by t, and further bound the norm of the zero mean matrix ‖UT1 SkSTk U1 − 1
dI‖ by t2.

For the simplicity of notation, we would denote UT1 SkS
T
k U1 − 1

dI as Xk in this paragraph. We still need to
control ‖EX2

k‖ to apply Theorem 4. We first expand EX2
k as

EX2
k = E

∑
i1,i2,i3,i4∈[n]

(
Zi1Zi2
md

− δi1i2
d

)(
Zi3Zi4
md

− δi3i4
d

)ũi1 ũ
T
i2 ũi3 ũ

T
i4 , (4)

where STk = 1√
md

(Z1, Z2, · · · , Zn), and further Zi = 1√
pi

∑m
j=1 Zij , where Zij ’s are i.i.d and they would be ±1

with probability pi
2 respectively, or be 0 with probability 1 − pi. The setting represents the fact that Sk is the

accumulation of m independent columns 1√
m
Sk,j . By some calculation, we have EZi1Zi2 = mδi1i2 , and for most

combination of i1, i2, i3, i4 the summand in equation (4) would be zero. To exactly compute equation (4), we
only need to consider the following four cases:

1. i1 = i2 = i3 = i4,

2. i1 = i2 6= i3 = i4,

3. i1 = i3 6= i2 = i4,

4. i1 = i4 6= i2 = i3.
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For the first case, we have

E
∑

i1=i2=i3=i4

(
Z2
i1

md
− 1

d
)2ũi1 ũ

T
i1 ũi1 ũ

T
i1 =

1

d2

n∑
i=1

(
1

mpi
+

3(m− 1)

m
− 1)ũi1 ũ

T
i1 ũi1 ũ

T
i1 ;

for the second case we have

E
∑

i1=i2 6=i3=i4

(
Z2
i1

md
− 1

d
)(
Z2
i3

md
− 1

d
)ũi1 ũ

T
i1 ũi3 ũ

T
i3 = − 1

md2

∑
i1 6=i3

ũi1 ũ
T
i1 ũi3 ũ

T
i3 ;

for the third case we have

E
∑

i1=i3 6=i2=i4

(
Zi1Zi2
md

)2ũi1 ũ
T
i2 ũi1 ũ

T
i2 =

m− 1

md2

∑
i1 6=i2

ũi1 ũ
T
i2 ũi1 ũ

T
i2 ;

for the fourth case we have

E
∑

i1=i4 6=i2=i3

(
Zi1Zi2
md

)2ũi1 ũ
T
i2 ũi2 ũ

T
i1 =

m− 1

md2

∑
i1 6=i2

ũi1 ũ
T
i2 ũi2 ũ

T
i1 .

Combining the pieces together, we obtain

EX2
k =

1

md2

n∑
i=1

‖ũi‖2

pi
ũi1 ũ

T
i1 +

m− 1

md2
dδI +

m− 2

md2
I,

which implies

‖EX2
k‖ ≤

1

d2
(

2

m
M +

m− 1

m
dδ +

m− 2

m
),

and hence we let ‖
∑
k EX2

k‖ ≤ σ2
b := 1

d ( 2
mM + dδ + 1).

Applying Theorem 4, we have the following probability inequality:

P
{
‖UT1 SSTU1 − Idδ‖op ≥ 1/2

}
≤ 2dδ exp(

−1/8

σ2
b + 1

6 t
2

) ≤ ρ

4
.

To make the last inequality hold, we need

σ2
b +

1

6
t2 . 1/ log

n

ρ
,

which turns out to imply

d & dδ log2(
n

ρ
)

md &M log3(
n

ρ
).

To complete the proof for the theorem, we still need to validate the requirements on m, d above can induce the

second condition in K-satisfiability. We first rewrite the target ‖STU2Σ
1
2
2 ‖ as ‖(Σ + δI)

1
2 ΨδS‖, where (Σ + δI)

1
2

means the matrix Σ + δI would set the first dδ diagonal elements as zero and only keep the rest ones.

As above we start with the control over the maximal norm of the column (Σ + δI)
1
2 ΨδSk. For simplicity we will

reuse the notation σ2, R to apply Theorem 5. Recall Sk =
∑m
j=1

1√
m
Sk,j , this time ‖ 1√

m
(Σ + δI)

1
2 ΨδSk,j‖ is

bounded by

1√
md

√
2δ

√
max
i

‖ψi‖2 − ‖ψ̃i‖2
pi

≤ R :=

√
2δM

md
,
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and

E
∑
j

1

m
STk,jΨ

T
δ (Σ + δI)ΨδSk,j =

Tr(Σ2)

d
≤ σ2 :=

Cdδ
d
δ,

in which the last inequality is induced by the fast eigenvalue decay rate in Assumption 1 (Liu et al., 2018,
Lemma 3.1). Again by Theorem 5 and the union bound, we have

P

{
max
k∈[d]

‖Σ2U
T
2 Sk‖ > t =

1

3
uR+

√
1

9
u2R2 + 2uσ2

}
≤ d(n+ 1) exp(−u) ≤ ρ/4.

Given the high probability norm upper bound t, to apply Theorem 3 we re-define Xk = Σ
1
2UTSkS

T
k UΣ

1
2 , and

µmax = λmax (
∑
k EXk) = δ. We finally have

P
{
λmax

(∑
k
Xk

)
≥ (1 + 1)µmax

}
≤ n ·

[
e−1

4

]µmax/t
2

≤ ρ/4.

To make the second condition in K-satisfiability hold we only need to validate

t2/δ . 1/ log
n

ρ
,

which is actually satisfied by the derived requirements on m, d above. ♦

9 MORE ON SIMULATIONS

In this section, we provide the complete experiment settings and several additional figures to further illustrate
our method.

9.1 Experiment Settings in Figure 1 in the Main Paper

This figure is only shown for illustration, and the settings are relatively simple. In Figure 1 we consider three
representative sketching methods, the Gaussian sketching method, the classical Nyström method, and our accu-
mulation method with m = 5. We compare the estimation error ‖f̂S − f̂n‖2n of each other and also report the
total runtime in Figure 1.

Specifically, we run the experiment on a bimodal distribution over R3. The bimodal distribution has two
components: with probability n

n+nγ generating a Unif[0, 1]3; and with probability nγ

n+nγ generating a random

variable with pdf
∏3
j=1(5−2xj) for xj ∈ [2, 2.5], where n is the sample size varying from n = 1, 000 to 16, 000 and

γ = 0.5. In addition, by cross validation the Matérn kernel with smoothness parameter ν = 0.5 is chosen, and the
regularization parameter of the KRR λ is set as 0.3n−

4
7 . The true regression function we use is f∗(x) = g(‖x‖/3),

with

g(x) = 1.6|(x− 0.4)(x− 0.6)| − x(x− 1)(x− 2)− 0.5,

and i.i.d. noises follow N (0, 0.25). We use uniform sub-sampling distribution for all the applicable methods, and

the projection dimension d is chosen as b1.3n 3
7 c. The results finally reported in Figure 1 are averaged over 30

replicates.

9.2 Experiment Settings in Figure 2 in the Main Paper

In this experiment, we compare the approximation error ‖f̂S − f̂n‖2n among the KRR estimators obtained by
the sketching matrices with different m, including the Gaussian sketch as an instance of m = ∞. As above,
we run the experiment on a bimodal distribution over R3. The bimodal distribution has two components: with
probability n

n+nγ generating a Unif[0, 1]3; and with probability nγ

n+nγ generating a random variable with pdf∏3
j=1(5 − 2xj) for xj ∈ [2, 2.5], where n is the sample size varying from n = 1, 000 to 8, 000 and γ = 0.6. In
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addition, by cross validation the Gaussian kernel with bandwidth σ = 1.5n−
1
7 is chosen, and the regularization

parameter of the KRR λ is set as 0.5n−
4
7 . The true regression function f∗ we use is f∗(x) = g(‖x‖/3), with

g(x) = 1.6|(x− 0.4)(x− 0.6)| − x(x− 1)(x− 2)− 0.5,

and i.i.d. noises follow N (0, 0.25). We use uniform sub-sampling distribution for all the applicable methods, and

the projection dimension d varies from b0.3n 3
7 c to b3n 3

7 c. The results reported in Figure 2 are averaged over 30
replicates.

9.3 Additional Experiments and Experiment Settings in Figure 3 in the Main Paper

As mentioned in the main paper, we evaluate the comprehensive performance of our accumulation method on
three real datasets and also consider the usage of Falkon (Rudi et al., 2017). Due to the space limit in the
main paper, we move the complete experiment settings and results to this section and will demonstrate them as
follows, including the settings in Figure 3 in the main paper.

We verify the effect of our method on three datasets, RadiusQueriesAggregation (Savva et al., 2018; Anag-
nostopoulos et al., 2018)(denoted by RQA), CASP (Dua and Graff, 2017), and PPGasEmission (KAYA et al.,
2019)(denoted by GAS), all downloaded from the UCI ML Repository (Dua and Graff, 2017). For those datasets,
RQA contains 200, 000 data points and 4 features; CASP contains 45, 730 data points and 9 features; GAS con-
tains 36, 733 data points and 10 features; in this subsection we use dX to represent the number of the features.
To show the evolving trend, we set a sequence of sample sizes beforehand (from 1, 000 to 15, 000, at the limit of
our computational feasibility) and in each round run the experiment on a subset of the whole data points with
the given sample size n. The testing errors are estimated on a random subset (20% of the original dataset) which
is not used in the training. We begin by normalizing the features to have variance 1 in the randomly drawn
dataset, before obtaining the empirical kernel matrix using Matérn kernel (the smoothness parameter ν = 1.5).

The regularization parameter λ of KRR is 0.9 · n−
3+dX
3+2dX . We set the projection dimension as b1.5 · n

dX
3+2dX c

for all sketching methods. The candidate methods include the Gaussian sketching method, very sparse random
projection (Li et al., 2006), the Nyström method with Bless (Rudi et al., 2018), and our accumulation method

with m = 4. Among all the experiments, the number of sub-samples used in Bless is chosen as b3 · n
dX

3+2dX c.
The usage of Falkon (Rudi et al., 2017) is also considered, and we provide some experimental results to show
our method still attain the optimal trade-off between statistical accuracy and computational efficiency. All the
results reported below in Figure 4 (in which the first subplot is Figure 3 in the main paper) and Figure 5 are
averaged over 30 replicates.

(a) RQA (b) CASP (c) GAS

Figure 4: Trade-off between Accuracy and Efficiency without Falkon

Basically, those experiments demonstrate that in practice, a medium m could substantially improve the accuracy
of the classical Nyström method with uniform sub-sampling distribution, and the extra cost is much lower
compared to other advanced methods. Specifically, all the methods above can be combined with a fast KRR
solving method Falkon. Under our experiment settings, Falkon maintains the estimation accuracy, while not
accelerate the training much since the sample size is not large enough. As shown in Figure 5, the usage of Falkon
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(a) RQA (b) CASP (c) GAS

Figure 5: Trade-off between Accuracy and Efficiency with Falkon

would not change the main conclusion that our accumulation method (the red solid curve) provides the optimal
trade-off between statistical accuracy and computational efficiency, among all the candidate sketching methods.
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