The Value of Labeled and Unlabeled Data in Latent Variable Estimation

Supplementary Materials

A Glossary

The glossary is given in Table [2| below.

Symbol Used for
X An input vector X € X.
Y A latent ground-truth label Y € ¥ = {-1,1}.
m Number of sources.
Aj jth source output \; : X — Y; all m labels make up vector A.
Y Soft label in [—1, 1] output by the latent variable model.
ny Number of unlabeled samples.
nr Number of labeled samples.
0 Canonical parameters of the Ising model for Pr(Y, A).
G Dependency graph G = (V, E) over sources and the latent ground-truth label.
B Edges among sources in G.
d Number of dependencies among sources, d = |Ey|.
a; True accuracy of the ith source E[\;Y].
av Estimated accuracy of the ith source using unlabeled data via the triplet method.
ak Estimated accuracy of the ith source using labeled data, i.e. k Y.
aM Estimated accuracy of the ith source using unlabeled data via the
triplet method and median aggregation.
N Random variable representing dataset used.
T Algorithmic randomness for estimating accuracies via triplet method.

R,Ry,Rr, Ry Generalization error R = IE(yy)\)yN,T[l(f/, Y)]. Ru, R, Ry are for a7, ar, @, respectively,
and (-, -) is the cross-entropy loss.
R®, Ry, RY, Ry Excess generalization error R° = R — H(Y|A).

Br Inference bias Br = >_(; ;e 1(Ai; Aj]Y).

Best Parameter estimation error.

€ij Extent of misspecification on a single pair of sources €;; = E [\ A;] — E [N Y] E [A\;Y].
€min s Emax Smallest and largest e;; for (i,7) € Ex.

Pry Mean squared error for @, p,,, = max; E [(ZiZM — ai)ﬂ.

f(nw) Minimum labeled points needed for lower generalization error than ny unlabeled points.
V(nu) Data value ratio at ny unlabeled points.

V(nu) Approximation of data value ratio using upper bounds at ny unlabeled points.

o Weight for unlabeled estimator to combine unlabeled and labeled estimators.

a™(a) Linear combination of unlabeled and labeled estimators using weight a.

Table 2: Glossary of variables and symbols used in this paper.
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Algorithm 1 Method-of-Moments Latent Variable Estimation (Fu et al., [2020))

Input: Empirical expectation estimates [ [A;)\;]
for i =1 tom do
A=10
for j,k e {1,...,m}\{i} do
G0 I D] E D] /B A |
A Auath
end for
a; < AGGREGATE(A)

end for
return a, estimates of E [\;Y] for all A,

B Additional Algorithmic Details

We provide more details on our algorithm for latent variable estimation. The input is either a labeled dataset
(X1,Yr) or unlabeled dataset Xy with m sources A. The output is an estimate of the distribution Pr(Y|A(X)),
which we construct using the factorization in . For both data types, this requires plugging in the values of
Pr(Y = 1) and the empirical distribution of the sources, Pr(A = A(X)).

The approach to estimating Pr(A\; = A;(X)|Y = 1) is the only part of the method that differs between the
labeled and unlabeled settings. For both, we can focus on estimating E [\;Y] since 13;()\1» =+1Y =1) = %&1
by Lemma In the labeled setting, the expectation can be estimated directly, i.e. E[\;Y] = % Z;’:l i)y,
On the other hand, for unlabeled data we use the triplet method from |Fu et al.| (2020), described in Algorithm
to estimate E [\;Y]. This algorithm takes as input the pairwise rates of agreement between sources 1) [AiA]
for all i, j, and returns an estimate of each E [\;Y].

The AGGREGATE subroutine in Algorithm [I] distinguishes between the unlabeled case with and without cor-
rection. For unlabeled data, we theoretically analyze the approach where we choose @; ~ Unif(A); that is, we
randomly select two A;, Ax to compute @Y, which is similarly done in other method-of-moments approaches. An
alternate to this approach is to take the mean over all possible pairs A;, Ax; note that this reduces the estimation
error compared to the population-level estimate by a factor of (m; 1), but does not mitigate bias from misspecifi-
cation. We use this approach in our synthetic and real-world experiments for the baseline unlabeled case without
correction. Lastly, having AGGREGATE(A) be the median of the set A is our proposed method of correcting for

misspecification.

C Additional Theoretical Results

In Section we discuss how our generalization error bounds, namely the standing O(d/m) bias for unlabeled
data, and our results for the corrected medians estimator can still apply to other method-of-moments estimators
that exploit conditionally independent views of hidden variables. Next, in Section [C.2|we give more details about
the combined estimators and the generalization bounds from using them. Finally, in Section we present a
lower asymptotic bound on the generalization error for labeled versus unlabeled data and combining both.

C.1 Other Method-of-Moments Estimators

We present two other method-of-moments estimators and sketch out arguments for how using them (under
misspecification) results in the same scaling of generalization error, and for how the median approach is able to
help correct standing bias. We then provide an abstracted argument.

“Quadratic” Triplets This alternative latent variable model relies on class-conditional probability terms
instead of mean parameters (Fu et al.,2020), which assume some symmetries in the distribution (see Lemma [2)).
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For the ith source, we can write the parameters to be estimated as

[Pru=1Y =1) Pr(n =1y =-1)
Hi=pr(\ = -1y = 1) Pr(\; = —1]Y = —1)

Let
| Pr=10=1) Pr(\, =1, =-1) _[Pr(Y =1) 0
Ois = |Pr(hi = ~1,A; = 1) Pr(hi = 1A, = —1)| @4 P= 0 Pr(Y = —1)
Then, we obtain that
Oij = Py, . (6)
The left-hand side is observable, and we can form triplets again to solve for each p;. Set « = P(\; = 1|Y = 1),
ci = % and d; = %. The top row of p; is then [ ¢; — d;a] with ¢; and d; known. For a triplet

i,7,k, and the appropriate u’s, using the a, 8,y notation above and corresponding c;, ¢;, ¢, and d;, d;, dj, terms,
we obtain the system (see [Fu et al.| (2020) for more details)

(1 + dldj)aﬂ + cicj — Cidjﬂ — deia = OZJ/PI"(Y

(1 + didg)ay + cicp, — cidiy — cpdia = O/ Pr(Y =

(1 +djdg) By + cjcr — cjdpy — exd;f = O/ Pr(Y =1

),
),
).

1
1

To solve, o and ~ are expressed with 8 for the first and third equations and this is plugged into the second—
yielding a quadratic equation to be solved.

This approach incurs standing bias under misspecification. Quadratic triplets rely on conditional independence
by assuming that Pr(A\; = 1,A\; = 1) and Pr(\; = 1|Y = 1)Pr(\; = 1Y = 1)Pr(Y = 1) + Pr(\;, = 1|Y =
—1)Pr(\; = 1|Y = —1) Pr(Y = —1) are equal. Suppose, however, that (i,5) € Ex. Then, uiPujT is no longer
equal to O;;, but O;; + 0;;, where §;; = Pr(Y = 1)[Pr(N]Y = 1) Pr()\;|Y = 1) — Pr(A\, \|Y = 1)] + Pr(Y =
—1)[Pr(N]Y = =1) Pr(\;|Y = —1)—Pr(\;, Aj|Y = —1)]. This §;; can be written exactly in terms of the canonical
parameters 6 and results in an inconsistent estimator of Pr()\;|Y). We note that the probability of selecting a
bad triplec‘icéthat leads to this is the same for this method and our main triplet method, so the standing bias still
scales O().

This approach can also be corrected using medians and the same conditions from Proposition |1, which we prove
in Section [D-4] hold for the estimates to be consistent.

Method-of-moments for topic exchange |Anandkumar et al| (2014) describes tensor method-of-moments
estimators for a variety of applications, including topic models. In the topic model case, h is the topic latent
variable, x1,...,2z, are the words in the document, all assumed to be conditionally independent given h and
drawn from an unknown conditional probability distribution u;, parametrized by the latent topic variable. Here,
xt = e;, the standard basis vector if the tth word is i. |Anandkumar et al.| (2014)) uses the fact that

k
Elry @ w2 @ 3] = 3 wift; ® pi @ pi,

i=1

where w; is the probability of h being topic ¢, to perform a tensor decomposition of the observable E[zx; ® 22 ® 23]
and learn py. Note the similarity to our setting, where Y is used in place of h and where there are two (i.e., a
matrix) instead of three views (giving a tensor). Conditional independence (of words given the topic) is required
to for this expression to hold. Therefore, when conditional independence is violated, Zle Wi ; @ i @ ey is equal
to E [21 ® 22 ® x3] plus some additional perturbation that is a function of the probability distribution. This error
is propagated into the estimate of uyp, assuming Lipschitzness of this estimator. Furthermore, assuming random
triples are selected to learn the accuracy of each word, using this approach to estimate accuracy parameters will
again yield a standing bias.

Furthermore, the medians approach can again correct for this standing bias—there are (m; 1) —m —d— 3 good

triplets out of (m; 1), so we require the same conditions to yield consistent estimators as those for the quadratic
triplets case.
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Abstraction Consider in general some observable quantities o1, . . ., 0,, some unobservable quantities uy, . . . , U,
that depend on the value of some latent variable h, and a relationship that holds when some set of dependencies
Q) is taken into account,

f(017"'701)) = gﬂ(ula"'auv)a

Next, we call s(f(o1,...,0,)) an estimator that produces estimates of u1, ..., u,.
Our approach is simply to account for errors due to accessing an incorrect 2, where |2\ Q'| = d. Then,
flo1,...,00) = gar(ur,...,uy) +d x Alug, ..., uy),

where A is some error term. Given this setup, we then propagate the error term A in the estimator s, computing
s(f(o1,---,04)) —s(f(01,-..,0,) —dA(u,...,u,). This can be done either via perturbation analysis or Taylor
approximation or other methods—the only requirement we place is Lipschitzness on the estimator s. Then, by
randomly selecting subsets of (o01,...,0,) to estimate uq,...,u,, the probability of picking a subset with error
scales in d, showing that there exists a standing bias that is a function of the number of unmodeled dependencies.
Moreover, there are some subsets of (01, ..., 0,) that yield consistent estimators s; if this quantity is greater than
half of all the subsets, then a medians approach can be beneficial when there is enough data.

C.2 Combined estimator analysis

The general form of the combined estimator we consider is a'*(a) = aa? + (1 — a)a® for some weight a € [0, 1].
The James-Stein type estimator from |Green et al.| (2005)), which we evaluate empirically, uses the following:

~G ._ ~U r ~L  ~U
a’ =a + 1M> a” —a’), 7
(1 =t Nl 0

where ¥ = Cov [a’] and r € [0,2(m — 2)]. (Green et al. (2005) show that this estimator dominates a* when the

unbiased estimator is Gaussian and its covariance is known, but since we can only estimate the covariance matrix,

we replace ¥ with an empirical estimate Y in practice. This estimator is equivalent to a'™ (min {W, 1}) .
P

We thus focus on analyzing the performance of the general combined estimator a"™*().

The change in estimator only impacts the generalization bound via the parameter estimation error,

S Enry {DKL(PrMyHPr)\”y)]. We simplify this using Lemma doing a Taylor approximation on a com-

bined asymptotic estimate a¢ := aa; + (1 — a)a; rather than a,;. This gives us

™ — moq ) s 1—a A — s

ZEN777Y {DKL(PI‘/\JYHPI‘/\JY)} = Z % log (1 4 a(la_l’_ agz)) + 2‘% log (1 + %) (8)

i=1 i=1 ! '

m M om = U i 1 1 20(((74—04) 2 ~U -~ 2 N2 ~L 2
2T e Bl -a e 3 (T o o) (OB @ - @) + (- B [ - a?))

We present bounds for the three settings discussed in the paper.

Well-specified setting In the well-specified setting, the unlabeled data accuracy estimator is consistent, so
a; = a;, and therefore

iENmy [DKL(Pr/\i‘yHF;/\”Y)} — i;( 1 ) <Q2E (@ —@)?] + (1 — @)%k [(@ — a;)?] ) (9)

1—a?
1=1 [

Using the results of the proof of Theorem 2/ and the bound on E [(@{ — @;)?] in Lemma @, we get that this is at

2cam _ 2_m
most o &% 4 (1 — a)* 57t

Misspecified Setting The constant terms for the bound on accuracy parameter estimation error will change
due to a¢ in the denominator rather than a;, but the derivation follows our proof for Theorem [3| Therefore, for
some ¢,

2 2

chald ol —a)?dd cha*m 1—a)%m
3 ( ) 5)+4 +( ) .

= -~ cdad o
ZEN,T,Y {DKL(PF,\i|Y||Pf>\i|Y)] §€max< L 2

m n mn mn n 2n
] V1o U L U L
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Corrected Setting Here we consider the combined estimator aa™ + (1 — a)a’. Under certain conditions, we
know that a™ asymptotically converges to a. Therefore, the accuracy parameter estimation error is

iEMT,Y [DKL(PWYH%?MY } i;(l = )(aze (@M - a)?] + (1 — a)?E [@F — a;)?] ) (10)

=1

E [(ZL’ZM — &i)Q] is just the variance of the median estimator. Therefore, this summation is bounded by a?c,mp;,,, +

(1—a)? s under the conditions in Proposition

C.3 Lower bounds on generalization error

While Theorems [2| and [3| provide upper bounds on the excess generalization error, it is also important to consider
lower bounds—is the standing bias from misspecification in the unlabeled approach inevitable? We analyze the
asymptotic excess risk in the case of labeled data, unlabeled data, and both, and discuss how a lower bound
approach to the data value ratio and analyzing combined estimators is possible.

Unlabeled data lower bound Looking at the decomposition in Theorem Enx [DKL(Pr()\)HPAr()\))} ap-

proaches 0 asymptotically and the inference bias > I(Ai; A;]Y) is independent of the amount of data. We

(i,7)€Ex
thus seek to asymptotically lower bound > | Er, -y [DKL(PrMy Hﬁ)\”y)} . Note that in the labeled data case

and when using the medians estimator @™ with unlabeled data, parameter estimation error approaches 0 as n
grows large since the estimated accuracy parameters are consistent. In the unlabeled data case, we show that
standing bias persists.

Theorem 4. Suppose that there are |Ey| = d unmodeled dependencies. When we use the latent variable model
described in section[3, the lower bound of the excess generalization error is asymptotically bounded by
(m — 2d)d%e2 . b2,

1 Re mln min B . 11
e e 2 S T 2 —2)2 TP (11)

2.2
When d is o(m), the asymptotic parameter estimation error is d Cmin |,
m

Proof. We compute an asymptotic lower bound for ;" Enr -y [DKL (Pry, )y ||ﬁ)\i|y):| . Applying Lemma we
see that

+ a; —a; 1—a a; — a;
nglglooZENry {DKL(PT)\ v |[Pry, |Y)} = Z 1 g( + 1 ra ) +—5log (1 + 1—@) - (12)

i=1 i=1

We focus on the lower bound of any one element of this sum. For ease of notation, let a := a; and z = a; — a;.
Then this expression for an arbitrary ¢ becomes

14+ a; a; 1—a; ai 1+4+a T 1—a
log |1 log (1 =— 1 1- — 1 —_—
2 (+1+ >+ 2 (+1 ) 2 Og( 1+a) 2 Og(+1 )

(13)
Take the negative of this expression and define it as a function f(z) to upper bound:
1+a x 1—a x
= 1 1- 1 1+ —]. 14
f@) == Og( 1+a>+ 2 Og<+1—a) (14)

We show that f(z) < —1x2. Note that for z =0, f(z) = 0 and 22 = 0. Then, we must show that for z > 0,
f'(z) < —z and for x < 0, f'(x) > —z. Taking the derivative of f(z) gives us f'(z) = T—(aszyz> and it is clear
that the previous inequalities are satisfied.
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Using this fact in (12)), we have that lim,, oo > i) Exriry |:DKL(PI‘)\i|y||§I‘)\i|y)i| = >, 4(a; — @;)®. For

1 € )y, note that by Lemma I it is possible to construct a graphical model such that a; —a; = 0. For i ¢ E,,

deminb2y;

we know that |a; — @;| is at least o137 Therefore,

m 2 2 4
1 Z(az N C_Li)Q > % Z (ai . (_li)Q Z (2(m _26?)(1( m1nb2n312n' (15)

O

Combined estimator lower bound Next, we analyze the excess risk when we use the combined estimator
a'™(a). Note that when we are in the well-specified and corrected settings, the asymptotic excess risk is 0.
Therefore, we only consider the misspecified setting.

Corollary 1. Denote Rf («) as the excess risk of our latent variable model when we use accuracy parameter
a'™(a)). The lower bound of the excess generalization error when we combine labeled and unlabeled data (without
correction) using weight « is asymptotically bounded by

a?(m — 2d)d%e2, b2,

1‘ Re. > mln min B . 16
B L S ) R (16)

Proof. Based on , the asymptotic parameter estimation error is

. - ~ ml—i—ai ala; — a; 1—a; ala; — a;
lim Y Eu.y {DKL(Pr,\”yHPr,\”y)} =Y g (1 Il — )) + log (1 + %)
i=1 i o

ny,ng—00 4 1 1+a
i=

where dic = aa; + (1 — a)a;. If we define a := a; and z := a(a; — a;), then the ith element of this sum has the

form in (13) and is thus at least %m? Therefore, using results from Lemma the parameter estimation error is

) " a? a?(m — 2d)d?2; bt
> = o 2 > €min mln'
nU,lﬁin%oZENTY [DKL(PU Pey ] = ; 2 = 2(m—1)2(m — 2)2 (18)

O

Applications to data value ratio and combined estimator analysis Finally, it is possible to define the
data value ratio and analyze combined estimators based on lower bounds on the excess risk of labeled vs unlabeled
data. To do this, we would use the expressions from Theorem [ and Corollary [T] with standard finite-sample lower
bounds on the estimates from observable data. For bounding the variance of accuracy parameters estimated via
the triplet method on unlabeled data, we can use the lower bound from Theorem 2 of |[Fu et al.| (2020).

D Proofs

First, we formally state our assumptions on the graphical model that are needed for our results.
Assumption 1. Suppose that the distribution of Pr(Y,A) takes on the form

Pr(Y,\;6) = %exp (9y + imiy + Z oijAZ-Aj), (19)

i=1 (i,4)€EEN

where Z is the cumulant function, and the set of all canonical parameters 0 are positive. This assumption also
means that [\ A;],E[NY] > 0 for all i and j. Define amin = min; a; as the minimum true accuracy. Define

bmin = min; ;{E [A;\;] ,E [AiXj]}. Lastly, define Gmax = max; a4, = max; j  Er [ W .
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D.1 Proof of Theorem 1

Our goal is to evaluate Ey,x) ar,r [Z(}N/, Y)}7 where A is the randomness over a sample of n points (either ny or
nr). This expected cross entropy loss can be written as
Pr(Y/ = Y|X = X)

P —viv = | T HO): (20)

Eyx) - [z(?,y)} = —Ewy - |log

where Y'Y and X', A are independent copies, and the conditional entropy H(Y'|A) is by definition
H(Y|A) = Ex [= Pr(Y = 1|\ = A)log Pr(Y = 1|]A' = A) — Pr(Y = —1|X" = A)log Pr(Y = 1|]N = A)].  (21)

Next, we evaluate log %. Define Pr to be the conditionally independent label model parametrized

by the true accuracies a = E [AY] in the asymptotic regime; similar to Pr’s definition in ,
PriA=AX)|Y' =Y)Pr(Y' =Y) Hm Pr(h = (X)) Y =Y)Pr(Y' =Y)

Pr(Y’ = Y|A = A(X)) = . (22)

Pr(A = A(X)) Pr(\ = A(X))
Then,
| Pr(Y/ =YX =X)  Pr(Y' =YX =2]) . Pr(Y' = Y|XN = \)
BPY =YIN=A) Py ’—Y|X ) Py =YV =)
= )\ =\NY' =Y) Pr(\ = \) Pr(N =AY’ =Y)
Z log — log .
- = \]Y' =Y) Pr(\ = \) Pr(XN = AlY’ =Y)

We have used the fact that the class balance Pr(Y’ =Y) is the same value across the true distribution, f’vr, and
Pr. Plugging back into 7 we get

u [ Pr(\, = AV =Y)

B r_ r_
Pr( AY' =Y) log Pir()\ =
Pr(N =

~Eg |1 —E H(Y|A).
(Y)‘){OgP(X AY =Y )} AN +H(YIA)

ZE(Y)\)NT logP(Al_)\|Y/_ )

=1

(23)

We simplify each expectation now.

(A =\ ]Y’=Y)
— i By [log Pr(v=x|Y'= )}'

By definition of conditional KL divergence,
Pr()\ =\NY' =Y)
Pr(\, = \Y' =Y)

Pr(X, = MY =Y)
Pr(\, =AY/ =Y)

ZE(YA)NT

i=1

log —

Ewya - |log

IO

i=1

-

En - {EY {DKL(PI'AAYHID\;/\AY)” .
1

-
Il

Pr(N=0Y'=Y) |.
2. —Egyx [log PrEA’ A[Y = Y)}‘

The key difference between Pr and Pr is how the models factorize. The above expression can be written as

Pr(N, = MY’ = V) Pr(X, = A,V = Y)
> Exay |lo 2

Pr(A, N = A, A Y =Y)

(i,5)€EEN B
Sy ll Pr(X, A = A 4lY = 1) ‘y Pr(Y =1)
M 8 B =AY = D P = AV = 1) r
(i,4)EEN
E ) PI‘()\;7>\;—)\“)‘ |Y__1) Y =—-1| Pr(Y = -1
TR OgP(A’_)\IY——l)Pr(X—)\Y—_)‘ ! )
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Note that these expectations are equal to the mutual information between A; and A; conditional on Y =1

or Y = —1. Then by definition, the expression is equal to
D IQGNY =) Pr(Y =1)+ I(A; Y = 1) Pr(Y = Y I
(1,4)€EN (i,5)EEN

3. —Exn [log 11?8/—?;]

This term is the expected negative KL divergence between the true and estimated distributions of A,
En [DKL(PI()\)HP;r()\))]. While there are many ways to estimate this distribution, we stick with simply

the MLE estimate so that this expression will converge to 0 asymptotically.

Therefore, becomes

H(YIN) = Ex [ D PrOVIPr)| + > 106 A7) + Y Exery [ D (Pra v 1Py, )|

(i,j)€EN i=1
D.2 Proof of Theorem 2

Our goal is to evaluate > i En ry [DKL(PrMyHﬁMy)} on a labeled dataset. Using Lemma note that
E [EL] = a; = a;. Therefore,

1+ a; 1
2 2(1+a;)?
1

= ﬁVar( ) +o(1/n).

l—ai 1

E (@ —a:)*] + =5~ 21— a;)

B,y [Dict.(Pry gy [Py, v)| = SE [(@F — a:)?] + o(1/n)

It can be shown that this is exactly 5,—. To see this, formally define af = ;- >, MY, where X, Y7 belong
. ~ n i n 2 1
the jth sample of the dataset. Then Var (al) = Z ", Var ()\fYJ) = % YL E [)\z YJQ} —E[\NY)? = 1-af

nr

Therefore, >0 | Enr\ry DKL(PI')\i‘yHﬁ)\i‘y)} = 5n— +0(1/nr), and our proof is complete.

D.3 Proof of Theorem 3

We restate the full theorem with the value of the constants. Under assumption [I] using ny weakly labeled
samples and a misspecified model yields excess generalization error

c1d Co c3d cam
Re < max \ — )\z;>\ Y 1 ’

U= ( m + v nu + an> ny + JZ)EE IY) +o(1/nv)
1, A

where

2 14 1
“= b?nm Amin (1 - a’?‘ﬂax)bfmn Qmin

1 30— by) (1 2
02 (1 _a’%nax)b?nul II]lIl bIZ'ﬂlH bI4‘ﬂlD bIQ'ﬂll'l

3(1—02,,) 1 2
cg = min
(1 — a2 )2 b4 b4 b2

max min mln min min
sthy) (L, 2)

Cq = )
8b1%n1n( a?nax) bfnm b?mn

and emax is an upper bound on ¢;; defined in Lemma @
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Define a; = E, { W} to be the asymptotic estimator with expectation over triplets. We apply Lemma,
Bl and simplify it to get
= -~ "1t a a; — a; 1—ay a; — a;
IET[DP.P.}=< ’1(1’”’) 11(111)) 24
; Ny | Dru(Pro v [[Pry y) ; g log(1+ o)+~ s 1+ (24)
a; — B - "1 1 2@1‘(@1' —ai) ~ _\2
+Z —2ENT i_ai]+i_212<1a12+ (1—a2)? )EN,T[(ai_ai)]
+ 0(1/n)

This shows that there are three quantities to bound: a; — @;, Enr 7 [@; — @;], and Ex » [(’di — di)z}. Recall that

R[N Aj ] Aidk]

for the unlabeled data case, a; = ENW

for random Aj, A, and a; = B, | /225X The bounds

for Ex,- [a; — @;], and En » [(@; — @;)?] are stated in Lemma |§|; we focus on bounding the expected asymptotic
gap a; — a; here.

Lemma 1. Fori € E), we have that

e L G i G Vi &
Fori ¢ Ey, we have that
R [ e el T 0
And for all 4, it is thus true that
la; — ai| < (e;“ﬁ (27)

Proof. We define €;; = E [\;\;] —E [NY]E [A;Y] for (z,7) € Ey, i.e. the error we get from assuming conditional
independence between A; and A;. We define the exact value of ;5 in Lemma and since all canonical parameters
are assumed to be positive, we know that there exist emin, Emax that satisfy 0 < emin < €55 < Emax Over the entire

k)

edgeset Ey. We now propagate this error to a;. Define @Z(-j ™’ before we take the expectation over triplets as

A WEME[MJ

‘ E [AjAk]

Note that this means @; > bmin. When each E [A\;);] can be written as E [A;Y]E [\;Y], we get that a(J k) — = a;.
However, by our assumptions on the edgeset, at most one of the above pairwise expectations has nonzero ¢;;, in
which case the true a; is computed using E [A\;\;] — &;5, which is equal to E [\;Y]E [A;Y], rather than E [\;\;].

If (4,7) € Ex (but not (j,k) or (i,k)) then

0 — \/(]E NiAs] = €i5)E [Air]
1 T [ .

E [AjAx]
This means that a; > a; and we asymptotically overestimate the accuracy. Then the difference between a(J k)2
and a? is a(-j k)2 a2 = SuBRA] € [5 b Zma ] Moreover, a(j k) —a; = w Since a; > a; in this case,
7 7 7 E[)\ /\k] mll’l m1n7 b (2 ,(_7 k:)+ 7 7
we have that dgj’k) + a; € [2amin, 2]; as a result,
_(3,k) EminDmin Emax
a;"" —a; €| . (28)

2 ’ 2bminamin
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Similarly, if (i,k) € FEx, we have the same bounds: dgj’k)z —a? = % € [Eminbmimiz‘ﬁ]a and thus
dgj’k) —a; € [%, 25%] On the other hand, if (j, k) € E), the true accuracy is written as

 EGNIE ]
“CEVENM )

This means that a(J k) <a; and we asymptotlcally underestimate the accuracy T he dlfference between a(J k)2

,k 2 _ ED A EA g o k

and a? is a? —

_(5,k Eminbrznm Emax
a e CRERET | (29)

min mln

a; —

Lastly, if none of ¢,j, k share edges, a; = a;. In our algorithm, we estimate each a; using A; and A, chosen
uniformly at random from the other m — 1 sources. We thus need to compute the probabilities that (i, ), (¢, k)
and (4, k) are in E. Note that these probabilities depend on if ¢ € Ey, which is true for 2d sources.

.. . . . . . 1(m—2 2
Pr((i.4) Ui k) € Bx | i ¢ B) =0 P((3.) U .8) € By L1 € By = Mol = 22
2
. . 2d . . 2(d—-1)
P ke & E\)y=———— P ke & EyYy=———"—
I‘((], )E A |Z¢ )\) (m—l)(m—2) I‘((], )E A |Ze )\) (m—l)(m—2)
Therefore, if i € Ey, we use and to bound the expected error as
_ 2 Emax Q(d - 1) *gminb2 i Emax
i . < . . min S , 30
ai—a m—1 2bgmin@min (M —1)(m —2) 2 (m — 1)bmin@min (30)
_ 2 Eminbmin 2(d - 1) —Emax Eminbmin (d - 1)5max
¢ ¢ m—1 2 - (m - 1)(m - 2) 2b12n1n Qin m—1 (m - 1)( - 2)b12n1n Qmin ( )

Note that this lower bound can be negative in this case, so it is not clear if a; or a; is bigger in expectation.

If i ¢ E), using then the expected error is bounded as

i —a < 2d _gminb?nin N _dgminbgnin (32)
T (m—1)(m —2) 2 (m—1)(m—2)’
2d —Emax _df‘:max
a: — (; > =
i “= (m - 1)(7’71 - 2) 2ermn Amin (m - 1)( - 2)biun Amin (33)

In this case, a; < a;. Finally, observe that regardless of if i € E\ or not, the absolute value of the bias is bounded
by

€mdx
| < m— )02 a2 (34)

min “min

Idi —a;

O

We return to . Since a; > a; when ¢ ¢ E), we have that mlog( + %) 1*‘“ log(1 + u) <

1+‘“ log(1 + max “1 _f‘l) for i ¢ E5. On the other hand when ¢ € E), this expression can be upper bounded as
ﬂ L ai—a, + l—a; a;—a; _ (Gi— a1)2

5 e -4t = ;7 using the inequality log(1 4 x) <z for x > —1 (it can be easily verified that

k3
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“1:;” and & _g‘? are at least —1). Since |E\| = 2d and ¢ < 1, the first summation of is bounded by

demax 52
(m — 2d) log <1 + ) +2d — oEx (35)
( 1)(m 2)b12n1n m1n(1 + bIIlll'l) (1 - a’lznax)( - 1)2bfn1n Amin
< (m — 2d)demax n 2de max
B (m - 1)( - 2)b?nm mm(1 + bmlﬂ) (1 - d?nax)( - 1)2bfn1n Amin
- de max —2d n 2
_( - 1)b12n1n Amin (m - 2)(1 + bmin) (1 arznax)( - 1)b12mn Amin
dsmax 1 C1d<"5max
<— 1 <
_( - 1)b12nm min < * (]‘ - a?nax)b?nm mm) B m ,
where Cc1 = 17272 (1 + W) NeXt we bound Zl 1 a1 llz ]EN - [—, _ ’dl]
m a; — @ ) N m |ai . ai| ) N
Z 1—a2 EN,T [ai - ai] < Z ﬁ]EN,T [|ai - ai” (36)
i=1 v i=1 g

< V3 brzmn 1 2 1 MEmax < C2€max
~2/ny bfmn it — a2 (m—1)b2, a - i

min min max min mln

where ¢y = e )lb2 - \/3(1b2b,m,.) <b41 + b22 ) We bound Zl 1 2( = + 2?11('1;;)?))1[5/\/’7 [(Zii — di)z],

max/“min "~ min min min min

which can be split into an expression independent of misspecification and one dependent on it:

Z%(l _1—2 + 2?1(l—_2) )>]E/\f‘r [(N - di)ﬂ < @ + Z (1&1%;;215/\/’7— [(EZ — (li)g] s (37)
2 i=1 i

2
where ¢4 = M <b41 + b%) The summation in is bounded as follows, using the fact that a; < a;

im(1—ag, min min
for i ¢ Ej:

"G —a 3 1— b2, 1
" B ~i*_i2< min D= a 38
i—1 (1 - d%)Q N [(a ¢ ) ] ~ Any bmm(1 al%nax) <b14rlnm mm) zEZE |a ¢ ‘ ( )
- 3 1-02:, ( 1 2 ) ( 2de max ) < C3dEmax
- 4nU bﬁlln(l aIQIlaX) bﬁlln b12nln ( - 1)br2n11’1 mln - an ’
where ¢35 = % (b:lim +5 m) This concludes our proof.

D.4 Proof of Proposition 1

To prove the ability of using the median of the accuracies to correct for misspecification, we first examine the
asymptotic case. For i € F), note that out of a total of (mz_ 1) triplets, m — 2 of them will involve the edge
(i,7) € Ej, resulting in a higher inconsistent estimate of the accuracy. d — 1 of them will involve an edge
(j,k) € E), resulting in a lower estimate of the accuracy. Therefore, W — m — d — 3 triplets are
consistent. As long as the (m;l) — (m —2)th largest triplet is greater than half of all the triplets, and the d — 1th
largest triplet is less than the half of all the triplets, then the median will be a consistent triplet. This gives us

the conditions m > 5 and d < W

Next, for i ¢ E), d triplets will involve an edge (j,k) € E), resulting in lower estimated accuracy, while the
other (m; 1) — d triplets are consistent. Therefore, as long as d < W, the median triplet is consistent.

Lastly, we must consider the finite-sample regime when the ordering of the accuracy estimates are perturbed
by sampling noise. When each accuracy’s expected sampling noise is less than half of the minimum standing
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bias of a triplet, the order of the accuracies will not change on average. This translates into the inequality
. B2 ~ .

E [|a; — a;]] < §ming g |a; — z‘zgj’k)|. The minimum standing bias is %, and E [|a; — a;|] ~ O(1/4/n) so this

means that ng > ng ~ Q(1/e2,).

Lastly, we compute the excess risk when using the corrected estimator. From Lemma [} since the asymptotic

expectation a of the estimator is equal to the true accuracy a, we have

g ]. =+ a; E a; — Ef‘/[ ]. -
]EN,T,Y |:DKL(PI'>\¢|Y||PI‘M|Y):| = D) < [1 +a; ] + 2(1 _"_a‘)QE[(ai]‘VI - ai)2}> (39)

g <1E[5£” —al 1 pgm ai)Q])'

2 1—a; 2(1 — a;)?

Note that HT‘I : ]E[al;aa ] + 172‘“ : E[alfv_lg,ai] = (0. Then the parameter estimation error is
G 1 1 G 1 1
El@M-a) =) ———E[@M-a¢)? ] < —-—— mp,,,. (40
2 (4(1+a¢) * 4(1&1')) [(@" —a:)’] 22(1—(1?) [@" —a)] < 20 —maxaz) M )

i=1 i=1

This completes our proof, where ¢, = 2(A—max; a2 in PTOPOSitiOH

E Auxiliary Lemmas

Lemma 2. (Symmetry of the distribution). For any source \; with accuracy a; = E [\;Y],

1+ay

Pr(\; =1y =1) =Pr(\; = 1Y = —1) = ;“'
17(11'

Pr(\ = —1)Y = 1) = Pr(\, = 1Y = —1) = ——=".

Proof. By Proposition 2 of [Fu et al.| (2020), we know that \;Y L Y for the binary Ising model we use, defined
in section [3] Intuitively, this means that the accuracy of a source is independent of the value of Y, and therefore
Pr(\;Y = 1Y =1) = Pr(\;Y = 1) = 4% since E [\;Y] = 2Pr(\;Y = 1) — 1. Repeating this calculation with
remaining configurations of Pr(\;Y = £1|Y = £1) concludes our proof. O

Lemma 3. Define a; = E[N;Y], and let a; be our estimated accuracy on n points. Furthermore, let a; be the
expected asymptotic value of a; over T. Then, the estimation error is

~ 1+a; a; — a; ]E./\/ﬂ— a; — a; 1 - _
St vt ] -5 (252« BB )

1—a a; — a; En - [a; — a4 1 ~ 2
1 (1 ) d Ex . [(@; — a; )
+— (og )t T e T [(@ —a:)?]

+o(1/n).

Proof. As discussed previously, this term is equal to —Ey x) 7,7 [log %} . By the law of total expec-

tation, we now have

) Py = 1 = A

Pr(\ = N[V =1 Pr(\ = NV = —1
—Ean,s [Pr(Y =1A = A)log PrE)\’- MY =) ( | )] . (41)
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Suppose A; ¢ Ey. Conditioning on the value of A; and using Lemma becomes

A_AW_D (A_AW_—U
—Ea_ ar |Ey |PrY = 1N = A)1 ( Pr(Y = —1|A" = A)1 ’Li
= —Ex_,nr (Pr@’::HA_“Ai:])Pdki::HA_JA#PTO/::*HA—uAi:ifl)PdAi::*HA—ﬁ)bglj:%
a;
1—a,
+ (PI‘(Y = 1|>‘—i7Ai = —1) PI‘()\/L' = _1|)‘—1) + PI‘(Y = _1|)‘—ia)\i = 1) Pr()\l = 1|>\_Z)) lOg 1_ Zz:|
[ 1 ~i 7
— —Ex_, .~ PN&YE:HA%)bg1t34+PdA 1A )bgl —
Note that Pr(\; = 1,Y = 1|]A_;) = Pr(\; = 1]Y = 1)% and Pr(\; = —1,Y = —1|]A_;) = Pr(\; =

-1y = 71)% since A\; and A_; are conditionally independent glven Y,soPr(NY =1|A_;) =Pr(\; =

1Y =1) = 12, Similarly, Pr(\;Y = —1|]A —4) = Pr()\; = —1|Y = 1) = 5% so the conditional KL divergence
is equal to

1+a; 1—ai10g1—2ii
l—ai

1—|—ai1
O
2 ®liq 2

Ex -y [DKL(PFMYH@VT,\AY)} =—En- [ (42)

Now suppose that A; € Ey and has an edge to some A;. When we simplify by conditioning on A;, A;, we
find that 3,y Pr(Y = 1A 5,0 = LA = DPr(A = LA; = 1A ;) + Pr(Y = —1[A_;;, N = -1 A\; =
DPr(Ai = —1,A; =1|A—; ;) (i-e, the coefficient for log 1= 1+, 2 is equal to Pr(A\;Y = 1|A_; ;), and this is still equal
HQ‘“ The same holds for the coefficient of log ‘“ Therefore . holds for all A;.

to

Next, we evaluate —E {10g 1+“‘} and —E {log = ] where expectation is over A" and 7. We apply a second-order

Taylor approximation of f(z) = log lljff_ at © = a;:
1 + ’dz 1 + di 1 + a; 1 ~ _ 1 ~ _\2
1 ~ : i — i) — 55 (@ — @ 1/n).
0g1+ai Ogl—&—ai 1+a; 1—|—ai(a a;) 2(1—|—ai)2(a a;)” +o(1/n)
Taking the expectation on both sides, we get
1+a; 1+a;  Enxrlai]—a 1 .
B |1 ~-(1 ’ - En,r [(@ - @)% ) + o1
N [ogl_’_%} Ogl—i—ai 1+a; 2(1 + a,)? N (@ —ai)*] ) +o(1/n)
— G Ey - [ai - Ei] 1 ~ _
—1 (1 ’) ’ En . [(d@; — a;)? 1/n),
s\ F 1+az N 1+a, 2(1+a;)2 v [(@ —ai)*] + o(1/n)

where we have used Lemma [

Similarly, we apply a second-order Taylor approximation of f(x) =

1 1-a ~1 1—&i+1—ai -1 (N 7) 1 ~
Oglfaiwoglfai 17(_11‘ 17(11' i @i

Taking the expectation of both sides,

1—a; —a; E_/\/T[di—ai] 1 _ 5
- 2 — 7. 1
E[loglaz} (logl—az—i_ 1—a; 2(1761)21}3/\[’7 [(al a;) })"’0( /n)
—a En - [@; — a;] 1 .
= log (1 o a; ) T a Taia e [(@ —ai)?] + o(1/n).

Substituting these expressions into (42]), we get our desired equation.
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Lemma 4. The remainder of the Taylor approximation done in Lemma @ is o(1/n) for estimation done on n
samples in both the labeled and unlabeled cases.

1+a;

Proof. The remainder for —E . [1og } is bounded by WE/\[J [(@ —@;)%], and the remainder for

—En r {log 1_22] is bounded by WENJ [(Ezi — 61)3].

For the labeled data case, it is easy to check that Exr [(@; — @;)®] ~ O(1/n? ). Therefore, we focus on analyzing

the unlabeled data case’s estimator by bounding Exs [|di —a;]? | A, )\k] independent of choice of j and k. For
case of notation, define X = \;A; and Y = A\, such that XY = A;Ax, and let

e _ [BXER] o [BOGE]

a =

Note a € [—1,1], so clip & € [~1,1]. Because X € {—1,1} and E[X] is an i.i.d. sum of n = ny samples from X,
we can apply Hoeffding’s inequality to get:

Pr (|]E[X} _E[X]| > e> < 2exp <i”2;2> = 2exp (f) . (44)

The same is true for E[Y] and E[XY]. Thus, by union bound,

Pr (\E[X] —E[X]| > e VIE[Y] - E[Y]| > eV [E[XY] - E[XY]| > e) < 6exp (-”262) : (45)
Refer to the event (| [X] — E[X]| > eV |E[Y] — E[Y]| > e V [E[XY] - E[XY]| > e) as B. If =B and e <
+ min(E[X],E[Y],E[XY]) < 1, then
E[X] - E[X]| <e, |E[Y]-E[Y]|<e |E[XY]-E[XY] <e (46)
By the mean value theorem with f(z) = \/z, there exists a u between I”E[[AE)[()](]E}[}]/] d EI[E)[()]{E)[/}]/] such that
R | 1 (EXE[Y] E[X]E[Y]
6=l = 2\/6< EXY]  E[XY] >| ()
Note that
[ EX]E[Y] E[X]E[Y] _((EX] - (E[Y] —¢) EX]E[Y]
= mm( EXY] = E[XY] ) - mm( E[XY]+e  EXY] ) ()
> min (E[X]/2)(E[Y]/2) E[X]E[Y]) > min <1E[X]E[Y] E[X]E[Y}> > EX]E[Y]
( 1+e T E[XY] 8 ' E[XY] 8
Thus,
i — af V2 E[X]E[Y] E[X]E[Y] (49)
~ VEXE[Y]| R[XY] E[XY]
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For the term on the right inside the absolute value:

(E[X] - (ElY] —¢) _ EXEY] _ (EX]+¢)EY]+e)

EXY]+e = RE[XY] = E[XY]— ¢ (50)
(E[X] - )(EY] —¢) _EXJE[Y] _ EX]E[Y] E[XE[Y] _ (E[X]+¢)(E[]+¢) E[X]E[Y]
E[XY]+e EXY] ~— E[XY] E[XY] — E[XY]—¢€ E[XY]
E[X]E[Y] _E[X]E[Y] x ( (EX] - oE[]-¢) EX]E[Y]
E[XY] E[XY] E[XY]+e EXY] |’
’ EX]+eEN]+¢) EXIE[Y] ’ )
E[XY] —¢ E[XY] '
Examining the left term in the max,
’(]E[X] —)EN]—¢ E[X]E[Y]‘ _ ‘(E[X] — ) (E[Y] - OE[XY] - EX|E[Y](E[XY] + €) (51)
E[XY]+e E[XY] EXY](E[XY] +¢€)
_ | —eEXEY] + EX]E[XY] + E[Y]E[XY] — 6E[XY])‘
EXY(E[XY] +€)
EXIE[Y] +EX]|E[XY]+E[Y]E[XY]
=€ E[XY]2 ‘
=eC1 >0
Examining the right term in the max,
(EX]+6)(E[Y]+¢) EXE[Y] ‘ _ ‘ (EX]+e)(E[Y]+ ¢ E[XY] — E[X]E[Y|(E[XY] — ¢) (52)
E[XY]—e E[XY] E[XY](E[XY] —¢)
_ e(EXIEY]+EXJEXY]+E[Y]E[XY] + E[XY]) ‘ (53)
E[XY](E[XY] —¢)
< EX|EY] +EXIEXY]+E[Y|EXY] +E[XY] 54
= E[XYP)2 |
=eCy >0 (55)

[X]JE[Y] _ E[X]E[Y]

Combining the max argument bounds, we have that ) ‘ < emax(Cq, Cy) < eCy. Therefore,

R[XY] E[XY]
2
la —al < e& =eCs (56)
E[X]E[X]

where Cj5 is a positive function of E[X], E[Y], and E[XY]. To recap, this is satisfied if =B and € is small. Let
€ = n~3/% thus for large enough n, € is smaller than any constant. Recall, Pr(B) < 6exp(—ne?/2). With this
definition of €, Pr(B) < 6 exp(—n'/1/2).

Now, we are finally ready to evaluate the limit:

nh—>Holo nE[la — al’] = lim n (E[|a — a*|B) Pr(B) + E[|a — a|*|~B]P(=B)) (57)
< nhHH;On (C§’63 1+2% 6exp(— 1/4/2)> (58)
=C3 Jim n(n=3/8)3 +48nh_>ngonexp(—n1/4/2) (59)
=C3 nth;On /8 448 mlgnOo m* exp(—m/2) =0 (60)

Trivially, lim,_, « nE[|a — a|?] > 0. Thus, lim,, . nE[|a — a|?] = 0. O
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Lemma 5. (Quantifying per-edge misspecification.) If (i,7) € E\, then

ei; = iy — Aid, — Ajal — AA, (61)
where

Ai = o (exp(0) — exp(—05))(exp(20;) —exp(-20;) (62)

8y = S (ep(0) — expl(—0,))(exp(200) — exp(-26.) (63)

AVIES 2”2 r (exp(6;;) — exp(—0;;))(exp(26;) + exp(—26;) + exp(260;) + exp(—26;)) (64)

a; = 3 exp(0;)(exp(8;) + exp(—0;)) — 1 (65)

i

ay = 1 exp(0;)(exp(6;) + exp(—¥6;)) — 1 (66)

Zij = zj: exp(si0; + s;0; + 5;5;0:5) (67)

zj; = z:] exp(sifi + s;0;) (68)

Using these values, it is also possible to verify that ;; € (0,1) if 6;,6;,6;; > 0.

Proof. We define a new distribution, which we denote by Pr’ and E/, that does not have an edge between \; and
/\ji

Pr'(Y,A) = 7 exp (ey +3 0y + Y le/\k/\l). (69)
i=1 (kD) A(i,3)

This distribution uses all the same canonical parameters as except 6;;A;\j. We know that for this distri-
bution, E' [\ A;] = E' [\, Y]E' [A;Y]. Our approach to compute ¢;; = E [A\A;] —E [NY]E [A;Y] is to bound the
differences between E and E'.

First, we evaluate E [\, Y]—E [A\;Y]. We write E [\;Y]as2Pr(\Y =1)—-1= %Pr()\i =1,Y=1)-1land E'[\;Y]
as %Pr’(/\i =1,Y =1) -1 by Lemma [2), where p = Pr(Y = 1). Then, letting s_; represent all combinations of
labels on all X besides \;,

.y 1
A =ENY]-E[\Y] = Zexp (9y FO0+Y Okl + Y lesksl) (e’{p(gﬂlf) - Z) (70)

k#i (k1) #(i,5)

Next, note that p = 2 and p = 27%, where zy = Y exp(fy + > py Orsi + Z(k?l)#i’j) Orisks; + 0;5s:5;) and
2y = > exp(fy + Z?:l 0;s; + Z(kvl#(ij) Orisks;) (we can check these expressions for p are equal, since the
edgewise potentials are canceled out). A; is now

2exp(f Zexp <9y + Zeklk + Z 9k18k81> (expwwlj) — 1/> (71)

kot (kD)% (i5) Y %y

0;; 1
=2exp(0; + 0;) Z exp <9Y + Z Orly + Z 9k15k5l) (eXp() - ,)

z
P ki, (k1) 2(i,5) o Y

+2exp(0; — 0;) Z exp <0y + Z Orli + Z 9k15k5l> <exp() - 1/>

= Wi (kD) 2(0.0) > ¥
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expiy i) i can be written as Tylz’y Yoo exp(fy + >, sy + Z(k7l)¢(i7j) Oris).s;) (exp(£6;;) — exp(ﬁwslsj))

Then for positive 6;;, this becomes zlegV (exp(0i — 0;) + exp(—6; + 0;)) > exp(Oy + D54 ; 0ks), +
(k205 Omsisi) (exp(8i;) — exp(—b;5)), and for negative —0;;, this becomes zY1zg, (exp(8; + 0;) + exp(—6; —
07)) -5 exp(Oy + 3 gz OnSk + 2 (k1) 2(i.5) Ori8551) (exp(—0i5) — exp(fy;)). Then, our expression becomes

2, ( Z exp <9y + ) 0+ > 9kl$k81>> (exp(i;) — exp(—0;5)) (72)

Y2y ki, (k1) #(irj)
x (exp(6; + 0;)(exp(f; — 0;) + exp(—0; + 0;)) — exp(0; — 0;)(exp(b; + 0;) + exp(—0; — 0;)))

The second line simplifies exp(26;) + exp(260;) — exp(26;) — exp(—26,) = exp(26;) — exp(—26;). Lastly, note
that zy = Zs,i,j exp (GY + Zk;éi,j Orls + Z(,ﬁl#(i,j) Hklsksl) DN 5 exp(s;f; + s;0; + sis;0;5), and 24 =
ZLM exp (0y + Zkﬁd Ol + Z(k,l)¢(i7j) F)klsksl) ~Zsm exp(s;0; + s;0;). Canceling out the summations over
the other sources, we have our desired expression for A;. We can do the same to get our result for A;.

Next, we compute A;; = E [\ ) ] —E'[\i\;], which is equal to 2(Pr(\; = 1, \; = 1)—=Pr'(\; = 1, \; = 1)4+Pr(\; =
—1L,A=-1)—=Pr'(\; = -1, = —1)):

PI‘()\Z = 17>\j = ].) - PI‘I(>\1' = 1, )\j = 1) (73)
0; 1
= Z exp (GYY +0;Y +6;Y + Z OrskY + Z szSkSl) (expéj) - Z’) )
Yis_ i, k#i,j (k,1)E(3,7)
PI‘()\l = 71,)\3' = 71) - Pr’()\i = 717>‘j = 71) (74)
0; 1
= 3 e (Y -0y — Y+ 3 GV + Y Ousisn) (expéa) _ Z/) ,
Y545 k#i,j (k,1)€(4,5)

We can write M 2 as 715 Dy €Xp (OyY + 300 OpspY + > k)G ) Orisksi) (exp(8i;) — exp(b;5sis;)),
which is equal to ﬁ(exp(t%]) —exp(—0;;))(exp(0; — 0;) + exp(—0; + 0;)) ZY’LM exp (0yY + Dokpiy OuskY +
E(k’l#(i’j) Hklsksl). Therefore, A;; is equal to two times plus :

0;; 1
A =2 (exp(J) _ ) Z exp (HyY + Z 0r.sLY + Z Hklsksl)(exp(OiY +6,Y) +exp(—0;Y — GjY))

Z A ~ -
Y,s_i; k#1,j (k,D)€(i,g)
(75)
2
:Z/Z(exp(eij) — exp(—b;;))(exp(0; — 0;) + exp(—b6; + 0;))(exp(0; + 0;) + exp(—0; — 6;))
2
X ( Z exp (GyY + Z OrsiY + Z lesksl))
Yis_i, ki, (k,1)E(4,5)
2
=7 (exp(0ij) — exp(—0i;)) (exp(20;) + exp(—26;) + exp(26;) + exp(~26;))
2
X ( Z exp (9yY—|- Z OrsiY + Z 9k18k81)> .
Yis_i, k#i,j (k,1)E(@,5)

Note that Z = Zyb exp(t?yY + Zk;ﬁ” 0rsLY + Z(k i) OriSKS1) Zs 5 exp(s;0; + s;0; + s;5;0;;) and

=D vs, exp(ﬂyY + Dokotij OkSiY + X e Orisest) Do, . exp(s;0; + sJG ). Plugging this back in and
cancehng out summations, we obtain our desired result for A;;.

We now can compute €;;:

gij = E [N —ENY]E[NY] =E N+ Ay — EINY]T+A)E [NY]+A)) (76)
= Aij — Ai]E/ [AJY} — Aj]E/ [>\1Y] — AiAj.
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Lastly, we need to compute E’ [A\;Y] and E’ [\;Y]:

E'ANY]=2(Pr(\=1Y=1)+Pr'(\;=-1,Y =-1)) -1 (77)
= exp(0:) (exp(6;) + exp(~6))
X Z exp ( Z lesksl) (exp (9}/ + Z Gksk) + exp ( — Qy — Z Gksk)> —1
S—i (k1) #(i.5) k#i,j ki,

7' can be written as Zsi)sj exp(s;0; +s;6;) Zs_,;,_,» exp (Z(k,l)g(i,j) 9k18ksz) (exp(9y+zk#1j Orsk) +exp(—0Oy —
D kot kak)), Therefore E’ [\;Y] is equal to

2exp(6;)(exp(6;) + exp(—b,))

E' [\Y
[AY] = ZSi,S]‘ exp(s;0; + s;0;)

.y (78)

The key takeaways from this lemma are:

1. Impact of misspecification in our computations exhibits some form of Lipschitzness, i.e. it is bounded in
terms of the canonical parameters of our distribution.

2. One misspecified edge only contributes error defined in terms of the canonical parameters on the two vertices
and the unmodeled edge between them.

3. Under our assumptions, €;; > 0.

O

Lemma 6. (Estimation error of accuracies via triplet method.) In the case of unlabeled data, accuracies esti-
mated using the triplet method in satisfy

Ex [ ] < 1- b?mn 1 2
T A — >~ )
o 2 \% nU m1n bfmn b12mn
3 — b2 1 2
~ = \2 min
En - [(ai —a;) ] < yrv . b2 (b4 + =8 ) )

Proof. First, note that Epr; [a; —a;] = Enx» [ET {&Z(-j’k)} — Ez} =En - [ (G:k) 61}. Therefore, is it sufficient

to produce an upper bound on Exs [ (G:k) ai|Aj, A | independent of j, k. For ease of notation, we refer to

ait+a; | — 2bmin

M;; = E[\:);]. Then, by definition of our estimator in @,

this expectation as E [a; — a;]. Then, E [a; —a;] = E [@27@2} < 5—E [|a? — a?|]. Denote M;; = E [\;\;] and

- 1 M My | - M\ - Mg |
Eai—aig E A] M — M; —|—7j]\4Z _Mi + Ml—Mz 79
[ } Qbmin [MjkMk| jk Jk‘ Mk| k k| M]k“ J .7| ( )
1
= 2bminIE |:b12nm ‘6jk| A bmin ‘(Sm‘ + mm |51j|:|

where d;; = Mij — M;; is the estimation error for the pairwise expectations. Using Cauchy-Schwarz inequality,

1 1 2
a: — a1l < 2 2
E (5~ ] < 55— it [1/5 +62,+ 02,

min

b,lnm b41 b22 \/Var( )*Var( )*Var( J’“)

min min
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1 0 1 2 3 4 5 6 7 8 9
Accuracy | .6893 .6072 .5954 .6603 .6939 .6346 .7462 .6870 .6462 .6284

Table 3: The source accuracies used for synthetic experiments. They were each drawn uniformly from [.55,.75].

M2 12
Formally, M;; = - 577 ALAL. Therefore, Var (M) = - S0 E [(A)?(X)?] — M7 = o < 1l ang
U
our bound becomes
1-— b2 1 2
E a; — ~1 min .
[a ¢ ] o 2 V nU mln blz’ll’lln bl'zllln)

Next, to bound Er ; [(@; — @;)?], it is sufficient to upper bound E [( ; a( )2 | Ajs )\k} independent of choice

of j and k. Refer to this expectation as E [(a@; — @;)?]. Then, E [(a; — @;)*] = E [((C; J_FZ)) } < —E [(@ —a?)?].
Similar to ,

min

~ N ~ 2
_ 1 NI My, |- My - My, -
E [(a@ — a)?] < E || Z2975k N — M| + 4 Ny — M, N — M, 80
[(a a’) } — 4bmin2 <Mjijk| jk Jkl + M]k| k k| + M]k“ J ]|> ( )
1 1 1 1 2
<—E S+ —— (G| + ——164;
N 4b12n1n (b?n1n| Jk|+bmin| k|+bmin| J|> ]

< (bj ot )(Var( )+ Var (1) + Var (11,0

min min min
<3.1—b?mn(1+2)
N 4nU brznln bﬁlln bI21111’1

F Additional Experimental Details

We provide additional details on experiments. Our code can be found at https://github.com/bencw99/
comparing-labeled-and-unlabeled-data.

F.1 Synthetic Experiments

In this section, we first provide our protocol for generating synthetic data, which is fixed across our synthetic
experiments. We then discuss the details of the experiments performed for each of the plots in and

Generating synthetic data We use the same synthetic data distributions for all of our synthetic experiments.
We set the number of sources to m = 10, and draw accuracies uniformly from [.55,.75], both of which would be
typical in relevant applications (ex., in weak supervision). We report these accuracies in For experiments
with dependencies, when d = 1 we add the edge (0,1), when d = 2 we add a second edge (2, 3) and so on. Every
dependency is fixed at g;; = E[\A;] — E[N]E[N;] = 0.1.

Excess generalization error We measure the expected excess generalization error for several
different estimators and values of n. For each value of n, we take 1000 samples and measure the generalization
error of an estimator trained on this sample. We average the results over these 1000 samples.

Computing the data value ratio We compute the data value ratio for unlabeled models with
mean and median aggregation for different numbers of dependencies d. The definition of the data value ratio
requires finding the smallest n;, with which learning from ny, labeled points achieves lower expected generalization
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Figure 7: Excess generalization error and associated combination weight o for an optimally weighted combination of
labeled and unlabeled estimators, and a combination weighted according to |Green et al.| (2005) across the well-specified
(left), misspecified (center), and corrected (right) settings. The number of unlabeled points is fixed at ny = 1000.

error than learning from ny unlabeled points. To measure the expected generalization error for some n, we
average over 1000 samples, which would be intractable to do for every ny. Therefore, we measure the expected
generalization error for every ny between 10 and 100, every nj, divisible by 2 between 100 and 1000 and every
ny, divisible by 10 between 1000 and 5000. Besides this shortcut, we compute the data value ratio according to
its definition.

Combining labeled and unlabeled data We compare the practical approach of weighting the
unlabeled and labeled estimators according to |Green et al. (2005, formally defined in section with the
optimal weight. We let the optimal weight vary with ny and np, but not with the specific data points drawn.
In other words, we compute the optimal weight to be that which minimizes the average generalization error over
1000 trials for each my. On the other hand, the weight from |Green et al| (2005) is a function of the learned
accuracies (and thus of the specific data points drawn). In|[Figure 7| we report the optimal « for each ny, (ny is
fixed at 1000) as well as the average weight from |Green et al. (2005) over 1000 trials.

F.2 Real-World Case Study: Weak Supervision

We discuss the weak supervision dataset we create and clarify the details of our experimental protocol for the
real-world case study.

Creating a weak supervision dataset In weak supervision, soft labels from latent variable estimation are
used as an alternative to a hand-labeled dataset. The sources used are usually heuristics which incorporate
domain-specific knowledge about a particular task and can be acquired relatively cheaply. For our real-world
case study, we choose the simple sentiment analysis task of classifying IMDB reviews as positive or negative.
Our sources are defined simply: for a collection of positive sentiment words, output “yes” if the word appears in
the review and “no” otherwise; for a collection of negative sentiment words, similarly output “no” if the word
appears and “yes” otherwise. The specific words used and their sentiments are reported in We select
these words because they are empirically predictive, appear relatively frequently in reviews and are intuitively
associated with positive/negative reviews.

[Figure 6| and [Table 1} Experiments with real data We measure excess generalization error, the data
value ratio and the performances of combined estimators for the real-world dataset. Our protocols for these
experiments mirror those we used for synthetic datasets, with two key differences: (1) for each trial, we sample
points uniformly from the training set of 40,000 points, since we cannot sample directly from the distribution
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‘Word

love like good great best excellent terrible worst bad better could would

Sentiment

+  + o+ + o+ + - - - - - -

Table 4: The words used as sources for the real-world weak supervision task of classifying IMDB reviews as positive or

negative.

and (2) we measure generalization error on the test set, since we cannot compute the expected generalization

error directly.
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