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A Glossary

The glossary is given in Table 2 below.

Symbol Used for

X An input vector X ∈ X .
Y A latent ground-truth label Y ∈ Y = {−1, 1}.
m Number of sources.
λj jth source output λj : X → Y; all m labels make up vector λ.

Ỹ Soft label in [−1, 1] output by the latent variable model.
nU Number of unlabeled samples.
nL Number of labeled samples.
θ Canonical parameters of the Ising model for Pr(Y,λ).
G Dependency graph G = (V,E) over sources and the latent ground-truth label.
Eλ Edges among sources in G.
d Number of dependencies among sources, d = |Eλ|.
ai True accuracy of the ith source E[λiY ].
ãUi Estimated accuracy of the ith source using unlabeled data via the triplet method.

ãLi Estimated accuracy of the ith source using labeled data, i.e. Ê [λiY ].
ãMi Estimated accuracy of the ith source using unlabeled data via the

triplet method and median aggregation.
N Random variable representing dataset used.
τ Algorithmic randomness for estimating accuracies via triplet method.

R,RU , RL, RM Generalization error R = E(Y,λ),N ,τ [l(Ỹ , Y )]. RU , RL, RM are for ãUi , ã
L
i , ã

M
i , respectively,

and l(·, ·) is the cross-entropy loss.
Re, ReU , R

e
L, R

e
M Excess generalization error Re = R−H(Y |λ).

BI Inference bias BI =
∑

(i,j)∈Eλ
I(λi;λj |Y ).

Best Parameter estimation error.
εij Extent of misspecification on a single pair of sources εij = E [λiλj ]− E [λiY ]E [λjY ].
εmin, εmax Smallest and largest εij for (i, j) ∈ Eλ.
ρnU Mean squared error for ãMi , ρnU = maxi E

[
(ãMi − ai)2

]
.

f(nU ) Minimum labeled points needed for lower generalization error than nU unlabeled points.
V (nU ) Data value ratio at nU unlabeled points.

Ṽ (nU ) Approximation of data value ratio using upper bounds at nU unlabeled points.
α Weight for unlabeled estimator to combine unlabeled and labeled estimators.
alin(α) Linear combination of unlabeled and labeled estimators using weight α.

Table 2: Glossary of variables and symbols used in this paper.
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Algorithm 1 Method-of-Moments Latent Variable Estimation (Fu et al., 2020)

Input: Empirical expectation estimates Ê [λiλj ]
for i = 1 to m do
A = ∅
for j, k ∈ {1, . . . ,m}\{i} do

ã
(j,k)
i ←

√
|Ê [λiλj ] · Ê [λiλk] /Ê [λjλk] |

A← A ∪ ã(j,k)
i

end for
ãi ← Aggregate(A)

end for
return ã, estimates of E [λiY ] for all λi

B Additional Algorithmic Details

We provide more details on our algorithm for latent variable estimation. The input is either a labeled dataset
(XL,YL) or unlabeled dataset XU with m sources λ. The output is an estimate of the distribution Pr(Y |λ(X)),
which we construct using the factorization in (1). For both data types, this requires plugging in the values of
Pr(Y = 1) and the empirical distribution of the sources, P̂r(λ = λ(X)).

The approach to estimating P̃r(λi = λi(X)|Y = 1) is the only part of the method that differs between the

labeled and unlabeled settings. For both, we can focus on estimating E [λiY ] since P̃r(λi = ±1|Y = 1) = 1±ãi
2

by Lemma 2. In the labeled setting, the expectation can be estimated directly, i.e. Ê [λiY ] = 1
nL

∑n
j=1 λi(xj)yj .

On the other hand, for unlabeled data we use the triplet method from Fu et al. (2020), described in Algorithm

1, to estimate E [λiY ]. This algorithm takes as input the pairwise rates of agreement between sources Ê [λiλj ]
for all i, j, and returns an estimate of each E [λiY ].

The Aggregate subroutine in Algorithm 1 distinguishes between the unlabeled case with and without cor-
rection. For unlabeled data, we theoretically analyze the approach where we choose ãi ∼ Unif(A); that is, we
randomly select two λj , λk to compute ãUi , which is similarly done in other method-of-moments approaches. An
alternate to this approach is to take the mean over all possible pairs λj , λk; note that this reduces the estimation
error compared to the population-level estimate by a factor of

(
m−1

2

)
, but does not mitigate bias from misspecifi-

cation. We use this approach in our synthetic and real-world experiments for the baseline unlabeled case without
correction. Lastly, having Aggregate(A) be the median of the set A is our proposed method of correcting for
misspecification.

C Additional Theoretical Results

In Section C.1, we discuss how our generalization error bounds, namely the standing O(d/m) bias for unlabeled
data, and our results for the corrected medians estimator can still apply to other method-of-moments estimators
that exploit conditionally independent views of hidden variables. Next, in Section C.2 we give more details about
the combined estimators and the generalization bounds from using them. Finally, in Section C.3 we present a
lower asymptotic bound on the generalization error for labeled versus unlabeled data and combining both.

C.1 Other Method-of-Moments Estimators

We present two other method-of-moments estimators and sketch out arguments for how using them (under
misspecification) results in the same scaling of generalization error, and for how the median approach is able to
help correct standing bias. We then provide an abstracted argument.

“Quadratic” Triplets This alternative latent variable model relies on class-conditional probability terms
instead of mean parameters (Fu et al., 2020), which assume some symmetries in the distribution (see Lemma 2).
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For the ith source, we can write the parameters to be estimated as

µi =

[
Pr(λi = 1|Y = 1) Pr(λi = 1|Y = −1)

Pr(λi = −1|Y = 1) Pr(λi = −1|Y = −1)

]
.

Let

Oij =

[
Pr(λi = 1, λj = 1) Pr(λi = 1, λj = −1)

Pr(λi = −1, λj = 1) Pr(λi = −1, λj = −1)

]
and P =

[
Pr(Y = 1) 0

0 Pr(Y = −1)

]
.

Then, we obtain that

Oij = µiPµ
>
j . (6)

The left-hand side is observable, and we can form triplets again to solve for each µi. Set α = P (λi = 1|Y = 1),

ci = P (λi=1)
P (Y=−1) and di = P (Y=1)

P (Y=−1) . The top row of µi is then [α ci − diα] with ci and di known. For a triplet

i, j, k, and the appropriate µ’s, using the α, β, γ notation above and corresponding ci, cj , ck and di, dj , dk terms,
we obtain the system (see Fu et al. (2020) for more details)

(1 + didj)αβ + cicj − cidjβ − cjdiα = Oij/Pr(Y = 1),

(1 + didk)αγ + cick − cidkγ − ckdiα = Oik/Pr(Y = 1),

(1 + djdk)βγ + cjck − cjdkγ − ckdjβ = Ojk/Pr(Y = 1).

To solve, α and γ are expressed with β for the first and third equations and this is plugged into the second—
yielding a quadratic equation to be solved.

This approach incurs standing bias under misspecification. Quadratic triplets rely on conditional independence
by assuming that Pr(λi = 1, λj = 1) and Pr(λi = 1|Y = 1) Pr(λj = 1|Y = 1) Pr(Y = 1) + Pr(λi = 1|Y =
−1) Pr(λj = 1|Y = −1) Pr(Y = −1) are equal. Suppose, however, that (i, j) ∈ Eλ. Then, µiPµ

>
j is no longer

equal to Oij , but Oij + δij , where δij = Pr(Y = 1)[Pr(λi|Y = 1) Pr(λj |Y = 1) − Pr(λi, λj |Y = 1)] + Pr(Y =
−1)[Pr(λi|Y = −1) Pr(λj |Y = −1)−Pr(λi, λj |Y = −1)]. This δij can be written exactly in terms of the canonical
parameters θ and results in an inconsistent estimator of Pr(λi|Y ). We note that the probability of selecting a
bad triplet that leads to this is the same for this method and our main triplet method, so the standing bias still
scales O(dδm ).

This approach can also be corrected using medians and the same conditions from Proposition 1, which we prove
in Section D.4, hold for the estimates to be consistent.

Method-of-moments for topic exchange Anandkumar et al. (2014) describes tensor method-of-moments
estimators for a variety of applications, including topic models. In the topic model case, h is the topic latent
variable, x1, . . . , x` are the words in the document, all assumed to be conditionally independent given h and
drawn from an unknown conditional probability distribution µh parametrized by the latent topic variable. Here,
xt = ei, the standard basis vector if the tth word is i. Anandkumar et al. (2014) uses the fact that

E[x1 ⊗ x2 ⊗ x3] =

k∑
i=1

wiµi ⊗ µi ⊗ µi,

where wi is the probability of h being topic i, to perform a tensor decomposition of the observable E[x1⊗x2⊗x3]
and learn µh. Note the similarity to our setting, where Y is used in place of h and where there are two (i.e., a
matrix) instead of three views (giving a tensor). Conditional independence (of words given the topic) is required

to for this expression to hold. Therefore, when conditional independence is violated,
∑k
i=1 wiµi⊗µi⊗µi is equal

to E [x1 ⊗ x2 ⊗ x3] plus some additional perturbation that is a function of the probability distribution. This error
is propagated into the estimate of µh, assuming Lipschitzness of this estimator. Furthermore, assuming random
triples are selected to learn the accuracy of each word, using this approach to estimate accuracy parameters will
again yield a standing bias.

Furthermore, the medians approach can again correct for this standing bias—there are
(
m−1

2

)
−m− d− 3 good

triplets out of
(
m−1

2

)
, so we require the same conditions to yield consistent estimators as those for the quadratic

triplets case.
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Abstraction Consider in general some observable quantities o1, . . . , ov, some unobservable quantities u1, . . . , uv
that depend on the value of some latent variable h, and a relationship that holds when some set of dependencies
Ω is taken into account,

f(o1, . . . , ov) = gΩ(u1, . . . , uv),

Next, we call s(f(o1, . . . , ov)) an estimator that produces estimates of u1, . . . , uv.

Our approach is simply to account for errors due to accessing an incorrect Ω′, where |Ω \ Ω′| = d. Then,

f(o1, . . . , ov) = gΩ′(u1, . . . , uv) + d×∆(u1, . . . , uv),

where ∆ is some error term. Given this setup, we then propagate the error term ∆ in the estimator s, computing
s(f(o1, . . . , ov))− s(f(o1, . . . , ov)− d∆(u1, . . . , uv). This can be done either via perturbation analysis or Taylor
approximation or other methods—the only requirement we place is Lipschitzness on the estimator s. Then, by
randomly selecting subsets of (o1, . . . , ov) to estimate u1, . . . , uv, the probability of picking a subset with error
scales in d, showing that there exists a standing bias that is a function of the number of unmodeled dependencies.
Moreover, there are some subsets of (o1, . . . , ov) that yield consistent estimators s; if this quantity is greater than
half of all the subsets, then a medians approach can be beneficial when there is enough data.

C.2 Combined estimator analysis

The general form of the combined estimator we consider is alin(α) = αãU + (1−α)ãL for some weight α ∈ [0, 1].
The James-Stein type estimator from Green et al. (2005), which we evaluate empirically, uses the following:

ãG := ãU +

(
1− r

‖ãL − ãU‖Σ−1

)
+

(ãL − ãU ), (7)

where Σ = Cov
[
ãL
]

and r ∈ [0, 2(m− 2)]. Green et al. (2005) show that this estimator dominates ãL when the
unbiased estimator is Gaussian and its covariance is known, but since we can only estimate the covariance matrix,

we replace Σ with an empirical estimate Σ̂ in practice. This estimator is equivalent to alin
(

min
{

r
‖ãL−ãU‖Σ̂−1

, 1
})

.

We thus focus on analyzing the performance of the general combined estimator alin(α).

The change in estimator only impacts the generalization bound via the parameter estimation error,∑m
i=1 EN ,τ,Y

[
DKL(Prλi|Y ||P̃rλi|Y )

]
. We simplify this using Lemma 3, doing a Taylor approximation on a com-

bined asymptotic estimate āCi := αāi + (1− α)ai rather than āi. This gives us

m∑
i=1

EN ,τ,Y
[
DKL(Prλi|Y ||P̃rλi|Y )

]
=

m∑
i=1

1 + ai
2

log
(

1 +
α(ai − āi)

1 + āCi

)
+

1− ai
2

log
(

1 +
α(āi − ai)

1− āCi

)
(8)

+

m∑
i=1

ai − āi
1− (āCi )2

α2E
[
āi − ãUi

]
+

m∑
i=1

1

2

( 1

1− (āCi )2
+

2α(āi − ai)
(1− (āCi )2)2

)(
α2E

[
(ãUi − āi)2

]
+ (1− α)2E

[
(ãLi − ai)2

] )
We present bounds for the three settings discussed in the paper.

Well-specified setting In the well-specified setting, the unlabeled data accuracy estimator is consistent, so
āi = ai, and therefore

m∑
i=1

EN ,τ,Y
[
DKL(Prλi|Y ||P̃rλi|Y )

]
=

m∑
i=1

1

2

( 1

1− a2
i

)(
α2E

[
(ãUi − āi)2

]
+ (1− α)2E

[
(ãLi − ai)2

] )
(9)

Using the results of the proof of Theorem 2 and the bound on E
[
(ãUi − āi)2

]
in Lemma 6, we get that this is at

most α2 c4m
nU

+ (1− α)2 m
2nL

.

Misspecified Setting The constant terms for the bound on accuracy parameter estimation error will change
due to āCi in the denominator rather than āi, but the derivation follows our proof for Theorem 3. Therefore, for
some c′,

m∑
i=1

EN ,τ,Y
[
DKL(Prλi|Y ||P̃rλi|Y )

]
≤εmax

(c′1αd
m

+
c′2α

2

√
nU

+
c′3α

3d

mnU
+
α(1− α)2c′5d

mnL

)
+
c′4α

2m

nU
+

(1− α)2m

2nL
.
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Corrected Setting Here we consider the combined estimator αãM + (1−α)ãL. Under certain conditions, we
know that ãM asymptotically converges to a. Therefore, the accuracy parameter estimation error is

m∑
i=1

EN ,τ,Y
[
DKL(Prλi|Y ||P̃rλi|Y )

]
=

m∑
i=1

1

2

( 1

1− a2
i

)(
α2E

[
(ãMi − āi)2

]
+ (1− α)2E

[
(ãLi − ai)2

] )
(10)

E
[
(ãMi − āi)2

]
is just the variance of the median estimator. Therefore, this summation is bounded by α2cρmρnU+

(1− α)2 m
2nL

under the conditions in Proposition 1.

C.3 Lower bounds on generalization error

While Theorems 2 and 3 provide upper bounds on the excess generalization error, it is also important to consider
lower bounds—is the standing bias from misspecification in the unlabeled approach inevitable? We analyze the
asymptotic excess risk in the case of labeled data, unlabeled data, and both, and discuss how a lower bound
approach to the data value ratio and analyzing combined estimators is possible.

Unlabeled data lower bound Looking at the decomposition in Theorem 1, EN
[
DKL(Pr(λ)||P̂r(λ))

]
ap-

proaches 0 asymptotically and the inference bias
∑

(i,j)∈Eλ I(λi;λj |Y ) is independent of the amount of data. We

thus seek to asymptotically lower bound
∑m
i=1 EN ,τ,Y

[
DKL(Prλi|Y ||P̃rλi|Y )

]
. Note that in the labeled data case

and when using the medians estimator ãM with unlabeled data, parameter estimation error approaches 0 as n
grows large since the estimated accuracy parameters are consistent. In the unlabeled data case, we show that
standing bias persists.

Theorem 4. Suppose that there are |Eλ| = d unmodeled dependencies. When we use the latent variable model
described in section 3, the lower bound of the excess generalization error is asymptotically bounded by

lim
nU→∞

Reu ≥
(m− 2d)d2ε2

minb
4
min

2(m− 1)2(m− 2)2
+ BI . (11)

When d is o(m), the asymptotic parameter estimation error is Ω
(
d2ε2min

m3

)
.

Proof. We compute an asymptotic lower bound for
∑m
i=1 EN ,τ,Y

[
DKL(Prλi|Y ||P̃rλi|Y )

]
. Applying Lemma 3, we

see that

lim
nU→∞

m∑
i=1

EN ,τ,Y
[
DKL(Prλi|Y ||P̃rλi|Y )

]
=

m∑
i=1

1 + ai
2

log

(
1 +

ai − āi
1 + āi

)
+

1− ai
2

log

(
1 +

āi − ai
1− āi

)
. (12)

We focus on the lower bound of any one element of this sum. For ease of notation, let a := ai and x = ai − āi.
Then this expression for an arbitrary i becomes

1 + ai
2

log

(
1 +

ai − āi
1 + āi

)
+

1− ai
2

log

(
1 +

āi − ai
1− āi

)
= −1 + a

2
log

(
1− x

1 + a

)
− 1− a

2
log

(
1 +

x

1− a

)
.

(13)

Take the negative of this expression and define it as a function f(x) to upper bound:

f(x) =
1 + a

2
log

(
1− x

1 + a

)
+

1− a
2

log

(
1 +

x

1− a

)
. (14)

We show that f(x) ≤ − 1
2x

2. Note that for x = 0, f(x) = 0 and 1
2x

2 = 0. Then, we must show that for x ≥ 0,
f ′(x) ≤ −x and for x < 0, f ′(x) > −x. Taking the derivative of f(x) gives us f ′(x) = −x

1−(a−x)2 , and it is clear

that the previous inequalities are satisfied.
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Using this fact in (12), we have that limnU→∞
∑m
i=1 EN ,τ,Y

[
DKL(Prλi|Y ||P̃rλi|Y )

]
=
∑m
i=1

1
2 (ai − āi)

2. For

i ∈ Eλ, note that by Lemma 1 it is possible to construct a graphical model such that ai − āi = 0. For i /∈ Eλ,

we know that |ai − āi| is at least
dεminb

2
min

(m−1)(m−2) . Therefore,

1

2

m∑
i=1

(ai − āi)2 ≥ 1

2

∑
i/∈Eλ

(ai − āi)2 ≥ (m− 2d)d2ε2
minb

4
min

2(m− 1)2(m− 2)2
. (15)

Combined estimator lower bound Next, we analyze the excess risk when we use the combined estimator
alin(α). Note that when we are in the well-specified and corrected settings, the asymptotic excess risk is 0.
Therefore, we only consider the misspecified setting.

Corollary 1. Denote Relin(α) as the excess risk of our latent variable model when we use accuracy parameter
alin(α). The lower bound of the excess generalization error when we combine labeled and unlabeled data (without
correction) using weight α is asymptotically bounded by

lim
nU ,nL→∞

Relin(α) ≥ α2(m− 2d)d2ε2
minb

4
min

2(m− 1)2(m− 2)2
+ BI . (16)

Proof. Based on (8), the asymptotic parameter estimation error is

lim
nU ,nL→∞

m∑
i=1

EN ,τ,Y
[
DKL(Prλi|Y ||P̃rλi|Y )

]
=

m∑
i=1

1 + ai
2

log
(

1 +
α(ai − āi)

1 + āCi

)
+

1− ai
2

log
(

1 +
α(āi − ai)

1− āCi

)
,

(17)

where āCi = αāi + (1− α)ai. If we define a := ai and x := α(ai − āi), then the ith element of this sum has the
form in (13) and is thus at least 1

2x
2. Therefore, using results from Lemma 1 the parameter estimation error is

lim
nU ,nL→∞

m∑
i=1

EN ,τ,Y
[
DKL(Prλi|Y ||P̃rλi|Y )

]
≥

m∑
i=1

α2

2
(ai − āi)2 ≥ α2(m− 2d)d2ε2

minb
4
min

2(m− 1)2(m− 2)2
. (18)

Applications to data value ratio and combined estimator analysis Finally, it is possible to define the
data value ratio and analyze combined estimators based on lower bounds on the excess risk of labeled vs unlabeled
data. To do this, we would use the expressions from Theorem 4 and Corollary 1 with standard finite-sample lower
bounds on the estimates from observable data. For bounding the variance of accuracy parameters estimated via
the triplet method on unlabeled data, we can use the lower bound from Theorem 2 of Fu et al. (2020).

D Proofs

First, we formally state our assumptions on the graphical model that are needed for our results.

Assumption 1. Suppose that the distribution of Pr(Y,λ) takes on the form

Pr(Y,λ; θ) =
1

Z
exp

(
θY +

m∑
i=1

θiλiY +
∑

(i,j)∈Eλ

θijλiλj

)
, (19)

where Z is the cumulant function, and the set of all canonical parameters θ are positive. This assumption also
means that E [λiλj ] ,E [λiY ] > 0 for all i and j. Define amin = mini ai as the minimum true accuracy. Define

bmin = mini,j{E [λiλj ] , Ê [λiλj ]}. Lastly, define āmax = maxi āi = maxi,j,k Eτ
[√

E[λiλj ]E[λiλk]
E[λjλk]

]
.
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D.1 Proof of Theorem 1

Our goal is to evaluate E(Y,λ),N ,τ

[
l(Ỹ , Y )

]
, where N is the randomness over a sample of n points (either nU or

nL). This expected cross entropy loss can be written as

E(Y,λ),N ,τ

[
l(Ỹ , Y )

]
= −E(Y,λ),N ,τ

[
log

P̃r(Y ′ = Y |λ′ = λ)

Pr(Y ′ = Y |λ′ = λ)

]
+H(Y |λ), (20)

where Y ′, Y and λ′,λ are independent copies, and the conditional entropy H(Y |λ) is by definition

H(Y |λ) = Eλ [−Pr(Y = 1|λ′ = λ) log Pr(Y = 1|λ′ = λ)− Pr(Y = −1|λ′ = λ) log Pr(Y = 1|λ′ = λ)] . (21)

Next, we evaluate log P̃r(Y ′=Y |λ′=λ)
Pr(Y=1|λ′=λ) . Define Pr to be the conditionally independent label model parametrized

by the true accuracies a = E [λY ] in the asymptotic regime; similar to P̃r’s definition in (1),

Pr(Y ′ = Y |λ = λ(X)) =
Pr(λ = λ(X)|Y ′ = Y ) Pr(Y ′ = Y )

Pr(λ = λ(X))
=

∏m
i=1 Pr(λi = λi(X)|Y ′ = Y ) Pr(Y ′ = Y )

Pr(λ = λ(X))
. (22)

Then,

log
P̃r(Y ′ = Y |λ′ = λ)

Pr(Y ′ = Y |λ′ = λ)
= log

P̃r(Y ′ = Y |λ′ = λ)

Pr(Y ′ = Y |λ′ = λ)
+ log

Pr(Y ′ = Y |λ′ = λ)

Pr(Y ′ = Y |λ′ = λ)

=

m∑
i=1

log
P̃r(λ′i = λi|Y ′ = Y )

Pr(λ′i = λi|Y ′ = Y )
+ log

Pr(λ′ = λ)

P̂r(λ′ = λ)
+ log

Pr(λ′ = λ|Y ′ = Y )

Pr(λ′ = λ|Y ′ = Y )
.

We have used the fact that the class balance Pr(Y ′ = Y ) is the same value across the true distribution, P̃r, and
Pr. Plugging back into (20), we get

−
m∑
i=1

E(Y,λ),N ,τ

[
log

P̃r(λ′i = λi|Y ′ = Y )

Pr(λ′i = λi|Y ′ = Y )

]
− E(Y,λ)

[
log

Pr(λ′ = λ|Y ′ = Y )

Pr(λ′ = λ|Y ′ = Y )

]
− Eλ,N

[
log

Pr(λ′ = λ)

P̂r(λ′ = λ)

]
+H(Y |λ).

(23)

We simplify each expectation now.

1. −
∑m
i=1 E(Y,λ),N ,τ

[
log

P̃r(λ′i=λi|Y
′=Y )

Pr(λ′i=λi|Y ′=Y )

]
:

By definition of conditional KL divergence,

−
m∑
i=1

E(Y,λ),N ,τ

[
log

P̃r(λ′i = λi|Y ′ = Y )

Pr(λ′i = λi|Y ′ = Y )

]
=

m∑
i=1

E(Y,λ),N ,τ

[
log

Pr(λ′i = λi|Y ′ = Y )

P̃r(λ′i = λi|Y ′ = Y )

]

=

m∑
i=1

EN ,τ
[
EY
[
DKL(Prλi|Y ||P̃rλi|Y )

]]
.

2. −E(Y,λ)

[
log Pr(λ′=λ|Y ′=Y )

Pr(λ′=λ|Y ′=Y )

]
:

The key difference between Pr and Pr is how the models factorize. The above expression can be written as

−
∑

(i,j)∈Eλ

Eλiλj ,Y

[
log

Pr(λ′i = λi|Y ′ = Y ) Pr(λ′j = λj |Y ′ = Y )

Pr(λ′i, λ
′
j = λi, λj |Y ′ = Y )

]

=
∑

(i,j)∈Eλ

Eλi,λj

[
log

Pr(λ′i, λ
′
j = λi, λj |Y = 1)

Pr(λ′i = λi|Y = 1) Pr(λ′j = λj |Y = 1)

∣∣∣∣ Y = 1

]
Pr(Y = 1)

+ Eλi,λj

[
log

Pr(λ′i, λ
′
j = λi, λj |Y = −1)

Pr(λ′i = λi|Y = −1) Pr(λ′j = λj |Y = −1)

∣∣∣∣ Y = −1

]
Pr(Y = −1).
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Note that these expectations are equal to the mutual information between λi and λj conditional on Y = 1
or Y = −1. Then by definition, the expression is equal to∑

(i,j)∈Eλ

I(λi;λj |Y = 1) Pr(Y = 1) + I(λi;λj |Y = −1) Pr(Y = −1) =
∑

(i,j)∈Eλ

I(λi;λj |Y ).

3. −Eλ,N

[
log Pr(λ′=λ)

P̂r(λ′=λ)

]
:

This term is the expected negative KL divergence between the true and estimated distributions of λ,

EN
[
DKL(Pr(λ)||P̂r(λ))

]
. While there are many ways to estimate this distribution, we stick with simply

the MLE estimate so that this expression will converge to 0 asymptotically.

Therefore, (23) becomes

H(Y |λ)− EN
[
DKL(Pr(λ)||P̂r(λ))

]
+

∑
(i,j)∈Eλ

I(λi;λj |Y ) +

m∑
i=1

EN ,τ,Y
[
DKL(Prλi|Y ||P̃rλi|Y )

]
.

D.2 Proof of Theorem 2

Our goal is to evaluate
∑m
i=1 EN ,τ,Y

[
DKL(Prλi|Y ||P̃rλi|Y )

]
on a labeled dataset. Using Lemma 3, note that

E
[
ãLi
]

= āi = ai. Therefore,

EN ,τ,Y
[
DKL(Prλi|Y ||P̃rλi|Y )

]
=

1 + ai
2
· 1

2(1 + ai)2
E
[
(ãLi − ai)2

]
+

1− ai
2
· 1

2(1− ai)2
E
[
(ãLi − ai)2

]
+ o(1/n)

=
1

2(1− a2
i )

Var
(
ãLi
)

+ o(1/n).

It can be shown that this is exactly 1
2nL

. To see this, formally define ãLi = 1
nL

∑nL
j=1 λ

j
iY

j , where λji , Y
j belong

the jth sample of the dataset. Then Var
(
ãLi
)

= 1
n2
L

∑nL
j=1 Var

(
λjiY

j
)

= 1
n2
L

∑nL
j=1 E

[
λj2i Y

j2
]
−E [λiY ]

2
=

1−a2
i

nL
.

Therefore,
∑m
i=1 EN ,τ,Y

[
DKL(Prλi|Y ||P̃rλi|Y )

]
= m

2nL
+ o(1/nL), and our proof is complete.

D.3 Proof of Theorem 3

We restate the full theorem with the value of the constants. Under assumption 1, using nU weakly labeled
samples and a misspecified model yields excess generalization error

ReU ≤εmax

(
c1d

m
+

c2√
nU

+
c3d

mnU

)
+
c4m

nU
+

∑
(i,j)∈Eλ

I(λi;λj |Y ) + o(1/nU ),

where

c1 =
2

b2mina
2
min

(
1 +

1

(1− ā2
max)b2mina

2
min

)

c2 =
1

(1− ā2
max)b2mina

2
min

√
3(1− b2min)

b2min

(
1

b4min

+
2

b2min

)
c3 =

3(1− b2min)

(1− ā2
max)2b4mina

2
min

(
1

b4min

+
2

b2min

)
c4 =

3(1− b2min)

8b2min(1− ā2
max)

(
1

b4min

+
2

b2min

)
,

and εmax is an upper bound on εij defined in Lemma 5.
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Define āi = Eτ
[√

E[λiλj ]E[λiλk]
E[λjλk]

]
to be the asymptotic estimator with expectation over triplets. We apply Lemma

3 and simplify it to get

m∑
i=1

EN ,τ,Y
[
DKL(Prλi|Y ||P̃rλi|Y )

]
=

m∑
i=1

(1 + ai
2

log
(

1 +
ai − āi
1 + āi

)
+

1− ai
2

log
(

1 +
āi − ai
1− āi

))
(24)

+

m∑
i=1

ai − āi
1− ā2

i

EN ,τ [āi − ãi] +

m∑
i=1

1

2

( 1

1− ā2
i

+
2āi(āi − ai)

(1− ā2
i )

2

)
EN ,τ

[
(ãi − āi)2

]
+ o(1/n).

This shows that there are three quantities to bound: ai − āi, EN ,τ [āi − ãi], and EN ,τ
[
(ãi − āi)2

]
. Recall that

for the unlabeled data case, ãi =

√
Ê[λiλj ]Ê[λiλk]

Ê[λjλk]
for random λj , λk, and āi = Eτ

[√
E[λiλj ]E[λiλk]

E[λjλk]

]
. The bounds

for EN ,τ [āi − ãi], and EN ,τ
[
(ãi − āi)2

]
are stated in Lemma 6; we focus on bounding the expected asymptotic

gap ai − āi here.

Lemma 1. For i ∈ Eλ, we have that

āi − ai ∈
[
εminbmin

m− 1
− (d− 1)εmax

(m− 1)(m− 2)b2mina
2
min

,
εmax

(m− 1)bminamin

]
. (25)

For i /∈ Eλ, we have that

āi − ai ∈
[

−dεmax

(m− 1)(m− 2)b2mina
2
min

,
−dεminb

2
min

(m− 1)(m− 2)

]
. (26)

And for all i, it is thus true that

|āi − ai| ≤
εmax

(m− 1)b2mina
2
min

. (27)

Proof. We define εij = E [λiλj ]−E [λiY ]E [λjY ] for (i, j) ∈ Eλ, i.e. the error we get from assuming conditional
independence between λi and λj . We define the exact value of εij in Lemma 5, and since all canonical parameters
are assumed to be positive, we know that there exist εmin, εmax that satisfy 0 < εmin ≤ εij ≤ εmax over the entire

edgeset Eλ. We now propagate this error to āi. Define ā
(j,k)
i before we take the expectation over triplets as

ā
(j,k)
i :=

√
E [λiλj ]E [λiλk]

E [λjλk]
.

Note that this means āi ≥ bmin. When each E [λiλj ] can be written as E [λiY ]E [λjY ], we get that ā
(j,k)
i = ai.

However, by our assumptions on the edgeset, at most one of the above pairwise expectations has nonzero εij , in
which case the true ai is computed using E [λiλj ]− εij , which is equal to E [λiY ]E [λjY ], rather than E [λiλj ].

If (i, j) ∈ Eλ (but not (j, k) or (i, k)) then

ai =

√
(E [λiλj ]− εij)E [λiλk]

E [λjλk]
.

This means that āi ≥ ai and we asymptotically overestimate the accuracy. Then the difference between ā
(j,k)2
i

and a2
i is ā

(j,k)2
i − a2

i =
εijE[λiλk]
E[λjλk] ∈

[
εminbmin,

εmax

bmin

]
. Moreover, ā

(j,k)
i − ai =

ā
(j,k)2
i −a2

i

ā
(j,k)
i +ai

. Since āi ≥ ai in this case,

we have that ā
(j,k)
i + ai ∈ [2amin, 2]; as a result,

ā
(j,k)
i − ai ∈

[εminbmin

2
,

εmax

2bminamin

]
. (28)
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Similarly, if (i, k) ∈ Eλ, we have the same bounds: ā
(j,k)2
i − a2

i =
εikE[λiλj ]
E[λjλk] ∈

[
εminbmin,

εmax

bmin

]
, and thus

ā
(j,k)
i − ai ∈

[
εminbmin

2 , εmax

2bminamin

]
. On the other hand, if (j, k) ∈ Eλ, the true accuracy is written as

ai =

√
E [λiλj ]E [λiλk]

(E [λjλk]− εjk)
.

This means that ā
(j,k)
i ≤ ai and we asymptotically underestimate the accuracy. The difference between ā

(j,k)2
i

and a2
i is a2

i − ā
(j,k)2
i =

εjkE[λiλj ]E[λiλk]
E[λjλk](E[λjλk]−εjk) ∈

[
εminb

2
min,

εmax

bmina2
min

]
. In this case, ai + ā

(j,k)
i ∈ [2bmin, 2], so

ai − ā(j,k)
i ∈

[εminb
2
min

2
,

εmax

2b2mina
2
min

]
. (29)

Lastly, if none of i, j, k share edges, āi = ai. In our algorithm, we estimate each ai using λj and λk chosen
uniformly at random from the other m− 1 sources. We thus need to compute the probabilities that (i, j), (i, k)
and (j, k) are in Eλ. Note that these probabilities depend on if i ∈ Eλ, which is true for 2d sources.

Pr((i, j) ∪ (i, k) ∈ Eλ | i /∈ Eλ) = 0 Pr((i, j) ∪ (i, k) ∈ Eλ | i ∈ Eλ) =
1(m− 2)(

m−1
2

) =
2

m− 1

Pr((j, k) ∈ Eλ | i /∈ Eλ) =
2d

(m− 1)(m− 2)
Pr((j, k) ∈ Eλ | i ∈ Eλ) =

2(d− 1)

(m− 1)(m− 2)

Therefore, if i ∈ Eλ, we use (28) and (29) to bound the expected error as

āi − ai ≤
2

m− 1
· εmax

2bminamin
+

2(d− 1)

(m− 1)(m− 2)
· −εminb

2
min

2
≤ εmax

(m− 1)bminamin
, (30)

āi − ai ≥
2

m− 1
· εminbmin

2
+

2(d− 1)

(m− 1)(m− 2)
· −εmax

2b2mina
2
min

=
εminbmin

m− 1
− (d− 1)εmax

(m− 1)(m− 2)b2mina
2
min

. (31)

Note that this lower bound can be negative in this case, so it is not clear if āi or ai is bigger in expectation.

If i /∈ Eλ, using (29) then the expected error is bounded as

āi − ai ≤
2d

(m− 1)(m− 2)
· −εminb

2
min

2
=

−dεminb
2
min

(m− 1)(m− 2)
, (32)

āi − ai ≥
2d

(m− 1)(m− 2)
· −εmax

2b2mina
2
min

=
−dεmax

(m− 1)(m− 2)b2mina
2
min

. (33)

In this case, āi ≤ ai. Finally, observe that regardless of if i ∈ Eλ or not, the absolute value of the bias is bounded
by

|āi − ai| ≤
εmax

(m− 1)b2mina
2
min

. (34)

We return to (24). Since ai ≥ āi when i /∈ Eλ, we have that 1+ai
2 log(1 + ai−āi

1+āi
) + 1−ai

2 log(1 + āi−ai
1−āi ) ≤

1+ai
2 log(1 + max ai−āi

1+āi
) for i /∈ Eλ. On the other hand when i ∈ Eλ, this expression can be upper bounded as

1+ai
2 · ai−āi1+āi

+ 1−ai
2

āi−ai
1−āi = (āi−ai)2

1−ā2
i

using the inequality log(1 + x) ≤ x for x > −1 (it can be easily verified that
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ai−āi
1+āi

and āi−ai
1−āi are at least −1). Since |Eλ| = 2d and εmax ≤ 1, the first summation of (24) is bounded by

(m− 2d) log

(
1 +

dεmax

(m− 1)(m− 2)b2mina
2
min(1 + bmin)

)
+ 2d

ε2
max

(1− ā2
max)(m− 1)2b4mina

4
min

(35)

≤ (m− 2d)dεmax

(m− 1)(m− 2)b2mina
2
min(1 + bmin)

+
2dεmax

(1− ā2
max)(m− 1)2b4mina

4
min

=
dεmax

(m− 1)b2mina
2
min

(
m− 2d

(m− 2)(1 + bmin)
+

2

(1− ā2
max)(m− 1)b2mina

2
min

)
≤ dεmax

(m− 1)b2mina
2
min

(
1 +

1

(1− ā2
max)b2mina

2
min

)
≤ c1dεmax

m
,

where c1 = 2
b2mina

2
min

(
1 + 1

(1−ā2
max)b2mina

2
min

)
. Next, we bound

∑m
i=1

ai−āi
1−ā2

i
EN ,τ [āi − ãi]:

m∑
i=1

ai − āi
1− ā2

i

EN ,τ [āi − ãi] ≤
m∑
i=1

|āi − ai|
1− ā2

i

EN ,τ [|āi − ãi|] (36)

≤
√

3

2
√
nU
·

√
1− b2min

b2min

(
1

b4min

+
2

b2min

)
1

1− ā2
max

(
mεmax

(m− 1)b2mina
2
min

)
≤ c2εmax√

nU
,

where c2 = 1
(1−ā2

max)b2mina
2
min

√
3(1−b2min)

b2min

(
1

b4min
+ 2

b2min

)
. We bound

∑m
i=1

1
2

(
1

1−ā2
i

+ 2āi(āi−ai)
(1−ā2

i )
2

)
EN ,τ

[
(ãi − āi)2

]
,

which can be split into an expression independent of misspecification and one dependent on it:

m∑
i=1

1

2

( 1

1− ā2
i

+
2āi(āi − ai)

(1− ā2
i )

2

)
EN ,τ

[
(ãi − āi)2

]
≤ c4m

nU
+

m∑
i=1

āi − ai
(1− ā2

i )
2
EN ,τ

[
(ãi − āi)2

]
, (37)

where c4 =
3(1−b2min)

8b2min(1−ā2
max)

(
1

b4min
+ 2

b2min

)
. The summation in (37) is bounded as follows, using the fact that āi ≤ ai

for i /∈ Eλ:

m∑
i=1

āi − ai
(1− ā2

i )
2
EN ,τ

[
(ãi − āi)2

]
≤ 3

4nU
· 1− b2min

b2min(1− ā2
max)2

(
1

b4min

+
2

b2min

) ∑
i∈Eλ

|āi − ai| (38)

≤ 3

4nU
· 1− b2min

b2min(1− ā2
max)2

(
1

b4min

+
2

b2min

)(
2dεmax

(m− 1)b2mina
2
min

)
≤ c3dεmax

mnU
,

where c3 =
3(1−b2min)

(1−ā2
max)2b4mina

2
min

(
1

b4min
+ 2

b2min

)
. This concludes our proof.

D.4 Proof of Proposition 1

To prove the ability of using the median of the accuracies to correct for misspecification, we first examine the
asymptotic case. For i ∈ Eλ, note that out of a total of

(
m−1

2

)
triplets, m − 2 of them will involve the edge

(i, j) ∈ Eλ, resulting in a higher inconsistent estimate of the accuracy. d − 1 of them will involve an edge

(j, k) ∈ Eλ, resulting in a lower estimate of the accuracy. Therefore, (m−1)(m−2)
2 − m − d − 3 triplets are

consistent. As long as the
(
m−1

2

)
− (m−2)th largest triplet is greater than half of all the triplets, and the d−1th

largest triplet is less than the half of all the triplets, then the median will be a consistent triplet. This gives us

the conditions m > 5 and d < (m−1)(m−2)
4 .

Next, for i /∈ Eλ, d triplets will involve an edge (j, k) ∈ Eλ, resulting in lower estimated accuracy, while the

other
(
m−1

2

)
− d triplets are consistent. Therefore, as long as d < (m−1)(m−2)

4 , the median triplet is consistent.

Lastly, we must consider the finite-sample regime when the ordering of the accuracy estimates are perturbed
by sampling noise. When each accuracy’s expected sampling noise is less than half of the minimum standing
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bias of a triplet, the order of the accuracies will not change on average. This translates into the inequality

E [|ãi − āi|] ≤ 1
2 min(j,k) |ai− ā

(j,k)
i |. The minimum standing bias is

εminb
2
min

2 , and E [|ãi − āi|] ∼ O(1/
√
n) so this

means that nU ≥ n0 ∼ Ω(1/ε2
min).

Lastly, we compute the excess risk when using the corrected estimator. From Lemma 1, since the asymptotic
expectation ā of the estimator is equal to the true accuracy a, we have

EN ,τ,Y
[
DKL(Prλi|Y ||P̃rλi|Y )

]
=

1 + ai
2

(
E[ai − ãMi ]

1 + ai
+

1

2(1 + ai)2
E[(ãMi − ai)2]

)
(39)

+
1− ai

2

(
E[ãMi − ai]

1− ai
+

1

2(1− ai)2
E[(ãMi − ai)2]

)
.

Note that 1+ai
2 · E[ai−ãMi ]

1+ai
+ 1−ai

2 · E[ãMi −ai]
1−ai = 0. Then the parameter estimation error is

m∑
i=1

(
1

4(1 + ai)
+

1

4(1− ai)

)
E
[
(ãMi − ai)2

]
=

m∑
i=1

1

2(1− a2
i )
E
[
(ãMi − ai)2

]
≤ 1

2(1−maxi a2
i )
·mρnU . (40)

This completes our proof, where cρ = 1
2(1−maxi a2

i )
in Proposition 1.

E Auxiliary Lemmas

Lemma 2. (Symmetry of the distribution). For any source λi with accuracy ai = E [λiY ],

Pr(λi = 1|Y = 1) = Pr(λi = −1|Y = −1) =
1 + ai

2

Pr(λi = −1|Y = 1) = Pr(λi = 1|Y = −1) =
1− ai

2
.

Proof. By Proposition 2 of Fu et al. (2020), we know that λiY ⊥⊥ Y for the binary Ising model we use, defined
in section 3. Intuitively, this means that the accuracy of a source is independent of the value of Y , and therefore
Pr(λiY = 1|Y = 1) = Pr(λiY = 1) = 1+ai

2 , since E [λiY ] = 2 Pr(λiY = 1) − 1. Repeating this calculation with
remaining configurations of Pr(λiY = ±1|Y = ±1) concludes our proof.

Lemma 3. Define ai = E [λiY ] , and let ãi be our estimated accuracy on n points. Furthermore, let āi be the
expected asymptotic value of ãi over τ . Then, the estimation error is

EY,N ,τ
[
DKL(Prλi|Y ||P̃rλi|Y )

]
=

1 + ai
2

(
log
(

1 +
ai − āi
1 + āi

)
+

EN ,τ [āi − ãi]
1 + āi

+
1

2(1 + āi)2
EN ,τ

[
(ãi − āi)2

] )
+

1− ai
2

(
log
(

1 +
āi − ai
1− āi

)
+

EN ,τ [ãi − āi]
1− āi

+
1

2(1− āi)2
EN ,τ

[
(ãi − āi)2

] )
+ o(1/n).

Proof. As discussed previously, this term is equal to −E(Y,λ),N ,τ

[
log

P̃r(λ′i=λi|Y
′=Y )

Pr(λ′i=λi|Y ′=Y )

]
. By the law of total expec-

tation, we now have

−Eλ,N ,τ

[
Pr(Y = 1|λ′ = λ) log

P̃r(λ′i = λi|Y = 1)

Pr(λ′i = λi|Y = 1)
+ Pr(Y = −1|λ′ = λ) log

P̃r(λ′i = λi|Y = −1)

Pr(λ′i = λi|Y = −1)

]
. (41)
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Suppose λi /∈ Eλ. Conditioning on the value of λi and using Lemma 2, (41) becomes

− Eλ−i,N ,τ

[
Eλi

[
Pr(Y = 1|λ′ = λ) log

P̃r(λ′i = λi|Y = 1)

Pr(λ′i = λi|Y = 1)
+ Pr(Y = −1|λ′ = λ) log

P̃r(λ′i = λi|Y = −1)

Pr(λ′i = λi|Y = −1)

∣∣∣λ−i]]

= − Eλ−i,N ,τ

[(
Pr(Y = 1|λ−i, λi = 1) Pr(λi = 1|λ−i) + Pr(Y = −1|λ−i, λi = −1) Pr(λi = −1|λ−i)

)
log

1 + ãi
1 + ai

+
(

Pr(Y = 1|λ−i, λi = −1) Pr(λi = −1|λ−i) + Pr(Y = −1|λ−i, λi = 1) Pr(λi = 1|λ−i)
)

log
1− ãi
1− ai

]
= − Eλ−i,N ,τ

[
Pr(λiY = 1|λ−i) log

1 + ãi
1− ai

+ Pr(λiY = −1|λ−i) log
1− ãi
1− ai

]
.

Note that Pr(λi = 1, Y = 1|λ−i) = Pr(λi = 1|Y = 1)Pr(λ−i,Y=1)
Pr(λ−i)

and Pr(λi = −1, Y = −1|λ−i) = Pr(λi =

−1|Y = −1)Pr(λ−i,Y=−1)
Pr(λ−i)

since λi and λ−i are conditionally independent given Y , so Pr(λiY = 1|λ−i) = Pr(λi =

1|Y = 1) = 1+ai
2 . Similarly, Pr(λiY = −1|λ− i) = Pr(λi = −1|Y = 1) = 1−ai

2 , so the conditional KL divergence
is equal to

EN ,τ,Y
[
DKL(Prλi|Y ||P̃rλi|Y )

]
= −EN ,τ

[
1 + ai

2
log

1 + ãi
1 + ai

+
1− ai

2
log

1− ãi
1− ai

]
. (42)

Now suppose that λi ∈ Eλ and has an edge to some λj . When we simplify (41) by conditioning on λi, λj , we
find that

∑
l∈{±1} Pr(Y = 1|λ−i,j , λi = 1, λj = l) Pr(λi = 1, λj = l|λ−i,j) + Pr(Y = −1|λ−i,j , λi = −1, λj =

l) Pr(λi = −1, λj = l|λ−i,j) (i.e, the coefficient for log 1+ãi
1+ai

) is equal to Pr(λiY = 1|λ−i,j), and this is still equal

to 1+ai
2 . The same holds for the coefficient of log 1−ãi

1−ai . Therefore, (42) holds for all λi.

Next, we evaluate −E
[
log 1+ãi

1+ai

]
and −E

[
log 1−ãi

1−ai

]
, where expectation is over N and τ . We apply a second-order

Taylor approximation of f(x) = log 1+x
1+ai

at x = āi:

log
1 + ãi
1 + ai

≈ log
1 + āi
1 + ai

+
1 + ai
1 + āi

· 1

1 + ai
(ãi − āi)−

1

2(1 + āi)2
(ãi − āi)2 + o(1/n).

Taking the expectation on both sides, we get

−EN ,τ
[
log

1 + ãi
1 + ai

]
≈ −

(
log

1 + āi
1 + ai

+
EN ,τ [ãi]− āi

1 + āi
− 1

2(1 + āi)2
EN ,τ

[
(ãi − āi)2

] )
+ o(1/n)

= log
(

1 +
ai − āi
1 + āi

)
+

EN ,τ [āi − ãi]
1 + āi

+
1

2(1 + āi)2
EN ,τ

[
(ãi − āi)2

]
+ o(1/n),

where we have used Lemma 4.

Similarly, we apply a second-order Taylor approximation of f(x) = log 1−x
1−ai at x = āi:

log
1− ãi
1− ai

≈ log
1− āi
1− ai

+
1− ai
1− āi

· −1

1− ai
(ãi − āi)−

1

2(1− āi)2
(ãi − āi)2 + o(1/n).

Taking the expectation of both sides,

−E
[
log

1− ãi
1− ai

]
= −

(
log

1− āi
1− ai

+
EN ,τ [āi − ãi]

1− āi
− 1

2(1− āi)2
EN ,τ

[
(ãi − āi)2

] )
+ o(1/n)

= log
(

1 +
āi − ai
1− āi

)
+

EN ,τ [ãi − āi]
1− āi

+
1

2(1− āi)2
EN ,τ

[
(ãi − āi)2

]
+ o(1/n).

Substituting these expressions into (42), we get our desired equation.
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Lemma 4. The remainder of the Taylor approximation done in Lemma 3 is o(1/n) for estimation done on n
samples in both the labeled and unlabeled cases.

Proof. The remainder for −EN ,τ
[
log 1+ãi

1+ai

]
is bounded by 1

3(1+āi)3EN ,τ
[
(āi − ãi)3

]
, and the remainder for

−EN ,τ
[
log 1−ãi

1−ai

]
is bounded by 1

3(1−āi)3EN ,τ
[
(āi − ãi)3

]
.

For the labeled data case, it is easy to check that EN
[
(āi − ãi)3

]
∼ O(1/n2

L). Therefore, we focus on analyzing

the unlabeled data case’s estimator by bounding EN
[
|āi − ãi|3 | λj , λk

]
independent of choice of j and k. For

ease of notation, define X = λiλj and Y = λiλk, such that XY = λjλk, and let

a := ā
(j,k)
i =

√
E[X]E[Y ]

E[XY ]
, â := ãi =

√
Ê[X]Ê[Y ]

Ê[XY ]
. (43)

Note a ∈ [−1, 1], so clip â ∈ [−1, 1]. Because X ∈ {−1, 1} and Ê[X] is an i.i.d. sum of n = nU samples from X,
we can apply Hoeffding’s inequality to get:

Pr
(
|Ê[X]− E[X]| ≥ ε

)
≤ 2 exp

(
−2n2ε2

n · 22

)
= 2 exp

(
−nε

2

2

)
. (44)

The same is true for Ê[Y ] and Ê[XY ]. Thus, by union bound,

Pr
(
|Ê[X]− E[X]| ≥ ε ∨ |Ê[Y ]− E[Y ]| ≥ ε ∨ |Ê[XY ]− E[XY ]| ≥ ε

)
≤ 6 exp

(
−nε

2

2

)
. (45)

Refer to the event
(
|Ê[X]− E[X]| ≥ ε ∨ |Ê[Y ]− E[Y ]| ≥ ε ∨ |Ê[XY ]− E[XY ]| ≥ ε

)
as B. If ¬B and ε <

1
2 min(E[X],E[Y ],E[XY ]) < 1, then

|Ê[X]− E[X]| < ε, |Ê[Y ]− E[Y ]| < ε, |Ê[XY ]− E[XY ]| < ε. (46)

By the mean value theorem with f(x) =
√
x, there exists a u between Ê[X]Ê[Y ]

Ê[XY ]
and E[X]E[Y ]

E[XY ] such that

|â− a| =

∣∣∣∣∣ 1

2
√
u

(
Ê[X]Ê[Y ]

Ê[XY ]
− E[X]E[Y ]

E[XY ]

)∣∣∣∣∣ . (47)

Note that

u ≥ min

(
Ê[X]Ê[Y ]

Ê[XY ]
,
E[X]E[Y ]

E[XY ]

)
≥ min

(
(E[X]− ε)(E[Y ]− ε)

E[XY ] + ε
,
E[X]E[Y ]

E[XY ]

)
(48)

≥ min

(
(E[X]/2)(E[Y ]/2)

1 + ε
,
E[X]E[Y ]

E[XY ]

)
≥ min

(
E[X]E[Y ]

8
,
E[X]E[Y ]

E[XY ]

)
≥ E[X]E[Y ]

8
.

Thus,

|â− a| ≤
√

2√
E[X]E[Y ]

∣∣∣∣∣ Ê[X]Ê[Y ]

Ê[XY ]
− E[X]E[Y ]

E[XY ]

∣∣∣∣∣ . (49)
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For the term on the right inside the absolute value:

(E[X]− ε)(E[Y ]− ε)
E[XY ] + ε

≤ Ê[X]Ê[Y ]

Ê[XY ]
≤ (E[X] + ε)(E[Y ] + ε)

E[XY ]− ε
(50)

(E[X]− ε)(E[Y ]− ε)
E[XY ] + ε

− E[X]E[Y ]

E[XY ]
≤ Ê[X]Ê[Y ]

Ê[XY ]
− E[X]E[Y ]

E[XY ]
≤ (E[X] + ε)(E[Y ] + ε)

E[XY ]− ε
− E[X]E[Y ]

E[XY ]∣∣∣∣∣ Ê[X]Ê[Y ]

Ê[XY ]
− E[X]E[Y ]

E[XY ]

∣∣∣∣∣ ≤ max

( ∣∣∣∣ (E[X]− ε)(E[Y ]− ε)
E[XY ] + ε

− E[X]E[Y ]

E[XY ]

∣∣∣∣ ,∣∣∣∣ (E[X] + ε)(E[Y ] + ε)

E[XY ]− ε
− E[X]E[Y ]

E[XY ]

∣∣∣∣ ).
Examining the left term in the max,∣∣∣∣ (E[X]− ε)(E[Y ]− ε)

E[XY ] + ε
− E[X]E[Y ]

E[XY ]

∣∣∣∣ =

∣∣∣∣ (E[X]− ε)(E[Y ]− ε)E[XY ]− E[X]E[Y ](E[XY ] + ε)

E[XY ](E[XY ] + ε)

∣∣∣∣ (51)

=

∣∣∣∣−ε(E[X]E[Y ] + E[X]E[XY ] + E[Y ]E[XY ]− εE[XY ])

E[XY ](E[XY ] + ε)

∣∣∣∣
≤ ε

∣∣∣∣E[X]E[Y ] + E[X]E[XY ] + E[Y ]E[XY ]

E[XY ]2

∣∣∣∣
= εC1 > 0

Examining the right term in the max,∣∣∣∣ (E[X] + ε)(E[Y ] + ε)

E[XY ]− ε
− E[X]E[Y ]

E[XY ]

∣∣∣∣ =

∣∣∣∣ (E[X] + ε)(E[Y ] + ε)E[XY ]− E[X]E[Y ](E[XY ]− ε)
E[XY ](E[XY ]− ε)

∣∣∣∣ (52)

=

∣∣∣∣ε(E[X]E[Y ] + E[X]E[XY ] + E[Y ]E[XY ] + εE[XY ])

E[XY ](E[XY ]− ε)

∣∣∣∣ (53)

≤ ε
∣∣∣∣E[X]E[Y ] + E[X]E[XY ] + E[Y ]E[XY ] + E[XY ]

E[XY ]2/2

∣∣∣∣ (54)

= εC2 > 0 (55)

Combining the max argument bounds, we have that
∣∣∣ Ê[X]Ê[Y ]

Ê[XY ]
− E[X]E[Y ]

E[XY ]

∣∣∣ ≤ εmax(C1, C2) ≤ εC2. Therefore,

|â− a| ≤ ε
√

2C2√
E[X]E[X]

= εC3 (56)

where C3 is a positive function of E[X], E[Y ], and E[XY ]. To recap, this is satisfied if ¬B and ε is small. Let
ε = n−3/8, thus for large enough n, ε is smaller than any constant. Recall, Pr(B) ≤ 6 exp(−nε2/2). With this
definition of ε, Pr(B) ≤ 6 exp(−n1/4/2).

Now, we are finally ready to evaluate the limit:

lim
n→∞

nE[|â− a|3] = lim
n→∞

n
(
E[|â− a|3|B] Pr(B) + E[|â− a|3|¬B]P (¬B)

)
(57)

≤ lim
n→∞

n
(
C3

3ε
3 · 1 + 23 · 6 exp(−n1/4/2)

)
(58)

= C3
3 lim
n→∞

n(n−3/8)3 + 48 lim
n→∞

n exp(−n1/4/2) (59)

= C3
3 lim
n→∞

n−1/8 + 48 lim
m→∞

m4 exp(−m/2) = 0 (60)

Trivially, limn→∞ nE[|â− a|3] ≥ 0. Thus, limn→∞ nE[|â− a|3] = 0.
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Lemma 5. (Quantifying per-edge misspecification.) If (i, j) ∈ Eλ, then

εij = ∆ij −∆ia
′
j −∆ja

′
i −∆i∆j , (61)

where

∆i =
2

zijz′ij
(exp(θij)− exp(−θij))(exp(2θj)− exp(−2θj)) (62)

∆j =
2

zijz′ij
(exp(θij)− exp(−θij))(exp(2θi)− exp(−2θi)) (63)

∆ij =
2

zijz′ij
(exp(θij)− exp(−θij))(exp(2θi) + exp(−2θi) + exp(2θj) + exp(−2θj)) (64)

a′i =
2

z′ij
exp(θi)(exp(θj) + exp(−θj))− 1 (65)

a′j =
2

z′ij
exp(θj)(exp(θi) + exp(−θi))− 1 (66)

zij =
∑
si,sj

exp(siθi + sjθj + sisjθij) (67)

z′ij =
∑
si,sj

exp(siθi + sjθj) (68)

Using these values, it is also possible to verify that εij ∈ (0, 1) if θi, θj , θij > 0.

Proof. We define a new distribution, which we denote by Pr′ and E′, that does not have an edge between λi and
λj :

Pr′(Y,λ) =
1

Z ′
exp

(
θY +

m∑
i=1

θiλiY +
∑

(k,l)6=(i,j)

θklλkλl

)
. (69)

This distribution uses all the same canonical parameters as (19) except θijλiλj . We know that for this distri-
bution, E′ [λiλj ] = E′ [λiY ]E′ [λjY ]. Our approach to compute εij = E [λiλj ]− E [λiY ]E [λjY ] is to bound the
differences between E and E′.

First, we evaluate E [λiY ]−E [λjY ]. We write E [λiY ] as 2 Pr(λiY = 1)−1 = 2
p Pr(λi = 1, Y = 1)−1 and E′ [λiY ]

as 2
p Pr′(λi = 1, Y = 1)− 1 by Lemma 2, where p = Pr(Y = 1). Then, letting s−i represent all combinations of

labels on all λ besides λi,

∆i = E [λiY ]− E′ [λiY ] =
2

p

∑
s−i

exp

(
θY + θi +

∑
k 6=i

θklk +
∑

(k,l)6=(i,j)

θklsksl

)(
exp(θij lj)

Z
− 1

Z ′

)
(70)

Next, note that p = zY
Z and p =

z′Y
Z′ , where zY =

∑
s exp(θY +

∑m
k=1 θksk +

∑
(k,l)6=(i,j) θklsksl + θijsisj) and

z′Y =
∑
s exp(θY +

∑m
k=1 θisi +

∑
(k,l)6=(i,j) θklsksl) (we can check these expressions for p are equal, since the

edgewise potentials are canceled out). ∆i is now

2 exp(θi)
∑
s−i

exp

(
θY +

∑
k 6=i

θklk +
∑

(k,l)6=(i,j)

θklsksl

)(
exp(θij lj)

zY
− 1

z′Y

)
(71)

=2 exp(θi + θj)
∑
s−i,j

exp

(
θY +

∑
k 6=i,j

θklk +
∑

(k,l)6=(i,j)

θklsksl

)(
exp(θij)

zY
− 1

z′Y

)

+2 exp(θi − θj)
∑
s−i,j

exp

(
θY +

∑
k 6=i,j

θklk +
∑

(k,l)6=(i,j)

θklsksl

)(
exp(−θij)

zY
− 1

z′Y

)
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exp(±θij)
zY

− 1
z′Y

can be written as 1
zY z′Y

∑
s′ exp(θY +

∑
k θks

′
k +

∑
(k,l)6=(i,j) θkls

′
ks
′
l)(exp(±θij) − exp(θijs

′
is
′
j)).

Then for positive θij , this becomes 1
zY z′Y

(exp(θi − θj) + exp(−θi + θj))
∑
s′ exp(θY +

∑
k 6=i,j θks

′
k +∑

(k,l)6=(i,j) θkls
′
ks
′
l)(exp(θij) − exp(−θij)), and for negative −θij , this becomes 1

zY z′Y
(exp(θi + θj) + exp(−θi −

θj))
∑
s′ exp(θY +

∑
k 6=i,j θks

′
k +

∑
(k,l)6=(i,j) θkls

′
ks
′
l)(exp(−θij)− exp(θij)). Then, our expression becomes

2

zY z′Y

( ∑
s−i,j

exp
(
θY +

∑
k 6=i,j

θklk +
∑

(k,l)6=(i,j)

θklsksl

))2

(exp(θij)− exp(−θij)) (72)

×
(

exp(θi + θj)(exp(θi − θj) + exp(−θi + θj))− exp(θi − θj)(exp(θi + θj) + exp(−θi − θj))
)

The second line simplifies exp(2θi) + exp(2θj) − exp(2θi) − exp(−2θj) = exp(2θj) − exp(−2θj). Lastly, note

that zY =
∑
s−i,j

exp
(
θY +

∑
k 6=i,j θklk +

∑
(k,l)6=(i,j) θklsksl

)
·
∑
si,sj

exp(siθi + sjθj + sisjθij), and z′Y =∑
s−i,j

exp
(
θY +

∑
k 6=i,j θklk +

∑
(k,l) 6=(i,j) θklsksl

)
·
∑
si,sj

exp(siθi + sjθj). Canceling out the summations over

the other sources, we have our desired expression for ∆i. We can do the same to get our result for ∆j .

Next, we compute ∆ij = E [λiλj ]−E′ [λiλj ] , which is equal to 2(Pr(λi = 1, λj = 1)−Pr′(λi = 1, λj = 1)+Pr(λi =
−1, λj = −1)− Pr′(λi = −1, λj = −1)):

Pr(λi = 1, λj = 1)− Pr′(λi = 1, λj = 1) (73)

=
∑

Y,s−i,j

exp
(
θY Y + θiY + θjY +

∑
k 6=i,j

θkskY +
∑

(k,l)∈(i,j)

θklsksl

)(exp(θij)

Z
− 1

Z ′

)
,

Pr(λi = −1, λj = −1)− Pr′(λi = −1, λj = −1) (74)

=
∑

Y,s−i,j

exp
(
θY Y − θiY − θjY +

∑
k 6=i,j

θkskY +
∑

(k,l)∈(i,j)

θklsksl

)(exp(θij)

Z
− 1

Z ′

)
.

We can write
exp(θij)

Z − 1
Z′ as 1

Z′Z

∑
Y,s exp

(
θY Y +

∑m
k=1 θkskY +

∑
(k,l) 6=(i,j) θklsksl

)
(exp(θij)− exp(θijsisj)),

which is equal to 1
Z′Z (exp(θij)− exp(−θij))(exp(θi − θj) + exp(−θi + θj))

∑
Y,s−i,j

exp
(
θY Y +

∑
k 6=i,j θkskY +∑

(k,l)6=(i,j) θklsksl
)
. Therefore, ∆ij is equal to two times (73) plus (74):

∆ij =2

(
exp(θij)

Z
− 1

Z ′

) ∑
Y,s−i,j

exp
(
θY Y +

∑
k 6=i,j

θkskY +
∑

(k,l)∈(i,j)

θklsksl
)(

exp(θiY + θjY ) + exp(−θiY − θjY )
)

(75)

=
2

Z ′Z
(exp(θij)− exp(−θij))(exp(θi − θj) + exp(−θi + θj))(exp(θi + θj) + exp(−θi − θj))

×
( ∑
Y,s−i,j

exp
(
θY Y +

∑
k 6=i,j

θkskY +
∑

(k,l)∈(i,j)

θklsksl
))2

=
2

Z ′Z
(exp(θij)− exp(−θij))(exp(2θi) + exp(−2θi) + exp(2θj) + exp(−2θj))

×
( ∑
Y,s−i,j

exp
(
θY Y +

∑
k 6=i,j

θkskY +
∑

(k,l)∈(i,j)

θklsksl
))2

.

Note that Z =
∑
Y,s−i,j

exp(θY Y +
∑
k 6=i,j θkskY +

∑
(k,l)∈(i,j) θklsksl)

∑
si,sj

exp(siθi + sjθj + sisjθij) and

Z ′ =
∑
Y,s−i,j

exp(θY Y +
∑
k 6=i,j θksiY +

∑
(k,l)∈(i,j) θklsksl)

∑
si,sj

exp(siθi + sjθj). Plugging this back in and
canceling out summations, we obtain our desired result for ∆ij .

We now can compute εij :

εij = E [λiλj ]− E [λiY ]E [λjY ] = E′ [λiλj ] + ∆ij − (E′ [λiY ] + ∆i)(E′ [λjY ] + ∆j) (76)

= ∆ij −∆iE′ [λjY ]−∆jE′ [λiY ]−∆i∆j .
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Lastly, we need to compute E′ [λiY ] and E′ [λjY ]:

E′ [λiY ] =2
(
Pr′(λi = 1, Y = 1) + Pr′(λi = −1, Y = −1)

)
− 1 (77)

=
2

Z ′
exp(θi)(exp(θj) + exp(−θj))

×
∑
s−i,j

exp
( ∑

(k,l) 6=(i,j)

θklsksl

)(
exp

(
θY +

∑
k 6=i,j

θksk

)
+ exp

(
− θY −

∑
k 6=i,j

θksk

))
− 1.

Z ′ can be written as
∑
si,sj

exp(siθi+sjθj)
∑
s−i,j

exp
(∑

(k,l)/∈(i,j) θklsksl

)(
exp(θY +

∑
k 6=i,j θksk)+exp(−θY −∑

k 6=i,j θksk)
)

, Therefore E′ [λiY ] is equal to

E′ [λiY ] =
2 exp(θi)(exp(θj) + exp(−θj))∑

si,sj
exp(siθi + sjθj)

− 1. (78)

The key takeaways from this lemma are:

1. Impact of misspecification in our computations exhibits some form of Lipschitzness, i.e. it is bounded in
terms of the canonical parameters of our distribution.

2. One misspecified edge only contributes error defined in terms of the canonical parameters on the two vertices
and the unmodeled edge between them.

3. Under our assumptions, εij > 0.

Lemma 6. (Estimation error of accuracies via triplet method.) In the case of unlabeled data, accuracies esti-
mated using the triplet method in (2) satisfy

EN ,τ [ãi − āi] ≤
√

3

2
√
nU
·

√
1− b2min

b2min

(
1

b4min

+
2

b2min

)
,

EN ,τ
[
(ãi − āi)2

]
≤ 3

4nU
· 1− b2min

b2min

(
1

b4min

+
2

b2min

)
.

Proof. First, note that EN ,τ [āi − ãi] = EN ,τ
[
Eτ
[
ā

(j,k)
i

]
− ãi

]
= EN ,τ

[
ā

(j,k)
i − ãi

]
. Therefore, is it sufficient

to produce an upper bound on EN
[
ā

(j,k)
i − ãi|λj , λk

]
independent of j, k. For ease of notation, we refer to

this expectation as E [āi − ãi]. Then, E [āi − ãi] = E
[
ā2
i−ã

2
i

āi+ãi

]
≤ 1

2bmin
E
[
|ā2
i − ã2

i |
]
. Denote Mij = E [λiλj ] and

M̂ij = Ê [λiλj ]. Then, by definition of our estimator in (2),

E [āi − ãi] ≤
1

2bmin
E

[
M̂ijM̂ik

M̂jkMjk

|M̂jk −Mjk|+
M̂ij

Mjk
|M̂ik −Mik|+

Mik

Mjk
|M̂ij −Mij |

]
(79)

≤ 1

2bmin
E
[

1

b2min

|δjk|+
1

bmin
|δik|+

1

bmin
|δij |

]
,

where δij = M̂ij −Mij is the estimation error for the pairwise expectations. Using Cauchy-Schwarz inequality,

E [āi − ãi] ≤
1

2bmin

√
1

b4min

+
2

b2min

E
[√

δ2
ij + δ2

ik + δ2
jk

]
≤ 1

2bmin

√
1

b4min

+
2

b2min

√
Var

(
M̂ij

)
+ Var

(
M̂ik

)
+ Var

(
M̂jk

)
.
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i 0 1 2 3 4 5 6 7 8 9

Accuracy .6893 .6072 .5954 .6603 .6939 .6346 .7462 .6870 .6462 .6284

Table 3: The source accuracies used for synthetic experiments. They were each drawn uniformly from [.55, .75].

Formally, M̂ij = 1
nU

∑nU
l=1 λ

l
iλ
l
j . Therefore, Var (Mij) = 1

n2
U

∑nU
l=1 E

[
(λli)

2(λlj)
2
]
−M2

ij =
1−M2

ij

nU
≤ 1−b2min

nU
, and

our bound becomes

E [āi − ãi] ≤
√

3

2
√
nU
·

√
1− b2min

b2min

(
1

b4min

+
2

b2min

)
.

Next, to bound EN ,τ
[
(ãi − āi)2

]
, it is sufficient to upper bound EN

[
(ãi − ā(j,k)

i )2 | λj , λk
]

independent of choice

of j and k. Refer to this expectation as E
[
(ãi − āi)2

]
. Then, E

[
(ãi − āi)2

]
= E

[
(ã2
i−ā

2
i )

2

(ãi+āi)2

]
≤ 1

4b2min
E
[
(ã2
i − ā2

i )
2
]
.

Similar to (79),

E
[
(ãi − āi)2

]
≤ 1

4bmin2

E

( M̂ijM̂ik

M̂jkMjk
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M̂ij
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|M̂ik −Mik|+

Mik

Mjk
|M̂ij −Mij |

)2
 (80)

≤ 1
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1
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)2
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(
1
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+
2
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)(
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(
M̂ij

)
+ Var

(
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)
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(
M̂jk

))
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4nU
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1
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+
2
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)

F Additional Experimental Details

We provide additional details on experiments. Our code can be found at https://github.com/bencw99/

comparing-labeled-and-unlabeled-data.

F.1 Synthetic Experiments

In this section, we first provide our protocol for generating synthetic data, which is fixed across our synthetic
experiments. We then discuss the details of the experiments performed for each of the plots in section 4 and
section 5.

Generating synthetic data We use the same synthetic data distributions for all of our synthetic experiments.
We set the number of sources to m = 10, and draw accuracies uniformly from [.55, .75], both of which would be
typical in relevant applications (ex., in weak supervision). We report these accuracies in Table 3. For experiments
with dependencies, when d = 1 we add the edge (0, 1), when d = 2 we add a second edge (2, 3) and so on. Every
dependency is fixed at εij = E[λiλj ]− E[λi]E[λj ] = 0.1.

Figure 3: Excess generalization error We measure the expected excess generalization error for several
different estimators and values of n. For each value of n, we take 1000 samples and measure the generalization
error of an estimator trained on this sample. We average the results over these 1000 samples.

Figure 4: Computing the data value ratio We compute the data value ratio for unlabeled models with
mean and median aggregation for different numbers of dependencies d. The definition of the data value ratio
requires finding the smallest nL with which learning from nL labeled points achieves lower expected generalization

https://github.com/bencw99/comparing-labeled-and-unlabeled-data
https://github.com/bencw99/comparing-labeled-and-unlabeled-data
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Figure 7: Excess generalization error and associated combination weight α for an optimally weighted combination of
labeled and unlabeled estimators, and a combination weighted according to Green et al. (2005) across the well-specified
(left), misspecified (center), and corrected (right) settings. The number of unlabeled points is fixed at nU = 1000.

error than learning from nU unlabeled points. To measure the expected generalization error for some n, we
average over 1000 samples, which would be intractable to do for every nL. Therefore, we measure the expected
generalization error for every nL between 10 and 100, every nL divisible by 2 between 100 and 1000 and every
nL divisible by 10 between 1000 and 5000. Besides this shortcut, we compute the data value ratio according to
its definition.

Figure 5: Combining labeled and unlabeled data We compare the practical approach of weighting the
unlabeled and labeled estimators according to Green et al. (2005), formally defined in section C.2, with the
optimal weight. We let the optimal weight vary with nU and nL, but not with the specific data points drawn.
In other words, we compute the optimal weight to be that which minimizes the average generalization error over
1000 trials for each nL. On the other hand, the weight from Green et al. (2005) is a function of the learned
accuracies (and thus of the specific data points drawn). In Figure 7 we report the optimal α for each nL (nU is
fixed at 1000) as well as the average weight from Green et al. (2005) over 1000 trials.

F.2 Real-World Case Study: Weak Supervision

We discuss the weak supervision dataset we create and clarify the details of our experimental protocol for the
real-world case study.

Creating a weak supervision dataset In weak supervision, soft labels from latent variable estimation are
used as an alternative to a hand-labeled dataset. The sources used are usually heuristics which incorporate
domain-specific knowledge about a particular task and can be acquired relatively cheaply. For our real-world
case study, we choose the simple sentiment analysis task of classifying IMDB reviews as positive or negative.
Our sources are defined simply: for a collection of positive sentiment words, output “yes” if the word appears in
the review and “no” otherwise; for a collection of negative sentiment words, similarly output “no” if the word
appears and “yes” otherwise. The specific words used and their sentiments are reported in Table 4. We select
these words because they are empirically predictive, appear relatively frequently in reviews and are intuitively
associated with positive/negative reviews.

Figure 6 and Table 1: Experiments with real data We measure excess generalization error, the data
value ratio and the performances of combined estimators for the real-world dataset. Our protocols for these
experiments mirror those we used for synthetic datasets, with two key differences: (1) for each trial, we sample
points uniformly from the training set of 40,000 points, since we cannot sample directly from the distribution
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Word love like good great best excellent terrible worst bad better could would

Sentiment + + + + + + - - - - - -

Table 4: The words used as sources for the real-world weak supervision task of classifying IMDB reviews as positive or
negative.

and (2) we measure generalization error on the test set, since we cannot compute the expected generalization
error directly.
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