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Abstract

Labeling data for modern machine learning is
expensive and time-consuming. Latent vari-
able models can be used to infer labels from
weaker, easier-to-acquire sources operating
on unlabeled data. Such models can also be
trained using labeled data, presenting a key
question: should a user invest in few labeled
or many unlabeled points? We answer this
via a framework centered on model misspec-
ification in method-of-moments latent vari-
able estimation. Our core result is a bias-
variance decomposition of the generalization
error, which shows that the unlabeled-only
approach incurs additional bias under mis-
specification. We then introduce a correction
that provably removes this bias in certain
cases. We apply our decomposition frame-
work to three scenarios—well-specified, mis-
specified, and corrected models—to 1) choose
between labeled and unlabeled data and 2)
learn from their combination. We observe
theoretically and with synthetic experiments
that for well-specified models, labeled points
are worth a constant factor more than un-
labeled points. With misspecification, how-
ever, their relative value is higher due to
the additional bias but can be reduced with
correction. We also apply our approach to
study real-world weak supervision techniques
for dataset construction.

1 Introduction

A key challenge in data-driven fields is the quality of
training data. A fixed data collection budget can pro-
vide a large amount of incomplete training data or a
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smaller but cleaner dataset. Given a choice between
these two options, which should we select and which
factors should determine this decision? This funda-
mental question is especially relevant to modern ma-
chine learning, where vast amounts of unlabeled data
is available. To exploit this without extensive hand-
labeling, powerful techniques relying on latent vari-
able models—in particular, method-of-moments—have
been developed to generate labels.

Latent variable method-of-moments has been used to
learn topic models (Anandkumar et al., 2014) and
parse trees (Hsu et al., 2012), to evaluate crowdwork-
ers (Joglekar et al., 2013), and to generate training
datasets (Ratner et al., 2019; Fu et al., 2020). In these
models, the observable outputs of sources are used to
infer the latent variable, the true label. The core chal-
lenge is to learn correlations (i.e., accuracies) between
the sources and the latent variable, which parametrize
the model used to infer labels. To learn the accuracies,
the method of moments, which relies on decomposing
multiple observable statistics based on independence
among sources, is commonly used to produce simple,
closed-form estimators (in contrast to the EM algo-
rithm). When some labeled data is available, this
setup also allows for the accuracy parameters to be
directly estimated (Figure 1). Thus, given a limited
budget, a principle for choosing between labeled and
unlabeled data is crucial; this motivates a theoretical
framework to understand their relative value.

However, unmodeled dependencies among sources—a
form of model misspecification—are common and yield
inconsistent accuracy estimates, which in turn yield
poor inferred labels. This affects the value of data
produced with latent variable methods, so misspec-
ification must play a role in our framework. While
the question of how to analyze misspecification has
been studied in classical statistics and semi-supervised
learning, the focus is typically on estimator asymp-
totics (Kleijn and van der Vaart, 2006, 2012; Yang
and Priebe, 2011). Our main challenge, however, is
to understand and address misspecification for both
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Figure 1: Latent variable methods (e.g., method-of-moments) can infer an unobserved variable (Y ) by learning the
accuracies of correlated sources (λ1, . . . , λ4). This is done either from unlabeled data or directly from a small amount of
labels; we seek a framework to explain the relative value of these choices. A major challenge are unmodeled dependencies
between sources (red). Latent variable models have numerous applications.

parameter estimation and label inference in the finite
sample setting.

We theoretically analyze the two alternatives in latent
variable methods. In both cases, the output is a condi-
tional distribution for the latent variable given observ-
able sources. For the inputs, the choices are either nL
labeled and/or nU unlabeled points (and the outputs
of m sources per point). We examine misspecification
in the form of unmodeled pairwise source dependen-
cies, giving a generalization error analysis for method-
of-moments latent variable model performance of the
two alternatives. We present a bias-variance decompo-
sition of the generalization error in Theorem 1, which
for both the labeled and unlabeled data cases consists
of (i) irreducible error, (ii) variance, and (iii) bias due
to model misspecification at inference time. An im-
portant consequence is that for unlabeled data, we
incur an additional (iv) standing bias due to incon-
sistent accuracy estimation that scales with the extent
of misspecification, namely O(d/m) for m sources and
d unmodeled dependencies among them.

Next, we turn to correcting this standing misspecifi-
cation bias. In particular, a simple median-based ap-
proach is able to produce consistent estimators given
d = o(m2) and sufficient amounts of unlabeled data.
Therefore, in certain cases, the bias O(d/m) from mis-
specification can be completely eliminated (Proposi-
tion 1). This creates three scenarios to consider for
our framework: well-specified (i.e. no unmodeled de-
pendencies), misspecified, and corrected settings.

We give two applications of our theoretical framework
for the three scenarios. First, we develop a criterion,
the data value ratio, for choosing between labeled and
unlabeled data, which is based on the relative mini-
mum amount of labeled points needed to perform as
well as a fixed amount of unlabeled points in terms of
generalization error. For well-specified models, labeled
data is a constant factor more valuable than unlabeled,
but for misspecified models the value grows linearly in
d and nU . Furthermore, corrected models are able

to improve the value of unlabeled data. Second, we
combine the estimated parameters from the unlabeled
approach, which are biased (and potentially inconsis-
tent), with ones from the labeled approach—in certain
cases outperforming either individually. We validate
our framework with synthetic experiments, verify the
scaling of our generalization error, data value ratio,
and the performance of combined estimators across the
three settings.

An important real-world application of our results on
latent variable methods are weak supervision (WS)
frameworks, in particular data programming (Ratner
et al., 2016), used in a huge range of products and sys-
tems across industry and academia. WS frameworks
construct datasets without ground-truth annotations
by using unlabeled points and distant or weak sources,
such as heuristics (Gupta and Manning, 2014), ex-
ternal knowledge bases (Mintz et al., 2009; Craven
and Kumlien, 1999; Takamatsu et al., 2012), or noisy
crowd-sourced labels (Karger et al., 2011; Dawid and
Skene, 1979). Data programming encompasses many
such prior approaches, and has shown excellent re-
sults with the method-of-moments approach (Fu et al.,
2020). We perform a real-world WS case study, where
ground-truth source dependencies are not known, but
sources are likely to be correlated to some extent. We
observe that the relative value of labeled data is large,
but the value of unlabeled data can be increased via
our median correction. With equal amounts of data,
the F1-score of the WS model for constructing datasets
with a baseline unlabeled approach is 64.81 and the
score of a labeled approach is 71.79, but the score of
an unlabeled approach with correction is 68.12. This
suggests that our theoretical explanation of the effects
of misspecification can account for some of the behav-
ior of models on real data.

2 Related Work

Misspecification in Graphical Models The
asymptotic effect of misspecification on parameter
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estimation is studied by Kleijn and van der Vaart
(2012), extending the Bernstein-Von Mises theorem
to cases where observed samples are not of the as-
sumed parametric distribution. However, their main
results do not fully extend to method-of-moments es-
timators. Other analyses of model misspecification di-
rectly examine distribution families, such as Jog and
Loh (2015)’s lower bound on KL-separation of Gaus-
sian graphical models. This bound is important for
modeling errors in inference, but it does not illustrate
our additional error in parameter estimation. More
generally, works on misspecification either study a par-
ticular class of techniques (De Blasi and Walker, 2013)
or a particular model and propose repairs (Grünwald
et al., 2017), while we compare effects on data types.

Structure Learning One way to reduce misspecifi-
cation is to produce a more refined model. Graphical
model structure learning aims to do so in both the su-
pervised (Ravikumar et al., 2011; Loh and Wainwright,
2013) and unsupervised cases (Chandrasekaran et al.,
2012; Meng et al., 2014; Bach et al., 2017; Varma et al.,
2019). However, these works present computational
challenges, require (often strong) conditions to hold,
and do not analyze the downstream impact of errors.
Our approach instead focuses on understanding the
impact of errors, but it is also applicable to partial
recovery that often results from structure learning.

Semi-Supervised Learning involves learning from
a small set of labeled points and a larger set of un-
labeled points (Chapelle and Scholkopf, 2006; Zhu
and Goldberg, 2009). There are several works on
the relative value of labeled and unlabeled data in
semi-supervised settings, typically requiring assump-
tions about the data distribution (e.g., cluster, man-
ifold) (Castelli and Cover, 1996; Singh et al., 2008;
Ben-David et al., 2008). In contrast, our work ex-
plicitly considers violations of model assumptions by
quantifying how misspecification influences the rela-
tive value of labeled and unlabeled data. This direc-
tion has been explored by Yang and Priebe (2011),
who study asymptotic performance degradation due
to misspecification in semi-supervised maximum like-
lihood estimation; however, their results only describe
the conditions under which degradation occurs. We
further bound the extent of degradation, handle the
finite sample case, and propose a way to mitigate mis-
specification.

Valuation of Data Several methods have been
proposed for measuring the value of individual data
points, often based on the Shapley value (Ghorbani
and Zou, 2019; Jia et al., 2019). Such valuations can
then be used to inform what additional data should
be acquired to improve a model. Our goal in valu-

ing labeled versus unlabeled data is similar, but we
do not value individual data points and instead com-
pare performance of classifiers trained on labeled data,
unlabeled data, and on both.

3 Background and Problem Setting

We start with background on latent variable models
and introduce the model we analyze. We explain the
two stages—learning accuracies and inferring labels—
for both the labeled and unlabeled cases, and conclude
with how to evaluate the model.

Setup In latent variable models, a number of sources
are observed and used to infer the latent variable. The
input is usually nU unlabeled data points, but in our
setting we also consider a small labeled dataset of nL
samples. The output is a large, labeled dataset.

Let X ∈ X and Y ∈ Y = {−1, 1}. We consider
an unlabeled dataset XU = {xUi }

nU
i=1 and a labeled

dataset (XL,YL) = {(xLi , yLi )}nLi=1 drawn from the dis-
tribution of (X,Y ). There are m sources, each out-
putting a value in {−1,+1} via a deterministic func-
tion λj : X → Y for all j ∈ [m]. Our goal is to use
the outputs of λ, the vector of sources, to construct a
model to infer Y .

To infer Y , we learn the model Pr(Y |λ) to produce
soft labels ỹi := 2 Pr(Y = 1|λ = λ(xi)) − 1 ∈ [−1, 1]
for each xi by applying the m sources’ functions to the
datasets XU or (XL,YL). The overall approach has
two steps: (i) learn the latent variable model (using
labeled or unlabeled data), and (ii) infer labels ỹi.

Theoretical model We pick a simple model that
captures many latent variable model settings and still
presents all of the challenges for comparing between
the types of data. We assume an Ising model for
Pr(Y,λ); the only difference between the labeled and
unlabeled setting is that Y is latent in the latter. The
dependency graph is G = (V,E), where V = Y ∪ λ
and E consists of edges from Y to the sources as well
as the d edges among the sources, Eλ. The lack of an
edge in G between a pair of variables indicates inde-
pendence conditioned on a separator set (Lauritzen,
1996), so the true distribution can be modeled as

Pr(Y,λ; θ) =
1

Z
exp

(
θY +

m∑
i=1

θiλiY +
∑

(i,j)∈Eλ

θijλiλj

)
,

with cumulant function Z and the set of canonical pa-
rameters θ = {θY , θi ∀i, θij ∀(i, j) ∈ Eλ}. For cleaner
presentation, we assume θ ≥ 0 (no sources that dis-
agree with others or Y on average) and Eλ is sparse
enough such that deg(λi) ≤ 2 for all λi (each source is
conditionally dependent on at most one other source).
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Figure 2: Estimating accuracy parameter of λ1 with unmodeled dependency (red edge), leading to misspecification.
Boxes indicate observable variables used for accuracy estimation. Left: model with access to label data. The accuracy
parameter is directly estimated using Y and λ1 and is not impacted by the unmodeled dependency. Center: latent model
with unlabeled data and unobserved Y . The boxed triplet includes the unmodeled dependency, leading to inconsistent
estimate ãU1 . Right: Corrected model using medians. The boxed triplet, chosen as the median estimate among

(
m−1

2

)
triplets, excludes the dependency, yielding a consistent ãM1 .

Inference The label is computed using a naive
Bayes approach that assumes all sources are condi-
tionally independent with Eλ = ∅:

P̃r(Y = 1|λ = λ(X))

=

∏m
i=1 P̃r(λi = λi(X)|Y = 1) Pr(Y = 1)

P̂r(λ = λ(X))
, (1)

where the class balance Pr(Y = 1) is assumed to be

known, P̂r is an empirical probability , and P̃r indi-
cates an estimated probability resulting from the pa-
rameter estimation step described below. In practice,
the conditional independence assumptions required for
(1) may not hold, but dependencies among sources are
often unknown. Therefore, conditional independence
is assumed, and we may suffer from misspecification
in inferring our probabilistic labels.

Learning parameters with method-of-moments
For the labeled dataset, we learn P̃r(λi = λi(X)|Y =
1) in (1) directly from samples, as Y is observed.

For the unlabeled dataset, we use the method-of-
moments estimator from Fu et al. (2020) (described
in Appendix B), which relies on the property that
if λi ⊥⊥ λj |Y , then λiY ⊥⊥ λjY . This implies that
E [λiY ] ·E [λjY ] = E

[
λiλjY

2
]

= E [λiλj ] , which is di-
rectly estimable. Define ai := E [λiY ] as the unknown
accuracy of λi. If we can introduce a third λk that is
conditionally independent of λi and λj , we have a sys-
tem of equations that can be solved using observable
statistics. We use this triplet method to recover these
accuracies: we choose two λj , λk at random for each
λi and solve up to sign:

|ã(j,k)
i | :=

√∣∣∣∣ Ê [λiλj ] Ê [λiλk]

Ê [λjλk]

∣∣∣∣, (2)

where Ê is an empirical estimate of the expectation.

We use the estimated ãUi := ã
(j,k)
i to directly compute

P̃r(λi = ±1|Y = 1) for (1). However, random λj and
λk may not satisfy conditional independence, and thus
we incur error in estimating accuracies due to misspec-
ification in a way unique to the unlabeled setting. Fig-
ure 2 (left, center) describes how this misspecification
impacts learning the accuracies in the labeled versus
unlabeled cases. We aim to capture the role of this
misspecification in our evaluation.

Evaluating the model We define the model’s gen-
eralization error as R = E(Y,λ),N ,τ [l(Ỹ , Y )] where ex-
pectation is taken over the distribution of (Y,λ), N
(the random dataset used), and τ (the algorithmic
randomness if applicable, i.e. the triplets used in
method-of-moments). l(·, ·) here is the cross entropy

loss, l(ỹi, yi) = − 1+yi
2 log P̃r(Y = 1|λ = λ(xi)) −

1−yi
2 log P̃r(Y = −1|λ = λ(xi)). Let RU denote the

error for the unlabeled dataset and RL for labeled.

4 Theoretical Results

We theoretically analyze the quality of the latent vari-
able model, taking into account the impact of mis-
specification when using unlabeled versus labeled data.
In Section 4.1 we give an exact decomposition of
the generalization error of the latent variable model,
which demonstrates how misspecification is present in
both the parameter learning and inference steps of the
model when data is unlabeled and only present in the
latter when data is labeled. In Section 4.2, we bound
the generalization error using this framework to show
how the unlabeled case has an additional standing bias
of O(d/m). Given this standing bias, in Section 4.3
we introduce a simple method that can in some cases
correct for dependency-based misspecification, and we
analyze its impact on generalization error. In 4.4 we
present synthetic experiments that verify our results.



Chen, Cohen-Wang, Mussmann, Sala, Ré

4.1 Decomposition Framework

Our first result is a decomposition of the generalization
error into four components. The last two components,
the inference bias and parameter estimation error, re-
flect the role of misspecification.

Theorem 1. The generalization error has the follow-
ing decomposition:

E
[
l(Ỹ , Y )

]
= H(Y |λ)︸ ︷︷ ︸
Irreducible error

−EN
[
DKL(Pr(λ)||P̂r(λ))

]
︸ ︷︷ ︸

Observable sampling noise

+

∑
(i,j)∈Eλ

I(λi;λj |Y )︸ ︷︷ ︸
Inference bias

+

m∑
i=1

EY,N ,τ
[
DKL(Prλi|Y ||P̃rλi|Y )

]
︸ ︷︷ ︸

Parameter estimation error

,

where I(λi;λj |Y ) is the conditional mutual informa-
tion between sources and H(Y |λ) is conditional en-
tropy. Pr refers to the true data distribution, while P̂r
and P̃r refer to the estimated probabilities in (1).

We now discuss each term above. The first two terms
are independent of misspecification and are present in
both the unlabeled and labeled cases:

• Irreducible error: an intrinsic property of the dis-
tribution of (Y,λ), always present in bias-variance
decomposition.
• Observable sampling noise: the expected KL di-

vergence between the true marginal distribution
of the observable sources and the empirical distri-
bution. Particular to our inference approach, it
is a common notion of sampling noise (Domingos,
2000; Yang et al., 2020) and approaches 0 asymp-
totically.

For the last two terms, misspecification plays a differ-
ent role depending on the data type.

• Inference bias: the conditional mutual informa-
tion among dependent sources. Particular to our
inference approach, it is the approximation error
of using marginal singleton probabilities rather
than their product distributions. Therefore, it
represents the role of misspecification at the infer-
ence step (1) and is present for both data types. It
is independent of parameter estimation method.
• Parameter estimation error: the difference be-

tween the true and estimated distribution of λi|Y .
For the labeled approach, this error corresponds
to sampling noise and asymptotically approaches
0. For the unlabeled approach, it directly de-
pends on the estimation error of accuracies in
(2). However, these estimators are biased, as are
many method-of-moments approaches. Further-
more, misspecification makes the estimators in-
consistent when λi, λj , and λk used to produce

ã
(j,k)
i are not pairwise conditionally independent.

We now discuss in detail the scaling of these last two
terms, which highlights the tradeoff between labeled
and unlabeled data under misspecification.

4.2 Scaling of the Generalization Error

We bound the terms in Theorem 1 to understand the
scaling of error due to misspecification in both the
unlabeled and labeled cases. Since the irreducible
error is always present, we bound excess generaliza-
tion error, defined as ReL = RL −H(Y |λ) for labeled
data and similarly ReU for unlabeled data. We use
BI =

∑
I(λi;λj |Y ) for the inference bias in these

bounds since it is independent of our two cases, and
while it scales in d, it is simply a measurement over
the true data distribution. We present upper bounds
here and lower asymptotic bounds in Appendix C.3.

We first bound ReL.

Theorem 2. Suppose that there are |Eλ| = d unmod-
eled dependencies. When we use the latent variable
model described in section 3 with nL labeled samples,

ReL ≤
m

2nL
+ BI + o(1/nL). (3)

In this bound, m
2nL

is an upper bound on parame-
ter estimation error. It represents the sampling noise
of ãLi = Ê [λiY ], which asymptotically approaches 0.
Therefore, the only standing bias is BI due to inference
approach. When the model is well-specified, the excess
error is O(1/nL), and thus for large nL our generated
labels eventually follow the true distribution Pr(Y |λ).

We next present an upper bound on the excess gen-
eralization error in the unlabeled case. Define εij =
E [λiλj ] − E [λiY ]E [λjY ] as the extent of misspecifi-
cation on a single pair of sources, and let 0 ≤ εmin ≤
εij ≤ εmax for all pairs (i, j) under our model assump-
tions in section 3. The exact value of εij in terms of
canonical parameters is in Appendix D.3.

Theorem 3. Suppose that there are |Eλ| = d depen-
dencies. When we use the latent variable model de-
scribed in section 3 using nU unlabeled samples,

ReU ≤εmax

(
c1d

m
+

c2√
nU

+
c3d

mnU

)
(4)

+
c4m

nU
+ BI + o(1/nU ),

where c1, c2, c3, and c4 are constants depending on the
intrinsic quality of the sources (Appendix D.3).

In this bound, we again have an observable sam-
pling noise c4m

nU
, where the the constant term comes

from estimating Ê [λiλj ] in (2) rather than Ê [λiY ]
in the labeled approach. However, here the param-
eter estimation error has an additional term Best :=
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εmax

(
c1d
m + c2√

nU
+ c3d

mnU

)
which depends on misspec-

ification. Therefore, asymptotically the unlabeled ap-
proach has a standing bias bounded by c1dεmax

m + BI
in comparison to the labeled case’s BI , and the finite-
sample regime contributes additional sampling noise
for the unlabeled approach that scales in εmax. In the
case the model is well-specified (d = 0, εmax = 0), the
only term present is c4m

nU
, so our latent variable model

would also approach the true distribution of Pr(Y |λ)
but at a different rate than the labeled case.

Partial Recovery Our results hold almost exactly
for the partial recovery case, where d′ out of d de-
pendencies are recovered (e.g. via structure learning)
and our method in (2) avoids choosing known pairs of
dependent sources. In particular, the additional esti-

mation error now scales at rate (d−d′)εmax

m−2d′ .

4.3 Correcting for misspecification

How can we reduce the penalty for dealing with such
unrecovered dependencies? We examine how to re-
duce misspecification for our estimator described in
(2). Our correction can be applied to other method-of-
moments approaches (Anandkumar et al., 2012; Cha-
ganty and Liang, 2014), discussed in Appendix C.1.

In our estimation approach, if there exists an λi such
that there are no λj , λk where all three sources are
pairwise conditionally independent given Y , then it
is not possible to learn ai. In less demanding cases,
we suggest an alternative approach based on medians.
Recall that misspecification impacts accuracy estima-
tion error because random triplets that violate pair-
wise conditional independence are selected to compute
our ãUi . To reduce this impact, we estimate each ai by
computing the median accuracy over all pairs λj , λk
using (2) a total of

(
m−1

2

)
times, as shown in Figure

2 (right). The intuition behind this approach is that
inconsistent estimates produced by dependent sources
have more extreme values and thus may not impact
the median.

Proposition 1. Let ãMi = median({ã(j,k)
i ∀ j, k 6= i}).

Then ãMi is not affected by misspecification and is thus

a consistent estimator if m > 5, d < (m−1)(m−2)
4 , and

nU ≥ n0, where n0 is ω(1/ε2
min).

Refer to ρnU = maxi E
[
(ãMi − ai)2

]
as the maximum

MSE for ãM . Under these conditions, the excess gen-
eralization error ReM from using nU unlabeled samples
and a corrected model is, for constant cρ,

ReM ≤ cρmρnU + BI + o(1/nU ). (5)

While ρ can be analyzed in detail as a variant
of a medians-of-means estimator, we stress that
limnU→∞ ρnU = 0. Thus the standing bias of or-
der O(d/m) due to misspecification can be eliminated.
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Figure 3: Excess generalization error vs. log(n) with dif-
ferent estimators for synthetic data. Left: comparison of
unlabeled data performance under the three discussed set-
tings. Right: comparison of labeled data performance for
well-specified and misspecified models. A dashed line repe-
senting an empirical “BI” suggests how inference bias is
present in both data cases.

This reduction has many implications for the value of
labeled vs. unlabeled data in corrected settings.

4.4 Synthetic Experiments

We validate the fundamental principles of our theo-
retical framework using synthetic data. We measure
the excess generalization error vs. log(n) in the well-
specified, misspecified and corrected settings on syn-
thetic data with m = 10 sources, accuracies drawn
uniformly from [.55, .75] and extent of misspecification
fixed at ε = 0.1. To approximate expected excess gen-
eralization error for each n, we average results over
1000 samples. A more detailed protocol for synthetic
experiments is available in Appendix F.1.

Our results are in Figure 3. With no misspecification
(d = 0) the labeled and unlabeled estimators both
tend towards zero in the two graphs. Under misspec-
ification (d = 5), we see that learning from unlabeled
data results in an additional standing bias that par-
allels Best. Median aggregation reduces this bias and
results in error converging to roughly similar values,
paralleling BI , in both the unlabeled and labeled cases
in the two graphs. These observations are consistent
with our theoretical findings.

5 Applications

Based on our generalization error framework, we now
have a rigorous way to analyze misspecification in la-
tent variable models. We examine two practical ap-
plications of our theoretical results in three settings—
well-specified, misspecified, and corrected:

• Understanding the value of labeled data: we
address our motivating question about the value
of labeled data—-is a few labeled samples or many
unlabeled samples better? This decision varies
per setting, depending on the misspecification pa-
rameters (d, εmax), and nU versus nL.
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• Combining labeled and unlabeled data: we
show how simple linear combinations of the esti-
mators can improve generalization error bounds
over using one or the other. We also suggest
a James-Stein type estimator from Green et al.
(2005), which combines an unbiased estimator
with biased information, to easily determine the
weights of the linear combination.

We extend our upper bounds on the decomposition in
Theorem 1 to these two applications of our framework,
presenting theoretical results first and then verifying
our results on synthetic data. In Appendix C.3, we
comment on how lower bounds can be obtained and
used for similar analysis as an avenue for future work.

5.1 Understanding the value of labeled data

We use our analysis from Section 4.2 to develop a crite-
rion for deciding between labeled and unlabeled points.
Compute

f(nU ) = min
nL∈N

s.t. ReL(nL) ≤ ReU (nU ),

and define V (nU ) = nU/f(nU ) to be the data value
ratio. The intuitive idea here is to compare, for some
amount of unlabeled data nU , what factor less labeled
data we would require to produce an equivalent er-
ror bound. We consider an approximation of the data
value ratio Ṽ (nU ) based on our upper bounds for ex-
cess generalization error. We examine the differences
in Ṽ (nU ) for our three aforementioned settings:

• Well-specified setting: comparing excess risk
when d = 0 and εmax = 0 reduces to examining
m

2nL
and c4m

nU
. Thus Ṽ (nU ) = 2c4 and our frame-

work suggests that labeled data is only a constant
factor more beneficial than unlabeled data.
• Misspecified setting: Ṽ (nU ) will capture the

tradeoff between m
2nL

and Best+ c4m
nU

. We find that

Ṽ (nU ) = 2εmax

(
c1dnU
m +

c2
√
nU
m + c3d

m2

)
+2c4. That

is, the value of labeled data increases linearly in
the amount of unlabeled data and misspecification
due to the standing bias in the generalization er-
ror for the unlabeled approach.
• Corrected setting: under our conditions from

Proposition 1, we examine the difference between
m

2nL
and cρmρnU , and thus Ṽ (nU ) = 2nUcρρnU .

Since ρnU converges to 0, Ṽ (nU ) is sublinear in
nU , showing that the corrected model increases
the relative value of unlabeled data.

Synthetic Experiments We measure V (nU ) in
well-specified, misspecified and corrected settings on
synthetic data with the same setup as discussed in 4.4.
Our detailed protocol for approximating V (nU ) is in
Appendix F.1.
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Figure 4: Data value ratio vs. n, using both the standard
method-of-moments approach and the corrected approach,
which aggregates results over triplets using medians. Note
that d = 0 represents the well-specified setting.

We present the results in Figure 4. In the well-specified
case (d = 0), V (n) is small (less than 5) and roughly
constant across n. Under misspecification however,
the data value ratio grows with both d and n albeit
much more slowly for the corrected setting, aligning
with our theoretical findings.

5.2 Combining labeled and unlabeled data

While we now have a criterion to choose between
datasets, how do we combine information from both?
We examine ways to combine the accuracy parame-
ters, namely ãU as defined in (2) for unlabeled data

and an equivalent ãL := Ê [λY ] for labeled data. Re-
call that ãL is unbiased, while ãU is both biased and
inconsistent if not corrected.

First, we consider a simple linear combination,
alin(α) = αãU + (1 − α)ãL for some weight α ∈ [0, 1].
Using our framework in Theorem 1, we can derive
similar upper bounds on excess generalization error
when the estimator is alin(α). We summarize our find-
ings across the three settings below, where we consider
αãM + (1− α)ãL for the corrected setting.

• Well-specified setting: the upper bound on excess
generalization error using alin, ignoring BI and
lower order terms, is α2 c4m

nU
+(1−α)2 m

2nL
. One can

easily verify that there exists an α ∈ (0, 1) that
minimizes this upper bound. Since nU is usually
much larger than nL, plugging in this optimal α
shows that this new upper bound is roughly of the
same order as the unlabeled case.
• Misspecified setting: the upper bound is a cu-

bic polynomial in α. We find that the standing
bias results in the optimal α weighting the labeled
data’s estimator more. This suggests that a com-
bined estimator can yield an upper bound much
smaller than that for the unlabeled case.
• Corrected setting: the upper bound now consists

of α2cρmρnU + (1 − α)2 m
2nL

. As a function of α,
this differs from the well-specified setting’s expres-
sion only in constant coefficients, so this again
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Figure 5: Excess generalization error for an optimally
weighted combination of labeled and unlabeled estima-
tors, and a combination weighted according to Green et al.
(2005) across the well-specified (left), misspecified (center),
and corrected (right) settings. The number of unlabeled
points is fixed at nU = 1000.

suggests an optimal α ∈ (0, 1) and performance
roughly similar to the unlabeled case.

In practice, we do not know the exact α that optimizes
generalization error. However, there is vast literature
on combined estimators that dominate the MLE esti-
mator ãL. In particular, we suggest using an approach
from Green et al. (2005), who propose a way of set-
ting α given knowledge of an unbiased estimator with
biased information.

Synthetic Experiments We investigate the empir-
ical performance of estimators which combine labeled
and unlabeled data in well-specified, misspecified and
corrected settings. We measure both the error when
using the fine-tuned α and the more practical approach
of Green et al. (2005). We fix nU = 1000 and vary
nL across a range of smaller values, aligning with the
assumption that many more unlabeled than labeled
points are typically available. Our results are in Fig-
ure 5. In the well-specified setting, the combined esti-
mators perform roughly the same as just ãU , match-
ing up with our theoretical observations for large nU .
In the misspecified setting, both combined estimators
result in lower excess risk than either estimator indi-
vidually, and as nL increases, the labeled estimator
curve approaches those of the combined estimators,
suggesting that the weight on ãL increases as more la-
beled data becomes available. Lastly, in the corrected
setting both combined estimators perform better than
ãU , but not by much. The weights α are reported
in Appendix F.1. The optimal weights for the well-
specified and corrected settings are higher (i.e. more
weight on the unlabeled estimator) than the misspec-
ified setting, and these weights decrease with nL.

6 Real-World Case Study: Weak
Supervision

We validate our findings on real-world weak supervi-
sion dataset. Unlike our theoretical setting where we

limit the number of dependencies d for simplicity, with
real-world data we anticipate many small dependencies
which cannot be completely corrected by the medians
approach. We seek to answer the following key ques-
tions.

• What is the standing parameter estimation bias
due to misspecification? To what extent does the
corrected estimator, which only addresses unmod-
eled source dependencies, mitigate this bias?
• What is the data value ratio for misspecified and

corrected settings?
• Can a combined estimator with access to a small

amount of labeled data provide substantial bene-
fits over using only unlabeled data?

Protocol Our real-world task is the sentiment anal-
ysis task of determining whether IMDB movie reviews
are positive or negative (Maas et al., 2011). The
dataset contains 50K movie reviews, which we split
into a training set of 40K reviews and a test set of
10K reviews. Our weak supervision sources are simple
heuristics that vote “yes” when positive words appear
and “no” when negative words appear. We provide
further details in Appendix F.2.

Unlike our theoretical model, where we assume that
each source has a single accuracy parameter, we find
that real-world sources have complex dependencies
and can be better modeled with class conditional accu-
racies. The method-of-moments approach in this set-
ting results in a quadratic version of the triplet method
(Fu et al., 2020), the details of which we discuss in Ap-
pendix C.1. We use this version for our real-world case
study, for which the same principles from our theoret-
ical framework apply.

Standing bias and correction For our first real-
world experiment, we measure the standing parame-
ter estimation bias when learning from unlabeled data
(paralleling Best), and measure the decrease in bias
when using a corrected estimator. We compute the
test cross entropy loss for a labeled model, a base-
line unlabeled and an unlabeled model with correc-
tion while varying n and report results in Figure 6
(left, bottom). Losses appear to converge, with a large
gap between the labeled and unlabeled models and a
smaller gap between the labeled model and the unla-
beled model with correction. These gaps in loss are re-
flected by gaps in F1-scores, computed using a thresh-
old of .5.

Measuring the value of labeled data Next, we
measure the data value ratio in the real-world set-
ting. Since both the unlabeled model and the unla-
beled model with correction have a standing bias com-
pared to the labeled model, we anticipate that the data
value ratio for both unlabeled approaches grows with
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Labeled .570 71.79

Unlabeled .740 64.81

Corrected .686 68.12

Figure 6: We measure test losses and F1-scores for labeled,
unlabeled and corrected models on the IMDB dataset. Top
Left: losses vs. n; each model appears to flatten out by
n = 40, 000. Bottom: losses and F1-scores at n = 40, 000,
showing standing gaps in performance. Top Right: data
value ratios for the two unlabeled models.

nU nL F1Unlabeled F1Labeled F1Combined

40,000 40 68.12 64.70 67.06

40,000 80 68.12 67.65 68.81

40,000 120 68.12 68.92 69.64

40,000 200 68.12 69.97 70.41

40,000 400 68.12 70.81 71.04

Table 1: F1-scores for unlabeled, labeled and combined
approaches on the IMDB dataset. We find that the combi-
nation generally outperforms either approach individually,
and in particular both in cases where unlabeled only per-
forms better and where labeled only performs better.

n, with the data value ratio for the baseline unlabeled
model being higher. We report these results in Fig-
ure 6 (right).

Combining labeled and unlabeled data We fi-
nally measure the performance of the combined esti-
mator from Green et al. (2005) in the setting where
a small number of labeled points and many unlabeled
points are available. We let nU = 40, 000 be the en-
tire training set and vary nL between 40 and 400. We
use the corrected estimator for learning from unlabeled
data. We report the F1-score using a threshold of .5.
Results are in Table 1. We observe that the combined
estimator outperforms either approach individually for
nL > 40.

7 Conclusion

Motivated by the practical tradeoff between acquiring
large unlabeled datasets and small labeled datasets,
we introduce a framework that aims to provide
theoretically-grounded reasoning for using labeled ver-
sus unlabeled data in latent variable graphical models.

We present three main technical contributions in this
paper: a) a finite-sample decomposition for general-
ization error with labeled vs unlabeled input, focused
on model misspecification; b) a correction approach
for method-of-moments to reduce the impact of model
misspecification; c) applications of this decomposition
framework and correction, namely how to choose and
combine the two data types. We show theoretically
and validate empirically that labeled data is more valu-
able when models are misspecified, since learning from
unlabeled data relies more heavily on structural as-
sumptions that may be violated. Simple algorithmic
corrections, however, can significantly improve the rel-
ative value of unlabeled data.
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