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A DETAILS FOR THE P-SPLINE EXAMPLE

In this section we consider the following spline problem: for N > 1 and times ti = i/N , i = 0, . . . , N , suppose
we observe

µ?ti := N
(
0, (1− ti)2 + t2i

)
, i = 0, . . . , N. (9)

This is the data for which we make the claims in Propositions 1 and 2.

A.1 Proposition 1

We begin by remarking that in general, there is no reason to expect that solutions of the P-spline problem (5)
are deterministic. Indeed, consider the following.

Proposition 4. Let µ?0 and µ?1 be any probability measures. Then, any coupling (X0, X1) of the two measures
induces an optimal P-spline solution (Xt) to (5) with data µ?0 and µ?1.

Proof. Indeed, simply set Xt := (1 − t)X0 + tX1. Since t 7→ Xt is a line traversed at constant speed, it incurs
zero P-spline cost and is therefore optimal for (5).

As this example shows, the P-spline problem with two measures is quite degenerate; in particular, it does not
recover the W2 geodesic joining µ0 to µ1, and X?

1 is not guaranteed to be a deterministic function of X?
0 . A

slight modification of this simple example yields:

Proposition 5. Let µ?0 be any absolutely continuous measure. Then, there exist absolutely continuous data

(µ?i/N )
N

i=1
and an optimal solution (Xt) to the P-spline problem (5) for µ?0, µ

?
1/N , . . . , µ

?
1 such that X1 is not a

deterministic function of X0.

Proof. Indeed, let T, T̄ : Rd → Rd be two mappings which are µ?0-a.e. distinct, i.e., T 6= T̄ . Draw X0 ∼ µ?0.
Then, we either set Xt = (1 − t)X0 + tT (X0) or else Xt = (1 − t)X0 + tT̄ (X0) with probability 1/2 each (with
the choice being made independently of the draw of X0). Set µ?i/N := law(Xi/N ).

By construction, the marginals of the process (Xt) at times 0, 1/N, . . . , 1 do indeed interpolate the data. Also,
since t 7→ Xt is a straight line traversed at constant speed, then (Xt) incurs zero P-spline cost and is optimal
for (5).

Since T and T̄ are distinct, X1 is not a deterministic function of X0. Also, the mappings T and T̄ can easily
be chosen to make the data all absolutely continuous (e.g., by taking them to be gradients of uniformly convex
functions; c.f. the proof of Villani (2003, Proposition 5.9)).

(Compare this with Proposition 7 and the subsequent remark in Benamou, Gallouët, and Vialard (2019).)

We next turn towards the Gaussian case. As detailed in Chen, Conforti, and Georgiou (2018) and Benamou,
Gallouët, and Vialard (2019), the P-spline problem (5) can be reduced to a multimarginal optimal transport
problem involving the measures µ?t0 , µ

?
t1 , . . . , µ

?
tN ,

inf
π∈Π(µ?

t0
,µ?

t1
,...,µ?

tN
)

∫
cdπ, (10)

where c is a quadratic cost function. The reduction is in the following sense: if π is an optimal solution for (10),

then let (Xt0 , Xt1 , . . . , XtN ) ∼ π, and fit a Euclidean cubic spline (Xt) through the points (Xti)
N
i=0. Then, the

stochastic process (Xt) is an optimal solution for (5). Any optimal solution of (5) is also of this form, having
sample paths that are cubic splines.

Since the cost in the multimarginal problem (10) is quadratic, it depends only on the mean and covariance

matrix of the coupling π. Suppose now that the data (µ?ti)
N

i=0
is Gaussian, and suppose we are given any optimal

coupling π for (10). Then, we can find a jointly Gaussian coupling π̄ of the data which has the same mean and
covariance structure as π, which means π̄ is also optimal for (5). The coupling π̄ then induces a Gaussian process
(X̄t) which is optimal for (5). Such a solution has the appealing property that the law µt of X̄t is also Gaussian
for every time t.
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From this discussion, it is natural to restrict ourselves to solutions to (5) which are Gaussian processes. We call
such a solution a Gaussian solution to the P-spline problem (5). We now state a counterexample which proves
Proposition 1.

Proposition 6. Assume N > 1. For i = 0, 1, . . . , N , let µ?ti = N (0, (1 − ti)2 + t2i ). Then there is a unique
Gaussian solution to the P-spline problem (5) and it is not induced by a deterministic map.

Proof. The key observation is that the marginals µ?ti arise from the curve of measures formed as the law of
X?
t := (1− t)X?

0 + tX?
1 for independent standard Gaussians X?

0 and X?
1 . If we consider the distribution on paths

which is the law of (X?
t ), then it is supported on straight lines traversed at constant speed and so it must be

optimal for the P -spline problem (5), having zero objective value.

Consider some other stochastic process (Xt) such that the law of (Xti)
N
i=0 is jointly Gaussian. For (Xt) to be

an optimal solution to the P-spline problem (5), it must also have zero objective value and hence be supported
on straight lines almost surely. Thus, we must have Xt = (1− t)X0 + tX1. By the marginal constraints we have
E[X2

0 ] = E[X2
1 ] = 1 and so long as N > 1, for i = 1, . . . , N − 1, it holds that ti /∈ {0, 1} and

(1− ti)2 + t2i = E
[(

(1− ti)X0 + tiX1

)2]
= (1− ti)2 + t2i + 2ti (1− ti)E[X0X1].

Therefore E[X0X1] = 0 and (Xt) has the same distribution as (X?
t ). Consequently, the unique jointly Gaussian

solution to the P-spline problem is (X?
t ). Clearly, the path (X?

t ) is not a deterministic function of X?
0 . Indeed,

X?
1 is independent of X?

0 .

Remark 1. The uniqueness assertion is false when N = 1, even when restricting to Gaussian solutions, which
again highlights that the P-spline problem between two measures is degenerate.

A.2 Proposition 2

In this section we provide the proof of Proposition 2. Understanding E-splines requires a few technical results,
which we first collect before moving on to the proof. We remark that, prior to this work, little was known about
E-splines. In particular, it was not known whether the E-spline interpolation of Gaussian measures consists only
of Gaussian measures.

Throughout, it will be convenient to consider the E-spline problem over the closed convex set of curves taking
values in a closed convex set K of a Hilbert space:

min
γ:[0,1]→K

∫ 1

0

‖γ̈(t)‖2 dt s.t. γ(ti) = xi for all i (EK)

Denote by E[γ] =
∫ 1

0
‖γ̈(t)‖2 dt the objective function in (EK). It follows from the triangle inequality and strict

convexity of the function x 7→ x2 that E is strictly convex on the convex set of admissible curves, so the solution
must be unique if it exists. We denote this unique solution by γK .

Proposition 7. Let H be a Hilbert space, and let L ⊆ H be a closed linear subspace. Take points x0, . . . , xN ∈ L.
Then the solution γH of the E-spline problem (EH) on H satisfies γH(t) = γL(t) ∈ L for all t.

Proof. Let P be the orthogonal projection onto L, and suppose γ interpolates the points (xi)
N
i=0. Then for any

admissible curve γ(t) = Pγ(t) + (I − P )γ(t), so γ̈(t) = P γ̈(t) + (I − P )γ̈(t) as well. Since these two terms are
orthogonal, we have

‖γ̈(t)‖2 = ‖P γ̈(t)‖2 + ‖(I − P )γ̈(t)‖2.

Thus, on the one hand, if γ̄(t) = PγH(t) then E[γ̄] ≤ E[γH ], and γ̄ is interpolating because xi ∈ L. On the
other hand, E[γH ] ≤ E[γL] ≤ E[γ̄] and by uniqueness, γH = γL.

Proposition 8. Let K be a convex subset of a Hilbert space H whose span is closed, and let x1, . . . , xn ∈ K. If
γK(t) lies in the relative interior of K for all times t, then γK = γH .
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Proof. Let L be the linear span of K, which is closed. In light of Proposition 7, it suffices to prove that γK = γL
so replacing H by L we may assume that K is of full dimension.

Let f : [0, 1]→ H be a twice differentiable perturbation such that f(ti) = 0 for all i. Hence, γK +εf is admissible
for (EH). Since γK lies in the interior of K and K is full-dimensional, a standard compactness argument shows
that for any such f there exists an ε > 0 with γK(t) + εf(t) ∈ K for all t. By optimality of γK we then have
E[γK + εf ] ≥ E[γK ]. Thus γK is stationary for E considered on H, and because E is strictly convex it follows
that γK is optimal for (EH) and is therefore equal to γH by uniqueness.

Proposition 9. Let µ?t0 , µ
?
t1 , . . . , µ

?
tN be Gaussian measures on R. Consider the Gaussian version of the E-spline

problem on R:

min
(γt)

∫ 1

0

‖∇vtvt‖
2
L2(γt)

dt s.t. γti = µ?ti , i = 1, . . . , N

where the minimization is taken over curves (γt) of Gaussian measures with their corresponding tangent vectors
(vt) (as described in Section 2). That is, it is the Wasserstein E-spline problem (4) in P2(R) with the added
constraint that the measures are Gaussian. If there is an optimal solution (γ?t ) which is a non-degenerate Gaussian
for all time, then it is also the solution to the E-spline problem (4).

Proof. It is known that P2(R) is isometric to a closed convex subset S of the Hilbert space H = L2[0, 1] (see
the discussion following Ambrosio, Gigli, and Savaré, 2008, Lemma 9.1.4). This isometry is given by µ 7→ F †µ,

where F †µ denotes the quantile function of µ. Let K be the image of the mean-zero Gaussian measures under
this isometry; it is immediate that K is convex, since the Gaussian measures form a geodesically convex set in
P2(R), and it has closed span because it is finite-dimensional. In light of this isometry the E-spline problem (4)
is equivalent to (ES) while the Gaussian E-spline problem stated in the proposition is equivalent to (EK) and
γ? = γK (the preservation of E-splines under isometry is discussed in Appendix A.3).

Applying Proposition 8 to γ? = γK , we deduce that γ? = γH . Moreover, E[γH ] ≤ E[γS ] ≤ E[γ?], whence by
uniqueness we get that γ? = γS as well.

We also require a technical lemma regarding P-splines which remain Gaussian for all times, which follows from
considerations of several-variable complex functions.

Lemma 1. Let (µt) be a P-spline with initial and final data µ0 and µ1 which are Gaussian, and assume:

1. µt is a Gaussian distribution for all times t,

2. (µt) has zero cost for the P-spline objective.

Then (µt) is induced by a jointly Gaussian coupling of µ0 and µ1.

Proof. Since (µt) has zero cost it must be supported on straight lines, so if we let Xt ∼ µt where these are
coupled according to the (µt) coupling, then

Xt = (1− t)X0 + tX1 (11)

and by assumption this variable is Gaussian. Let Z be the Gaussian with the same covariance structure as X.
Scaling (11) by a positive constant, we get, for all a, b ≥ 0

〈(a, b), X〉 d
= 〈(a, b), Z〉

where we mean equality in distribution. This implies

ϕX(a, b) = ϕZ(a, b)

where ϕY denotes the characteristic function of Y and is defined by ϕY (z) = E[ei〈z,Y 〉]. Now, it is well-known
that if Eem‖Y ‖ <∞ for some m > 0 then ϕY continues to a holomorphic function in the strip {z | |Im zi| < m ∀i}
(Lehmann and Romano, 2005, Theorem 2.7.1). In particular, if Y has sub-Gaussian tails, ϕY is entire.
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Functions of several complex variables admit an identity theorem, similar to the univariate complex case, which
can be found in Range (1986, Remark 1.20).6 This is:

Theorem (identity theorem). Let f and g be holomorphic functions of several complex variables in a domain
Ω ⊆ Cd, and let z ∈ Ω. A real cube of radius r about z is defined as

{(z1 + x1, . . . , zd + xd) ∈ Cd | |Rexi| < r for i = 1, . . . , d}.

If f and g agree on a real cube of positive radius about z, then f ≡ g on all of Ω.

Now, X has sub-Gaussian tails. Indeed,

MX(t) = E e〈t,X〉 = E et1X0+t2X1 ≤
(
E e2t1X0 E e2t2X1

)1/2
= et

2
1 varX0+t22 varX1

where MX denotes the moment generating function of X. Thus ϕX is entire, along with ϕZ , and it is clear from
the above discussion that they agree on the real cube about z = (1, 1) with radius r = 1. The identity theorem

then implies that ϕX ≡ ϕZ , so X
d
= Z. Thus X is jointly Gaussian.

Proposition 2 is implied by the following result.

Proposition 10. For i = 0, . . . , N , let µ?ti = N (0, σ2
ti), where σ2

t = (1 − t)2 + t2. Then for all N ≥ 2, the
E-spline (4) and P-spline (5) interpolations do not coincide.

Before starting the proof, we dispense with a possible source of confusion. The solution to the P-spline problem (5)
is a stochastic process (Xt); on the other hand, the E-spline solution yields a natural stochastic process, namely
the Lagrangian coupling (X?

t ) (see Section 2). In the proposition, we are not asserting that the process (Xt)
and (X?

t ) are different (indeed this is an easier statement to prove since the P-spline solution is often not even
deterministic; see Appendix A.1). Instead, we are asserting that the interpolated measures associated with the
E- and P-splines are different, which is strictly stronger statement.

Proof. First, the manifold of mean-zero Gaussian measures on R equipped with the W2 metric is isometric to
the ray [0,∞) equipped with the standard Euclidean metric. Indeed, we have

W2

(
N (0, σ2

0),N (0, σ2
1)
)

= |σ0 − σ1|.

Suppose we have data µ?ti = N (0, σ2
i ) at times ti and let t 7→ γ(t) be the Euclidean spline interpolation of

(ti, σi)
N
i=0 on R. It is possible that γ(t) ≤ 0 at some t, but if γ(t) > 0 for all t, then by Proposition 8 it must

also be the spline considered on the ray [0,∞). Since covariant derivatives are preserved under isometry (see
Appendix A.3 for a formal verification in our setting), the function E[·] is also preserved under isometry, and so
its minimizers — E-splines — are preserved as well. This means that the Gaussian-constrained E-spline is

µE
t = N

(
0, γ(t)2

)
, t ∈ [0, 1],

and by Proposition 9 this must coincide with the Wasserstein E-spline (4). This is all under the hypothesis that
γ(t) > 0.

Now substitute our example, with σ2
i = (1 − ti)2 + t2i . We need to check that γ(t) remains strictly positive for

all times. From Hall and Meyer (1976, Theorem 5), we see that for all t

|γ(t)−
√
t2 + (1− t)2| ≤ 5

384
· 24
√

2 · 1

N4
.

For N ≥ 2 this is less than 0.03. The smallest value of
√
t2 + (1− t)2 is

√
1/2 ≈ 0.7071, so the spline is bounded

below by 0.704 for all times.

6The careful reader will note that the hypothesis of this theorem is much stronger than the single-variable requirement
that f and g agree merely on a set with an accumulation point. For several complex variables this is not sufficient; indeed,
several-variable holomorphic functions never have isolated zeros.
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Let (µP
t ) be an interpolating P-spline. It is possible that this is not unique, but if µP

t is not Gaussian for some t
then we are done, since µE

t is Gaussian by Proposition 9. Applying Lemma 1, we see that µP
t must be induced

by a jointly Gaussian coupling of µ?0 and µ?1, so by Proposition 6 it must be that µP
t = N (0, (1− t)2 + t2).

The standard deviation of µE
t is γ(t) and this is locally a cubic polynomial in t. The standard deviation of the

P-spline µP
t , however, is given by

√
(1− t)2 + t2, which cannot be locally represented by a polynomial, so they

must differ.

From the final steps of our proof, we see that (in the Gaussian case) P-splines and E-splines will most likely
differ generically, since their interpolated variances are polynomial splines of different orders.

A.3 Preservations of Splines under Isometry

In this section, we give a formal7 verification of the assertion that the E-spline functional is preserved under the
isometry between P2(R) and its image inH = L2[0, 1]. Formally, this assertion can be viewed as a manifestation of
a classical fact from Riemannian geometry: the covariant derivative (associated with the Levi-Civita connection)
depends only on the Riemannian metric, and is thus preserved under isometries.8

In the derivation below, we make all necessary regularity assumptions (e.g., we can assume that the measures
are compactly supported) in order to convey the intuition. Suppose (µt) is a curve of measures in P2(R) and
let (vt) be the corresponding tangent vectors. The relationship between (µt) and (vt) is given by the continuity
equation (Ambrosio, Gigli, and Savaré, 2008, Theorem 8.3.1):

∂tµt + (µtvt)
′ = 0. (12)

Here, we use ∂t for the time derivative, and we use ′ to denote spatial derivatives. If Fµ denotes the CDF of µ,
then (12) implies

∂tFµt(x) = ∂t

∫ x

−∞
dµt = −

∫ x

−∞
(µtvt)

′ = −µt(x)vt(x).

Next, if we differentiate the relation F−1
µt

(Fµt(x)) = x, we obtain

0 = (∂tF
−1
µt

)
(
Fµt(x)

)
+ (F−1

µt
)′
(
Fµt(x)

)
= (∂tF

−1
µt

)
(
Fµt(x)

)
+

1

F ′µt
(x)

= (∂tF
−1
µt

)
(
Fµt(x)

)
+

1

µt(x)
,

where we have applied the inverse function theorem. Thus,

(∂tF
−1
µt

)(α) = vt
(
F−1
µt

(α)
)
. (13)

Differentiating again,

(∂2
t F
−1
µt

)(α) = (∂tvt)
(
F−1
µt

(α)
)

+ v′t
(
F−1
µt

(α)
)
(∂tF

−1
µt

)(α)

= (∂tvt + v′tvt)
(
F−1
µt

(α)
)
.

However, we recognize ∂tvt + v′tvt as the covariant derivative ∇vtvt in P2(R) (see for example the discussion
in Chen, Conforti, and Georgiou, 2018, §5.1). In particular, it implies∫ 1

0

|∂2
t F
−1
µt
|2 =

∫ 1

0

|(∂tvt + v′tvt) ◦ F−1
µt
|2

=

∫
|∂tvt + v′tvt|2 dµt

= ‖∇vtvt‖2L2(µt)
,

7The word formal here, meaning that the argument proceeds by manipulating the form of the expressions, is not a
synonym for “rigorous”.

8In fact, this is related to Gauss’s famous Theorema Egregium, see Carmo (2016, §4.3) and Carmo (1992, Remark 2.7).
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where we use the fact that the pushforward of the uniform distribution on [0, 1] under F−1
µt

is µt. This equation
shows that the norm (measured in H) of the acceleration of the curve t 7→ F−1

µt
in H is the same as the norm

(measured in P2(R)) of the acceleration of the curve t 7→ µt in P2(R), and thus the E-spline cost functional is
preserved by the embedding P2(R) ↪→ H.

Remark 2. From the equation (13), we can also read off the isometry between the tangent space of H and the
tangent space of P2(R).

The reader who is uncomfortable with the formal derivation above can instead use the isometric embedding
P2(R) ↪→ L2[0, 1] as the definition of the geometry of P2(R) (and thus, the definition of E-splines on P2(R)).
Indeed, a rigorous development of second-order calculus on Wasserstein space faces significant technical hur-
dles (Gigli, 2012), and such a definition is actually more convenient for the purposes of this paper.

B E-SPLINES AND TRANSPORT SPLINES IN ONE DIMENSION

In this section, we investigate the relationship between transport splines and E-splines on P2(R), leading to a
proof of Theorem 1. We will use the calculation in Appendix A.3, and moreover we recommend that readers
read Appendix A before this section in order to gain familiarity with E-splines.

Recall also that we assume that the measures µ?ti are absolutely continuous in order to properly define the
covariant derivative. However, the embedding P2(R) ↪→ L2[0, 1] allows us to rigorously extend the definition of
an E-spline on all of P2(R).

Proof of Theorem 1. Let U be a uniform random variable on [0, 1], and define the random variables

Xti := F †µ?
ti

(U) ∼ µ?ti , i = 0, 1, . . . , N.

From the discussion in Appendix F.1, these random variables are simultaneously optimally coupled. In particular,
each successive pair of these random variables is coupled via a Monge map. It follows from the definition of
a transport spline that the stochastic process (Xt) associated with the transport spline can be realized as the

(Euclidean) cubic spline interpolating the points (Xti)
N
i=0.

Since each Xti is a function of U , so is the interpolation Xt, so we can write Xt = G̃t(U). It follows that (G̃t) is

the cubic spline in H = L2[0, 1] which interpolates the quantiles
(
F †µ?

ti

)N
i=0

, that is, (G̃t) = (Gt). At this point,

we have established one of the assertions of Theorem 1, namely, the explicit description of the process (Xt)
associated with the transport spline.

Next, since Xt = Gt(U), by hypothesis Gt is an increasing function that pushes forward the uniform distribution
to the law µt of Xt. By the characterization of Monge maps in one dimension (Appendix F.1), it follows that
Gt = F †µt

.

Since (Gt) is a cubic spline, then it minimizes curvature, i.e., it solves the problem

inf
(Gt)

∫ 1

0

‖G̈t‖2L2[0,1] dt, s.t. Gti = F †µ?
ti

for all i.

From our characterization Gt = F †µt
, it is clear that (µt) solves the problem

inf
(µt)

∫ 1

0

‖∂2
t F
†
µt
‖2L2[0,1] dt, s.t. µti = µ?ti for all i,

since the the first problem is a relaxation of the second (given a solution (µt) of the second problem, we can
obtain a solution (Gt) = (F †µt

) for the first problem). Indeed, the second problem can be interpreted as the first
problem with the additional constraint that the functions Gt must be quantile functions. Next, in light of the
isometry described in Appendix A.3, the latter problem is equivalent to

inf
(µt,vt)

∫ 1

0

‖∇vtvt‖2L2(µt)
dt, s.t. µti = µ?ti for all i,
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where the infimum is taken over curves (µt) in P2(R) and their corresponding tangent vectors (vt). This problem
is seen to be the E-spline problem (4).

We have thus shown that (µt) is an E-spline. Actually, in light of Proposition 7 and the fact that (Gt) is the
spline in H, then the E-spline is unique. Thus, the E-spline and transport spline coincide.

Finally, it remains to show that the Lagrangian coupling (X?
t ) associated with the E-spline has the same law as

(Xt). For this, we can simply appeal to the embedding P2(R) ↪→ H again. Indeed, since Ẋt = ∂tF
†
µt

(U), the

calculation in Appendix A.3 shows that Ẋt = vt(Xt) where (vt) is the tangent vector to (µt), so in fact (Xt) is
the Lagrangian coupling of (µt).

In particular, since the Gaussian measures form a 2 dimensional half-subspace of L2[0, 1] with the usual identifica-
tion P2(R) ↪→ L2[0, 1], the E-spline interpolation between Gaussian measures is the transport spline if transport
splines is not degenerate at any time (i.e., the transport lies in the relative interior of Gaussian measures within
P2(R)). This yields Proposition 3.

We conclude this section by giving some examples showing that E-splines and transport splines can differ when
the spline (Gt) described in Theorem 1 does not stay within P2(R) ⊂ L2[0, 1]. First, we give a simple Gaussian
counterexample.

Proposition 11. Let δ > 0 be sufficiently small and consider the measures

µ?0 = µ?1 = N (0, 1), µ?1/3 = µ?2/3 = N (0, δ2).

Then, the E-spline (4) interpolation (µE
t ) and transport spline interpolation (µT

t ) do not coincide for this data.

Proof. Let (Xt) denote the stochastic process corresponding to the transport spline. It is easy to see that
(X0, X1/3, X2/3, X1) = (X0, δX0, δX0, X0) is the optimal coupling at the knots. If we let St denote the linear
mapping which produces the spline (as introduced in Section 5), it follows that

Xt = St(X0, δX0, δX0, X0) = St(1, δ, δ, 1)X0,

so that µT
t = N (0, St(1, δ, δ, 1)

2
).

If we identify the space of Gaussians with the half-ray [0,∞), then the transport spline corresponds to the curve
of standard deviations t 7→ |St(1, δ, δ, 1)|. However, because the spline curve t 7→ St(1, 0, 0, 1) becomes negative
between 1/3 and 2/3, then so does the curve t 7→ St(1, δ, δ, 1) for small δ. It can be checked that at time 1/3,
the curve t 7→ |St(1, δ, δ, 1)| is not C2 differentiable and therefore cannot be an E-spline.

This counterexample, however, is somewhat degenerate because the transport spline passes through a degenerate
measure, and thus it is not clear if the E-spline exists, and if so whether it remains non-degenerate. We now
give another example where the transport spline does not coincide with the E-spline, but the transport spline
remains non-degenerate; hence, we believe that the E-spline problem is well-posed for these data.

For this example, we take δ > 0 and let

µ?0 = µ?1 = uniform on [−(1 + δ),−1] ∪ [1, 1 + δ], µ?1/4 = µ?3/4 = uniform on [−δ, δ]. (14)

As in the proof of Proposition 9, P2(R) is seen as a convex subset of L2[0, 1] where probability measures are
identified as their quantile function. So our E-spline interpolation can be reformulated as the problem

inf
(µt)

∫ 1

0

∫ 1

0

‖F̈ †t (u)‖2 dudt s.t. µt = µ?t for all t ∈ {0, 1/4, 3/4, 1},

where F †t denotes the quantile function of µt. In particular, the E-spline interpolation problem can be seen as the
transport spline interpolation with the extra constraint that the trajectories of the particles must stay ordered
(see Theorem 1).

Denote by (Xt) the random process given by the transport spline problem. One can check that

Xt = sign(X0)
[16

3
(t− 1/2)

2 − 1

3
+ |X0| − 1

]
.
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Figure 5: Transport splines interpolation for the four uniform distributions as in (14). The red line is the quantile of

order 3/4 for the interpolation and the orange dotted line represents the corresponding candidate F̄ †t (u) for u = 3/4
introduced in (15).

Clearly, for δ small enough the quantiles F †t (u) of order u > 1/2 associated to the transport spline interpolation
decrease before t = 1/4 and increase after = 3/4. In particular, for each u > 1/2, there exists 1/4 < t−u < t+u < 3/4

such that ∂tF
†
t (u)|t=t−u = ∂tF

†
t (u)|t=t+u = 0 and |∂2

t F
†
t (u)| > 0 for t ∈ (t−u , t

+
u ). One can check then that the

function u 7→ F̄ †t at time t ∈ [0, 1] defined by

F̄ †t (u) =

{
F †
t−u

(u), u ∈ (t−u , t
+
u )

F †t (u), otherwise
(15)

is a quantile function. In particular, the measures with quantiles F̄ †t interpolate the measures (14) and

|∂2
t F̄
†
t (u)| =

{
0, u ∈ (t−u , t

+
u )

|∂2
t F
†
t (u)|, otherwise,

ensuring that F̄ †t has a lower cost than the transport spline. Thus, the transport spline is not the E-spline.

Since the transport spline is non-degenerate for this example, we believe that the E-spline also exists and is
non-degenerate. Therefore, we expect that the failure of transport splines to equal E-splines in general is not
simply due to the fact that E-splines can be ill-posed.

To summarize: when the trajectories of the transport spline remain ordered throughout the interpolation, then
it coincides with the E-spline. Otherwise, there is no reason to expect the two notions of spline to coincide.

C PROOF OF THE APPROXIMATION GUARANTEE

Throughout, we assume all random variables are defined on a probability space with probability measure P.
Thus, if X is a random variable taking values in Rd, then ‖X‖L2(P) :=

√
E[‖X‖2].

We begin by describing the general strategy for proving the approximation guarantee. Consider the interval
[ti−1, ti], let (X?

t ) denote the Lagrangian coupling for (µ?t )t, and let (Xt) be the stochastic process associated
with the transport spline. Since µti−1

= µ?ti−1
, we can couple the two processes together so that Xti−1

= X?
ti−1

.
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By the definition of the Wasserstein distance, we can bound W2(µt, µ
?
t ) ≤ ‖Xt −X?

t ‖L2(P), so it suffices to show
that the trajectories (Xt) and (X?

t ) are close on the interval [ti−1, ti].

We will use a basic deterministic fact: if two curves x and y defined on [0, δ] are such that:

• x(0) = y(0),

• ẋ(0) = ẏ(0) +O(δ), and

• the two curves satisfy the curvature bound

sup
t∈[0,δ]

{‖ẍ(t)‖ ∨ ‖ÿ(t)‖} ≤ R,

then it follows that supt∈[0,δ] ‖x(t)− y(t)‖ ≤ CRδ2, where C is a numerical constant.

1. the velocities of Xt and X?
t at time t = ti−1 are within O(δ) of each other (Proposition 13);

2. the trajectory (Xt) has curvature O(R) (Proposition 14);

3. the trajectory (X?
t ) has curvature O(R);

The last step is immediate from our assumptions; the point of the second step is to control the curvature of the
interpolated process (Xt) in terms of the curvature of the true process (X?

t ).

Putting these pieces together, we give the proof of Theorem 2 in Appendix C.4.

C.1 Notation

Since we study the approximation guarantee in the Bures-Wasserstein setting, we can equivalently think in terms
of the probability measure (a Gaussian), or in terms of the covariance matrix. It will be useful to employ the
language of matrices, so we fix notational conventions here.

Associated with the curve (µ?t ), we have a corresponding curve of covariance matrices (Σt) such that µ?t =
N (0,Σt).

Given a matrix A ∈ Rd×d, we define the norm

‖A‖Σ :=
√
〈A,ΣA〉.

The norm is defined so that if X? ∼ N (0,Σ), then ‖AX?‖L2(P) = ‖A‖Σ. From our eigenvalue bound we have

‖A‖Σ ≥
√
λmin(Σ) ‖A‖F.

The Monge map T between two Gaussians is the linear map T (X) given in (6) and abusing notation slightly,
we identify the map T with the corresponding matrix, and we write T (x) = Tx. In particular, linearity of the
Monge maps implies that the velocity vector field (v?t ) associated to the Lagrangian coupling of the curve, is also
linear for each t: v?t is a symmetric linear mapping Rd → Rd, that is, there exists a symmetric matrix V ?t ∈ Rd×d
such that v?t (x) = V ?t x.

C.2 Control of the Velocities

We write δi := ti+1 − ti and δ := maxi∈[N ] δi. The first step is to prove a quantitative bound on how well
the Monge map Ti approximates id + δivti−1

. We prove a more general approximation result which may be of
independent interest.

Theorem 3. Let t, t+h ∈ [0, 1], where h 6= 0. Write δ := |h| and assume δ ≤ c
√
λmin(Σt)/L, for some constant

0 < c < 1. Let T denote the Monge map from µ?t to µ?t+h, and let T̄ : Rd → Rd be another linear mapping
satisfying the following properties:

1. T̄ can be identified with a symmetric matrix.
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2. ‖T̄X?
t −X?

t ‖L2(P) ≤ c
√
λmin(Σt).

Then,

‖TX?
t − T̄X?

t ‖L2(P) ≤
1 + 2c

1− c
‖T̄X?

t −X?
t+h‖L2(P).

Proof. Let e := X?
t+h − T̄X?

t .

Consider the quadratic function ϕ : Rd → R defined by ϕ(x) := 〈x,Ax〉, where A := (T − T̄ )/‖T − T̄‖Σt . Note
that A is symmetric (since T and T̄ are). Then,

Eϕ(TX?
t ) = Eϕ(X?

t+h) = Eϕ(T̄X?
t + e).

Expanding this out,

0 = E〈(T + T̄ )X?
t + e,A{(T − T̄ )X?

t − e}〉
= E〈(T + T̄ )X?

t , A(T − T̄ )X?
t 〉+ error.

We next bound the error term. First, note that by our assumption,

‖T − Id‖Σt = W2(µ?t , µ
?
t+h) ≤ Lδ ≤ c

√
λmin,

‖T̄ − Id‖Σt
≤ c
√
λmin,

where we write λmin = λmin(Σt). The error term is split into two further terms. For the first term,

|E〈e,A(T − T̄ )X?
t 〉| ≤ ‖e‖L2(P) ‖A(T − T̄ )‖Σt

≤ ‖e‖L2(P) ‖A‖F ‖T − T̄‖Σt

≤ ‖e‖L2(P)
1√
λmin

(‖T − Id‖Σt + ‖T̄ − Id‖Σt)

≤ 2c ‖e‖L2(P),

where we used the fact that ‖A‖Σt
≤ 1 implies that ‖A‖F ≤ 1/

√
λmin. The second term is bounded by

|E〈(T + T̄ )X?
t + e,Ae〉| ≤ |E〈TX?

t +X?
t+h − 2X?

t , Ae〉|+ 2|E〈X?
t , Ae〉|

≤ {‖A‖F (‖T − Id‖Σt
+ ‖X?

t+h −X?
t ‖L2(P)) + 2‖A‖Σt

} ‖e‖L2(P)

≤ 2 (1 + c) ‖e‖L2(P),

where we used

‖X?
t+h −X?

t ‖2L2(P) = E
[∥∥∥∫ t+h

t

Ẋ?
s ds

∥∥∥2]
≤ δ

∣∣∣∫ t+h

t

‖Ẋ?
s ‖2L2(P) ds

∣∣∣ ≤ L2δ2.

Thus, we have

2‖T − T̄‖Σt
= 2E〈X?

t , A(T − T̄ )X?
t 〉

= −E〈(T + T̄ − 2Id)X
?
t , A(T − T̄ )X?

t 〉+ error

≤ (‖T − Id‖Σt
+ ‖T̄ − Id‖Σt

) ‖A‖F ‖T − T̄‖Σt
+ error

≤ 2c ‖T − T̄‖Σt
+ (2 + 4c) ‖e‖L2(P)

which finally yields

‖T − T̄‖Σt
≤ 1 + 2c

1− c
‖e‖L2(P).
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Corollary 1. Let t, t + h ∈ [0, 1], where h 6= 0, and write δ := |h|. Let k ∈ {0, 1, 2}, and suppose δ is small
enough so that

k∑
i=1

Riδ
i

i!
≤ c
√
λmin(Σt),

where we set Ri := supt∈[0,1] ‖∂iX?‖L2(P). Then,

∥∥∥TX?
t −

k∑
i=0

hi

i!
(∂iX?)t

∥∥∥
L2(P)

≤ 1 + 2c

1− c
Rk+1δ

k+1

(k + 1)!
.

Proof. We apply Theorem 3 with

T̄X?
t =

k∑
i=0

hi

i!
(∂iX?)t.

Using Ẋ?
t = V ?t X

?
t , where V ?t is symmetric, we obtain:

Ẋ?
t = V ?t X

?
t ,

Ẍ?
t = V̇ ?t X

?
t + V ?2t X?

t = (V̇ ?t + V ?2t )X?
t ,

...
X
?

t = (V̈ ?t + 2V̇ ?t V
?
t + V ?t V̇

?
t + V ?3t )X?

t ,

...

Observe that the ith derivative of t 7→ X?
t at t is indeed a linear function of X?

t , but for i ≥ 3 it is no longer
given by a symmetric matrix, so it no longer satisfies the first assumption of Theorem 2; this is why we restrict
ourselves to k = 0, 1, 2.

For the third assumption of Theorem 2, note that

‖T̄X?
t −X?

t ‖L2(P) =
∥∥∥ k∑
i=1

hi

i!
(∂iX?)t

∥∥∥
L2(P)

≤
k∑
i=1

δiRi
i!
≤ c
√
λmin(Σt),

by our assumption on δ.

Finally, the error e := X?
t+h − T̄X?

t is controlled via Taylor’s theorem:

‖e‖L2(P) =
∥∥∥X?

t+h −
k∑
i=0

hi

i!
(∂iX?)t

∥∥∥
L2(P)

=
∥∥∥∫ t+h

t

(∂k+1X?)s
k!

(s− t)k ds
∥∥∥
L2(P)

≤ Rk+1δ
k+1

(k + 1)!
.

Remark 3. If we let δ ↘ 0, we can also take c↘ 0, obtaining

lim sup
δ↘0

1

δk+1

∥∥∥TX?
t −

k∑
i=0

hi

i!
(∂iX?)t

∥∥∥
L2(P)

≤ Rk+1

(k + 1)!
.

Comparing this to a Euclidean Taylor expansion, this is apparently sharp.

Corollary 1 says that in order to prove our desired result Ẋti−1 = Ẋ?
ti−1

+O(δ), it suffices to show that Ẋti−1 =
(TiXti−1

− Xti−1
)/δi + O(δ) (since the RHS of both expressions equals V ?ti−1

Xti−1
= V ?ti−1

X?
ti−1

up to O(δ)).
Since the latter statement involves only the process (Xt), it is easier to prove.
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However, there is still a major difficulty to overcome: Ẋti−1 is the velocity of an interpolating cubic spline, which
depends on all of the interpolated points Xt0 , Xt1 , . . . , XtN . In Appendix D, we show that the derivative of the
cubic spline interpolation can be understood in terms of the linear system of equations involving the quantities

∆i :=
Xti+1

−Xti

δi+1
−
Xti −Xti−1

δi
, i ∈ [N − 1].

Therefore, we next control these quantities.

Proposition 12. Assume δ ≤
√
λmin/(2L). For each i ∈ [N − 1], it holds that∥∥Xti+1 −Xti

δi+1
−
Xti −Xti−1

δi

∥∥
L2(P)

≤ 25

4
Rδ.

Proof. From Corollary 1,∥∥Xti −Xti−1

δi
− V ?ti−1

Xti−1

∥∥
L2(P)

=
∥∥Ti − Id

δi
− V ?ti−1

∥∥
Σti−1

≤ 2Rδi,

where we use the fact that Xti−1
∼ µ?ti−1

and that Xti = TiXti−1
. Similarly,∥∥Xti+1 −Xti

δi+1
− V ?tiXti

∥∥
L2(P)

≤ 2Rδi+1.

Therefore,

‖∆i‖L2(P) ≤ 4Rδ + ‖V ?tiXti − V ?ti−1
Xti−1

‖L2(P).

Since Xti = TiXti−1
, we replace Ti by Id + δiV

?
ti−1

.

‖V ?tiXti − V ?ti−1
Xti−1‖L2(P) ≤ ‖V ?ti(Ti − Id − δiV

?
ti−1

)Xti−1‖L2(P) + ‖V ?ti(Id + δiV
?
ti−1

)Xti−1
− V ?ti−1

Xti−1
‖L2(P).

We control the first term using Corollary 1:

‖V ?ti(Ti − Id − δiV
?
ti−1

)Xti−1
‖L2(P) ≤ ‖V ?ti‖F ‖(Ti − Id − δiV

?
ti−1

)Xti−1
‖L2(P)

≤ L√
λmin

‖Ti − Id − δiV ?ti−1
‖Σti−1

≤ L√
λmin

· 2Rδ2
i ≤ Rδi,

where we used ‖V ?ti‖F ≤ λ
−1/2
min ‖V ?ti‖Σti

≤ Lλ
−1/2
min by our Lipschitz assumption. Now for the second term.

Introduce the random trajectory (X?
t ) sampled from the true curve (µ?t ) with the Lagrangian coupling, and

couple the process (Xt) with (X?
t ) by setting Xti−1

= X?
ti−1

. Thus,

‖V ?ti(Id + δiV
?
ti−1

)Xti−1
− V ?ti−1

Xti−1
‖L2(P)

≤ ‖V ?tiX
?
ti − V

?
ti−1

X?
ti−1
‖L2(P) + ‖V ?ti{(Id + δiV

?
ti−1

)X?
ti−1
−X?

ti}‖L2(P).

It is easy to control

‖V ?tiX
?
ti − V

?
ti−1

X?
ti−1
‖L2(P) =

∥∥∥∫ ti

ti−1

Ẍ?
t dt

∥∥∥
L2(P)

≤ Rδi.

Lastly,

‖V ?ti{(Id + δiV
?
ti−1

)X?
ti−1
−X?

ti}‖L2(P) ≤ ‖V ?ti‖F ‖X
?
ti −X

?
ti−1
− δiV ?ti−1

X?
ti−1
‖L2(P)

≤ L√
λmin

∥∥∥∫ ti

ti−1

∫ t

ti−1

Ẍ?
s dsdt

∥∥∥
L2(P)

≤ L√
λmin

· Rδ
2
i

2
≤ Rδi

4
.

Putting it all together, we obtain

‖∆i‖L2(P) ≤
25

4
Rδ.
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To match notation with Appendix D, we set

Mi := Ẍti−1 , i ∈ [N + 1].

Lemma 2. Assume δ ≤
√
λmin/(2L). It holds that

‖Mi‖L2(P) ≤
75(1 + α)

2

4α3
R.

Proof. As described in Appendix D, we know that M = 6T−1∆, where the entries of T−1 are bounded in
Lemma 3. Thus,

‖Mi‖L2(P) = 6
∥∥∥N−1∑
j=1

(T−1)i,j∆j

∥∥∥
L2(P)

≤ 6

N−1∑
j=1

|(T−1)i,j | ‖∆j‖L2(P)

≤ 6

N−1∑
j=1

1

4α2δ

1

(1 + α)
|i−j|−1

25

4
Rδ

≤ 75R

4α2

∞∑
k=0

1

(1 + α)
k−1

=
75(1 + α)

2

4α3
R,

where we use Proposition 12.

Finally, we are ready to state our control on the velocity of the trajectory (Xt).

Proposition 13. Assume δ ≤
√
λmin/(2L). Then,

‖Ẋti−1 − Ẋ?
ti−1
‖L2(P) ≤

16α3 + 75(1 + α)
2

8α3
Rδ.

Proof. It holds that

Ẋti−1
=
Xti −Xti−1

δi
− Mi+1 + 2Mi

6
δi

(see Appendix D). Therefore,

∥∥Ẋti−1 −
Xti −Xti−1

δi

∥∥
L2(P)

≤
‖Mi+1‖L2(P) + 2‖Mi‖L2(P)

6
δ ≤ 75(1 + α)

2

8α3
Rδ,

by Lemma 2. Next, we recall that Xti = TiXti−1
, and that (Xt) and (X?

t ) are coupled so that Xti−1
= X?

ti−1
.

Thus,

‖Ẋti−1
− Ẋ?

ti−1
‖L2(P) ≤

∥∥Ẋti−1
−
TiXti−1

−Xti−1

δi

∥∥
L2(P)

+
∥∥Ẋ?

ti−1
−
TiX

?
ti−1
−X?

ti−1

δi

∥∥
L2(P)

≤ 75(1 + α)
2

8α3
Rδ + 2Rδ,

where we invoke Corollary 1 again.

C.3 Curvature of the Transport Spline

Next, we must bound the curvature of (Xt), but this is an easy task given what we have established so far.

Proposition 14. Assume δ ≤
√
λmin/(2L). Then,

sup
t∈[0,1]

‖Ẍt‖L2(P) ≤
75(1 + α)

2

4α3
R.
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Proof. Indeed, t 7→ Ẍt is a piecewise linear function (see Appendix D), so it is maximized at the knots. For
t ∈ [ti−1, ti], it follows that

‖Ẍt‖L2(P) =
∥∥ ti − t

δi
Ẍti−1

+
t− ti−1

δi
Ẍti

∥∥
L2(P)

≤ ti − t
δi
‖Ẍti−1

‖L2(P) +
t− ti−1

δi
‖Ẍti‖L2(P)

≤ ‖Ẍti−1
‖L2(P) ∨ ‖Ẍti‖L2(P)

= ‖Mi‖L2(P) ∨ ‖Mi+1‖L2(P)

≤ 75(1 + α)
2

4α3
R,

by Lemma 2.

C.4 Proof of the Main Theorem

Proof of Theorem 2. Let t ∈ [ti−1, ti], and let the processes (Xt) and (X?
t ) be coupled with Xti−1 = X?

ti−1
. Then,

‖Xt −X?
t ‖L2(P) ≤ δi ‖Ẋti−1

− Ẋ?
ti−1
‖L2(P) +

∥∥∥∫ ti

ti−1

∫ t

ti−1

(Ẍs − Ẍ?
s ) dsdt

∥∥∥
L2(P)

≤ 16α3 + 75(1 + α)
2

8α3
Rδ2 +

δ2

2
sup
t∈[0,1]

(‖Ẍt‖L2(P) + ‖Ẍ?
t ‖L2(P))

≤ 10α3 + 75(1 + α)
2

4α3
Rδ2 ≤ 115

2α3
Rδ2,

where we have used Proposition 13 and Proposition 14.

C.5 Piecewise Geodesic Interpolation

In this section, we study the approximation error of piecewise geodesic interpolation. Namely, we define a
stochastic process, still denoted (Xt), as follows.

1. Draw Xt0 ∼ µt0 .

2. For i = 1, . . . , N , set Xti := Ti(Xti−1
).

3. We join the points Xt0 , Xt1 , . . . , XtN via straight lines. Namely, for t ∈ [ti−1, ti] we set

Xt =
ti − t

ti − ti−1
Xti−1

+
t− ti−1

ti − ti−1
Xti .

Let µt denote the law of Xt.

Theorem 4. Let the notation and assumptions of Theorem 2 hold (except for the definition of (µt)). Then,

sup
t∈[0,1]

W2(µt, µ
?
t ) ≤

5

2
Rδ2.

Proof. As in Appendix C.4, we have

‖Xt −X?
t ‖L2(P) ≤ δi ‖Ẋti−1 − Ẋ?

t+i−1

‖L2(P) +
∥∥∥∫ ti

ti−1

∫ t

ti−1

Ẍ?
s dsdt

∥∥∥
L2(P)

≤ 2Rδ2 +
1

2
Rδ2.

Here, we use several facts: (1) Ẋt+i−1
, the derivative of (Xt)t at ti−1 from the right, equals

(Ti − Id)Xti−1
= (Ti − Id)X?

ti−1
,
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and so we can apply Corollary 1; (2) the curve (Xt), consisting of piecewise straight lines, has no acceleration.
This finishes the proof.

Formally, Theorem 4 is a slightly better approximation guarantee than Theorem 2. Theorem 4 can also be
strengthened asymptotically to

lim sup
δ↘0

1

δ2
sup
t∈[0,1]

W2(µδ,t, µ
?
t ) ≤ R,

as in Section 5.2. Of course, we do not advocate for using piecewise geodesic interpolation because it is unsuitable
for trajectory estimation (see Figure 1).

D NATURAL CUBIC SPLINES

For the reader’s convenience and to make the paper more self-contained, in this section we present a derivation
of natural cubic splines and some of their properties. The results obtained here are used in Appendix C for the
proof of the main approximation result (Theorem 2).

We are given times 0 = t0 < t1 < · · · < tN = 1 and corresponding points (xt0 , xt1 , . . . , xtN ) in Rd. Our goal is to
construct a piecewise cubic polynomial interpolation y : [0, 1]→ Rd which is C2 smooth.

We parametrize y in the following way: for each i ∈ [N ] and for t ∈ [ti−1, ti], we set y(t) = yi(t), where

yi(t) = ai (t− ti−1)
3

+ bi (t− ti−1)
2

+ ci (t− ti−1) + di.

Computing derivatives,

xti−1 = yi(ti−1) = di,

xti = yi(ti) = aiδ
3
i +

mi

2
δ2
i + ciδi + di,

ẏi(ti−1) = ci,

ẏi(ti) = 3aiδ
2
i +miδi + ci,

ÿi(ti−1) = mi,

ÿi(ti) = 6aiδi +mi,

where define δi := ti − ti−1 and mi := 2bi (and anticipating the natural boundary condition, which asserts
ÿ(0) = ÿ(1) = 0, we make the convention mN+1 := 0). Using continuity of the first and second derivatives of y
at the knots, we solve for the coefficients of the polynomial yi in terms of the variables m and x:

ai =
mi+1 −mi

6δi
,

bi =
mi

2
,

ci =
xti − xti−1

δi
− mi+1 + 2mi

6
δi,

di = xti−1
.

Therefore, it suffices to work with the variables m.

If we plug these equations back into the continuity condition for the first derivative at the knot, after some
algebra we obtain the equations

6∆i = δimi + 2(δi + δi+1)mi+1 + δi+2mi+2, i = 1, . . . , N − 1,

where we have defined the quantities

∆i :=
xti+1

− xti
δi+1

−
xti − xti−1

δi
,
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a proxy for the second derivative of the data points.

We can express these equations in matrix form (including also the natural boundary condition m1 = 0):
2(δ1 + δ2) δ2

δ2
. . .

. . .

. . .
. . . δN−1

δN−1 2(δN−1 + δN )


︸ ︷︷ ︸

:=T

m = 6∆.

The matrix T above is a symmetric tridiagonal matrix of size N − 1.9 To obtain bounds on m, we will study
the inverse T−1 of T.

Lemma 3. Assume that for each i ∈ [N ], we have αδ ≤ ti − ti−1 ≤ δ. Then, we have the entrywise bound

|(T−1)i,j | ≤
1

4α2 (1 + α)
|i−j|−1

1

δ
, i, j ∈ [N − 1].

Proof. We write T = B + D, where

B :=


0 δ2

δ2
. . .

. . .

. . .
. . . δN−1

δN−1 0

 ,
D := 2 diag(δ1 + δ2, . . . , δN−1 + δN ).

Therefore,

T−1 = (B + D)
−1

= D−1/2(IN−1 + D−1/2BD−1/2)
−1

D−1/2

=

∞∑
k=0

(−1)
k
D−1/2(D−1/2BD−1/2︸ ︷︷ ︸

:=M

)
k
D−1/2.

The matrix M is

M =


0 γ2

γ2
. . .

. . .

. . .
. . . γN−1

γN−1 0

 ,
where we set

γi :=
δi

2
√

(δi−1 + δi)(δi + δi+1)
≤ 1

2(1 + α)
.

Since M has non-negative entries, we have the entrywise bound

Mk ≤ 1

{2(1 + α)}k


0 1

1
. . .

. . .

. . .
. . . 1
1 0


︸ ︷︷ ︸

:=A

k

.

9To be precise, we should write this as the block matrix equation (T⊗ Id)m = 6∆.
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The matrix A is the adjacency matrix of the path graph on {1, . . . , N − 1}, so (Ak)i,j is the number of paths

from i to j of length k. We can trivially bound this number by 2k 1|i−j|≤k. From this we deduce the entrywise
bound

(Mk)i,j ≤
1

(1 + α)
k
1|i−j|≤k .

Therefore,

|(T−1)i,j | ≤
∞∑
k=0

1

2
√

(δi + δi+1)(δj + δj+1)

1|i−j|≤k

(1 + α)
k

≤ 1

4αδ

∞∑
k=|i−j|

1

(1 + α)
k

=
1

4α2 (1 + α)
|i−j|−1

1

δ
.

E DETAILS FOR THE EXPERIMENTS

In this section we provide further details for the experiments in the paper, except for the thin-plate spline example
(which is discussed in Appendix F).

E.1 Figure 1

In this figure, we set five Gaussians as our interpolation knots, alternating between

N
([

7(k − 1)
0

]
,

[
4 0
0 2

])
for k odd

and

N
([7(k − 1)

7

]
,

[
2 0
0 4

])
for k even,

where k = 1, . . . , 5.

To determine the linear and cubic spline interpolations we first computed the optimal transport maps between
the neighboring Gaussians. The closed-form formula for the Monge map from N (µ1,Σ1) to N (µ2,Σ2) is

T (x) = µ2 +A(x− µ1), A = Σ
− 1

2
1 (Σ

1
2
1 Σ2Σ

1
2
1 )

1
2 Σ
− 1

2
1 .

The gray lines in both figures show the trajectories of individual sample points along our interpolations. To draw
them, we obtained a sample X0 from the Gaussian at time t = 0, repeatedly applied the Monge maps between
successive Gaussians in time, and fit a piecewise linear or natural cubic spline through these points as described
in Section 4.1.

Since the maps between successive Gaussians are linear and the formula for the linear or natural cubic spline
is linear in its knots, the value of the spline St(X0) interpolation at time t is linear in X0. Hence, given the
covariance of the Gaussian at time t = 0, we used this linear map St to compute the covariance of the interpolated
Gaussian at time t. Likewise, by taking a linear or cubic spline through the means of the Gaussians at the knot
points, we obtained the means of the interpolated Gaussians at any given time. Using this information, we
plotted the interpolated Gaussians at the halfway points between the knots for both the linear and cubic spline
interpolations.

E.2 Figure 3

To simulate the n-body trajectories, we used the Python nBody simulator by Cabrera & Li, which can be accessed
at https://github.com/GabrielSCabrera/nBody.

We created 15 smaller bodies, each of mass 5 × 109 and radius 1. Each body was initialized with a position x
and a velocity v drawn randomly according to

x ∼ N
([100

100

]
,

[
30 0
0 20

])
, v ∼ N

([ 10
−20

]
,

[
20 0
0 10

])
.
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In addition, we also created one larger body, with mass 1011 and radius 10, initialized at the origin with no
initial velocity.

We simulated the trajectories of the planets for 5 seconds sampled every 0.02 seconds. We took the positions of
the bodies at 5 evenly spaced times as the knots for our interpolation. In order to solve the matching problem
between planets at neighboring knot times, we placed a uniform empirical distribution over the planets at both
times and used the Python Optimal Transport (POT) library function ot.emd to compute the Monge map
between these two distributions. We checked post process that the Monge maps computed were indeed valid
matchings (i.e. permutation matrices).

Given the Monge maps between knots, we applied Algorithm 1 to interpolate the empirical distributions of the
bodies using cubic splines. Note that in our cubic spline reconstruction, it is possible to observe mistakes in
the matching, i.e., the Monge map may not necessarily map a body at one time to the same body at a future
time. Such mismatches seem unavoidable without using a more sophisticated method which takes into account
the physical model in the simulation.

F FURTHER DETAILS FOR THIN-PLATE SPLINES

F.1 Simultaneously Optimal Coupling

In Section 6 we introduce the following coupling. Let U be a uniform random variable on [0, 1], and set

Xxi
= F−1

µ?
xi

(U), i = 0, 1, . . . , N.

Then, (Xx0
, Xx1

, . . . , XxN
) is a simultaneously optimal coupling of the measures µ?x0

, µ?x1
, . . . , µ?xN

. This follows
directly from Santambrogio (2015, §2.1-2.2), but we provide some additional explanation here.

As described in Section 2, the Monge map Ti,j from µ?xi
to µ?xj

is characterized as the (µ?xi
-a.e.) unique mapping

which both pushes µ?xi
forward to µ?xj

and is the gradient of a convex function. In one dimension, the latter

condition simply means that Ti,j is an increasing function. It is easily checked that F−1
µ?
xj
◦ Fµ?

xi
satisfies these

properties, and thus10

Ti,j = F−1
µ?
xj
◦ Fµ?

xi
.

Now, observe that a composition of increasing maps is increasing, which implies that Tj,k◦Ti,j must be the Monge
map Ti,k. This key fact directly implies the existence of the simultaneously optimal coupling of the measures. In
higher dimensions, this breaks down because the composition of Monge maps is no longer necessarily a Monge
map (that is, the composition of gradients of functions is not necessarily the gradient of a function).

F.2 Gaussian Splines and Quantiles

Recall that the α-quantile of a measure µ is the value cα for which µ((−∞, cα]) = α. If µ has CDF Fµ, then
the α-quantile is simply F−1

µ (α). If we denote by Φ the CDF of the standard Gaussian distribution, then the
α-quantile of N (0, 1) is Φ−1(α), and the α-quantile of N (m,σ2) is m+ Φ−1(α)σ.

Suppose the measures µ?xi
, i = 0, 1, . . . , N , are all one-dimensional Gaussians, and write µ?xi

= N (mxi , σ
2
xi

). The
next result immensely facilitates the computation of the quantiles of the thin-plate transport spline.

Proposition 15. Consider (mx)x∈R2 , the (Euclidean) thin-plate spline interpolating the means (mxi
)
N
i=0, and

(sx)x∈R2 , the (Euclidean) thin-plate spline interpolating the standard deviations (σxi
)
N
i=0.

For any α ∈ [0, 1], the α-quantile of µx, the interpolated thin-plate transport spline at x, is given by mx +
Φ−1(α) |sx|.

Proof. It is standard that there is a linear mapping Sx such that the Euclidean thin-plate spline interpolating
through (xi, zi)

N
i=0 is given by Sx(z0, z1, . . . , zN ).

10The inverse CDFs described here exist because of our assumption of absolute continuity of the measures.
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It follows from (6) and the discussion in Appendix F.1 that the Monge map from µ?x0
to µ?xi

is the increasing
map z 7→ (σxi

/σx0
)(z −mx0

) +mxi
. Thus,

Xx = Sx(Xx0
, Xx1

, . . . , XxN
)

= Sx
(
Xx0

,
σx1

σx0

(Xx0
−mx0

) +mx1
, . . . ,

σxN

σx0

(Xx0
−mx0

) +mxN

)
= Sx(mx0

,mx1
, . . . ,mxN

) + Sx
(
Xx0
−mx0

,
σx1

σx0

(Xx0
−mx0

), . . . ,
σxN

σx0

(Xx0
−mx0

)
)

= mx +
Xx0
−mx0

σx0

Sx(σx0
, σx1

, . . . , σxN
)

= mx + sx
Xx0 −mx0

σx0

∼ N (mx, s
2
x) = µx.

This is the desired result.

F.3 Figure 4

Here we give more details on the thin-plate spline interpolation leading to Figure 4. The data is a representation
of the temperature at various weather stations throughout California on June 1 of each year in a thirty year
period. That is, we consider the distribution of temperatures recorded on each of June 1, 1981, June 1, 1982, . . . ,
June 1, 2010, and we model this distribution as Gaussian (characterized by its mean and standard deviation).
This data is processed and released each decade by the NOAA NCEI (Arguez et al., 2010). We interpolate these
measures using our transport spline technique, obtaining Gaussian measures at each point in California. The
left side of Figure 4 summarizes these measures by their quantiles, while the right side illustrates the behavior of
our method as we sample increasingly many weather stations. The median temperature in the top left quantile
plot is taken to be equal to the mean temperature due to our assumption that the temperature distribution is
Gaussian at every location. Though there are 484 stations in the NOAA dataset, we used substantially fewer to
better capture the convergence of our method.
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