Appendix

A PRELIMINARIES

A.1 Transportation Inequalities

For any function $f : \mathcal{X} \to \mathbb{R}$, we define its span as $\mathcal{S}(f) := \max_{x \in \mathcal{X}} f(x) - \min_{x \in \mathcal{X}} f(x)$. For a probability distribution P supported on the set \mathcal{X}, let $\mathbb{E}_P[f] := \mathbb{E}_P[f(X)]$ and $\mathbb{V}_P[f] := \mathbb{V}_P[f(X)] = \mathbb{E}_P[f(X)^2] - \mathbb{E}_P[f(X)]^2$ denote the mean and variance of the random variable $f(X)$, respectively. We now state the following transportation inequalities, which can be adapted from [Boucheron et al. 2013] Lemma 4.18.

Lemma 1 (Transportation inequalities). Assume f is such that $\mathcal{S}(f)$ and $\mathbb{V}_P[f]$ are finite. Then it holds

\[
\forall Q \ll P, \quad \mathbb{E}_Q[f] - \mathbb{E}_P[f] \leq \sqrt{2 \mathbb{V}_P[f] \text{KL}(Q, P)} + \frac{2 \mathcal{S}(f)}{3} \text{KL}(Q, P),
\]

\[
\forall Q \ll P, \quad \mathbb{E}_P[f] - \mathbb{E}_Q[f] \leq \sqrt{2 \mathbb{V}_P[f] \text{KL}(Q, P)}.
\]

A.2 Bregman Divergence

For a Legendre function $F : \mathbb{R}^d \to \mathbb{R}$, the Bregman divergence between $\theta', \theta \in \mathbb{R}^d$ associated with F is defined as

\[
B_{F}(\theta', \theta) := F(\theta') - F(\theta) - (\theta' - \theta)^\top \nabla F(\theta).
\]

Now, for any fixed $\theta \in \mathbb{R}^d$, we introduce the function

\[
B_{F,\theta}(\lambda) := B_{F}(\theta + \lambda) = F(\theta + \lambda) - F(\theta) - \lambda^\top \nabla F(\theta).
\]

It then follows that $B_{F,\theta}$ is a convex function, and we define its dual as

\[
B_{\star F,\theta}(x) = \sup_{\lambda \in \mathbb{R}^d} \left(\lambda^\top x - B_{F,\theta}(\lambda) \right).
\]

We have for any $\theta, \theta' \in \mathbb{R}^d$:

\[
B_{F}(\theta', \theta) = B_{\star F,\theta}(\nabla F(\theta) - \nabla F(\theta')).
\]

To see this, we observe that

\[
B_{\star F,\theta'}(\nabla F(\theta) - \nabla F(\theta'))
= \sup_{\lambda \in \mathbb{R}^d} \lambda^\top (\nabla F(\theta) - \nabla F(\theta')) - [F(\theta' + \lambda) - F(\theta') - \lambda^\top \nabla F(\theta')]
= \sup_{\lambda \in \mathbb{R}^d} \lambda^\top \nabla F(\theta) - F(\theta' + \lambda) + F(\theta').
\]

Now an optimal λ must satisfy $\nabla F(\theta) = \nabla F(\theta' + \lambda)$. One possible choice is $\lambda = \theta - \theta'$. Since, by definition, F is strictly convex, the supremum will indeed be attained at $\lambda = \theta - \theta'$. Plugin-in this value, we obtain

\[
B_{\star F,\theta'}(\nabla F(\theta) - \nabla F(\theta')) = (\theta - \theta')^\top \nabla F(\theta) - F(\theta) + F(\theta') = B_{F}(\theta', \theta).
\]

(See that [1] holds for any convex function F. Only difference is that, in this case, $B_{F}(\cdot, \cdot)$ won’t correspond to the Bregman divergence.)

A.3 Exponential Family

In this section, we detail some useful results related to exponential families in our model.

Derivatives Let us first take a closer look at the derivative of the log-partition function $Z_{s,a}$. As usual with exponential families, these are intimately linked to moments of the random variable. We have on the one hand,

\[
(\nabla_i Z_{s,a})(\theta) = \int_S \psi(s')^\top A_i \varphi(s, a) \frac{h(s', s, a) \exp \left(\sum_{i=1}^d \theta_i \psi(s')^\top A_i \varphi(s, a) \right)}{\int_S h(s', s, a) \exp \left(\sum_{i=1}^d \theta_i \psi(s')^\top A_i \varphi(s, a) \right) \, ds'} \, ds'
\]

\[
= \mathbb{E}_{s,a}^{\theta} \left[\psi(s')^\top A_i \varphi(s, a) \right].
\]
On the other hand, the entries of the Hessian of Z are given by

$$
\begin{align*}
(\nabla^2_{i,j} Z_{s,a})(\theta) &= \int_s \psi(s')^T A_i \varphi(s,a) \psi(s')^T A_j \varphi(s,a) \frac{h(s',s,a) \exp\left(\sum_{i=1}^d \theta_i \psi(s')^T A_i \varphi(s,a)\right)}{\int_s h(s',s,a) \exp\left(\sum_{i=1}^d \theta_i \psi(s')^T A_i \varphi(s,a)\right) ds'} ds' \\
&- \int_s \psi(s')^T A_i \varphi(s,a) \frac{h(s',s,a) \exp\left(\sum_{i=1}^d \theta_i \psi(s')^T A_i \varphi(s,a)\right)}{\int_s h(s',s,a) \exp\left(\sum_{i=1}^d \theta_i \psi(s')^T A_i \varphi(s,a)\right) ds'} ds' \nabla^2_{i,j} Z_{s,a}(\theta)
\end{align*}
$$

$$
\begin{align*}
&= \mathbb{E}^\theta_{s,a} \left[\psi(s')^T A_i \varphi(s,a) \psi(s')^T A_j \varphi(s,a) \right] \\
&- \mathbb{E}^\theta_{s,a} \left[\psi(s')^T A_i \varphi(s,a) \right] \mathbb{E}^\theta_{s,a} \left[\psi(s')^T A_j \varphi(s,a) \right] \\
&= \varphi(s,a)^T A_i^T \mathbb{C}^\theta_{s,a} \left[\psi(s') \psi(s')^T \right] \mathbb{E}^\theta_{s,a} \left[\psi(s')^T \right] A_j \varphi(s,a) \\
&= \varphi(s,a)^T A_i^T \mathbb{C}^\theta_{s,a} \left[\psi(s') \psi(s')^T \right] \mathbb{E}^\theta_{s,a} \left[\psi(s')^T \right] A_j \varphi(s,a)
\end{align*}
$$

where we introduce in the last line the $p \times p$ covariance matrix given by

$$
\mathbb{C}^\theta_{s,a} \left[\psi(s') \right] = \mathbb{E}^\theta_{s,a} \left[\psi(s') \psi(s')^T \right] - \mathbb{E}^\theta_{s,a} \left[\psi(s') \right] \mathbb{E}^\theta_{s,a} \left[\psi(s')^T \right]
$$

KL Divergence For any two θ, θ' and for some pair (s,a), we are interested in the following useful relations

$$
\begin{align*}
\log \left(\frac{P_{\theta}(s'|s,a)}{P_{\theta'}(s'|s,a)} \right) &= \sum_{i=1}^d (\theta_i - \theta'_i) \psi(s')^T A_i \varphi(s,a) - Z_{s,a}(\theta) + Z_{s,a}(\theta') \\
or \text{KL} \left(P_{\theta}(\cdot|s,a), P_{\theta'}(\cdot|s,a) \right) &= \sum_{i=1}^d (\theta_i - \theta'_i) \mathbb{E}^\theta_{s,a} \left[\psi(s')^T \right] A_i \varphi(s,a) - Z_{s,a}(\theta) + Z_{s,a}(\theta') \\
&= \frac{1}{2} (\theta - \theta')^T (\nabla^2 Z_{s,a})(\tilde{\theta})(\theta - \theta')
\end{align*}
$$

where in the last line, we used, by a Taylor expansion, that $Z_{s,a}(\theta') = Z_{s,a}(\theta) + (\nabla Z_{s,a}(\theta))^T (\theta' - \theta) + \frac{1}{2}(\theta - \theta')^T (\nabla^2 Z_{s,a}(\tilde{\theta}))(\theta - \theta')$ for some $\tilde{\theta} \in [\theta, \theta']_\infty$. Here $[\theta, \theta']_\infty$ denotes the d-dimensional hypercube joining θ to θ'.

B METHOD OF MIXTURES FOR CONDITIONAL EXPONENTIAL FAMILIES: PROOF OF THEOREM [1]

Step 1: Martingale Construction First note that by our hypothesis of strict convexity, the log-partition function $Z_{s,a}$ is a Legendre function[1]. Now for the conditional exponential family model, the KL divergence b/w $P_{\theta}(\cdot|s,a)$ and $P_{\theta'}(\cdot|s,a)$ can be expressed as a Bregman divergence associated to $Z_{s,a}$ with the parameters reversed, i.e.,

$$
\text{KL}_{s,a}(\theta, \theta') := \text{KL} \left(P_{\theta}(\cdot|s,a), P_{\theta'}(\cdot|s,a) \right) = B_{Z_{s,a}}(\theta', \theta) \ .
$$

(5)

Now, for any $\lambda \in \mathbb{R}^d$, we introduce the function $B_{Z_{s,a}, \theta^*}(\lambda) = B_{Z_{s,a}}(\theta^* + \lambda, \lambda)$ and define

$$
M^\lambda_n = \exp \left(\lambda^T S_n - \sum_{t=1}^n B_{Z_{s,t}, \theta^*}(\lambda) \right)
$$

Since we will only use [4] in the proof, the final result would hold even if $Z_{s,a}$ is only convex.
where \(\forall i \leq d \), we denote
\[
(S_n)_i = \sum_{t=1}^n \left(\psi(s'_t) - \mathbb{E}_{s',a_t}^\theta [\psi(s') \mid a_t] \right)^\top A_i \varphi(s_t, a_t).
\]
Note that \(M_n^\lambda > 0 \) and it is \(\mathcal{F}_n \)-measurable. Furthermore, we have for all \((s, a)\),
\[
\mathbb{E}_{s,a}^{\theta^*} \left[\exp \left(\sum_{i=1}^d \lambda_i \left(\psi(s') - \mathbb{E}_{s,a}^{\theta^*} [\psi(s') \mid a_t] \right)^\top A_i \varphi(s, a) \right) \right]
\]
\[
= \exp \left(-\lambda^\top \nabla Z_{s,a}(\theta^*) \right) \int_S h(s', s, a) \exp \left(\sum_{i=1}^d (\lambda_i + \lambda) \psi(s')^\top A_i \varphi(s, a) - Z_{s,a}(\theta^*) \right) ds'
\]
\[
= \exp \left(Z_{s,a}(\theta^* + \lambda) - Z_{s,a}(\theta^*) - \lambda^\top \nabla Z_{s,a}(\theta^*) \right) = \exp \left(B_{Z_{s,a}}(\theta^*) \right).
\]
This implies \(\mathbb{E} \left[\exp \left(\lambda^\top S_n \right) \mathcal{F}_{n-1} \right] = \exp \left(\lambda^\top S_n - B_{Z_{s,a}}(\theta^*) \right) \) and thus, in turn, \(\mathbb{E}[M_n^\lambda \mid \mathcal{F}_{n-1}] = M_{n-1}^\lambda \). Therefore \(\{M_n^\lambda \}_{n=0}^\infty \) is a non-negative martingale adapted to the filtration \(\{\mathcal{F}_n\}_{n=0}^\infty \) and actually satisfies \(\mathbb{E} \left[M_n^\lambda \right] = 1 \). For any prior density \(q(\theta) \) for \(\theta \), we now define a mixture of martingales
\[
M_n = \int_{\mathbb{R}^d} M_n^\lambda q(\theta^* + \lambda) d\lambda.
\]
Then \(\{M_n\}_{n=0}^\infty \) is also a non-negative martingale adapted to \(\{\mathcal{F}_n\}_{n=0}^\infty \) and in fact, \(\mathbb{E} \left[M_n \right] = 1 \).

Step 2: Method Of Mixtures and Martingale Control

Considering the prior density \(\mathcal{N} \left(0, (\eta A)^{-1} \right) \), we obtain from (6) that
\[
M_n = c_0 \int_{\mathbb{R}^d} \exp \left(\lambda^\top S_n - \sum_{i=1}^n B_{Z_{s,i},a_i}(\theta^* - \eta \lambda^2) + \eta \lambda \theta - \eta \lambda^2 \right) d\lambda,
\]
where \(c_0 = \int_{\mathbb{R}^d} \exp \left(-\frac{1}{2} \|\theta^2\|_A^2 \right) d\theta \). We now introduce the function
\[
Z_n(\theta) = \sum_{i=1}^n Z_{s_i,a_i}(\theta).
\]
Note that \(Z_n(\theta) \) is a also Legendre function and its associated Bregman divergence satisfies
\[
B_{Z_n}(\theta, \theta') = \sum_{i=1}^n \left(Z_{s_i,a_i}(\theta' - Z_{s_i,a_i}(\theta) - (\theta' - \theta)^\top \nabla Z_{s_i,a_i}(\theta)) \right) = \sum_{i=1}^n B_{Z_{s_i,a_i}}(\theta', \theta).
\]
Furthermore, we have \(\sum_{i=1}^n B_{Z_{s_i,a_i}}(\theta^* - \theta) = B_{Z_n}(\theta^* - \theta) \).

From the penalized likelihood formula (2), recall that
\[
\forall i \leq d, \quad \sum_{t=1}^n \nabla_i Z_{s_i,a_i}(\theta_n) + \frac{\eta}{2} \nabla_i \|\theta_n\|_A^2 = \sum_{i=1}^n \psi(s'_t)^\top A_i \varphi(s_t, a_t).
\]
This yields
\[
S_n = \sum_{i=1}^n (\nabla Z_{s_i,a_i}(\theta_n) - \nabla Z_{s_i,a_i}(\theta^*)) + \eta \lambda \theta_n = \nabla Z_n(\theta_n) - \nabla Z_n(\theta^*) + \eta \lambda \theta_n.
\]
We now obtain from (7) and (8) that
\[
M_n = c_0 \cdot \exp \left(-\frac{\eta}{2} \|\theta^2\|_A^2 \right) \int_{\mathbb{R}^d} \exp \left(\lambda^\top x_n - B_{Z_n}(\lambda) + g_n(\lambda) \right) d\lambda,
\]
where we have introduced \(g_n(\lambda) = \frac{\eta}{2} \left(2\lambda^\top A \lambda_n + \|\theta^2\|_A^2 - \|\theta^* + \lambda\|_A^2 \right) \) and \(x_n = \nabla Z_n(\theta_n) - \nabla Z_n(\theta^*) \).

Now, note that \(\sup_{\lambda \in \mathbb{R}^d} g_n(\lambda) \leq \frac{\eta}{2} \|\theta^2\|_A^2 \), where the supremum is attained at \(\lambda^* = \theta_n - \theta^* \). We then have
\[
g_n(\lambda) = g_n(\lambda) + \sup_{\lambda \in \mathbb{R}^d} g_n(\lambda) - g_n(\lambda^*)
\]
\[
= \frac{\eta}{2} \|\theta_n - \theta^*\|_A^2 + \eta \lambda^2 (\lambda^* + \lambda\lambda^*) + \frac{\eta}{2} \|\theta^* + \lambda\|_A^2 - \frac{\eta}{2} \|\theta^* + \lambda\|_A^2
\]
\[
= B_{Z_n}(\lambda^*, \theta_n) + (\lambda^* + \lambda^\top \nabla Z_0(\lambda^* + \lambda)) + Z_0(\theta^* + \lambda) - Z_0(\theta^* + \lambda),
\]
where we have introduced the Legendre function \(Z_0(\theta) = \frac{\eta}{2} \|\theta\|_A^2 \). We now have from (4) that
\[
\sup_{\lambda \in \mathbb{R}^d} \left(\lambda^\top x_n - B_{Z_n}(\lambda) \right)
\]
\[
= B_{Z_n}(\lambda^*, x_n) = B_{Z_n}(\lambda^* - \nabla Z_n(\theta_n) - \nabla Z_n(\theta^*)) = B_{Z_n}(\theta^*, \theta_n).
\]
Further, any optimal \(\lambda \) must satisfy
\[
\nabla Z_n(\theta^* + \lambda) = \nabla Z_n(\theta^*) = x_n \implies \nabla Z_n(\theta^* + \lambda) = \nabla Z_n(\theta_n).
\]
One possible solution is $\lambda = \lambda^*$. Now, since Z_n is strictly convex, the supremum is indeed attained at $\lambda = \lambda^*$. We then have
\[
\lambda^\top x_n - B_{Z_n, \theta^*}(\lambda)
= \lambda^\top x_n - B_{Z_n, \theta^*}(\lambda) + B_{Z_n}(\theta^*, \theta_n) - (\lambda^\top x_n - B_{Z_n, \theta^*}(\lambda))
= B_{Z_n}(\theta^*, \theta_n) + (\lambda - \lambda^*)^\top \nabla Z_n(\theta^* + \lambda^*) + B_{Z_n, \theta^*}(\lambda^*) - B_{Z_n, \theta^*}(\lambda) - (\lambda - \lambda^*)^\top \nabla Z_n(\theta^*)
= B_{Z_n}(\theta^*, \theta_n) + (\lambda - \lambda^*)^\top \nabla Z_n(\theta^* + \lambda^*) + Z_n(\theta^* + \lambda^*) - Z_n(\theta^* + \lambda).
\]
Plugging \([10]\) and \([11]\) in \([9]\), we now obtain
\[
M_n = c_0 \cdot \exp \left(\sum_{j \in \{0, n\}} B_{Z_j}(\theta^*, \theta_j) - \frac{\eta}{2} \|\theta^*\|_A^2 \right)
\times \int_{\mathbb{R}^d} \exp \left(\sum_{j \in \{0, n\}} ((\lambda - \lambda^*)^\top \nabla Z_j(\theta^* + \lambda^*) + Z_j(\theta^* + \lambda^*) - Z_j(\theta^* + \lambda)) \right) d\lambda
= c_0 \cdot \exp \left(\sum_{j \in \{0, n\}} B_{Z_j}(\theta^*, \theta_n) - \frac{\eta}{2} \|\theta^*\|_A^2 \right) \cdot \exp \left(- \sum_{j \in \{0, n\}} ((\theta^* + \lambda^*)^\top \nabla Z_j(\theta^* + \lambda^*) - Z_j(\theta^* + \lambda)) \right)
\times \int_{\mathbb{R}^d} \exp \left(\sum_{j \in \{0, n\}} ((\theta^* + \lambda^*)^\top \nabla Z_j(\theta^* + \lambda^*) - Z_j(\theta^* + \lambda)) \right) d\lambda
= \frac{c_0}{c_n} \cdot \exp \left(\sum_{j \in \{0, n\}} B_{Z_j}(\theta^*, \theta_n) - \frac{\eta}{2} \|\theta^*\|_A^2 \right) \cdot \frac{\int_{\mathbb{R}^d} \exp \left(\sum_{j \in \{0, n\}} ((\theta^* + \lambda^*)^\top \nabla Z_j(\theta^* + \lambda^*) - Z_j(\theta^* + \lambda)) \right) d\lambda \cdot 1}{\int_{\mathbb{R}^d} \exp \left(\sum_{j \in \{0, n\}} ((\theta^* + \lambda^*)^\top \nabla Z_j(\theta^* + \lambda^*) - Z_j(\theta^*)) \right) d\theta^*}
= \frac{c_0}{c_n} \cdot \exp \left(\sum_{j \in \{0, n\}} B_{Z_j}(\theta^*, \theta_n) - \frac{\eta}{2} \|\theta^*\|_A^2 \right) \cdot \frac{1}{\int_{\mathbb{R}^d} \exp \left(- \sum_{j \in \{0, n\}} B_{Z_j}(\theta^*, \theta_n) - \frac{\eta}{2} \|\theta^* - \theta_n\|_A^2 \right) d\theta^*}
= c_n \cdot \exp \left(\frac{\exp \left(\sum_{j \in \{0, n\}} ((\theta^* + \lambda^*)^\top \nabla Z_j(\theta^* + \lambda^*) - Z_j(\theta^* + \lambda^*)) \right)}{\int_{\mathbb{R}^d} \exp \left(\sum_{j \in \{0, n\}} ((\theta^* + \lambda^*)^\top \nabla Z_j(\theta^* + \lambda^*) - Z_j(\theta^*)) \right) d\theta^*} \cdot 1 \right)
= \frac{1}{\int_{\mathbb{R}^d} \exp \left(- \sum_{j \in \{0, n\}} B_{Z_j}(\theta^*, \theta_n) - \frac{\eta}{2} \|\theta^* - \theta_n\|_A^2 \right) d\theta^*}.
\]
where we have introduced $c_n = \frac{\exp \left(\sum_{j \in \{0, n\}} ((\theta^* + \lambda^*)^\top \nabla Z_j(\theta^* + \lambda^*) - Z_j(\theta^* + \lambda^*)) \right)}{\int_{\mathbb{R}^d} \exp \left(\sum_{j \in \{0, n\}} ((\theta^* + \lambda^*)^\top \nabla Z_j(\theta^* + \lambda^*) - Z_j(\theta^*)) \right) d\theta^*}$.

Therefore, we have from \([5]\) that
\[
C_{A,n} := c_n = \frac{\int_{\mathbb{R}^d} \exp \left(- \frac{\eta}{2} \|\theta^*\|_A^2 \right) d\theta^*}{\int_{\mathbb{R}^d} \exp \left(- \sum_{i=1}^n \mathbf{KL}_{\theta_i, a_i}(\theta_n, \theta_i) - \frac{\eta}{2} \|\theta^* - \theta_n\|_A^2 \right) d\theta^*}.
\]
An application of Markov’s inequality now yields
\[
P \left[\sum_{i=1}^n \mathbf{KL}_{\theta_i, a_i}(\theta_n, \theta_i) + \frac{\eta}{2} \|\theta^* - \theta_n\|_A^2 - \frac{\eta}{2} \|\theta^*\|_A^2 \geq \log \left(\frac{C_{A,n}}{\delta} \right) \right] = P \left[M_n \geq \frac{1}{\delta} \right] \leq \delta \cdot E [M_n] = \delta.
\]

Step 3: A Stopped Martingale and Its Control Let N be a stopping time with respect to the filtration $\{\mathcal{F}_t\}_{t=0}^\infty$. Now, by the martingale convergence theorem, $M_\infty = \lim_{n \to \infty} M_n$ is almost surely well-defined, and thus M_N is well-defined as well irrespective of whether $N < \infty$ or not. Let $Q_n = M_{\min\{N,n\}}$ be a stopped version of $\{M_n\}_n$. Then an application of Fatou’s lemma yields
\[
E [M_N] = E \left[\liminf_{n \to \infty} Q_n \right] \leq \liminf_{n \to \infty} E [Q_n] = \liminf_{n \to \infty} E \left[M_{\min\{N,n\}} \right] \leq 1,
\]
since the stopped martingale $\{M_{\min\{N,n\}}\}_{n \geq 1}$ is also a martingale. Therefore, by the properties of M_n, \([12]\) also holds for any random stopping time $N < \infty$.

To complete the proof, we now employ a random stopping time construction as in Abbasi-Yadkori et al. (2011).
We define a random stopping time \(N \) by
\[
N = \min \left\{ n \geq 1 : \sum_{t=1}^{n} \text{KL}_{s_t,a_t}(\theta_n, \theta^*) + \frac{n}{2} \| \theta^* - \theta_n \|_{\text{A}}^2 \geq \log \left(\frac{C_{\text{A},n}}{\delta} \right) \right\},
\]
with \(\min \{ \emptyset \} := \infty \) by convention. We then have
\[
P \left[\exists n \geq 1, \sum_{t=1}^{n} \text{KL}_{s_t,a_t}(\theta_n, \theta^*) + \frac{n}{2} \| \theta^* - \theta_n \|_{\text{A}}^2 \geq \log \left(\frac{C_{\text{A},n}}{\delta} \right) \right] = P \left[N < \infty \right] \leq \delta,
\]
which concludes the proof of the first part.

Proof of Second Part: Upper Bound on \(C_{\text{A},n} \) First, we have for some \(\hat{\theta} \in [\theta_n, \theta^*] \), that
\[
\text{KL}_{s,a}(\theta_n, \theta^*) = \frac{1}{2} \sum_{i,j=1}^{d} (\theta^* - \theta_n)i_i \varphi(s, a) \top \text{A}_{i} \text{C}_{i,a}^{\beta} [\psi(s')] A_j \varphi(s, a)(\theta^* - \theta_n) \, .
\]
(13)

Now (13) implies that
\[
\sum_{t=1}^{n} \text{KL}_{s_t,a_t}(\theta_n, \theta^*) \leq \frac{\beta}{2} \sum_{t=1}^{n} \sum_{i,j=1}^{d} (\theta^* - \theta_n)i_i \varphi(s, a_t) \top \text{A}_{i} \text{A}_j \varphi(s, a_t)(\theta^* - \theta_n) = \frac{\beta}{2} \| \theta^* - \theta_n \|_{\text{A}}^2,
\]
where \(\beta := \sup_{\theta, s,a} \lambda_{\max} \left(\text{C}_{i,a}^{\beta} [\psi(s')] \right) \) and \(\forall i, j \leq d \), \((G_{s,a})_{i,j} := \varphi(s, a) \top \text{A}_i \text{A}_j \varphi(s, a) \). Therefore, we obtain
\[
C_{\text{A},n} \leq \frac{\int_{\mathbb{R}^d} \exp \left(- \frac{\beta}{2} \| \theta^* \|_{\text{A}}^2 \right) d\theta^*}{\int_{\mathbb{R}^d} \exp \left(- \frac{\beta}{2} \| \theta - \theta_n \|_{\text{A}}^2 \right) d\theta \sum_{t=1}^{n} G_{s_t,a_t} + \eta A_{i}} \frac{(2\pi)^{d/2}}{\det(\eta A)^{1/2}},
\]
which completes the proof of the second part.

C REGRENT BOUND OF Exp-UCRL: PROOF OF THEOREM 2

Step 1: Optimism Let us consider the start of episode \(t \), i.e., when the total number of steps completed is \(n = (t-1)H \). Recall that \(\theta_n \equiv \theta_{(t-1)H} \) denotes the penalized MLE and \(\Theta_n \equiv \Theta_{(t-1)H} \) the confidence set around the MLE after \(n \) steps. Now, let \(\hat{\theta}_n \equiv \hat{\theta}_{(t-1)H} \) denotes the most optimistic realization from the confidence set \(\Theta_n \), i.e.,
\[
V_{\hat{\theta}_n,1}^\pi (s_1^t) = \max_{\pi \in \Pi} \max_{\theta \in \Theta_n} V_{\hat{\theta}_n,1}^\pi (s_1^t),
\]
where \(s_1^t \) denotes the starting state at episode \(t \). Therefore, as long as the true parameter \(\theta_n \) belongs to \(\Theta_n \), \(V_{\hat{\theta}_n,1}^\pi (s_1^t) \) gives an optimistic estimate of the value \(V_{\theta_n,1}^\pi (s_1^t) \) of the episode, i.e.,
\[
V_{\hat{\theta}_n,1}^\pi (s_1^t) \geq V_{\theta_n,1}^\pi (s_1^t) \, .
\]
(14)

An application of [1] implies that with probability at least \(1 - \delta/2 \), \(\theta^* \in \Theta_n \) across all episodes. We then have from [1] that with probability at least \(1 - \delta/2 \), the cumulative regret is controlled by
\[
\mathcal{R}(N) \leq \sum_{t=1}^{T} \left(V_{\hat{\theta}_n,1}^\pi (s_1^t) - V_{\theta_n,1}^\pi (s_1^t) \right) \, ,
\]
(15)

where \(N = TH \) denotes the total number of steps completed after \(T \) episodes.

Step 2: Bellman Recursion, Transportation Inequalities and Martingale Control For any parameter \(\theta \in \mathbb{R}^d \) and policy \(\pi \in \Pi \), the Bellman operator \(\mathcal{T}_{\theta,h}^\pi : \mathcal{S} \to \mathbb{R} \) is defined for all \(s \in \mathcal{S} \) and \(h \in [H] \) as
\[
\mathcal{T}_{\theta,h}^\pi (V)(s) = R(s, \pi(s, h)) + \mathbb{E}_{s, \pi(s, h)} [V] \, ,
\]
where \(V : \mathcal{S} \to \mathbb{R} \). By the Bellman equation, we have
\[
V_{\theta,h}^\pi (s) = \mathcal{T}_{\theta,h}^\pi (V_{\theta,h+1}^\pi)(s), \quad \forall h \in [H] \quad (\text{with } V_{\theta,H+1}^\pi (s) := 0).
\]
Following, e.g., Chowdhury and Gopalan (2019), a recursive application of Bellman equation now yields
\[
V_{\theta_n^{t+1}}(s_{t+1}^t) - V_{\theta_*}^{t+1}(s_{t+1}^t) = \sum_{h=1}^{H} \left(T_{\theta_n,h}^{t} \left(V_{\theta_n}^{t+1} \right) (s_{t+1}^h) - T_{\theta_*}^{t} \left(V_{\theta_*}^{t+1} \right) (s_{t+1}^h) + m_h^t \right),
\]
where \(m_h^t = \mathbb{E}_{s_h^{t,a_h^t}}^{\theta_h^{t} \cdot a_h^t} \left[V_{\theta_n}^{t+1}(s_{t+1}^h) - V_{\theta_*}^{t+1}(s_{t+1}^h) \right] - \left(V_{\theta_n}^{t+1}(s_{t+1}^h) - V_{\theta_*}^{t+1}(s_{t+1}^h) \right) \). Note that \(\{m_h^t\}_{t,h} \) is a martingale sequence satisfying \(|m_h^t| \leq 2H \). Therefore, by the Azuma-Hoeffding inequality (Boucheron et al., 2013), with probability at least \(1 - \delta/2 \), we obtain
\[
\sum_{t=1}^{T} \sum_{h=1}^{H} m_h^t \leq 2H \sqrt{2TH \ln(2/\delta)} = 2H \sqrt{2N \ln(2/\delta)}.
\]
Then, using a union bound argument along with (15), the cumulative regret can be upper bounded with probability at least \(1 - \delta \) as
\[
\mathcal{R}(N) \leq \sum_{t=1}^{T} \sum_{h=1}^{H} \left(T_{\theta_n,h}^{t} \left(V_{\theta_n}^{t+1} \right) (s_{t+1}^h) - T_{\theta_*}^{t} \left(V_{\theta_*}^{t+1} \right) (s_{t+1}^h) + 2H \sqrt{2N \ln(2/\delta)} \right).
\]
(16)
We now proceed to bound the first term in (16). Since \(V_{\theta_n}^{t+1}(s_{t+1}^h) \leq H \), \(\forall s_h \), we have its span \(S \left(V_{\theta_n}^{t+1} \right) \leq H \) and variance \(\mathbb{V}_{s_h,a_h}^{\theta} \left[V_{\theta_n}^{t+1} \right] \leq H^2, \ \forall \theta, \ \forall(s,a) \). Therefore, we obtain
\[
T_{\theta_n,h}^{t} \left(V_{\theta_n}^{t+1} \right) (s_{t+1}^h) - T_{\theta_*}^{t} \left(V_{\theta_*}^{t+1} \right) (s_{t+1}^h) = \mathbb{E}_{s_h^{t,a_h^t}}^{\theta_h^{t} \cdot a_h^t} \left[V_{\theta_n}^{t+1} \right] - \mathbb{E}_{s_h^{t,a_h^t}}^{\theta_h^{t} \cdot a_h^t} \left[V_{\theta_*}^{t+1} \right] + \mathbb{E}_{s_h^{t,a_h^t}}^{\theta_h^{t} \cdot a_h^t} \left[V_{\theta_*}^{t+1} \right] - \mathbb{E}_{s_h^{t,a_h^t}}^{\theta_h^{t} \cdot a_h^t} \left[V_{\theta_*}^{t+1} \right]
\leq H \sqrt{2KL_{s_h^{t,a_h^t}}(\theta_n, \theta_n) + H \sqrt{2KL_{s_h^{t,a_h^t}}(\theta_n, \theta_n) + 2H/3KL_{s_h^{t,a_h^t}}(\theta_n, \theta_n)}},
\]
where the last step follows from the transportation inequalities (Lemma 1). We then obtain from (16) that
\[
\mathcal{R}(N) \leq H \sum_{t=1}^{T} \sum_{h=1}^{H} \left(\sqrt{2KL_{s_h^{t,a_h^t}}(\theta_n, \theta_n) + 2H/3KL_{s_h^{t,a_h^t}}(\theta_n, \theta_n)} \right) + 2H \sqrt{2N \ln(2/\delta)}.
\]
(17)

Step 3: Sum of KL Divergences Along the Transition Trajectory First, we obtain from (13) that
\[
\forall(s,a) \in S \times A, \ \forall \theta, \theta' \in \mathbb{R}^d, \ \frac{\alpha}{2} \|\theta' - \theta\|^2 \leq KL_{s,a}(\theta, \theta') \leq \frac{\beta}{2} \|\theta' - \theta\|^2,
\]
where \(\alpha := \inf_{\theta, \theta'} \lambda_{\min} \left(\mathbb{C}_{s,a}[\psi(s')] \right), \ \beta := \sup_{\theta, \theta'} \lambda_{\max} \left(\mathbb{C}_{s,a}[\psi(s')] \right), \ \forall i, j \leq d, \ (G_{s,a})_{i,j} := \varphi(s,a)^T A_i^T A_j \varphi(s,a) \). We then have
\[
\forall(s,a), \ \forall \theta, \ \KL_{s,a}(\theta_n, \theta) \leq \frac{\beta}{2} \|\theta - \theta_n\|^2_{\mathbb{C}_{s,a}} \leq \beta \|\mathbb{G}^{-1/2}_{n, s,a} \mathbb{G}^{-1/2}_{n, s,a} \| \frac{1}{2} \|\theta - \theta_n\|^2_{\mathbb{G}_{n, s,a}},
\]
where \(\mathbb{G}_n \equiv \mathbb{G}_{n,(t-1)H} := G_n + \alpha^{-1} \eta A \) and \(G_n \equiv G_{n,(t-1)H} := \sum_{t=1}^{H} \sum_{i=1}^{H} KL_{s_i^{t,a_i^t}}(\theta_n, \theta) \). Furthermore, note that
\[
\frac{1}{2} \|\theta - \theta_n\|^2_{\mathbb{G}_{n, s,a}} = \frac{\alpha^{-1} \eta}{2} \|\theta - \theta_n\|^2_{\mathbb{A}} + \sum_{t=1}^{H} \frac{1}{2} \|\theta - \theta_n\|^2_{\mathbb{G}_{n, s,a}} \leq \alpha^{-1} \left(\frac{\eta}{2} \|\theta - \theta_n\|^2_{\mathbb{A}} + \sum_{t=1}^{H} KL_{s_i^{t,a_i^t}}(\theta_n, \theta) \right).
\]
Therefore, for any \(\theta \in \Theta_n \), we obtain
\[
\forall(s,a), \ \KL_{s,a}(\theta_n, \theta) \leq \frac{\beta}{\alpha} \cdot \beta_n(\delta) \frac{\mathbb{G}_{n,(t-1)H}^{-1/2}}{\mathbb{G}_{n,(t-1)H}^{-1/2}} = \frac{\beta}{\alpha} \cdot \beta_n(\delta) \|\mathbb{G}_{n,(t-1)H}^{-1} \mathbb{G}_{n,(t-1)H} \|, \ \forall(s,a),
\]
(18)
Now, since \(G_n \) is positive semi-definite, we have \(\mathbb{G}_n \geq \alpha^{-1} \eta \mathbb{A} \), and thus, in turn
\[
\|\mathbb{G}_{n,(t-1)H}^{-1/2} \mathbb{G}_{s,a} \| \leq \frac{\alpha}{\eta} \|\mathbb{A}^{-1} \mathbb{G}_{s,a} \| \leq \frac{\alpha B_{s,a}}{\eta}, \ \forall(s,a),
\]
where $B_{\varphi, A} := \sup_{s,a} \| A^{-1} G_{s,a} \|$. This further yields
\begin{equation}
\left\| I + \mathcal{G}^{-1}_n \sum_{h=1}^H G_{s_h, a_h} \right\| \leq 1 + \sum_{h=1}^H \left\| \mathcal{G}^{-1}_n G_{s_h, a_h} \right\| \leq 1 + \frac{\alpha B_{\varphi, A} H}{\eta} .
\end{equation}

Now, we define $\mathcal{G}^{-1}_{n,H} := \mathcal{G}_n + \sum_{h=1}^H G_{s_h, a_h}$. Hence, $\mathcal{G}^{-1}_{n,H} G_{s,a} = \left(I + \mathcal{G}^{-1}_n \sum_{h=1}^H G_{s_h, a_h} \right)^{-1} \mathcal{G}^{-1}_n G_{s,a}$. We therefore deduce from (19) that
\begin{equation}
\forall (s,a), \quad \left\| \mathcal{G}^{-1}_n G_{s,a} \right\| = \left\| \left(I + \mathcal{G}^{-1}_n \sum_{h=1}^H G_{s_h, a_h} \right) \mathcal{G}^{-1}_{n,H} G_{s,a} \right\| \leq \left(1 + \frac{\alpha B_{\varphi, A} H}{\eta} \right) \left\| \mathcal{G}^{-1}_{n,H} G_{s,a} \right\| .
\end{equation}

Now see that
\begin{equation}
\sum_{t=1}^T \sum_{h=1}^H \left\| \mathcal{G}^{-1}_{n,H} G_{s_h, a_h} \right\| \leq \sum_{t=1}^T \sum_{h=1}^H \text{tr} \left(\mathcal{G}^{-1}_{n,H} G_{s_h, a_h} \right) = \sum_{t=1}^T \text{tr} \left(\mathcal{G}^{-1}_{n,H} \left(\mathcal{G}_{n,H} - \mathcal{G}_n \right) \right) \leq \sum_{t=1}^T \log \frac{\det(\mathcal{G}_{n,H})}{\det(\mathcal{G}_n)} ,
\end{equation}
where we have used that for two positive definite matrices A and B such that $A-B$ is positive semi-definite, $\text{tr}(A^{-1}(A-B)) \leq \log \frac{\det(A)}{\det(B)}$. We can now control the R.H.S. of the above equation, as
\begin{equation}
\sum_{t=1}^T \log \frac{\det(\mathcal{G}_{n,H})}{\det(\mathcal{G}_n)} = \sum_{t=1}^T \log \frac{\det(\mathcal{G}_{n+H})}{\det(\mathcal{G}_n)} = \log \frac{\det(\mathcal{G}_{n+H})}{\det(\mathcal{G}_n)} = \log \frac{\det(\mathcal{G}_n)}{\det(\mathcal{G}_{n+H})} = \log \det \left(I + \beta^{-1} A^{-1} G_N \right) .
\end{equation}

Therefore, we have from (20) and that
\begin{equation}
\sum_{t=1}^T \sum_{h=1}^H \left\| \mathcal{G}^{-1}_n G_{s_h, a_h} \right\| \leq \left(1 + \frac{\beta B_{\varphi, A} H}{\eta} \right) \log \det \left(I + \beta^{-1} A^{-1} G_N \right) ,
\end{equation}
where we have used that $\alpha \leq \beta$.

It now remains to bound the log determinant term in the above equation. By the trace-determinant inequality, we have
\begin{equation}
\det \left(I + \beta^{-1} A^{-1} G_N \right) \leq \left(\frac{\text{tr} \left(I + \beta^{-1} A^{-1} G_N \right)}{d} \right)^d \leq \left(1 + \frac{\beta^{-1}}{d} \text{tr} \left(A^{-1} G_N \right) \right)^d .
\end{equation}

Now see that $\text{tr} \left(A^{-1} G_N \right) \leq n \sup_{s,a} \text{tr} \left(A^{-1} G_{s,a} \right) \leq dB_{\varphi, A} n$. Therefore, we have
\begin{equation}
\log \det \left(I + \beta^{-1} A^{-1} G_N \right) \leq d \log \left(1 + \beta^{-1} B_{\varphi, A} n \right) .
\end{equation}
This further implies that the confidence radius
\begin{equation}
\beta_n(d) \leq \frac{n}{2} B_{\varphi}^2 + \log \left(2 \det \left(I + \beta^{-1} A^{-1} G_N \right) / \delta \right) \leq \frac{n}{2} B_{\varphi}^2 + d \log \left(1 + \beta^{-1} B_{\varphi, A} n \right) + \log(2/\delta) ,
\end{equation}
which is an increasing function in the total number of steps n, hence, in the number of episodes t. We then have from (15) and (21) that
\begin{equation}
\forall \theta \in \Theta_n, \quad \sum_{t=1}^T \sum_{h=1}^H \text{KL} \left(s_h, a_h \right)(\theta, \theta) \leq \frac{\beta}{\alpha} \left(1 + \frac{\beta B_{\varphi, A} H}{\eta} \right) \beta_n(\delta) \gamma_N ,
\end{equation}
where we define $\gamma_N := d \log \left(1 + \beta^{-1} B_{\varphi, A} N \right)$ and $\beta_n(\delta) := \frac{n}{2} B_{\varphi}^2 + \gamma_N + \log(2/\delta)$.

Final Step: First, an application of Cauchy-Schwartz’s inequality yields
\begin{equation}
\forall \theta \in \Theta_n, \quad \sum_{t=1}^T \sum_{h=1}^H \sqrt{\text{KL} \left(s_h, a_h \right)(\theta, \theta)} \leq \sqrt{N} \sum_{t=1}^T \sum_{h=1}^H \text{KL} \left(s_h, a_h \right)(\theta, \theta) \leq \sqrt{\frac{\beta}{\alpha} \left(1 + \frac{\beta B_{\varphi, A} H}{\eta} \right) \beta_n(\delta)N \gamma_N} .
\end{equation}
At this point, we note that by design, $\hat{\theta}_n \in \Theta_n$ and by Theorem 1, $\theta^* \in \Theta_n$ with probability at least $1 - \delta/2$. We now obtain from (17), (23) and (24) that the cumulative regret
\begin{equation}
\mathcal{R}(N) \leq 2H \sqrt{\frac{\beta}{\alpha} \left(1 + \frac{\beta B_{\varphi, A} H}{\eta} \right) 2\beta_n(\delta)N \gamma_N} + 2H \sqrt{2N \ln(2/\delta)} + \frac{2H}{3} \frac{\beta}{\alpha} \left(1 + \frac{\beta B_{\varphi, A} H}{\eta} \right) \beta_n(\delta) \gamma_N ,
\end{equation}
which completes the proof.
D REGRET BOUND OF Exp-PSRL: PROOF OF THEOREM 3

Let us consider the start of episode t, i.e., when the total number of steps completed is $n = (t-1)H$. Recall that we sample $\hat{\theta}_n \equiv \hat{\theta}_{(t-1)H} \sim \mu_{\mathcal{H}_n}$, where $\mu_{\mathcal{H}_n} = \mathbb{P}(\theta^* \in \mathcal{H}_n)$ denotes the posterior distribution of θ^*, given the history of transitions $\mathcal{H}_n = \mathcal{H}_{(t-1)H} = \{(s_{h-1}^t, a_{h-1}^t, s_{h+1}^t)_{t \leq H} \}$. A key property of posterior sampling is that for any $\sigma(\mathcal{H}_n)$-measurable function f, we have $\mathbb{E}[f(\hat{\theta}_n)] = \mathbb{E}[f(\theta^*)]$ [Osband et al., 2013]. This implies that the optimal policy π^* and selected policy π_t^* are identically distributed conditioned on the history \mathcal{H}_n. Therefore, we have $\mathbb{E} \left[V_{\pi_t^*,1}^t(s_1^t) \right] = \mathbb{E} \left[V_{\pi_t^*,1}(s_1^t) \right]$, and thus, in turn, the Bayes regret

$$\mathbb{E}[\mathcal{R}(N)] = \mathbb{E} \left[\sum_{t=1}^T \left(V_{\pi_t^*,1}^t(s_1^t) - V_{\pi_t^*,1}(s_1^t) \right) \right].$$

A recursive application of the Bellman equation now yields a result similar to (10):

$$\mathbb{E}[\mathcal{R}(N)] = \mathbb{E} \left[\sum_{t=1}^T \sum_{h=1}^H \left(\sqrt{2} KL_{s_{h+1}^t,a_{h+1}^t}(\theta_n, \hat{\theta}_n) + \sqrt{2} KL_{s_{h+1}^t,a_{h+1}^t}(\theta^*, \theta^*) + \frac{2}{3} KL_{s_{h+1}^t,a_{h+1}^t}(\theta_n, \theta^*) \right) \right],$$

where $m_h^t = \mathbb{E}_{s_{h+1}^t,a_{h+1}^t} \left[V_{\pi_t^*,1}(s_{h+1}^t) - V_{\theta^*,1}(s_{h+1}^t) \right]$ is a martingale difference sequence satisfying $\mathbb{E}[m_h^t] = 0$. Then an application of the transportation inequalities (Lemma 1) yields a result similar to (17):

$$\mathbb{E}[\mathcal{R}(N)] \leq H \mathbb{E} \left[\sum_{t=1}^T \sum_{h=1}^H \left(\sqrt{2} KL_{s_{h+1}^t,a_{h+1}^t}(\theta_n, \hat{\theta}_n) + \sqrt{2} KL_{s_{h+1}^t,a_{h+1}^t}(\theta^*, \theta^*) + \frac{2}{3} KL_{s_{h+1}^t,a_{h+1}^t}(\theta_n, \theta^*) \right) \right],$$

where $\theta_n \equiv \hat{\theta}_{(t-1)H}$ denotes the penalized MLE (as computed by Exp-UCRL) after $n = (t-1)H$ steps.

We now define for any $\delta \in (0,1)$, the events $\mathcal{E}^* = \{ \forall t \geq 1, \theta^* \in \Theta_t \}$ and $\tilde{\mathcal{E}} = \{ \forall t \geq 1, \theta_n \in \Theta_t \}$, where $\Theta_t \equiv \Theta_{(t-1)H}$ is confidence set (as constructed by Exp-UCRL) after $n = (t-1)H$ steps. Under the event $\mathcal{E}^* \cap \tilde{\mathcal{E}}$, we have from (23) and (24) that

$$\sum_{t=1}^T \sum_{h=1}^H KL_{s_{h+1}^t,a_{h+1}^t}(\theta_n, \theta^*) \leq \frac{\beta}{\alpha} \left(1 + \frac{\beta B_{\mathcal{Z},AH}}{\eta} \right) \beta_N(\delta) \gamma_N,$$

$$\sum_{t=1}^T \sum_{h=1}^H KL_{s_{h+1}^t,a_{h+1}^t}(\theta_n, \theta^*) \leq \frac{\beta}{\alpha} \left(1 + \frac{\beta B_{\mathcal{Z},AH}}{\eta} \right) \beta_N(\delta) \gamma_N \quad \text{and}$$

$$\sum_{t=1}^T \sum_{h=1}^H KL_{s_{h+1}^t,a_{h+1}^t}(\theta_n, \hat{\theta}_n) \leq \frac{\beta}{\alpha} \left(1 + \frac{\beta B_{\mathcal{Z},AH}}{\eta} \right) \beta_N(\delta) \gamma_N.$$

Therefore, we obtain from (25), the following:

$$\mathbb{E}[\mathcal{R}(N) \mathbb{I}_{\mathcal{E}^* \cap \tilde{\mathcal{E}}}] \leq 2H \sqrt{\frac{\beta}{\alpha} \left(1 + \frac{\beta B_{\mathcal{Z},AH}}{\eta} \right) 2 \beta_N(\delta) \gamma_N + \frac{2}{3} \frac{\beta}{\alpha} \left(1 + \frac{\beta B_{\mathcal{Z},AH}}{\eta} \right) \beta_N(\delta) \gamma_N}.$$

Since we can always bound $\mathcal{R}(N) \leq N$, we have

$$\mathbb{E}[\mathcal{R}(N)] = \mathbb{E} \left[\mathcal{R}(N) \mathbb{I}_{\mathcal{E}^* \cap \tilde{\mathcal{E}}} + \mathcal{R}(N) \mathbb{I}_{(\mathcal{E}^* \cap \tilde{\mathcal{E}})^c} \right] \leq \mathbb{E}[\mathcal{R}(N) \mathbb{I}_{\mathcal{E}^* \cap \tilde{\mathcal{E}}}] + N(1 - \mathbb{P}(\mathcal{E}^* \cap \tilde{\mathcal{E}})).$$

Now from the property of posterior sampling, $\mathbb{P}(\tilde{\mathcal{E}}) = \mathbb{P}(\mathcal{E}^*)$ and from Theorem 1, $\mathbb{P}(\mathcal{E}^*) \geq 1 - \delta/2$. Therefore, by a union bound, $\mathbb{P}(\mathcal{E}^* \cap \tilde{\mathcal{E}}) \geq 1 - \delta$. This implies for any $\delta \in (0,1]$ that the Bayes regret

$$\mathbb{E}[\mathcal{R}(N)] \leq 2H \sqrt{\frac{\beta}{\alpha} \left(1 + \frac{\beta B_{\mathcal{Z},AH}}{\eta} \right) 2 \beta_N(\delta) \gamma_N + \frac{2}{3} \frac{\beta}{\alpha} \left(1 + \frac{\beta B_{\mathcal{Z},AH}}{\eta} \right) \beta_N(\delta) \gamma_N + N\delta}.$$

The proof now can be completed by setting $\delta = \frac{1}{N}$.

E ON THE CHOICE OF PENALTY FUNCTION

In this paper, we have considered the penalty function $\operatorname{pen}(\theta) = \frac{1}{2} \| \theta \|^2_r$, where $\forall i, j \leq d, \ A_{i,j} = \text{tr}(A_i A_j^T)$. We however note that all our results (Theorem 1, 2, 3) hold for any choice of the (regularizing) matrix A. For any
such choice of A, we only need to ensure that there exist a known constant B_A such that $\|\theta^*\|_A \leq B_A$. In fact for our particular choice, as we have seen in Section 4, we obtain $A = I$ for factored and tabular MDPs and $A = m_1 I$ for the linearly controlled dynamical systems. (The scaling with m_1 arises because of our parameterization and can be suppressed for the special case of $\Sigma_{s,a} = cI$, $c > 0$, $\forall (s, a)$ by using a reparameterization.) We leave it to future work to study the effect of other possible regularizing matrices and penalty functions.