Appendix

A PRELIMINARIES

A. 1 Transportation Inequalities

For any function $f: \mathcal{X} \rightarrow \mathbb{R}$, we define its span as $\mathbb{S}(f):=\max _{x \in \mathcal{X}} f(x)-\min _{x \in \mathcal{X}} f(x)$. For a probability distribution P supported on the set \mathcal{X}, let $\mathbb{E}_{P}[f]:=\mathbb{E}_{P}[f(X)]$ and $\mathbb{V}_{P}[f]:=\mathbb{V}_{P}[f(X)]=\mathbb{E}_{P}\left[f(X)^{2}\right]-$ $\mathbb{E}_{P}[f(X)]^{2}$ denote the mean and variance of the random variable $f(X)$, respectively. We now state the following transportation inequalities, which can be adapted from Boucheron et al. (2013, Lemma 4.18).

Lemma 1 (Transportation inequalities). Assume f is such that $\mathbb{S}(f)$ and $\mathbb{V}_{P}[f]$ are finite. Then it holds

$$
\begin{array}{ll}
\forall Q \ll P, & \mathbb{E}_{Q}[f]-\mathbb{E}_{P}[f] \leq \sqrt{2 \mathbb{V}_{P}[f] \mathrm{KL}(Q, P)}+\frac{2 \mathbb{S}(f)}{3} \mathrm{KL}(Q, P) \\
\forall Q \ll P, & \mathbb{E}_{P}[f]-\mathbb{E}_{Q}[f] \leq \sqrt{2 \mathbb{V}_{P}[f] \mathrm{KL}(Q, P)}
\end{array}
$$

A. 2 Bregman Divergence

For a Legendre function $F: \mathbb{R}^{d} \rightarrow \mathbb{R}$, the Bregman divergence between $\theta^{\prime}, \theta \in \mathbb{R}^{d}$ associated with F is defined as

$$
B_{F}\left(\theta^{\prime}, \theta\right):=F\left(\theta^{\prime}\right)-F(\theta)-\left(\theta^{\prime}-\theta\right)^{\top} \nabla F(\theta)
$$

Now, for any fixed $\theta \in \mathbb{R}^{d}$, we introduce the function

$$
B_{F, \theta}(\lambda):=B_{F}(\theta+\lambda, \lambda)=F(\theta+\lambda)-F(\theta)-\lambda^{\top} \nabla F(\theta) .
$$

It then follows that $B_{F, \theta}$ is a convex function, and we define its dual as

$$
B_{F, \theta}^{\star}(x)=\sup _{\lambda \in \mathbb{R}^{d}}\left(\lambda^{\top} x-B_{F, \theta}(\lambda)\right)
$$

We have for any $\theta, \theta^{\prime} \in \mathbb{R}^{d}$:

$$
\begin{equation*}
B_{F}\left(\theta^{\prime}, \theta\right)=B_{F, \theta^{\prime}}^{\star}\left(\nabla F(\theta)-\nabla F\left(\theta^{\prime}\right)\right) \tag{4}
\end{equation*}
$$

To see this, we observe that

$$
\begin{aligned}
& B_{F, \theta^{\prime}}^{\star}\left(\nabla F(\theta)-\nabla F\left(\theta^{\prime}\right)\right) \\
= & \sup _{\lambda \in \mathbb{R}^{d}} \lambda^{\top}\left(\nabla F(\theta)-\nabla F\left(\theta^{\prime}\right)\right)-\left[F\left(\theta^{\prime}+\lambda\right)-F\left(\theta^{\prime}\right)-\lambda^{\top} \nabla F\left(\theta^{\prime}\right)\right] \\
= & \sup _{\lambda \in \mathbb{R}^{d}} \lambda^{\top} \nabla F(\theta)-F\left(\theta^{\prime}+\lambda\right)+F\left(\theta^{\prime}\right) .
\end{aligned}
$$

Now an optimal λ must satisfy $\nabla F(\theta)=\nabla F\left(\theta^{\prime}+\lambda\right)$. One possible choice is $\lambda=\theta-\theta^{\prime}$. Since, by definition, F is strictly convex, the supremum will indeed be attained at $\lambda=\theta-\theta^{\prime}$. Plugin-in this value, we obtain

$$
B_{F, \theta^{\prime}}^{\star}\left(\nabla F(\theta)-\nabla F\left(\theta^{\prime}\right)\right)=\left(\theta-\theta^{\prime}\right)^{\top} \nabla F(\theta)-F(\theta)+F\left(\theta^{\prime}\right)=B_{F}\left(\theta^{\prime}, \theta\right)
$$

(Note that (4) holds for any convex function F. Only difference is that, in this case, $B_{F}(\cdot, \cdot)$ won't correspond to the Bregman divergence.)

A. 3 Exponential Family

In this section, we detail some useful results related to exponential families in our model.
Derivatives Let us first take a closer look at the derivative of the log-partition function $Z_{s, a}$. As usual with exponential families, these are intimately linked to moments of the random variable. We have on the one hand,

$$
\begin{aligned}
\left(\nabla_{i} Z_{s, a}\right)(\theta) & =\int_{\mathcal{S}} \psi\left(s^{\prime}\right)^{\top} A_{i} \varphi(s, a) \frac{h\left(s^{\prime}, s, a\right) \exp \left(\sum_{i=1}^{d} \theta_{i} \psi\left(s^{\prime}\right)^{\top} A_{i} \varphi(s, a)\right)}{\int_{\mathcal{S}} h\left(s^{\prime}, s, a\right) \exp \left(\sum_{i=1}^{d} \theta_{t} \psi\left(s^{\prime}\right)^{\top} A_{i} \varphi(s, a)\right) d s^{\prime}} d s^{\prime} \\
& =\mathbb{E}_{s, a}^{\theta}\left[\psi\left(s^{\prime}\right)\right]^{\top} A_{i} \varphi(s, a)
\end{aligned}
$$

On the other hand, the entries of the Hessian of Z are given by

$$
\begin{aligned}
\left(\nabla_{i, j}^{2} Z_{s, a}\right)(\theta)= & \int_{\mathcal{S}} \psi\left(s^{\prime}\right)^{\top} A_{i} \varphi(s, a) \psi\left(s^{\prime}\right)^{\top} A_{j} \varphi(s, a) \frac{h\left(s^{\prime}, s, a\right) \exp \left(\sum_{i=1}^{d} \theta_{i} \psi\left(s^{\prime}\right)^{\top} A_{i} \varphi(s, a)\right)}{\int_{\mathcal{S}} h\left(s^{\prime}, s, a\right) \exp \left(\sum_{i=1}^{d} \theta_{t} \psi\left(s^{\prime}\right)^{\top} A_{i} \varphi(s, a)\right) d s^{\prime}} d s^{\prime} \\
& -\int_{\mathcal{S}} \psi\left(s^{\prime}\right)^{\top} A_{i} \varphi(s, a) \frac{h\left(s^{\prime}, s, a\right) \exp \left(\sum_{i=1}^{d} \theta_{i} \psi\left(s^{\prime}\right)^{\top} A_{i} \varphi(s, a)\right)}{\int_{\mathcal{S}} h\left(s^{\prime}, s, a\right) \exp \left(\sum_{i=1}^{d} \theta_{t} \psi\left(s^{\prime}\right)^{\top} A_{i} \varphi(s, a)\right) d s^{\prime}} d s^{\prime}\left(\nabla_{j} Z_{s, a}\right)(\theta) \\
= & \mathbb{E}_{s, a}^{\theta}\left[\psi\left(s^{\prime}\right)^{\top} A_{i} \varphi(s, a) \psi\left(s^{\prime}\right)^{\top} A_{j} \varphi(s, a)\right] \\
& -\mathbb{E}_{s, a}^{\theta}\left[\psi\left(s^{\prime}\right)^{\top} A_{i} \varphi(s, a)\right] \mathbb{E}_{s, a}^{\theta}\left[\psi\left(s^{\prime}\right)^{\top} A_{j} \varphi(s, a)\right] \\
= & \varphi(s, a)^{\top} A_{i}^{\top}\left(\mathbb{E}_{s, a}^{\theta}\left[\psi\left(s^{\prime}\right) \psi\left(s^{\prime}\right)^{\top}\right]-\mathbb{E}_{s, a}^{\theta}\left[\psi\left(s^{\prime}\right)\right] \mathbb{E}_{s, a}^{\theta}\left[\psi\left(s^{\prime}\right)^{\top}\right]\right) A_{j} \varphi(s, a) \\
= & \varphi(s, a)^{\top} A_{i}^{\top} \mathbb{C}_{s, a}^{\theta}\left[\psi\left(s^{\prime}\right)\right] A_{j} \varphi(s, a),
\end{aligned}
$$

where we introduce in the last line the $p \times p$ covariance matrix given by

$$
\mathbb{C}_{s, a}^{\theta}\left[\psi\left(s^{\prime}\right)\right]=\mathbb{E}_{s, a}^{\theta}\left[\psi\left(s^{\prime}\right) \psi\left(s^{\prime}\right)^{\top}\right]-\mathbb{E}_{s, a}^{\theta}\left[\psi\left(s^{\prime}\right)\right] \mathbb{E}_{s, a}^{\theta}\left[\psi\left(s^{\prime}\right)^{\top}\right]
$$

KL Divergence For any two θ, θ^{\prime} and for some pair (s, a), we are interested in the following useful relations

$$
\begin{aligned}
\log \left(\frac{P_{\theta}\left(s^{\prime} \mid s, a\right)}{P_{\theta^{\prime}}\left(s^{\prime} \mid s, a\right)}\right) & =\sum_{i=1}^{d}\left(\theta_{i}-\theta_{i}^{\prime}\right) \psi\left(s^{\prime}\right)^{\top} A_{i} \varphi(s, a)-Z_{s, a}(\theta)+Z_{s, a}\left(\theta^{\prime}\right), \\
\text { or } \mathrm{KL}\left(P_{\theta}(\cdot \mid s, a), P_{\theta^{\prime}}(\cdot \mid s, a)\right) & =\sum_{i=1}^{d}\left(\theta_{i}-\theta_{i}^{\prime}\right) \mathbb{E}_{s, a}^{\theta}\left[\psi\left(s^{\prime}\right)\right]^{\top} A_{i} \varphi(s, a)-Z_{s, a}(\theta)+Z_{s, a}\left(\theta^{\prime}\right) \\
& =\frac{1}{2}\left(\theta-\theta^{\prime}\right)^{\top}\left(\nabla^{2} Z_{s, a}\right)(\tilde{\theta})\left(\theta-\theta^{\prime}\right),
\end{aligned}
$$

where in the last line, we used, by a Taylor expansion, that $Z_{s, a}\left(\theta^{\prime}\right)=Z_{s, a}(\theta)+\left(\nabla Z_{s, a}(\theta)\right)^{\top}\left(\theta^{\prime}-\theta\right)+\frac{1}{2}(\theta-$ $\left.\theta^{\prime}\right)^{\top}\left(\nabla^{2} Z_{s, a}(\tilde{\theta})\right)\left(\theta-\theta^{\prime}\right)$ for some $\tilde{\theta} \in\left[\theta, \theta^{\prime}\right]_{\infty}$. Here $\left[\theta, \theta^{\prime}\right]_{\infty}$ denotes the d-dimensional hypercube joining θ to θ^{\prime}.

B METHOD OF MIXTURES FOR CONDITIONAL EXPONENTIAL FAMILIES: PROOF OF THEOREM 1

Step 1: Martingale Construction First note that by our hypothesis of strict convexity, the log-partition function $Z_{s, a}$ is a Legendre function. 7^{7} Now for the conditional exponential family model, the KL divergence $\mathrm{b} / \mathrm{w} P_{\theta}(\cdot \mid s, a)$ and $P_{\theta^{\prime}}(\cdot \mid s, a)$ can be expressed as a Bregman divergence associated to $Z_{s, a}$ with the parameters reversed, i.e.,

$$
\begin{equation*}
\mathrm{KL}_{s, a}\left(\theta, \theta^{\prime}\right):=\operatorname{KL}\left(P_{\theta}(\cdot \mid s, a), P_{\theta^{\prime}}(\cdot \mid s, a)\right)=B_{Z_{s, a}}\left(\theta^{\prime}, \theta\right) \tag{5}
\end{equation*}
$$

Now, for any $\lambda \in \mathbb{R}^{d}$, we introduce the function $B_{Z_{s, a}, \theta^{\star}}(\lambda)=B_{Z_{s, a}}\left(\theta^{\star}+\lambda, \lambda\right)$ and define

$$
M_{n}^{\lambda}=\exp \left(\lambda^{\top} S_{n}-\sum_{t=1}^{n} B_{Z_{s_{t}, a_{t}}, \theta^{\star}}(\lambda)\right)
$$

[^0]where $\forall i \leq d$, we denote $\left(S_{n}\right)_{i}=\sum_{t=1}^{n}\left(\psi\left(s_{t}^{\prime}\right)-\mathbb{E}_{s_{t}, a_{t}}^{\theta^{\star}}\left[\psi\left(s^{\prime}\right)\right]\right)^{\top} A_{i} \varphi\left(s_{t}, a_{t}\right)$. Note that $M_{n}^{\lambda}>0$ and it is $\mathcal{F}_{n^{-}}$ measurable. Furthermore, we have for all (s, a),
\[

$$
\begin{aligned}
& \mathbb{E}_{s, a}^{\theta^{\star}}\left[\exp \left(\sum_{i=1}^{d} \lambda_{i}\left(\psi\left(s^{\prime}\right)-\mathbb{E}_{s, a}^{\theta^{\star}}\left[\psi\left(s^{\prime}\right)\right]\right)^{\top} A_{i} \varphi(s, a)\right)\right] \\
& =\exp \left(-\lambda^{\top} \nabla Z_{s, a}\left(\theta^{\star}\right)\right) \int_{\mathcal{S}} h\left(s^{\prime}, s, a\right) \exp \left(\sum_{i=1}^{d}\left(\theta_{i}^{\star}+\lambda_{i}\right) \psi\left(s^{\prime}\right)^{\top} A_{i} \varphi(s, a)-Z_{s, a}\left(\theta^{\star}\right)\right) d s^{\prime} \\
& =\exp \left(Z_{s, a}\left(\theta^{\star}+\lambda\right)-Z_{s, a}\left(\theta^{\star}\right)-\lambda^{\top} \nabla Z_{s, a}\left(\theta^{\star}\right)\right)=\exp \left(B_{Z_{s, a}}\left(\theta^{\star}\right)\right)
\end{aligned}
$$
\]

This implies $\mathbb{E}\left[\exp \left(\lambda^{\top} S_{n}\right) \mid \mathcal{F}_{n-1}\right]=\exp \left(\lambda^{\top} S_{n-1}+B_{Z_{s_{n}, a_{n}}, \theta^{\star}}(\lambda)\right)$ and thus, in turn, $\mathbb{E}\left[M_{n}^{\lambda} \mid \mathcal{F}_{n-1}\right]=M_{n-1}^{\lambda}$. Therefore $\left\{M_{n}^{\lambda}\right\}_{n=0}^{\infty}$ is a non-negative martingale adapted to the filtration $\left\{\mathcal{F}_{n}\right\}_{n=0}^{\infty}$ and actually satisfies $\mathbb{E}\left[M_{n}^{\lambda}\right]=1$. For any prior density $q(\theta)$ for θ, we now define a mixture of martingales

$$
\begin{equation*}
M_{n}=\int_{\mathbb{R}^{d}} M_{n}^{\lambda} q\left(\theta^{\star}+\lambda\right) d \lambda \tag{6}
\end{equation*}
$$

Then $\left\{M_{n}\right\}_{n=0}^{\infty}$ is also a non-negative martingale adapted to $\left\{\mathcal{F}_{n}\right\}_{n=0}^{\infty}$ and in fact, $\mathbb{E}\left[M_{n}\right]=1$.
Step 2: Method Of Mixtures and Martingale Control Considering the prior density $\mathcal{N}\left(0,(\eta \mathbb{A})^{-1}\right)$, we obtain from (6) that

$$
\begin{equation*}
M_{n}=c_{0} \int_{\mathbb{R}^{d}} \exp \left(\lambda^{\top} S_{n}-\sum_{t=1}^{n} B_{Z_{s_{t}, a_{t}}, \theta^{\star}}(\lambda)-\frac{\eta}{2}\left\|\theta^{\star}+\lambda\right\|_{\mathbb{A}}^{2}\right) d \lambda \tag{7}
\end{equation*}
$$

where $c_{0}=\frac{1}{\int_{\mathbb{R}^{d}} \exp \left(-\frac{\eta}{2}\left\|\theta^{\prime}\right\|_{\AA}^{2}\right) d \theta^{\prime}}$. We now introduce the function $Z_{n}(\theta)=\sum_{t=1}^{n} Z_{s_{t}, a_{t}}(\theta)$. Note that Z_{n} is a also Legendre function and its associated Bregman divergence satisfies

$$
B_{Z_{n}}\left(\theta^{\prime}, \theta\right)=\sum_{t=1}^{n}\left(Z_{s_{t}, a_{t}}\left(\theta^{\prime}\right)-Z_{s_{t}, a_{t}}(\theta)-\left(\theta^{\prime}-\theta\right)^{\top} \nabla Z_{s_{t}, a_{t}}(\theta)\right)=\sum_{t=1}^{n} B_{Z_{s_{t}, a_{t}}}\left(\theta^{\prime}, \theta\right)
$$

Furthermore, we have $\sum_{t=1}^{n} B_{Z_{s_{t}, a_{t}}, \theta^{\star}}(\lambda)=B_{Z_{n}, \theta^{\star}}(\lambda)$.
From the penalized likelihood formula (2), recall that

$$
\forall i \leq d, \quad \sum_{t=1}^{n} \nabla_{i} Z_{s_{t}, a_{t}}\left(\theta_{n}\right)+\frac{\eta}{2} \nabla_{i}\left\|\theta_{n}\right\|_{\mathbb{A}}^{2}=\sum_{t=1}^{n} \psi\left(s_{t}^{\prime}\right)^{\top} A_{i} \varphi\left(s_{t}, a_{t}\right)
$$

This yields

$$
\begin{equation*}
S_{n}=\sum_{t=1}^{n}\left(\nabla Z_{s_{t}, a_{t}}\left(\theta_{n}\right)-\nabla Z_{s_{t}, a_{t}}\left(\theta^{\star}\right)\right)+\eta \mathbb{A} \theta_{n}=\nabla Z_{n}\left(\theta_{n}\right)-\nabla Z_{n}\left(\theta^{\star}\right)+\eta \mathbb{A} \theta_{n} \tag{8}
\end{equation*}
$$

We now obtain from (7) and (8) that

$$
\begin{equation*}
M_{n}=c_{0} \cdot \exp \left(-\frac{\eta}{2}\left\|\theta^{\star}\right\|_{\mathbb{A}}^{2}\right) \int_{\mathbb{R}^{d}} \exp \left(\lambda^{\top} x_{n}-B_{Z_{n}, \theta^{\star}}(\lambda)+g_{n}(\lambda)\right) d \lambda \tag{9}
\end{equation*}
$$

where we have introduced $g_{n}(\lambda)=\frac{\eta}{2}\left(2 \lambda^{\top} \mathbb{A} \theta_{n}+\left\|\theta^{\star}\right\|_{\mathbb{A}}^{2}-\left\|\theta^{\star}+\lambda\right\|_{\mathbb{A}}^{2}\right)$ and $x_{n}=\nabla Z_{n}\left(\theta_{n}\right)-\nabla Z_{n}\left(\theta^{\star}\right)$.
Now, note that $\sup _{\lambda \in \mathbb{R}^{d}} g_{n}(\lambda)=\frac{\eta}{2}\left\|\theta^{\star}-\theta_{n}\right\|_{\mathbb{A}}^{2}$, where the supremum is attained at $\lambda^{\star}=\theta_{n}-\theta^{\star}$. We then have

$$
\begin{align*}
g_{n}(\lambda) & =g_{n}(\lambda)+\sup _{\lambda \in \mathbb{R}^{d}} g_{n}(\lambda)-g_{n}\left(\lambda^{\star}\right) \\
& =\frac{\eta}{2}\left\|\theta_{n}-\theta^{\star}\right\|_{\mathbb{A}}^{2}+\eta\left(\lambda-\lambda^{\star}\right)^{\top} \mathbb{A}\left(\theta^{\star}+\lambda^{\star}\right)+\frac{\eta}{2}\left\|\theta^{\star}+\lambda^{\star}\right\|_{\mathbb{A}}^{2}-\frac{\eta}{2}\left\|\theta^{\star}+\lambda\right\|_{\mathbb{A}}^{2} \\
& =B_{Z_{0}}\left(\theta^{\star}, \theta_{n}\right)+\left(\lambda-\lambda^{\star}\right)^{\top} \nabla Z_{0}\left(\theta^{\star}+\lambda^{\star}\right)+Z_{0}\left(\theta^{\star}+\lambda^{\star}\right)-Z_{0}\left(\theta^{\star}+\lambda\right), \tag{10}
\end{align*}
$$

where we have introduced the Legendre function $Z_{0}(\theta)=\frac{\eta}{2}\|\theta\|_{\mathrm{A}}^{2}$. We now have from (4) that

$$
\begin{aligned}
& \sup _{\lambda \in \mathbb{R}^{d}}\left(\lambda^{\top} x_{n}-B_{Z_{n}, \theta^{\star}}(\lambda)\right) \\
& =B_{Z_{n}, \theta^{\star}}^{\star}\left(x_{n}\right)=B_{Z_{n}, \theta^{\star}}^{\star}\left(\nabla Z_{n}\left(\theta_{n}\right)-\nabla Z_{n}\left(\theta^{\star}\right)\right)=B_{Z_{n}}\left(\theta^{\star}, \theta_{n}\right)
\end{aligned}
$$

Further, any optimal λ must satisfy

$$
\nabla Z_{n}\left(\theta^{\star}+\lambda\right)-\nabla Z_{n}\left(\theta^{\star}\right)=x_{n} \Longrightarrow \nabla Z_{n}\left(\theta^{\star}+\lambda\right)=\nabla Z_{n}\left(\theta_{n}\right)
$$

One possible solution is $\lambda=\lambda^{\star}$. Now, since Z_{n} is strictly convex, the supremum is indeed attained at $\lambda=\lambda^{\star}$. We then have

$$
\begin{align*}
& \lambda^{\top} x_{n}-B_{Z_{n}, \theta^{\star}}(\lambda) \\
& =\lambda^{\top} x_{n}-B_{Z_{n}, \theta^{\star}}(\lambda)+B_{Z_{n}}\left(\theta^{\star}, \theta_{n}\right)-\left(\lambda^{\star} x_{n}-B_{Z_{n}, \theta^{\star}}\left(\lambda^{\star}\right)\right) \\
& =B_{Z_{n}}\left(\theta^{\star}, \theta_{n}\right)+\left(\lambda-\lambda^{\star}\right)^{\top} \nabla Z_{n}\left(\theta^{\star}+\lambda^{\star}\right)+B_{Z_{n}, \theta^{\star}}\left(\lambda^{\star}\right)-B_{Z_{n}, \theta^{\star}}(\lambda)-\left(\lambda-\lambda^{\star}\right)^{\top} \nabla Z_{n}\left(\theta^{\star}\right) \\
& =B_{Z_{n}}\left(\theta^{\star}, \theta_{n}\right)+\left(\lambda-\lambda^{\star}\right)^{\top} \nabla Z_{n}\left(\theta^{\star}+\lambda^{\star}\right)+Z_{n}\left(\theta^{\star}+\lambda^{\star}\right)-Z_{n}\left(\theta^{\star}+\lambda\right) . \tag{11}
\end{align*}
$$

Plugging (10) and (11) in (9), we now obtain

$$
\begin{aligned}
M_{n}= & c_{0} \cdot \exp \left(\sum_{j \in\{0, n\}} B_{Z_{j}}\left(\theta^{\star}, \theta_{j}\right)-\frac{\eta}{2}\left\|\theta^{\star}\right\|_{\mathbb{A}}^{2}\right) \\
& \times \int_{\mathbb{R}^{d}} \exp \left(\sum_{j \in\{0, n\}}\left(\left(\lambda-\lambda^{\star}\right)^{\top} \nabla Z_{j}\left(\theta^{\star}+\lambda^{\star}\right)+Z_{j}\left(\theta^{\star}+\lambda^{\star}\right)-Z_{j}\left(\theta^{\star}+\lambda\right)\right)\right) d \lambda \\
= & c_{0} \cdot \exp \left(\sum_{j \in\{0, n\}} B_{Z_{j}}\left(\theta^{\star}, \theta_{n}\right)-\frac{\eta}{2}\left\|\theta^{\star}\right\|_{\mathbb{A}}^{2}\right) \cdot \exp \left(-\sum_{j \in\{0, n\}}\left(\left(\theta^{\star}+\lambda^{\star}\right)^{\top} \nabla Z_{j}\left(\theta^{\star}+\lambda^{\star}\right)-Z_{j}\left(\theta^{\star}+\lambda^{\star}\right)\right)\right) \\
& \times \int_{\mathbb{R}^{d}} \exp \left(\sum_{j \in\{0, n\}}\left(\left(\theta^{\star}+\lambda\right)^{\top} \nabla Z_{j}\left(\theta^{\star}+\lambda^{\star}\right)-Z_{j}\left(\theta^{\star}+\lambda\right)\right)\right) d \lambda \\
= & \frac{c_{0}}{c_{n}} \cdot \exp \left(\sum_{j \in\{0, n\}} B_{Z_{j}}\left(\theta^{\star}, \theta_{n}\right)-\frac{\eta}{2}\left\|\theta^{\star}\right\|_{\mathbb{A}}^{2}\right) \cdot \frac{\int_{\mathbb{R}^{d}} \exp \left(\sum_{j \in\{0, n\}}\left(\left(\theta^{\star}+\lambda\right)^{\top} \nabla Z_{j}\left(\theta^{\star}+\lambda^{\star}\right)-Z_{j}\left(\theta^{\star}+\lambda\right)\right)\right) d \lambda}{\int_{\mathbb{R}^{d}} \exp \left(\sum_{j \in\{0, n\}}\left(\left(\theta^{\prime}\right)^{\top} \nabla Z_{j}\left(\theta^{\star}+\lambda^{\star}\right)-Z_{j}\left(\theta^{\prime}\right)\right)\right) d \theta^{\prime}} \\
= & \frac{c_{0}}{c_{n}} \cdot \exp \left(B_{Z_{n}}\left(\theta^{\star}, \theta_{n}\right)+B_{Z_{0}}\left(\theta^{\star}, \theta_{n}\right)-\frac{\eta}{2}\left\|\theta^{\star}\right\|_{\mathbb{A}}^{2}\right) \cdot 1 \\
= & \frac{c_{0}}{c_{n}} \cdot \exp \left(\sum_{t=1}^{n} B_{Z_{s_{t}, a_{t}}}\left(\theta^{\star}, \theta_{n}\right)+\frac{\eta}{2}\left\|\theta^{\star}-\theta_{n}\right\|_{\mathbb{A}}^{2}-\frac{\eta}{2}\left\|\theta^{\star}\right\|_{\mathbb{A}}^{2}\right),
\end{aligned}
$$

where we have introduced $c_{n}=\frac{\exp \left(\sum_{j \in\{0, n\}}\left(\left(\theta^{\star}+\lambda^{\star}\right)^{\top} \nabla Z_{j}\left(\theta^{\star}+\lambda^{\star}\right)-Z_{j}\left(\theta^{\star}+\lambda^{\star}\right)\right)\right)}{\left.\int_{\mathbb{R}^{d}} \exp \left(\sum_{j \in\{0, n\}}\left(\theta^{\prime}\right)^{\top} \nabla Z_{j}\left(\theta^{\star}+\lambda^{\star}\right)-Z_{j}\left(\theta^{\prime}\right)\right)\right) d \theta^{\prime}}$. Since $\lambda^{\star}=\theta_{n}-\theta^{\star}$, we have

$$
c_{n}=\frac{1}{\int_{\mathbb{R}^{d}} \exp \left(-\sum_{j \in\{0, n\}} B_{Z_{j}}\left(\theta^{\prime}, \theta^{\star}+\lambda^{\star}\right)\right) d \theta^{\prime}}=\frac{1}{\int_{\mathbb{R}^{d}} \exp \left(-\sum_{t=1}^{n} B_{Z_{s_{t}, a_{t}}}\left(\theta^{\prime}, \theta_{n}\right)-\frac{\eta}{2}\left\|\theta^{\prime}-\theta_{n}\right\|_{\mathbb{A}}^{2}\right) d \theta^{\prime}}
$$

Therefore, we have from (5) that

$$
C_{\mathrm{A}, n}:=\frac{c_{n}}{c_{0}}=\frac{\int_{\mathbb{R}^{d}} \exp \left(-\frac{\eta}{2}\left\|\theta^{\prime}\right\|_{\mathbb{A}}^{2}\right) d \theta^{\prime}}{\int_{\mathbb{R}^{d}} \exp \left(-\sum_{t=1}^{n} \mathrm{KL}_{s_{t}, a_{t}}\left(\theta_{n}, \theta^{\prime}\right)-\frac{\eta}{2}\left\|\theta^{\prime}-\theta_{n}\right\|_{\mathbb{A}}^{2}\right) d \theta^{\prime}}
$$

An application of Markov's inequality now yields

$$
\begin{equation*}
\mathbb{P}\left[\sum_{t=1}^{n} \mathrm{KL}_{s_{t}, a_{t}}\left(\theta_{n}, \theta^{\star}\right)+\frac{\eta}{2}\left\|\theta^{\star}-\theta_{n}\right\|_{\mathbb{A}}^{2}-\frac{\eta}{2}\left\|\theta^{\star}\right\|_{\mathbb{A}}^{2} \geq \log \left(\frac{C_{\mathrm{A}, n}}{\delta}\right)\right]=\mathbb{P}\left[M_{n} \geq \frac{1}{\delta}\right] \leq \delta \cdot \mathbb{E}\left[M_{n}\right]=\delta \tag{12}
\end{equation*}
$$

Step 3: A Stopped Martingale and Its Control Let N be a stopping time with respect to the filtration $\left\{\mathcal{F}_{n}\right\}_{n=0}^{\infty}$. Now, by the martingale convergence theorem, $M_{\infty}=\lim _{n \rightarrow \infty} M_{n}$ is almost surely well-defined, and thus M_{N} is well-defined as well irrespective of whether $N<\infty$ or not. Let $Q_{n}=M_{\min \{N, n\}}$ be a stopped version of $\left\{M_{n}\right\}_{n}$. Then an application of Fatou's lemma yields

$$
\mathbb{E}\left[M_{N}\right]=\mathbb{E}\left[\liminf _{n \rightarrow \infty} Q_{n}\right] \leq \liminf _{n \rightarrow \infty} \mathbb{E}\left[Q_{n}\right]=\liminf _{n \rightarrow \infty} \mathbb{E}\left[M_{\min \{N, n\}}\right] \leq 1
$$

since the stopped martingale $\left\{M_{\min \{N, n\}}\right\}_{n \geq 1}$ is also a martingale. Therefore, by the properties of $\left.M_{n}, 12\right\}$ also holds for any random stopping time $N<\infty$.
To complete the proof, we now employ a random stopping time construction as in Abbasi-Yadkori et al. (2011).

We define a random stopping time N by

$$
N=\min \left\{n \geq 1: \sum_{t=1}^{n} \mathrm{KL}_{s_{t}, a_{t}}\left(\theta_{n}, \theta^{\star}\right)+\frac{\eta}{2}\left\|\theta^{\star}-\theta_{n}\right\|_{\mathbb{A}}^{2}-\frac{\eta}{2}\left\|\theta^{\star}\right\|_{\mathbb{A}}^{2} \geq \log \left(\frac{C_{\mathrm{A}, n}}{\delta}\right)\right\}
$$

with $\min \{\emptyset\}:=\infty$ by convention. We then have

$$
\mathbb{P}\left[\exists n \geq 1, \sum_{t=1}^{n} \mathrm{KL}_{s_{t}, a_{t}}\left(\theta_{n}, \theta^{\star}\right)+\frac{\eta}{2}\left\|\theta^{\star}-\theta_{n}\right\|_{\mathbb{A}}^{2}-\frac{\eta}{2}\left\|\theta^{\star}\right\|_{\mathbb{A}}^{2} \geq \log \left(\frac{C_{\mathrm{A}, n}}{\delta}\right)\right]=\mathbb{P}[N<\infty] \leq \delta
$$

which concludes the proof of the first part.

Proof of Second Part: Upper Bound on $C_{\mathrm{A}, n}$ First, we have for some $\tilde{\theta} \in\left[\theta_{n}, \theta^{\prime}\right]_{\infty}$ that

$$
\begin{equation*}
\mathrm{KL}_{s, a}\left(\theta_{n}, \theta^{\prime}\right)=\frac{1}{2} \sum_{i, j=1}^{d}\left(\theta^{\prime}-\theta_{n}\right)_{i} \varphi(s, a)^{\top} A_{i}^{\top} \mathbb{C}_{s, a}^{\tilde{\theta}}\left[\psi\left(s^{\prime}\right)\right] A_{j} \varphi(s, a)\left(\theta^{\prime}-\theta_{n}\right)_{j} \tag{13}
\end{equation*}
$$

Now (13) implies that

$$
\sum_{t=1}^{n} \mathrm{KL}_{s_{t}, a_{t}}\left(\theta_{n}, \theta^{\prime}\right) \leq \frac{\beta}{2} \sum_{t=1}^{n} \sum_{i, j=1}^{d}\left(\theta^{\prime}-\theta_{n}\right)_{i} \varphi\left(s_{t}, a_{t}\right)^{\top} A_{i}^{\top} A_{j} \varphi\left(s_{t}, a_{t}\right)\left(\theta^{\prime}-\theta_{n}\right)_{j}=\frac{\beta}{2}\left\|\theta^{\prime}-\theta_{n}\right\|_{\sum_{t=1}^{n} G_{s_{t}, a_{t}}}^{2}
$$

where $\beta:=\sup _{\theta, s, a} \lambda_{\max }\left(\mathbb{C}_{s, a}^{\theta}\left[\psi\left(s^{\prime}\right)\right]\right)$ and $\forall i, j \leq d, \quad\left(G_{s, a}\right)_{i, j}:=\varphi(s, a)^{\top} A_{i}^{\top} A_{j} \varphi(s, a)$. Therefore, we obtain

$$
\begin{aligned}
C_{\mathbb{A}, n} & \leq \frac{\int_{\mathbb{R}^{d}} \exp \left(-\frac{\eta}{2}\left\|\theta^{\prime}\right\|_{\mathbb{A}}^{2}\right) d \theta^{\prime}}{\int_{\mathbb{R}^{d}} \exp \left(-\frac{1}{2}\left\|\theta^{\prime}-\theta_{n}\right\|_{\left(\beta \sum_{t=1}^{n} G_{s_{t}, a_{t}}+\eta \mathbb{A}\right)}^{2}\right) d \theta^{\prime}} \\
& =\frac{(2 \pi)^{d / 2}}{\operatorname{det}(\eta \mathbb{A})^{1 / 2}} \cdot \frac{\operatorname{det}\left(\beta \sum_{t=1}^{n} G_{s_{t}, a_{t}}+\eta \mathbb{A}\right)^{1 / 2}}{(2 \pi)^{d / 2}}=\operatorname{det}\left(I+\beta \eta^{-1} \mathbb{A}^{-1} \sum_{t=1}^{n} G_{s_{t}, a_{t}}\right)
\end{aligned}
$$

which completes the proof of the second part.

C REGRET BOUND OF Exp-UCRL: PROOF OF THEOREM 2

Step 1: Optimism Let us consider the start of episode t, i.e., when the total number of steps completed is $n=(t-1) H$. Recall that $\theta_{n} \equiv \theta_{(t-1) H}$ denotes the penalized MLE and $\Theta_{n} \equiv \Theta_{(t-1) H}$ the confidence set around the MLE after n steps. Now, let $\hat{\theta}_{n} \equiv \hat{\theta}_{(t-1) H}$ denotes the most optimistic realization from the confidence set Θ_{n}, i.e.,

$$
V_{\hat{\theta}_{n}, 1}^{\pi_{t}}\left(s_{1}^{t}\right)=\max _{\pi \in \Pi} \max _{\theta \in \Theta_{n}} V_{\theta, 1}^{\pi}\left(s_{1}^{t}\right)
$$

where s_{1}^{t} denotes the starting state at episode t. Therefore, as long as the true parameter θ^{\star} belongs to Θ_{n}, $V_{\hat{\theta}_{n}, 1}^{\pi_{t}}\left(s_{1}^{t}\right)$ gives an optimistic estimate of the value $V_{\theta^{\star}, 1}^{\pi^{\star}}\left(s_{1}^{t}\right)$ of the episode, i.e.,

$$
\begin{equation*}
V_{\hat{\theta}_{n}, 1}^{\pi_{t}}\left(s_{1}^{t}\right) \geq V_{\theta^{\star}, 1}^{\pi^{\star}}\left(s_{1}^{t}\right) \tag{14}
\end{equation*}
$$

An application of 1 implies that with probability at least $1-\delta / 2, \theta^{\star} \in \Theta_{n}$ across all episodes. We then have from (14) that with probability at least $1-\delta / 2$, the cumulative regret is controlled by

$$
\begin{equation*}
\mathcal{R}(N) \leq \sum_{t=1}^{T}\left(V_{\hat{\theta}_{n}, 1}^{\pi_{t}}\left(s_{1}^{t}\right)-V_{\theta^{\star}, 1}^{\pi_{t}}\left(s_{1}^{t}\right)\right) \tag{15}
\end{equation*}
$$

where $N=T H$ denotes the total number of steps completed after T episodes.

Step 2: Bellman Recursion, Transportation Inequalities and Martingale Control For any parameter $\theta \in \mathbb{R}^{d}$ and policy $\pi \in \Pi$, the Bellman operator $\mathcal{T}_{\theta, h}^{\pi}:(\mathcal{S} \rightarrow \mathbb{R}) \rightarrow(\mathcal{S} \rightarrow \mathbb{R})$ is defined for all $s \in \mathcal{S}$ and $h \in[H]$ as

$$
\mathcal{T}_{\theta, h}^{\pi}(V)(s)=R(s, \pi(s, h))+\mathbb{E}_{s, \pi(s, h)}^{\theta}[V]
$$

where $V: \mathcal{S} \rightarrow \mathbb{R}$. By the Bellman equation, we have

$$
V_{\theta, h}^{\pi}(s)=\mathcal{T}_{\theta, h}^{\pi}\left(V_{\theta, h+1}^{\pi}\right)(s), \quad \forall h \in[H] \quad\left(\text { with } V_{\theta, H+1}^{\pi}(s):=0\right)
$$

Following, e.g., Chowdhury and Gopalan (2019), a recursive application of Bellman equation now yields

$$
V_{\hat{\theta}_{n}, 1}^{\pi_{t}}\left(s_{1}^{t}\right)-V_{\theta^{\star}, 1}^{\pi_{t}}\left(s_{1}^{t}\right)=\sum_{h=1}^{H}\left(\mathcal{T}_{\hat{\theta}_{n}, h}^{\pi_{t}}\left(V_{\hat{\theta}_{n}, h+1}^{\pi_{t}}\right)\left(s_{h}^{t}\right)-\mathcal{T}_{\theta^{\star}, h}^{\pi_{t}}\left(V_{\hat{\theta}_{n}, h+1}^{\pi_{t}}\right)\left(s_{h}^{t}\right)+m_{h}^{t}\right)
$$

where $m_{h}^{t}=\mathbb{E}_{s_{h}^{t}, a_{h}^{t}}^{\theta^{\star}}\left[V_{\hat{\theta}_{n}, h+1}^{\pi_{t}}\left(s_{h+1}^{t}\right)-V_{\theta^{\star}, h+1}^{\pi_{t}}\left(s_{h+1}^{t}\right)\right]-\left(V_{\hat{\theta}_{n}, h+1}^{\pi_{t}}\left(s_{h+1}^{t}\right)-V_{\theta^{\star}, h+1}^{\pi_{t}}\left(s_{h+1}^{t}\right)\right)$. Note that $\left\{m_{h}^{t}\right\}_{t, h}$ is a martingale sequence satisfying $\left|m_{h}^{t}\right| \leq 2 H$. Therefore, by the Azuma-Hoeffding inequality (Boucheron et al., 2013), with probability at least $1-\delta / 2$, we obtain

$$
\sum_{t=1}^{T} \sum_{h=1}^{H} m_{h}^{t} \leq 2 H \sqrt{2 T H \ln (2 / \delta)}=2 H \sqrt{2 N \ln (2 / \delta)}
$$

Then, using a union bound argument along with 15 , the cumulative regret can be upper bounded with probability at least $1-\delta$ as

$$
\begin{equation*}
\mathcal{R}(N) \leq \sum_{t=1}^{T} \sum_{h=1}^{H}\left(\mathcal{T}_{\hat{\theta}_{n}, h}^{\pi_{t}}\left(V_{\hat{\theta}_{n}, h+1}^{\pi_{t}}\right)\left(s_{h}^{t}\right)-\mathcal{T}_{\theta^{\star}, h}^{\pi_{t}}\left(V_{\hat{\theta}_{n}, h+1}^{\pi_{t}}\right)\left(s_{h}^{t}\right)\right)+2 H \sqrt{2 N \ln (2 / \delta)} \tag{16}
\end{equation*}
$$

We now proceed to bound the first term in 16 . Since $V_{\hat{\theta}_{n}, h+1}^{\pi_{t}}(s) \leq H, \forall s$, we have its span $\mathbb{S}\left(V_{\hat{\theta}_{n}, h+1}^{\pi_{t}}\right) \leq H$ and variance $\mathbb{V}_{s_{h}^{t}, a_{h}^{t}}^{\theta}\left[V_{\hat{\theta}_{n}, h+1}^{\pi_{t}}\right] \leq H^{2}, \forall \theta, \forall(s, a)$. Therefore, we obtain

$$
\begin{aligned}
& \mathcal{T}_{\hat{\theta}_{n}, h}^{\pi_{t}}\left(V_{\hat{\theta}_{n}, h+1}^{\pi_{t}}\right)\left(s_{h}^{t}\right)-\mathcal{T}_{\theta^{\star}, h}^{\pi_{t}}\left(V_{\hat{\theta}_{n}, h+1}^{\pi_{t}}\right)\left(s_{h}^{t}\right) \\
& =\mathbb{E}_{s_{h}^{t}, a_{h}^{t}}^{\hat{\theta}_{n}}\left[V_{\hat{\theta}_{n}, h+1}^{\pi_{t}}\right]-\mathbb{E}_{s_{h}^{t}, a_{h}^{t}}^{\theta^{\star}}\left[V_{\hat{\theta}_{n}, h+1}^{\pi_{t}}\right] \\
& =\mathbb{E}_{s_{h}^{t}, a_{h}^{t}}^{\hat{\theta}_{n}}\left[V_{\hat{\theta}_{n}, h+1}^{\pi_{t}}\right]-\mathbb{E}_{s_{h}^{t}, a_{h}^{t}}^{\theta_{n}}\left[V_{\hat{\theta}_{n}, h+1}^{\pi_{t}}\right]+\mathbb{E}_{s_{h}^{t}, a_{h}^{t}}^{\theta_{n}}\left[V_{\hat{\theta}_{n}, h+1}^{\pi_{t}}\right]-\mathbb{E}_{s_{h}^{t}, a_{h}^{t}}^{\theta_{h}^{\star}}\left[V_{\hat{\theta}_{n}, h+1}^{\pi_{t}}\right] \\
& \leq H \sqrt{2 \mathrm{KL}_{s_{h}^{t}, a_{h}^{t}}\left(\theta_{n}, \hat{\theta}_{n}\right)}+H \sqrt{2 \mathrm{KL}_{s_{h}^{t}, a_{h}^{t}}\left(\theta_{n}, \theta^{\star}\right)}+\frac{2 H}{3} \mathrm{KL}_{s_{h}^{t}, a_{h}^{t}}\left(\theta_{n}, \theta^{\star}\right),
\end{aligned}
$$

where the last step follows from the transportation inequalities (Lemma 1). We then obtain from 16 that

$$
\begin{equation*}
\mathcal{R}(N) \leq H \sum_{t=1}^{T} \sum_{h=1}^{H}\left(\sqrt{2 \mathrm{KL}_{s_{h}^{t}, a_{h}^{t}}\left(\theta_{n}, \hat{\theta}_{n}\right)}+\sqrt{2 \mathrm{KL}_{s_{h}^{t}, a_{h}^{t}}\left(\theta_{n}, \theta^{\star}\right)}+\frac{2}{3} \mathrm{KL}_{s_{h}^{t}, a_{h}^{t}}\left(\theta_{n}, \theta^{\star}\right)\right)+2 H \sqrt{2 N \ln (2 / \delta)} . \tag{17}
\end{equation*}
$$

Step 3: Sum of KL Divergences Along the Transition Trajectory First, we obtain from (13) that

$$
\forall(s, a) \in \mathcal{S} \times \mathcal{A}, \quad \forall \theta, \theta^{\prime} \in \mathbb{R}^{d}, \quad \frac{\alpha}{2}\left\|\theta^{\prime}-\theta\right\|_{G_{s, a}}^{2} \leq \mathrm{KL}_{s, a}\left(\theta, \theta^{\prime}\right) \leq \frac{\beta}{2}\left\|\theta^{\prime}-\theta\right\|_{G_{s, a}}^{2}
$$

where $\alpha:=\inf _{\theta, s, a} \lambda_{\min }\left(\mathbb{C}_{s, a}^{\theta}\left[\psi\left(s^{\prime}\right)\right]\right), \beta:=\sup _{\theta, s, a} \lambda_{\max }\left(\mathbb{C}_{s, a}^{\theta}\left[\psi\left(s^{\prime}\right)\right]\right)$, and $\forall i, j \leq d,\left(G_{s, a}\right)_{i, j}:=\varphi(s, a)^{\top} A_{i}^{\top} A_{j} \varphi(s, a)$. We then have

$$
\forall(s, a), \quad \forall \theta, \quad \mathrm{KL}_{s, a}\left(\theta_{n}, \theta\right) \leq \frac{\beta}{2}\left\|\theta-\theta_{n}\right\|_{G_{s, a}}^{2} \leq \beta\left\|\bar{G}_{n}^{-1 / 2} G_{s, a} \bar{G}_{n}^{-1 / 2}\right\| \frac{1}{2}\left\|\theta-\theta_{n}\right\|_{\bar{G}_{n}}^{2}
$$

where $\bar{G}_{n} \equiv \bar{G}_{(t-1) H}:=G_{n}+\alpha^{-1} \eta \mathbb{A}$ and $G_{n} \equiv G_{(t-1) H}:=\sum_{\tau=1}^{t-1} \sum_{h=1}^{H} G_{s_{h}^{\tau}, a_{h}^{\tau}}$. Furthermore, note that

$$
\frac{1}{2}\left\|\theta-\theta_{n}\right\|_{\bar{G}_{n}}^{2}=\frac{\alpha^{-1} \eta}{2}\left\|\theta-\theta_{n}\right\|_{\mathbb{A}}^{2}+\sum_{\tau=1}^{t-1} \sum_{h=1}^{H} \frac{1}{2}\left\|\theta-\theta_{n}\right\|_{G_{s},, a_{h}^{\tau}}^{2} \leq \alpha^{-1}\left(\frac{\eta}{2}\left\|\theta-\theta_{n}\right\|_{\mathbb{A}}^{2}+\sum_{\tau=1}^{t-1} \sum_{h=1}^{H} \mathrm{KL}_{s_{h}^{\tau}, a_{h}^{\tau}}\left(\theta_{n}, \theta\right)\right)
$$

Therefore, for any $\theta \in \Theta_{n}$, we obtain

$$
\begin{equation*}
\forall(s, a), \quad \mathrm{KL}_{s, a}\left(\theta_{n}, \theta\right) \leq \frac{\beta}{\alpha} \cdot \beta_{n}(\delta)\left\|\bar{G}_{n}^{-1 / 2} G_{s, a} \bar{G}_{n}^{-1 / 2}\right\|=\frac{\beta}{\alpha} \cdot \beta_{n}(\delta)\left\|\bar{G}_{n}^{-1} G_{s, a}\right\| \tag{18}
\end{equation*}
$$

where $\beta_{n}(\delta) \equiv \beta_{(t-1) H}(\delta)=\frac{\eta}{2} B_{\mathbb{A}}^{2}+\log \left(2 C_{\mathbb{A},(t-1) H} / \delta\right)$.
Now, since G_{n} is positive semi-definite, we have $\bar{G}_{n} \succeq \alpha^{-1} \eta \mathbb{A}$, and thus, in turn

$$
\left\|\bar{G}_{n}^{-1} G_{s, a}\right\| \leq \frac{\alpha}{\eta}\left\|\mathbb{A}^{-1} G_{s, a}\right\| \leq \frac{\alpha B_{\varphi, \mathbb{A}}}{\eta}, \forall(s, a)
$$

where $B_{\varphi, \mathbb{A}}:=\sup _{s, a}\left\|\mathbb{A}^{-1} G_{s, a}\right\|$. This further yields

$$
\begin{equation*}
\left\|I+\bar{G}_{n}^{-1} \sum_{h=1}^{H} G_{s_{h}^{t}, a_{h}^{t}}\right\| \leq 1+\sum_{h=1}^{H}\left\|\bar{G}_{n}^{-1} G_{s_{h}^{t}, a_{h}^{t}}\right\| \leq 1+\frac{\alpha B_{\varphi, \mathrm{A}} H}{\eta} \tag{19}
\end{equation*}
$$

Now, we define $\bar{G}_{n+H}:=\bar{G}_{n}+\sum_{h=1}^{H} G_{s_{h}^{t}, a_{h}^{t}}$. Hence, $\bar{G}_{n+H}^{-1} G_{s, a}=\left(I+\bar{G}_{n}^{-1} \sum_{h=1}^{H} G_{s_{h}^{t}, a_{h}^{t}}\right)^{-1} \bar{G}_{n}^{-1} G_{s, a}$. We therefore deduce from $\sqrt{19}$ that

$$
\begin{equation*}
\forall(s, a), \quad\left\|\bar{G}_{n}^{-1} G_{s, a}\right\|=\left\|\left(I+\bar{G}_{n}^{-1} \sum_{h=1}^{H} G_{s_{h}^{t}, a_{h}^{t}}\right) \bar{G}_{n+H}^{-1} G_{s, a}\right\| \leq\left(1+\frac{\alpha B_{\varphi, \mathrm{A}} H}{\eta}\right)\left\|\bar{G}_{n+H}^{-1} G_{s, a}\right\| \tag{20}
\end{equation*}
$$

Now see that
$\sum_{t=1}^{T} \sum_{h=1}^{H}\left\|\bar{G}_{n+H}^{-1} G_{s_{h}^{t}, a_{h}^{t}}\right\| \leq \sum_{t=1}^{T} \sum_{h=1}^{H} \operatorname{tr}\left(\bar{G}_{n+H}^{-1} G_{s_{h}^{t}, a_{h}^{t}}\right)=\sum_{t=1}^{T} \operatorname{tr}\left(\bar{G}_{n+H}^{-1}\left(\bar{G}_{n+H}-\bar{G}_{n}\right)\right) \leq \sum_{t=1}^{T} \log \frac{\operatorname{det}\left(\bar{G}_{n+H}\right)}{\operatorname{det}\left(\bar{G}_{n}\right)}$,
where we have used that for two positive definite matrices A and B such that $A-B$ is positive semi-definite, $\operatorname{tr}\left(A^{-1}(A-B)\right) \leq \log \frac{\operatorname{det}(A)}{\operatorname{det}(B)}$. We can now control the R.H.S. of the above equation, as
$\sum_{t=1}^{T} \log \frac{\operatorname{det}\left(\bar{G}_{n+H}\right)}{\operatorname{det}\left(\bar{G}_{n}\right)}=\sum_{t=1}^{T} \log \frac{\operatorname{det}\left(\bar{G}_{t H}\right)}{\operatorname{det}\left(\bar{G}_{(t-1) H}\right)}=\log \frac{\operatorname{det}\left(\bar{G}_{T H}\right)}{\operatorname{det}\left(\bar{G}_{0}\right)}=\log \frac{\operatorname{det}\left(\bar{G}_{N}\right)}{\operatorname{det}\left(\alpha^{-1} \eta \mathbb{A}\right)}=\log \operatorname{det}\left(I+\alpha \eta^{-1} \mathbb{A}^{-1} G_{N}\right)$.
Therefore, we have from 20 and that

$$
\begin{equation*}
\sum_{t=1}^{T} \sum_{h=1}^{H}\left\|\bar{G}_{n}^{-1} G_{s_{h}^{t}, a_{h}^{t}}\right\| \leq\left(1+\frac{\beta B_{\varphi, \mathbb{A}} H}{\eta}\right) \log \operatorname{det}\left(I+\beta \eta^{-1} \mathbb{A}^{-1} G_{N}\right) \tag{21}
\end{equation*}
$$

where we have used that $\alpha \leq \beta$.
It now remains to bound the log determinant term in the above equation. By the trace-determinant inequality, we have

$$
\operatorname{det}\left(I+\beta \eta^{-1} \mathbb{A}^{-1} G_{n}\right) \leq\left(\frac{\operatorname{tr}\left(I+\beta \eta^{-1} \mathbb{A}^{-1} G_{n}\right)}{d}\right)^{d} \leq\left(1+\frac{\beta \eta^{-1}}{d} \operatorname{tr}\left(\mathbb{A}^{-1} G_{n}\right)\right)^{d}
$$

Now see that $\operatorname{tr}\left(\mathbb{A}^{-1} G_{n}\right) \leq n \sup _{s, a} \operatorname{tr}\left(\mathbb{A}^{-1} G_{s, a}\right) \leq d B_{\varphi, \mathbb{A}} n$. Therefore, we have

$$
\begin{equation*}
\log \operatorname{det}\left(I+\beta \eta^{-1} \mathbb{A}^{-1} G_{n}\right) \leq d \log \left(1+\beta \eta^{-1} B_{\varphi, \mathbb{A}} n\right) \tag{22}
\end{equation*}
$$

This further implies that the confidence radius

$$
\beta_{n}(\delta) \leq \frac{\eta}{2} B_{\mathbb{A}}^{2}+\log \left(2 \operatorname{det}\left(I+\beta \eta^{-1} \mathbb{A}^{-1} G_{n}\right) / \delta\right) \leq \frac{\eta}{2} B_{\mathbb{A}}^{2}+d \log \left(1+\beta \eta^{-1} B_{\varphi, \mathbb{A}} n\right)+\log (2 / \delta)
$$

which is an increasing function in the total number of steps n, hence, in the number of episodes t. We then have from 18 and 21 that

$$
\begin{equation*}
\forall \theta \in \Theta_{n}, \quad \sum_{t=1}^{T} \sum_{h=1}^{H} \operatorname{KL}_{s_{h}^{t}, a_{h}^{t}}\left(\theta_{n}, \theta\right) \leq \frac{\beta}{\alpha}\left(1+\frac{\beta B_{\varphi, \mathrm{A}} H}{\eta}\right) \beta_{N}(\delta) \gamma_{N} \tag{23}
\end{equation*}
$$

where we define $\gamma_{N}:=d \log \left(1+\beta \eta^{-1} B_{\varphi, \mathbb{A}} N\right)$ and $\beta_{N}(\delta):=\frac{\eta}{2} B_{\mathbb{A}}^{2}+\gamma_{N}+\log (2 / \delta)$.

Final Step: First, an application of Cauchy-Schwartz's inequality yields

$$
\begin{equation*}
\forall \theta \in \Theta_{n}, \quad \sum_{t=1}^{T} \sum_{h=1}^{H} \sqrt{\mathrm{KL}_{s_{h}^{t}, a_{h}^{t}}\left(\theta_{n}, \theta\right)} \leq \sqrt{N \sum_{t=1}^{T} \sum_{h=1}^{H} \mathrm{KL}_{s_{h}^{t}, a_{h}^{t}}\left(\theta_{n}, \theta\right)} \leq \sqrt{\frac{\beta}{\alpha}\left(1+\frac{\beta B_{\varphi, \mathrm{A}} H}{\eta}\right) \beta_{N}(\delta) N \gamma_{N}} . \tag{24}
\end{equation*}
$$

At this point, we note that by design, $\hat{\theta}_{n} \in \Theta_{n}$ and by Theorem 1, $\theta^{\star} \in \Theta_{n}$ with probability at least $1-\delta / 2$. We now obtain from $(17),(23)$ and (24) that the cumulative regret

$$
\mathcal{R}(N) \leq 2 H \sqrt{\frac{\beta}{\alpha}\left(1+\frac{\beta B_{\varphi, \mathrm{A}} H}{\eta}\right) 2 \beta_{N}(\delta) N \gamma_{N}}+2 H \sqrt{2 N \ln (2 / \delta)}+\frac{2 H}{3} \frac{\beta}{\alpha}\left(1+\frac{\beta B_{\varphi, \mathrm{A}} H}{\eta}\right) \beta_{N}(\delta) \gamma_{N}
$$

which completes the proof.

D REGRET BOUND OF Exp-PSRL: PROOF OF THEOREM 3

Let us consider the start of episode t, i.e., when the total number of steps completed is $n=(t-1) H$. Recall that we sample $\tilde{\theta}_{n} \equiv \tilde{\theta}_{(t-1) H} \sim \mu_{n}$, where $\mu_{n} \equiv \mu_{(t-1) H}=\mathbb{P}\left(\theta^{\star} \in \cdot \mid \mathcal{H}_{n}\right)$ denotes the posterior distribution of θ^{\star}, given the history of transitions $\mathcal{H}_{n} \equiv \mathcal{H}_{(t-1) H}=\left\{\left(s_{h}^{\tau}, a_{h}^{\tau}, s_{h+1}^{\tau}\right)_{\tau<t, h \leq H}\right\}$. A key property of posterior sampling is that for any $\sigma\left(\mathcal{H}_{n}\right)$-measurable function f, we have $\mathbb{E}\left[f\left(\tilde{\theta}_{n}\right)\right]=\mathbb{E}\left[f\left(\theta^{\star}\right)\right]$ (Osband et al., 2013). This implies that the optimal policy π^{\star} and selected policy π^{t} are identically distributed conditioned on the history \mathcal{H}_{n}. Therefore, we have $\mathbb{E}\left[V_{\hat{\theta}_{n}, 1}^{\pi^{t}}\left(s_{1}^{t}\right)\right]=\mathbb{E}\left[V_{\theta^{\star}, 1}^{\pi^{\star}}\left(s_{1}^{t}\right)\right]$, and thus, in turn, the Bayes regret

$$
\mathbb{E}[\mathcal{R}(N)]=\mathbb{E}\left[\sum_{t=1}^{T}\left(V_{\tilde{\theta}_{n}, 1}^{\pi_{t}}\left(s_{1}^{t}\right)-V_{\theta^{\star}, 1}^{\pi_{t}}\left(s_{1}^{t}\right)\right)\right]
$$

A recursive application of the Bellman equation now yields a result similar to 16 :

$$
\mathbb{E}[\mathcal{R}(N)]=\mathbb{E}\left[\sum_{t=1}^{T} \sum_{h=1}^{H}\left(\mathcal{T}_{\hat{\theta}_{n}, h}^{\pi_{t}}\left(V_{\hat{\theta}_{n}, h+1}^{\pi_{t}}\right)\left(s_{h}^{t}\right)-\mathcal{T}_{\theta^{\star}, h}^{\pi_{t}}\left(V_{\hat{\theta}_{n}, h+1}^{\pi_{t}}\right)\left(s_{h}^{t}\right)\right)+\sum_{t=1}^{T} \sum_{h=1}^{H} m_{h}^{t}\right],
$$

where $m_{h}^{t}=\mathbb{E}_{s_{h}^{*}, a_{h}^{t}}^{\theta^{\star}}\left[V_{\hat{\theta}_{n}, h+1}^{\pi_{t}}\left(s_{h+1}^{t}\right)-V_{\theta^{\star}, h+1}^{\pi_{t}}\left(s_{h+1}^{t}\right)\right]-\left(V_{\tilde{\theta}_{n}, h+1}^{\pi_{t}}\left(s_{h+1}^{t}\right)-V_{\theta^{\star}, h+1}^{\pi_{t}}\left(s_{h+1}^{t}\right)\right)$ is a martingale difference sequence satisfying $\mathbb{E}\left[m_{h}^{t}\right]=0$. Then an application of the transportation inequalities (Lemma 1) yields a result similar to 17):

$$
\begin{equation*}
\mathbb{E}[\mathcal{R}(N)] \leq H \mathbb{E}\left[\sum_{t=1}^{T} \sum_{h=1}^{H}\left(\sqrt{2 \mathrm{KL}_{s_{h}^{t}, a_{n}^{t}}\left(\theta_{n}, \tilde{\theta}_{n}\right)}+\sqrt{2 \mathrm{KL}_{s_{h}^{t}, a_{h}^{t}}\left(\theta_{n}, \theta^{\star}\right)}+\frac{2}{3} \mathrm{KL}_{s_{h}^{t}, a_{h}^{t}}\left(\theta_{n}, \theta^{\star}\right)\right)\right] \tag{25}
\end{equation*}
$$

where $\theta_{n} \equiv \theta_{(t-1) H}$ denotes the penalized MLE (as computed by Exp-UCRL) after $n=(t-1) H$ steps.
We now define for any $\delta \in(0,1]$, the events $\mathcal{E}^{\star}=\left\{\forall t \geq 1, \theta^{\star} \in \Theta_{n}\right\}$ and $\tilde{\mathcal{E}}=\left\{\forall t \geq 1, \tilde{\theta}_{n} \in \Theta_{n}\right\}$, where $\Theta_{n} \equiv \Theta_{(t-1) H}$ is confidence set (as constructed by Exp-UCRL) after $n=(t-1) H$ steps. Under the event $\mathcal{E}^{\star} \cap \tilde{\mathcal{E}}$, we have from (23) and (24) that

$$
\begin{aligned}
\sum_{t=1}^{T} \sum_{h=1}^{H} \mathrm{KL}_{s_{h}^{t}, a_{h}^{t}}\left(\theta_{n}, \theta^{\star}\right) & \leq \frac{\beta}{\alpha}\left(1+\frac{\beta B_{\varphi, \mathrm{A}} H}{\eta}\right) \beta_{N}(\delta) \gamma_{N}, \\
\sum_{t=1}^{T} \sum_{h=1}^{H} \sqrt{\mathrm{KL}_{s_{h}^{t}, a_{h}^{t}}\left(\theta_{n}, \theta^{\star}\right)} \leq \sqrt{\frac{\beta}{\alpha}\left(1+\frac{\beta B_{\varphi, \mathrm{A}} H}{\eta}\right) \beta_{N}(\delta) N \gamma_{N}} & \text { and } \\
\sum_{t=1}^{T} \sum_{h=1}^{H} \sqrt{\mathrm{KL}_{s_{h}^{t}, a_{h}^{t}}\left(\theta_{n}, \tilde{\theta}_{n}\right)} & \leq \sqrt{\frac{\beta}{\alpha}\left(1+\frac{\beta B_{\varphi, \mathrm{A}} H}{\eta}\right) \beta_{N}(\delta) N \gamma_{N}}
\end{aligned}
$$

Therefore, we obtain from 25), the following:

$$
\mathbb{E}\left[\mathcal{R}(N) \mathbb{I}_{\mathcal{E}}{ }^{\star} \tilde{\mathcal{E}}\right] \leq 2 H \sqrt{\frac{\beta}{\alpha}\left(1+\frac{\beta B_{\varphi, \mathbf{A}} H}{\eta}\right) 2 \beta_{N}(\delta) N \gamma_{N}}+\frac{2 H}{3} \frac{\beta}{\alpha}\left(1+\frac{\beta B_{\varphi, \mathbf{A}} H}{\eta}\right) \beta_{N}(\delta) \gamma_{N} .
$$

Since we can always bound $\mathcal{R}(N) \leq N$, we have

$$
\mathbb{E}[\mathcal{R}(N)]=\mathbb{E}\left[\mathcal{R}(N) \mathbb{I}_{\mathcal{E}^{\star} \cap \tilde{\mathcal{E}}}+\mathcal{R}(N) \mathbb{I}_{\left(\mathcal{E}^{\star} \cap \tilde{\mathcal{E}}\right)^{c}}\right] \leq \mathbb{E}\left[\mathcal{R}(N) \mathbb{I}_{\mathcal{E}^{\star} \cap \tilde{\mathcal{E}}}\right]+N\left(1-\mathbb{P}\left(\mathcal{E}^{\star} \cap \tilde{\mathcal{E}}\right)\right)
$$

Now from the property of Posterior sampling, $\mathbb{P}(\tilde{\mathcal{E}})=\mathbb{P}\left(\mathcal{E}^{\star}\right)$ and from Theorem 1, $\mathbb{P}\left(\mathcal{E}^{\star}\right) \geq 1-\delta / 2$. Therefore, by a union bound, $\mathbb{P}\left(\mathcal{E}^{\star} \cap \tilde{\mathcal{E}}\right) \geq 1-\delta$. This implies for any $\delta \in(0,1]$ that the Bayes regret

$$
\mathbb{E}[\mathcal{R}(N)] \leq 2 H \sqrt{\frac{\beta}{\alpha}\left(1+\frac{\beta B_{\varphi, \mathbf{A}} H}{\eta}\right) 2 \beta_{N}(\delta) N \gamma_{N}}+\frac{2 H}{3} \frac{\beta}{\alpha}\left(1+\frac{\beta B_{\varphi, \mathbf{A}} H}{\eta}\right) \beta_{N}(\delta) \gamma_{N}+N \delta .
$$

The proof now can be completed by setting $\delta=1 / N$.

E ON THE CHOICE OF PENALTY FUNCTION

In this paper, we have considered the penalty function $\operatorname{pen}(\theta)=\frac{1}{2}\|\theta\|_{\mathbb{A}}^{2}$, where $\forall i, j \leq d, \mathbb{A}_{i, j}=\operatorname{tr}\left(A_{i} A_{j}^{\top}\right)$. We however note that all our results (Theorem 1, 2, 3) hold for any choice of the (regularizing) matrix A. For any
such choice of \mathbb{A}, we only need to ensure that there exist a known constant $B_{\mathbb{A}}$ such that $\left\|\theta^{\star}\right\|_{\mathbb{A}} \leq B_{\mathbb{A}}$. In fact for our particular choice, as we have seen in Section 4, we obtain $\mathbb{A}=I$ for factored and tabular MDPs and $\mathbb{A}=m_{1} I$ for the linearly controlled dynamical systems. (The scaling with m_{1} arises because of our parameterization and can be suppressed for the special case of $\Sigma_{s, a}=c I, c>0, \forall(s, a)$ by using a reparameterization.) We leave it to future work to study the effect of other possible regularizing matrices and penalty functions.

[^0]: ${ }^{7}$ Since we will only use (4) in the proof, the final result would hold even if $Z_{s, a}$ is only convex.

