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Appendix
A PRELIMINARIES

A.1 Transportation Inequalities

For any function f : X → R, we define its span as S(f) := maxx∈X f(x) − minx∈X f(x). For a probability
distribution P supported on the set X , let EP [f ] := EP [f(X)] and VP [f ] := VP [f(X)] = EP

[
f(X)2

]
−

EP [f(X)]
2 denote the mean and variance of the random variable f(X), respectively. We now state the following

transportation inequalities, which can be adapted from Boucheron et al. (2013, Lemma 4.18).

Lemma 1 (Transportation inequalities). Assume f is such that S(f) and VP [f ] are finite. Then it holds

∀Q� P, EQ[f ]− EP [f ] ≤
√

2 VP [f ] KL(Q,P ) +
2 S(f)

3
KL(Q,P ) ,

∀Q� P, EP [f ]− EQ[f ] ≤
√

2 VP [f ] KL(Q,P ) .

A.2 Bregman Divergence

For a Legendre function F : Rd → R, the Bregman divergence between θ′, θ ∈ Rd associated with F is defined as
BF (θ′, θ) := F (θ′)− F (θ)− (θ′ − θ)>∇F (θ) .

Now, for any fixed θ ∈ Rd, we introduce the function
BF,θ(λ) := BF (θ + λ, λ) = F (θ + λ)− F (θ)− λ>∇F (θ) .

It then follows that BF,θ is a convex function, and we define its dual as

B?F,θ(x) = sup
λ∈Rd

(
λ>x−BF,θ(λ)

)
.

We have for any θ, θ′ ∈ Rd:
BF (θ′, θ) = B?F,θ′ (∇F (θ)−∇F (θ′)) . (4)

To see this, we observe that
B?F,θ′(∇F (θ)−∇F (θ′))

= sup
λ∈Rd

λ>
(
∇F (θ)−∇F (θ′)

)
−
[
F (θ′ + λ)− F (θ′)− λ>∇F (θ′)

]
= sup

λ∈Rd
λ>∇F (θ)− F (θ′ + λ) + F (θ′) .

Now an optimal λ must satisfy ∇F (θ) = ∇F (θ′ + λ). One possible choice is λ = θ − θ′. Since, by definition, F
is strictly convex, the supremum will indeed be attained at λ = θ − θ′. Plugin-in this value, we obtain

B?F,θ′(∇F (θ)−∇F (θ′)) = (θ − θ′)>∇F (θ)− F (θ) + F (θ′) = BF (θ′, θ) .

(Note that (4) holds for any convex function F . Only difference is that, in this case, BF (·, ·) won’t correspond
to the Bregman divergence.)

A.3 Exponential Family

In this section, we detail some useful results related to exponential families in our model.

Derivatives Let us first take a closer look at the derivative of the log-partition function Zs,a. As usual with
exponential families, these are intimately linked to moments of the random variable. We have on the one hand,

(∇iZs,a)(θ) =

∫
S
ψ(s′)>Aiϕ(s, a)

h(s′, s, a) exp

(∑d
i=1 θiψ(s′)>Aiϕ(s, a)

)
∫
S h(s′, s, a) exp

(∑d
i=1 θtψ(s′)>Aiϕ(s, a)

)
ds′

ds′

= Eθs,a
[
ψ(s′)

]>
Aiϕ(s, a) .
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On the other hand, the entries of the Hessian of Z are given by

(∇2
i,jZs,a)(θ) =

∫
S
ψ(s′)>Aiϕ(s, a)ψ(s′)>Ajϕ(s, a)

h(s′, s, a) exp

(∑d
i=1 θiψ(s′)>Aiϕ(s, a)

)
∫
Sh(s′, s, a) exp

(∑d
i=1θtψ(s′)>Aiϕ(s, a)

)
ds′
ds′

−
∫
S
ψ(s′)>Aiϕ(s, a)

h(s′, s, a) exp

(∑d
i=1 θiψ(s′)>Aiϕ(s, a)

)
∫
Sh(s′, s, a) exp

(∑d
i=1θtψ(s′)>Aiϕ(s, a)

)
ds′

ds′(∇jZs,a)(θ)

= Eθs,a
[
ψ(s′)>Aiϕ(s, a)ψ(s′)>Ajϕ(s, a)

]
−Eθs,a

[
ψ(s′)>Aiϕ(s, a)

]
Eθs,a

[
ψ(s′)>Ajϕ(s, a)

]
= ϕ(s, a)>A>i

(
Eθs,a

[
ψ(s′)ψ(s′)>

]
− Eθs,a

[
ψ(s′)

]
Eθs,a

[
ψ(s′)>

])
Ajϕ(s, a)

= ϕ(s, a)>A>i Cθs,a
[
ψ(s′)

]
Ajϕ(s, a) ,

where we introduce in the last line the p× p covariance matrix given by
Cθs,a

[
ψ(s′)

]
= Eθs,a

[
ψ(s′)ψ(s′)>

]
− Eθs,a

[
ψ(s′)

]
Eθs,a

[
ψ(s′)>

]
,

KL Divergence For any two θ, θ′ and for some pair (s, a), we are interested in the following useful relations

log

(
Pθ(s

′|s, a)

Pθ′(s′|s, a)

)
=

d∑
i=1

(θi − θ′i)ψ(s′)>Aiϕ(s, a)− Zs,a(θ) + Zs,a(θ′) ,

or KL

(
Pθ(·|s, a), Pθ′(·|s, a)

)
=

d∑
i=1

(θi − θ′i)Eθs,a[ψ(s′)]>Aiϕ(s, a)− Zs,a(θ) + Zs,a(θ′)

=
1

2
(θ − θ′)>(∇2Zs,a)(θ̃)(θ − θ′) ,

where in the last line, we used, by a Taylor expansion, that Zs,a(θ′) = Zs,a(θ) + (∇Zs,a(θ))>(θ′ − θ) + 1
2 (θ −

θ′)>(∇2Zs,a(θ̃))(θ − θ′) for some θ̃ ∈ [θ, θ′]∞. Here [θ, θ′]∞ denotes the d-dimensional hypercube joining θ to θ′.

B METHOD OF MIXTURES FOR CONDITIONAL EXPONENTIAL
FAMILIES: PROOF OF THEOREM 1

Step 1: Martingale Construction First note that by our hypothesis of strict convexity, the log-partition
function Zs,a is a Legendre function.7 Now for the conditional exponential family model, the KL divergence
b/w Pθ(·|s, a) and Pθ′(·|s, a) can be expressed as a Bregman divergence associated to Zs,a with the parameters
reversed, i.e.,

KLs,a(θ, θ′) := KL (Pθ(·|s, a), Pθ′(·|s, a)) = BZs,a(θ′, θ) . (5)

Now, for any λ ∈ Rd, we introduce the function BZs,a,θ?(λ) = BZs,a(θ? + λ, λ) and define

Mλ
n = exp

(
λ>Sn −

n∑
t=1

BZst,at ,θ?(λ)

)
,

7Since we will only use (4) in the proof, the final result would hold even if Zs,a is only convex.
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where ∀i ≤ d, we denote (Sn)i =
∑n
t=1

(
ψ(s′t)− Eθ?st,at [ψ(s′)]

)>
Aiϕ(st, at). Note that Mλ

n > 0 and it is Fn-
measurable. Furthermore, we have for all (s, a),

Eθ
?

s,a

[
exp

(
d∑
i=1

λi

(
ψ(s′)− Eθ

?

s,a [ψ(s′)]
)>

Aiϕ(s, a)

)]

= exp
(
−λ>∇Zs,a(θ?)

) ∫
S
h(s′, s, a) exp

( d∑
i=1

(θ?i + λi)ψ(s′)>Aiϕ(s, a)− Zs,a(θ?)

)
ds′

= exp
(
Zs,a(θ? + λ)− Zs,a(θ?)− λ>∇Zs,a(θ?)

)
= exp

(
BZs,a(θ?)

)
.

This implies E
[
exp(λ>Sn)|Fn−1

]
= exp

(
λ>Sn−1 + BZsn,an ,θ?(λ)

)
and thus, in turn, E[Mλ

n |Fn−1] = Mλ
n−1.

Therefore {Mλ
n}∞n=0 is a non-negative martingale adapted to the filtration {Fn}∞n=0 and actually satisfies

E
[
Mλ
n

]
= 1. For any prior density q(θ) for θ, we now define a mixture of martingales

Mn =

∫
Rd
Mλ
n q(θ

? + λ)dλ . (6)

Then {Mn}∞n=0 is also a non-negative martingale adapted to {Fn}∞n=0 and in fact, E [Mn] = 1 .

Step 2: Method Of Mixtures and Martingale Control Considering the prior density N
(
0, (ηA)−1

)
, we

obtain from (6) that

Mn = c0

∫
Rd

exp

(
λ>Sn −

n∑
t=1

BZst,at ,θ?(λ)− η

2
‖θ? + λ‖2A

)
dλ , (7)

where c0 = 1∫
Rd exp(− η2 ‖θ′‖

2
A)dθ′

. We now introduce the function Zn(θ) =
∑n
t=1 Zst,at(θ). Note that Zn is a also

Legendre function and its associated Bregman divergence satisfies

BZn(θ′, θ) =

n∑
t=1

(
Zst,at(θ

′)− Zst,at(θ)− (θ′ − θ)>∇Zst,at(θ)
)

=

n∑
t=1

BZst,at (θ
′, θ)

Furthermore, we have
∑n
t=1BZst,at ,θ?(λ) = BZn,θ?(λ).

From the penalized likelihood formula (2), recall that

∀i ≤ d,
n∑
t=1

∇iZst,at(θn) +
η

2
∇i ‖θn‖2A =

n∑
t=1

ψ(s′t)
>Aiϕ(st, at) .

This yields

Sn =

n∑
t=1

(∇Zst,at(θn)−∇Zst,at(θ?)) + ηAθn = ∇Zn(θn)−∇Zn(θ?) + ηAθn . (8)

We now obtain from (7) and (8) that

Mn = c0 · exp
(
−η

2
‖θ?‖2A

)∫
Rd

exp
(
λ>xn −BZn,θ?(λ) + gn(λ)

)
dλ , (9)

where we have introduced gn(λ) = η
2

(
2λ>Aθn + ‖θ?‖2A − ‖θ? + λ‖2A

)
and xn = ∇Zn(θn)−∇Zn(θ?).

Now, note that supλ∈Rd gn(λ) = η
2 ‖θ

? − θn‖2A, where the supremum is attained at λ? = θn − θ?. We then have
gn(λ) = gn(λ) + sup

λ∈Rd
gn(λ)− gn(λ?)

=
η

2
‖θn − θ?‖2A + η(λ− λ?)>A(θ? + λ?) +

η

2
‖θ? + λ?‖2A −

η

2
‖θ? + λ‖2A

= BZ0(θ?, θn) + (λ− λ?)>∇Z0(θ? + λ?) + Z0(θ? + λ?)− Z0(θ? + λ) , (10)

where we have introduced the Legendre function Z0(θ) = η
2 ‖θ‖

2
A. We now have from (4) that

sup
λ∈Rd

(
λ>xn −BZn,θ?(λ)

)
= B?Zn,θ?(xn) = B?Zn,θ?(∇Zn(θn)−∇Zn(θ?)) = BZn(θ?, θn) .

Further, any optimal λ must satisfy
∇Zn(θ? + λ)−∇Zn(θ?) = xn =⇒ ∇Zn(θ? + λ) = ∇Zn(θn) .
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One possible solution is λ = λ?. Now, since Zn is strictly convex, the supremum is indeed attained at λ = λ?.
We then have

λ>xn −BZn,θ?(λ)

= λ>xn −BZn,θ?(λ) +BZn(θ?, θn)−
(
λ?>xn −BZn,θ?(λ?)

)
= BZn(θ?, θn) + (λ− λ?)>∇Zn(θ? + λ?) +BZn,θ?(λ?)−BZn,θ?(λ)− (λ− λ?)>∇Zn(θ?)

= BZn(θ?, θn) + (λ− λ?)>∇Zn(θ? + λ?) + Zn(θ? + λ?)− Zn(θ? + λ) . (11)
Plugging (10) and (11) in (9), we now obtain

Mn = c0 · exp
( ∑
j∈{0,n}

BZj (θ
?, θj)−

η

2
‖θ?‖2A

)
×
∫
Rd

exp
( ∑
j∈{0,n}

(
(λ− λ?)>∇Zj(θ? + λ?) + Zj(θ

? + λ?)− Zj(θ? + λ)
) )
dλ

= c0 · exp
( ∑
j∈{0,n}

BZj (θ
?, θn)− η

2
‖θ?‖2A

)
· exp

(
−

∑
j∈{0,n}

(
(θ? + λ?)>∇Zj(θ? + λ?)− Zj(θ? + λ?)

) )
×
∫
Rd

exp
( ∑
j∈{0,n}

(
(θ? + λ)>∇Zj(θ? + λ?)− Zj(θ? + λ)

) )
dλ

=
c0
cn
· exp

( ∑
j∈{0,n}

BZj (θ
?, θn)− η

2
‖θ?‖2A

)
·

∫
Rd exp

(∑
j∈{0,n}

(
(θ? + λ)>∇Zj(θ? + λ?)− Zj(θ? + λ)

))
dλ∫

Rd exp
(∑

j∈{0,n} ((θ′)>∇Zj(θ? + λ?)− Zj(θ′))
)
dθ′

=
c0
cn
· exp

(
BZn(θ?, θn) +BZ0(θ?, θn)− η

2
‖θ?‖2A

)
· 1

=
c0
cn
· exp

( n∑
t=1

BZst,at (θ
?, θn) +

η

2
‖θ? − θn‖2A −

η

2
‖θ?‖2A

)
,

where we have introduced cn =
exp(

∑
j∈{0,n}((θ?+λ?)>∇Zj(θ?+λ?)−Zj(θ?+λ?)))∫

Rd exp(
∑
j∈{0,n}((θ

′)>∇Zj(θ?+λ?)−Zj(θ′)))dθ′
. Since λ? = θn − θ?, we have

cn =
1∫

Rd exp
(
−

∑
j∈{0,n}

BZj (θ
′, θ? + λ?)

)
dθ′

=
1∫

Rd exp
(
−
∑n
t=1BZst,at (θ

′, θn)− η
2 ‖θ′ − θn‖

2
A

)
dθ′

.

Therefore, we have from (5) that

CA,n :=
cn
c0

=

∫
Rd exp

(
− η

2 ‖θ
′‖2A

)
dθ′∫

Rd exp
(
−
∑n
t=1 KLst,at(θn, θ

′)− η
2 ‖θ′ − θn‖

2
A

)
dθ′

An application of Markov’s inequality now yields

P

[
n∑
t=1

KLst,at(θn, θ
?) +

η

2
‖θ? − θn‖2A −

η

2
‖θ?‖2A ≥ log

(
CA,n
δ

)]
= P

[
Mn ≥

1

δ

]
≤ δ · E [Mn] = δ . (12)

Step 3: A Stopped Martingale and Its Control Let N be a stopping time with respect to the filtration
{Fn}∞n=0. Now, by the martingale convergence theorem, M∞ = lim

n→∞
Mn is almost surely well-defined, and thus

MN is well-defined as well irrespective of whether N <∞ or not. Let Qn = Mmin{N,n} be a stopped version of
{Mn}n. Then an application of Fatou’s lemma yields

E [MN ] = E
[
lim inf
n→∞

Qn

]
≤ lim inf

n→∞
E [Qn] = lim inf

n→∞
E
[
Mmin{N,n}

]
≤ 1 ,

since the stopped martingale
{
Mmin{N,n}

}
n≥1

is also a martingale. Therefore, by the properties ofMn, (12) also
holds for any random stopping time N <∞.

To complete the proof, we now employ a random stopping time construction as in Abbasi-Yadkori et al. (2011).
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We define a random stopping time N by

N = min

{
n ≥ 1 :

n∑
t=1

KLst,at(θn, θ
?) +

η

2
‖θ? − θn‖2A −

η

2
‖θ?‖2A ≥ log

(
CA,n
δ

)}
,

with min{∅} :=∞ by convention. We then have

P

[
∃ n ≥ 1,

n∑
t=1

KLst,at(θn, θ
?) +

η

2
‖θ? − θn‖2A −

η

2
‖θ?‖2A ≥ log

(
CA,n
δ

)]
= P [N <∞] ≤ δ ,

which concludes the proof of the first part.

Proof of Second Part: Upper Bound on CA,n First, we have for some θ̃ ∈ [θn, θ
′]∞ that

KLs,a(θn, θ
′) =

1

2

d∑
i,j=1

(θ′ − θn)iϕ(s, a)>A>i Cθ̃s,a
[
ψ(s′)

]
Ajϕ(s, a)(θ′ − θn)j . (13)

Now (13) implies that
n∑
t=1

KLst,at(θn, θ
′) ≤ β

2

n∑
t=1

d∑
i,j=1

(θ′ − θn)iϕ(st, at)
>A>i Ajϕ(st, at)(θ

′ − θn)j =
β

2
‖θ′ − θn‖

2∑n
t=1Gst,at

,

where β := supθ,s,a λmax

(
Cθs,a[ψ(s′)]

)
and ∀i, j≤d, (Gs,a)i,j := ϕ(s, a)>A>i Ajϕ(s, a). Therefore, we obtain

CA,n ≤

∫
Rd exp

(
− η

2 ‖θ
′‖2A

)
dθ′∫

Rd exp
(
− 1

2 ‖θ′ − θn‖
2
(β

∑n
t=1Gst,at+ηA)

)
dθ′

=
(2π)d/2

det(ηA)1/2
·

det(β
∑n
t=1Gst,at + ηA)1/2

(2π)d/2
= det

(
I + βη−1A−1

n∑
t=1

Gst,at
)
,

which completes the proof of the second part.

C REGRET BOUND OF Exp-UCRL: PROOF OF THEOREM 2

Step 1: Optimism Let us consider the start of episode t, i.e., when the total number of steps completed is
n = (t−1)H. Recall that θn ≡ θ(t−1)H denotes the penalized MLE and Θn ≡ Θ(t−1)H the confidence set around
the MLE after n steps. Now, let θ̂n ≡ θ̂(t−1)H denotes the most optimistic realization from the confidence set
Θn, i.e.,

V πt
θ̂n,1

(st1) = max
π∈Π

max
θ∈Θn

V πθ,1(st1) ,

where st1 denotes the starting state at episode t. Therefore, as long as the true parameter θ? belongs to Θn,
V πt
θ̂n,1

(st1) gives an optimistic estimate of the value V π
?

θ?,1(st1) of the episode, i.e.,

V πt
θ̂n,1

(st1) ≥ V π
?

θ?,1(st1) . (14)

An application of 1 implies that with probability at least 1−δ/2, θ?∈Θn across all episodes. We then have from
(14) that with probability at least 1− δ/2, the cumulative regret is controlled by

R(N) ≤
T∑
t=1

(
V πt
θ̂n,1

(st1)− V πtθ?,1(st1)
)
, (15)

where N = TH denotes the total number of steps completed after T episodes.

Step 2: Bellman Recursion, Transportation Inequalities and Martingale Control For any parameter
θ ∈ Rd and policy π ∈ Π, the Bellman operator T πθ,h : (S → R) → (S → R) is defined for all s ∈ S and h ∈ [H]
as

T πθ,h (V ) (s) = R (s, π(s, h)) + Eθs,π(s,h) [V ] ,

where V : S → R. By the Bellman equation, we have
V πθ,h(s) = T πθ,h

(
V πθ,h+1

)
(s), ∀h ∈ [H] (with V πθ,H+1(s) := 0).
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Following, e.g., Chowdhury and Gopalan (2019), a recursive application of Bellman equation now yields

V πt
θ̂n,1

(st1)− V πtθ?,1(st1) =

H∑
h=1

(
T πt
θ̂n,h

(
V πt
θ̂n,h+1

)
(sth)− T πtθ?,h

(
V πt
θ̂n,h+1

)
(sth) +mt

h

)
,

where mt
h = Eθ?sth,ath

[
V πt
θ̂n,h+1

(sth+1)− V πtθ?,h+1(sth+1)
]
−
(
V πt
θ̂n,h+1

(sth+1)− V πtθ?,h+1(sth+1)
)
. Note that {mt

h}t,h is
a martingale sequence satisfying |mt

h| ≤ 2H. Therefore, by the Azuma-Hoeffding inequality (Boucheron et al.,
2013), with probability at least 1− δ/2, we obtain

T∑
t=1

H∑
h=1

mt
h ≤ 2H

√
2TH ln(2/δ) = 2H

√
2N ln(2/δ) .

Then, using a union bound argument along with (15), the cumulative regret can be upper bounded with proba-
bility at least 1− δ as

R(N) ≤
T∑
t=1

H∑
h=1

(
T πt
θ̂n,h

(
V πt
θ̂n,h+1

)
(sth)− T πtθ?,h

(
V πt
θ̂n,h+1

)
(sth)

)
+ 2H

√
2N ln(2/δ) . (16)

We now proceed to bound the first term in (16). Since V πt
θ̂n,h+1

(s) ≤ H, ∀s, we have its span S
(
V πt
θ̂n,h+1

)
≤ H

and variance Vθsth,ath

[
V πt
θ̂n,h+1

]
≤ H2, ∀θ, ∀(s, a). Therefore, we obtain

T πt
θ̂n,h

(
V πt
θ̂n,h+1

)
(sth)− T πtθ?,h

(
V πt
θ̂n,h+1

)
(sth)

= Eθ̂n
sth,a

t
h

[
V πt
θ̂n,h+1

]
− Eθ

?

sth,a
t
h

[
V πt
θ̂n,h+1

]
= Eθ̂n

sth,a
t
h

[
V πt
θ̂n,h+1

]
− Eθn

sth,a
t
h

[
V πt
θ̂n,h+1

]
+ Eθn

sth,a
t
h

[
V πt
θ̂n,h+1

]
− Eθ

?

sth,a
t
h

[
V πt
θ̂n,h+1

]
≤ H

√
2 KLsth,ath

(
θn, θ̂n

)
+H

√
2 KLsth,ath (θn, θ?) +

2H

3
KLsth,ath (θn, θ

?) ,

where the last step follows from the transportation inequalities (Lemma 1). We then obtain from 16 that

R(N) ≤ H
T∑
t=1

H∑
h=1

(√
2 KLsth,ath(θn, θ̂n) +

√
2 KLsth,ath (θn, θ?) +

2

3
KLsth,ath (θn, θ

?)

)
+ 2H

√
2N ln(2/δ) .

(17)

Step 3: Sum of KL Divergences Along the Transition Trajectory First, we obtain from (13) that

∀(s, a) ∈ S ×A, ∀θ, θ′ ∈ Rd,
α

2
‖θ′ − θ‖2Gs,a ≤ KLs,a(θ, θ′) ≤ β

2
‖θ′ − θ‖2Gs,a ,

where α := inf
θ,s,a

λmin

(
Cθs,a[ψ(s′)]

)
, β := sup

θ,s,a
λmax

(
Cθs,a[ψ(s′)]

)
, and ∀i, j≤ d, (Gs,a)i,j := ϕ(s, a)>A>i Ajϕ(s, a).

We then have

∀(s, a), ∀θ, KLs,a(θn, θ) ≤
β

2
‖θ − θn‖2Gs,a ≤ β

∥∥∥G−1/2

n Gs,aG
−1/2

n

∥∥∥ 1

2
‖θ − θn‖2Gn ,

where Gn ≡ G(t−1)H := Gn + α−1ηA and Gn ≡ G(t−1)H :=
∑t−1
τ=1

∑H
h=1Gsτh,aτh . Furthermore, note that

1

2
‖θ − θn‖2Gn =

α−1η

2
‖θ − θn‖2A +

t−1∑
τ=1

H∑
h=1

1

2
‖θ − θn‖2Gsτ

h
,aτ
h

≤ α−1

(
η

2
‖θ − θn‖2A +

t−1∑
τ=1

H∑
h=1

KLsτh,aτh (θn, θ)

)
.

Therefore, for any θ ∈ Θn, we obtain

∀(s, a), KLs,a(θn, θ) ≤
β

α
· βn(δ)

∥∥∥G−1/2

n Gs,aG
−1/2

n

∥∥∥ =
β

α
· βn(δ)

∥∥∥G−1

n Gs,a

∥∥∥ , (18)

where βn(δ) ≡ β(t−1)H(δ) = η
2B

2
A + log

(
2CA,(t−1)H/δ

)
.

Now, since Gn is positive semi-definite, we have Gn � α−1ηA, and thus, in turn∥∥∥G−1

n Gs,a

∥∥∥ ≤ α

η

∥∥A−1Gs,a
∥∥ ≤ αBϕ,A

η
, ∀(s, a) ,
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where Bϕ,A := sups,a
∥∥A−1Gs,a

∥∥. This further yields∥∥∥∥∥I +G
−1

n

H∑
h=1

Gsth,ath

∥∥∥∥∥ ≤ 1 +

H∑
h=1

∥∥∥G−1

n Gsth,ath

∥∥∥ ≤ 1 +
αBϕ,AH

η
. (19)

Now, we define Gn+H := Gn +
∑H
h=1Gsth,ath . Hence, G

−1

n+HGs,a =
(
I +G

−1

n

∑H
h=1Gsth,ath

)−1

G
−1

n Gs,a. We
therefore deduce from (19) that

∀(s, a),
∥∥∥G−1

n Gs,a

∥∥∥ =

∥∥∥∥∥
(
I +G

−1

n

H∑
h=1

Gsth,ath

)
G
−1

n+HGs,a

∥∥∥∥∥ ≤
(

1 +
αBϕ,AH

η

)∥∥∥G−1

n+HGs,a

∥∥∥ . (20)

Now see that
T∑
t=1

H∑
h=1

∥∥∥G−1

n+HGsth,ath

∥∥∥ ≤ T∑
t=1

H∑
h=1

tr
(
G
−1

n+HGsth,ath

)
=

T∑
t=1

tr
(
G
−1

n+H(Gn+H −Gn)
)
≤

T∑
t=1

log
det(Gn+H)

det(Gn)
,

where we have used that for two positive definite matrices A and B such that A − B is positive semi-definite,
tr(A−1(A−B)) ≤ log det(A)

det(B) . We can now control the R.H.S. of the above equation, as
T∑
t=1

log
det(Gn+H)

det(Gn)
=

T∑
t=1

log
det(GtH)

det(G(t−1)H)
= log

det(GTH)

det(G0)
= log

det(GN )

det(α−1ηA)
= log det

(
I + αη−1A−1GN

)
.

Therefore, we have from (20) and that
T∑
t=1

H∑
h=1

∥∥∥G−1

n Gsth,ath

∥∥∥ ≤ (1 +
βBϕ,AH

η

)
log det

(
I + βη−1A−1GN

)
, (21)

where we have used that α ≤ β.

It now remains to bound the log determinant term in the above equation. By the trace-determinant inequality,
we have

det
(
I + βη−1A−1Gn

)
≤

(
tr
(
I + βη−1A−1Gn

)
d

)d
≤
(

1 +
βη−1

d
tr
(
A−1Gn

))d
.

Now see that tr
(
A−1Gn

)
≤ n sups,a tr

(
A−1Gs,a

)
≤ dBϕ,A n. Therefore, we have

log det
(
I + βη−1A−1Gn

)
≤ d log

(
1 + βη−1Bϕ,A n

)
. (22)

This further implies that the confidence radius

βn(δ) ≤ η

2
B2
A + log

(
2 det

(
I + βη−1A−1Gn

)
/δ
)
≤ η

2
B2
A + d log

(
1 + βη−1Bϕ,A n

)
+ log(2/δ) ,

which is an increasing function in the total number of steps n, hence, in the number of episodes t. We then have
from (18) and (21) that

∀θ ∈ Θn,

T∑
t=1

H∑
h=1

KLsth,ath(θn, θ) ≤
β

α

(
1 +

βBϕ,AH

η

)
βN (δ)γN , (23)

where we define γN := d log
(
1 + βη−1Bϕ,A N

)
and βN (δ) := η

2B
2
A + γN + log(2/δ).

Final Step: First, an application of Cauchy-Schwartz’s inequality yields

∀θ ∈ Θn,

T∑
t=1

H∑
h=1

√
KLsth,ath(θn, θ) ≤

√√√√N

T∑
t=1

H∑
h=1

KLsth,ath(θn, θ) ≤

√
β

α

(
1 +

βBϕ,AH

η

)
βN (δ)NγN . (24)

At this point, we note that by design, θ̂n ∈ Θn and by Theorem 1, θ? ∈ Θn with probability at least 1 − δ/2.
We now obtain from (17), (23) and (24) that the cumulative regret

R(N) ≤ 2H

√
β

α

(
1 +

βBϕ,AH

η

)
2βN (δ)NγN + 2H

√
2N ln(2/δ) +

2H

3

β

α

(
1 +

βBϕ,AH

η

)
βN (δ)γN ,

which completes the proof.
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D REGRET BOUND OF Exp-PSRL: PROOF OF THEOREM 3

Let us consider the start of episode t, i.e., when the total number of steps completed is n = (t−1)H. Recall that
we sample θ̃n ≡ θ̃(t−1)H ∼ µn, where µn ≡ µ(t−1)H = P(θ? ∈ ·|Hn) denotes the posterior distribution of θ?, given
the history of transitions Hn ≡ H(t−1)H = {(sτh, aτh, sτh+1)τ<t,h≤H}. A key property of posterior sampling is that
for any σ(Hn)-measurable function f , we have E[f(θ̃n)] = E[f(θ?)] (Osband et al., 2013). This implies that the
optimal policy π? and selected policy πt are identically distributed conditioned on the history Hn. Therefore,
we have E

[
V π

t

θ̃n,1
(st1)

]
= E

[
V π

?

θ?,1(st1)
]
, and thus, in turn, the Bayes regret

E[R(N)] = E

[
T∑
t=1

(
V πt
θ̃n,1

(st1)− V πtθ?,1(st1)
)]

.

A recursive application of the Bellman equation now yields a result similar to (16):

E[R(N)] = E

[
T∑
t=1

H∑
h=1

(
T πt
θ̃n,h

(
V πt
θ̃n,h+1

)
(sth)− T πtθ?,h

(
V πt
θ̃n,h+1

)
(sth)

)
+

T∑
t=1

H∑
h=1

mt
h

]
,

where mt
h=Eθ?sth,ath

[
V πt
θ̃n,h+1

(sth+1)−V πtθ?,h+1(sth+1)
]
−
(
V πt
θ̃n,h+1

(sth+1)−V πtθ?,h+1(sth+1)
)

is a martingale difference
sequence satisfying E[mt

h] = 0. Then an application of the transportation inequalities (Lemma 1) yields a result
similar to (17):

E [R(N)] ≤ H E

[
T∑
t=1

H∑
h=1

(√
2 KLsth,ath(θn, θ̃n) +

√
2 KLsth,ath (θn, θ?) +

2

3
KLsth,ath (θn, θ

?)

)]
, (25)

where θn ≡ θ(t−1)H denotes the penalized MLE (as computed by Exp-UCRL) after n = (t− 1)H steps.

We now define for any δ ∈ (0, 1], the events E? = {∀t ≥ 1, θ? ∈ Θn} and Ẽ = {∀t ≥ 1, θ̃n ∈ Θn}, where
Θn ≡ Θ(t−1)H is confidence set (as constructed by Exp-UCRL) after n = (t−1)H steps. Under the event E?∩Ẽ ,
we have from (23) and (24) that

T∑
t=1

H∑
h=1

KLsth,ath(θn, θ
?) ≤ β

α

(
1 +

βBϕ,AH

η

)
βN (δ)γN ,

T∑
t=1

H∑
h=1

√
KLsth,ath(θn, θ?) ≤

√
β

α

(
1 +

βBϕ,AH

η

)
βN (δ)NγN and

T∑
t=1

H∑
h=1

√
KLsth,ath(θn, θ̃n) ≤

√
β

α

(
1 +

βBϕ,AH

η

)
βN (δ)NγN .

Therefore, we obtain from (25), the following:

E [R(N)IE?∩Ẽ ] ≤ 2H

√
β

α

(
1 +

βBϕ,AH

η

)
2βN (δ)NγN +

2H

3

β

α

(
1 +

βBϕ,AH

η

)
βN (δ)γN .

Since we can always bound R(N) ≤ N , we have

E [R(N)] = E
[
R(N)IE?∩Ẽ +R(N)I(E?∩Ẽ)c

]
≤ E [R(N)IE?∩Ẽ ] +N(1− P(E? ∩ Ẽ)) .

Now from the property of Posterior sampling, P(Ẽ) = P (E?) and from Theorem 1, P (E?) ≥ 1− δ/2. Therefore,
by a union bound, P(E? ∩ Ẽ) ≥ 1− δ. This implies for any δ ∈ (0, 1] that the Bayes regret

E [R(N)] ≤ 2H

√
β

α

(
1 +

βBϕ,AH

η

)
2βN (δ)NγN +

2H

3

β

α

(
1 +

βBϕ,AH

η

)
βN (δ)γN +Nδ .

The proof now can be completed by setting δ = 1/N .

E ON THE CHOICE OF PENALTY FUNCTION

In this paper, we have considered the penalty function pen(θ) = 1
2 ‖θ‖

2
A, where ∀i, j ≤ d, Ai,j = tr(AiA

>
j ). We

however note that all our results (Theorem 1, 2, 3) hold for any choice of the (regularizing) matrix A. For any
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such choice of A, we only need to ensure that there exist a known constant BA such that ‖θ?‖A ≤ BA. In fact for
our particular choice, as we have seen in Section 4, we obtain A = I for factored and tabular MDPs and A = m1I
for the linearly controlled dynamical systems. (The scaling with m1 arises because of our parameterization and
can be suppressed for the special case of Σs,a = cI, c > 0, ∀(s, a) by using a reparameterization.) We leave it to
future work to study the effect of other possible regularizing matrices and penalty functions.
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