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Appendix

A DETAILS ON ALGORITHMS

A.1 Pseudo-codes of MT-KB and MT-BKB

Algorithm 1 Multi-task kernelized bandits (MT-KB)

Require: Kernel Γ, distribution Pλ, scalarization sλ, time budget T , parameters η, {βt}T−1
t=0

Initialize µ0(x) = 0 and Γ0(x, x′) = Γ(x, x′)
for round t = 1, 2, 3, . . . , T do

Compute acquisition function ut(x) = E [sλ (µt−1(x))] + L · βt−1 ‖Γt−1(x, x)‖1/2
Select point xt ∈ argmaxx∈X ut(x)
Get vector-valued output yt = f(xt) + εt
Compute

Gt(x) =
[
Γ(x1, x)>, . . . ,Γ(xt, x)>

]>
, Gt = [Γ(xi, xj)]

t
i,j=1, Yt =

[
y>1 , . . . , y

>
t

]>
Update the model

µt(x) = Gt(x)>(Gt + ηInt)
−1Yt

Γt(x, x) = Γ(x, x)−Gt(x)>(Gt + ηInt)
−1Gt(x)

end for

Algorithm 2 Multi-task budgeted kernelized bandits (MT-BKB)

Require: Kernel Γ, distribution Pλ, scalarization sλ, time budget T , parameters η, q, {β̃t}T−1
t=0

Initialize µ̃0(x) = 0 and Γ̃0(x, x′) = Γ(x, x′)
for round t = 1, 2, 3, . . . , T do

Compute acquisition function ũt(x) = E [sλ (µ̃t−1(x))] + L · β̃t−1‖Γ̃t−1(x, x)‖1/2
Select point xt ∈ argmaxx∈X ũt(x)
Get vector-valued output yt = f(xt) + εt
Initialize dictionary Dt = ∅
for i = 1, 2, 3, . . . , t do

Set inclusion probability pt,i = min
{
q‖Γ̃t−1(xi, xi)‖, 1

}
Draw zt,i ∼ Bernoulli(pt,i)
if zt,i = 1 then

Update Dt = Dt ∪ {xi}
end if

end for
Set mt = |Dt|, enumerate Dt = {xi1 , . . . , ximt} and compute

G̃t(x) =

[
1

√
pt,i1

Γ(xi1 , x)>, . . . ,
1

√
pt,imt

Γ(ximt , x)>

]>
, G̃t =

[
1

√
pt,iupt,iv

Γ(xiu , xiv )

]mt
u,v=1

Find Nyström embeddings Φ̃t(x) =
(
G̃

1/2
t

)+

G̃t(x)

Compute Ṽt =
∑t
s=1 Φ̃t(xs)Φ̃t(xs)

> and update

µ̃t(x) = Φ̃t(x)>(Ṽt + ηInmt)
−1
∑t

s=1
Φ̃t(xs)ys

Γ̃t(x, x) = Γ(x, x)− Φ̃t(x)>Φ̃t(x) + ηΦ̃t(x)>(Ṽt + η · Inmt)−1Φ̃t(x)

end for
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A.2 Computational Complexity under ICM (Separable) Kernels

In this section, we describe the time complexities of MT-KB and MT-BKB for the intrinsic coregionalization model (ICM)
Γ(x, x′) = k(x, x′)B. As discussed earlier, we assume that an efficient oracle to optimize the acquisition function is
provided to us, and the per step cost comes only from computing it. To this end, we first describe simplified model updates
under ICM kernel using the eigen-system of B and then detail out the time required for computing the updates. We note
here that the eigen decomposition, which is O(n3), needs to be computed only once at the beginning and can be used at
every step of the algorithms.

Per-step Complexity of MT-KB Let B =
∑n
i=1 ξiuiu

>
i denotes the eigen decomposition of the positive semi-

definite matrix B. Then, Γ(x, x) =
∑n
i=1 ξik(x, x)uiu

>
i . From the definition of the Kronecker product, we now

have Gt =
∑n
i=1 ξiKt ⊗ uiu

>
i and Gt(x) =

∑n
i=1 ξikt(x) ⊗ uiu

>
i , where Kt = [k(xi, xj)]

t
i,j=1 and kt(x) =

[k(x1, x), . . . , k(xt, x)]
>. Since {ui}ni=1 yields an orthonormal basis of Rn, the output yt ∈ Rn can be written as

yt =
∑n
i=1 y

>
t ui · ui. We then have Yt =

∑n
i=1 Y

i
t ⊗ ui, where Y it =

[
y>1 ui, . . . , y

>
t ui

]>
. We also note that

Int =
∑n
i=1 It ⊗ uiu

>
i , and, therefore Gt + ηInt =

∑n
i=1 (ξiKt + ηIt) ⊗ uiu

>
i . Now, let Kt =

∑t
j=1 αjwjw

>
j

denotes the eigen decomposition of the (positive semi-definite) kernel matrix Kt. We then have

Gt + ηInt =

n∑
i=1

t∑
j=1

(ξiαj + η)wjw
>
j ⊗ uiu>i =

n∑
i=1

t∑
j=1

(ξiαj + η)(wj ⊗ ui)(wj ⊗ ui)>. (4)

By the properties of tensor product (wj ⊗ ui)>(wj′ ⊗ ui′) = (w>j wj′) · (u>i ui′), which is equal to 1 if i = i′, j = j′, and
is equal to 0 otherwise. Therefore, (4) denotes the eigen decomposition of Gt + ηInt. Hence

(Gt + ηInt)
−1

=

n∑
i=1

t∑
j=1

1

ξiαj + η
wjw

>
j ⊗ uiu>i =

n∑
i=1

(ξiKt + ηIt)
−1 ⊗ uiu>i . (5)

By the orthonormality of {ui}ni=1 and the mixed product property of Kronecker product, we now obtain (Gt + ηInt)
−1Yt =∑n

i=1(ξiKt + ηIt)
−1Y it ⊗ ui, and thus, in turn,

µt(x) = Gt(x)>(Gt + ηInt)
−1Yt =

n∑
i=1

ξikt(x)>(ξiKt + ηIt)
−1Y it · ui. (6)

Similarly, we get Gt(x)>(Gt + ηInt)
−1Gt(x) =

∑n
i=1 ξ

2
i kt(x)>(ξiKt + ηIt)

−1kt(x) · uiu>i and therefore,
‖Γt(x, x)‖ = max

16i6n
ξi
(
k(x, x)− ξikt(x)>(ξiKt + ηIt)

−1kt(x)
)
. (7)

Let us now discuss the time required to compute µt(x) and ‖Γt(x, x)‖. Given the eigen decomposition, updating {Y it }ni=1

re-using those already computed at the previous step requires projecting the current output yt onto all coordinates, and thus,
takes O(n2) time. Now, since the kernel matrix Kt is rescaled by the eigenvalues ξi, we can find the eigen decomposition of
Kt once and reuse those to compute {(ξiKt + ηIt)

−1}ni=1 in O(t3) time. Next, computing n matrix-vector multiplications
and vector inner products of the form kt(x)>(ξiKt + ηIt)

−1kt(x) and kt(x)>(ξiKt + ηIt)
−1Y it take O(nt2) time. Finally,

the sum in (6) and the max in (7) can be computed in O(n2) and O(n) time, respectively. Therefore, the overall cost to
compute µt(x) and ‖Γt(x, x)‖ are O

(
n2 + nt2 + t3

)
= O

(
n2 + t2(n+ t)

)
.

Per-step Complexity of MT-BKB Let ϕ̃t(x) =
(
K̃

1/2
t

)+

k̃t(x) ∈ Rmt denotes the Nyström embedding of the scalar

kernel k, where k̃t(x) =

[
1√
pt,i1

k(xi1 , x), . . . , 1√
pt,imt

k(ximt , x)

]>
and K̃t =

[
1√

pt,iupt,iv
k(xiu , xiv )

]mt
u,v=1

. Then the

eigen decomposition B =
∑n
i=1 ξiuiu

>
i yields G̃t =

∑n
i=1 ξiK̃t ⊗ uiu>i and G̃t(x) =

∑n
i=1 ξik̃t(x)⊗ uiu>i . A similar

argument as in (4) and (5) now implies
(
G̃

1/2
t

)+

=
∑n
i=1

1√
ξi

(
K̃

1/2
t

)+

⊗ uiu>i . Therefore, the Nyström embeddings for
the multi-task kernel Γ can be computed using the embeddings for the scalar kernel k as

Φ̃t(x) =
(
G̃

1/2
t

)+

G̃t(x) =

n∑
i=1

√
ξi

(
K̃

1/2
t

)+

k̃t(x)⊗ uiu>i =

n∑
i=1

√
ξiϕ̃t(x)⊗ uiu>i .

We now have

Ṽt =

t∑
s=1

Φ̃t(xs)Φ̃t(xs)
> =

t∑
s=1

n∑
i=1

ξiϕ̃t(xs)ϕ̃t(xs)
> ⊗ uiu>i =

n∑
i=1

ξiṽt ⊗ uiu>i ,
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where ṽt =
∑t
s=1 ϕ̃t(xs)ϕ̃t(xs)

>. A similar argument as in (4) and (5) then implies

(Ṽt + ηInmt)
−1 =

n∑
i=1

(ξiṽt + ηImt)
−1 ⊗ uiu>i .

We further have
t∑

s=1

Φ̃t(xs)ys =

t∑
s=1

n∑
i=1

√
ξi · y>s ui · ϕ̃t(xs)⊗ ui =

n∑
i=1

√
ξi

(
t∑

s=1

y>s ui · ϕ̃t(xs)

)
⊗ ui.

Similar to (6), we therefore obtain

µ̃t(x) =

n∑
i=1

ξiϕ̃t(x)> (ξiṽt + ηImt)
−1

(
t∑

s=1

y>s ui · ϕ̃t(xs)

)
· ui. (8)

We now note that Φ̃t(x)>Φ̃t(x) =
∑n
i=1 ξiϕ̃t(x)>ϕ̃t(x) · uiu>i . Similar to (7), we then obtain∥∥∥Γ̃t(x, x)

∥∥∥ = max
16i6n

ξi

(
k(x, x)− ϕ̃t(x)>ϕ̃t(x) + ηϕ̃t(x)> (ξiṽt + ηImt)

−1
ϕ̃t(x)

)
. (9)

We now discuss the time required to compute the scalar kernel embedding ϕ̃t(x). Sampling the dictionary Dt, as we reuse
the variances from the previous round, takes O(t) time. We now compute the embedding ϕ̃t(x) in O(m3

t +m2
t ) time, which

corresponds to an inversion of K̃1/2
t and a matrix-vector product of dimension mt, the size of the dictionary. Given the

embedding function, let us now find the time required to compute µ̃t(x) and ‖Γ̃t(x, x)‖. We first construct the matrix ṽt
from scratch using all the points selected so far, which takes O(m2

t t) time. Then the inverses {(ξiṽt + ηImt)
−1}ni=1 can be

computed in O(m3
t ) time and the matrix-vector multiplications {(ξiṽt + ηImt)

−1ϕ̃t(x)}ni=1 in O(nm2
t ) time. Similar to

MT-KB, projecting the current output onto every direction takes O(n2) time. The projections can then be used to compute
n vectors of the form

∑t
s=1 y

>
s ui · ϕ̃t(xs) in O(nmtt) time. Finally, n vector inner products of dimension mt can be

computed in O(nmt) time. Therefore, the overall cost to compute (8) and (9) is O(n2 + nmtt + nm2
t + m3

t + m2
t t) =

O
(
n2 +mtt(n+ t)

)
, since the dictionary size mt 6 t.

B MULTI-TASK CONCENTRATION

We first introduce some notations. For any two Hilbert spaces G andH with respective inner products 〈·, ·〉G and 〈·, ·〉H, we
denote byL(G,H) the space of all bounded linear operators from G toH, with the operator norm ‖A‖ := sup‖g‖G61 ‖Ag‖H.
We also denote, for any A ∈ L(G,H), by A> its adjoint, which is the unique operator such that 〈A>h, g〉G = 〈h,Ag〉H for
all g ∈ G, h ∈ H. In the case G = H, we denote L(H) = L(H,H). We now state the following lemma about operators,
which we will use several times.

Lemma 2 (Operator identities) Let A ∈ L(G,H). Then, for any η > 0, the following hold

(A>A+ ηI)−1A> = A>(AA> + ηI)−1,

I −A>(AA> + ηI)−1A = η(A>A+ ηI)−1.

We now present the main result of this appendix, which is stated and proved using the feature map of the multi-task kernel.

B.1 Feature Map of Multi-task Kernel

We assume the multi-task kernel Γ to be continuous relative to the operator norm on L(Rn), the space of bounded linear
operators from Rn to itself. Then the RKHSHΓ(X ) associated with the kernel Γ is a subspace of the space of continuous
functions from X to Rn, and hence, Γ is a Mercer kernel Carmeli et al. (2010). Let µ be a probability measure on the
(compact) set X . Since Γ is a Mercer kernel on X and supx∈X ‖Γ(x, x)‖ < ∞, the RKHS HΓ(X ) is a subspace of
L2(X , µ;Rn), the Banach space of measurable functions g : X → Rn such that

∫
X ‖g(x)‖2 dµ(x) < ∞, with norm

‖g‖L2 =
(∫
X ‖g(x)‖2 dµ(x)

)1/2

. Since Γ(x, x) ∈ L(Rn) is a compact operator6, by the Mercer theorem for multi-task

6An operator A ∈ L(H) is said to be compact if the image of each bounded set under A is relatively compact.
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kernels Carmeli et al. (2010), there exists an at most countable sequence {(ψi, νi)}i∈N such that

Γ(x, x′) =

∞∑
i=1

νiψi(x)ψi(x
′)> and

‖g‖2Γ =

∞∑
i=1

〈g, ψi〉2L2

νi
, g ∈ L2(X , µ;Rn) ,

where νi > 0 for all i, limi→∞ νi = 0 and {ψi : X → Rn}i∈N is an orthonormal basis of L2(X , µ;Rn). In particular
g ∈ HΓ(X ) if and only if ‖g‖Γ <∞. Note that {√νiψi}i∈N is an orthonormal basis of HΓ(X ). Then, we can represent
the objective function f ∈ HΓ(X ) as

f =

∞∑
i=1

θ?i
√
νiψi

for some θ? := (θ?1 , θ
?
2 , . . .) ∈ `2, the Hilbert space of square-summable sequences of real numbers, such that ‖f‖Γ =

‖θ?‖2 :=
(∑∞

i=1 |θ?i |2
)1/2

<∞. We now define a feature map Φ : X → L(Rn, `2) of the multi-task kernel Γ by

Φ(x)y :=
(√
ν1ψ1(x)>y,

√
ν2ψ2(x)>y, . . .

)
, ∀ x ∈ X , y ∈ Rn.

We then have f(x) = Φ(x)>θ? and Γ(x, x′) = Φ(x)>Φ(x′) for all x, x′ ∈ X .

B.2 Martingale Control in `2 Space

Let us define St =
∑t
s=1 Φ(xs)εs, where ε1, . . . , εt are the random noise vectors in Rn. Now consider Ft−1, the σ-algebra

generated by the random variables {xs, εs}t−1
s=1 and xt. Observe that St is Ft-measurable and E

[
St
∣∣ Ft−1

]
= St−1. The

process {St}t>1 is thus a martingale with values7 in the `2 space. We now define a map ΦXt : `2 → Rnt by

ΦXtθ :=
[(

Φ(x1)>θ
)>
, . . . ,

(
Φ(xt)

>θ
)>]>

, ∀ θ ∈ `2.

We also let Vt := Φ>XtΦXt be a map from `2 to itself and I be the identity operator in `2. In Lemma 3, we measure the
deviation of St by the norm weighted by (Vt + ηI)−1, which is itself derived from St. Lemma 3 represents the multi-task
generalization of the result of Durand et al. (2018), and we recover their result under the single-task setting (n = 1).

Lemma 3 (Self-normalized martingale control) Let the noise vectors {εt}t>1 be σ-sub-Gaussian. Then, for any η > 0
and δ ∈ (0, 1], with probability at least 1− δ, the following holds uniformly over all t > 1 :

‖St‖(Vt+ηI)−1 6 σ
√

2 log (1/δ) + log det (I + η−1Vt) .

Proof For any sequence of real numbers θ = (θ1, θ2, . . .) such that
∥∥∑∞

i=1 θi
√
νiψi(x)

∥∥
2
<∞, let us define Φ(x)>θ :=∑∞

i=1 θi
√
νiψi(x) and

Mθ
t =

t∏
s=1

Dθ
s , Dθ

s = exp

(
ε>s Φ(xs)

>θ

σ
− 1

2

∥∥Φ(xs)
>θ
∥∥2

2

)
.

Since the noise vectors {εt}t>1 are conditionally σ-sub-Gaussian, i.e.,

∀α ∈ Rn,∀t > 1, E
[
exp(ε>t α)

∣∣ Ft−1

]
6 exp

(
σ2 ‖α‖22 /2

)
,

we have E
[
Dθ
t |Ft−1

]
6 1 and hence E

[
Mθ
t |Ft−1

]
6Mθ

t−1. Therefore, it is immediate that {Mθ
t }∞t=0 is a non-negative

super-martingale and actually satisfies E
[
Mθ
t

]
6 1.

Now, let τ be a stopping time with respect to the filtration {Ft}∞t=0. By the convergence theorem for non-negative super-
martingales, Mθ

∞ = lim
t→∞

Mθ
t is almost surely well-defined, and thus Mθ

τ is well-defined as well irrespective of whether

τ <∞ or not. Let Qθt = Mθ
min{τ,t} be a stopped version of {Mθ

t }t. Then, by Fatou’s lemma,

E
[
Mθ
τ

]
= E

[
lim inf
t→∞

Qθt

]
6 lim inf

t→∞
E
[
Qθt
]

= lim inf
t→∞

E
[
Mθ

min{τ,t}

]
6 1 , (10)

since the stopped super-martingale
{
Mθ

min{τ,t}

}
t>1

is also a super-martingale.

7We ignore issues of measurability here.



No-regret Algorithms for Multi-task Bayesian Optimization

Let F∞ be the σ-algebra generated by {Ft}∞t=0, and Θ = (Θ1,Θ2, . . .), Θi ∼ N (0, 1/η) be an infinite i.i.d. Gaussian
random sequence which is independent of F∞. Since Γ(x, x) ∈ L(Rn) has finite trace, we have

E

∥∥∥∥∥
∞∑
i=1

Θi
√
νiψi(x)

∥∥∥∥∥
2

2

 =
1

η

∞∑
i=1

νi ‖ψi(x)‖22 =
1

η
tr (Γ(x, x)) <∞ .

Therefore,
∥∥∑∞

i=1 Θi
√
νiψi(x)

∥∥
2
< ∞ almost surely and thus MΘ

t is well-defined. Now, thanks to the sub-Gaussian
property, E

[
MΘ
t |Θ

]
6 1 almost surely, and thus E

[
MΘ
t

]
6 1 for all t.

Let Mt := E
[
MΘ
t |F∞

]
be a mixture of non-negative super-martingales MΘ

t . Then {Mt}∞t=0 is also a non-negative
super-martingale adapted to the filtration {Ft}∞t=0. Hence, by a similar argument as in (10), Mτ is almost surely well-
defined and E [Mτ ] = E

[
MΘ
τ

]
6 1. Let us now compute the mixture martingale Mt. We first note for any θ ∈ `2 that

Mθ
t = exp

(
〈θ, St/σ〉2 − 1

2 ‖θ‖
2
Vt

)
. The difficulty however lies in the handling of possibly infinite dimension. To this end,

we follow Durand et al. (2018) to consider the first d dimensions for each d ∈ N. Let Θd denote the restriction of Θ to the
first d components. Thus Θd ∼ N (0, 1

η Id). Similarly, let St,d, Vt,d and Mt,d denote the corresponding restrictions of St, Vt
and Mt, respectively. Following the steps from Chowdhury and Gopalan (2017), we then obtain that

Mt,d =
det(ηId)

1/2

(2π)d/2

∫
Rd

exp

(
〈α, St,d/σ〉2 −

1

2
‖α‖2Vt,d

)
exp

(
−η

2
‖α‖22

)
dα

=
1

det(Id + η−1Vt,d)1/2
exp

(
1

2σ2
‖St,d‖2(Vt,d+ηId)−1

)
.

Note that Mτ,d is also almost surely well defined and E [Mτ,d] 6 1 for all d ∈ N. We now fix a δ ∈ (0, 1]. An application
of Markov’s inequality and Fatou’s Lemma then yields

P
[
‖Sτ‖2(Vτ+ηI)−1 > 2σ2 log

(
det(I + η−1Vτ )1/2

δ

)]
= P

exp
(

1
2σ2 ‖Sτ‖2(Vτ+ηI)−1

)
1
δ det(I + η−1Vτ )1/2

> 1


= P

 lim
d→∞

exp
(

1
2σ2 ‖Sτ,d‖2(Vτ,d+ηId)−1

)
1
δ det(Id + η−1Vτ,d)1/2

> 1


6 E

 lim
d→∞

exp
(

1
2σ2 ‖Sτ,d‖2(Vτ,d+ηId)−1

)
1
δ det(Id + η−1Vτ,d)1/2


6 δ lim

d→∞
E [Mτ,d] 6 δ .

We now define a random stopping time τ following Chowdhury and Gopalan (2017), by

τ = min

{
t > 0 : ‖St‖2(Vt+ηI)−1 > 2σ2 log

(
det(I + η−1Vt)

1/2

δ

)}
.

We then have

P
[
∃ t > 1 : ‖St‖2(Vt+ηI)−1 > 2σ2 log

(
det(I + η−1Vt)

1/2

δ

)]
= P [τ <∞] 6 δ ,

which concludes the proof.
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B.3 Concentration Bound for the Vector-valued Estimate (Proof of Theorem 1)

We first reformulate µt(x) in terms of the feature map Φ(x) as

µt(x) = Gt(x)> (Gt + ηInt)
−1
Yt

= Φ(x)>Φ>Xt
(
ΦXtΦ

>
Xt + ηInt

)−1
Yt

= Φ(x)>
(
Φ>XtΦXt + ηI

)−1
Φ>XtYt

= Φ(x)> (Vt + ηI)
−1

t∑
s=1

Φ(xs)ys

= Φ(x)> (Vt + ηI)
−1

t∑
s=1

Φ(xs)(f(xs) + εs)

= Φ(x)> (Vt + ηI)
−1

t∑
s=1

Φ(xs)
(
Φ(xs)

>θ? + εs
)

= Φ(x)>θ? − ηΦ(x)>(Vt + ηI)−1θ? + Φ(x)>(Vt + ηI)−1St

= f(x) + Φ(x)>(Vt + ηI)−1 (St − ηθ?) ,
where the third step follows from Lemma 2. We now obtain, from the definition of operator norm, the following

‖f(x)− µt(x)‖2 6
∥∥∥Φ(x)>(Vt + ηI)−1/2

∥∥∥∥∥∥(Vt + ηI)−1/2 (St − ηθ?)
∥∥∥

2

6
∥∥∥(Vt + ηI)−1/2Φ(x)

∥∥∥(‖St‖(Vt+ηI)−1 + η ‖θ?‖(Vt+ηI)−1

)
6
∥∥Φ(x)>(Vt + ηI)−1Φ(x)

∥∥1/2
(
‖St‖(Vt+ηI)−1 + η1/2 ‖f‖Γ

)
,

where the last step is controlled as ‖θ?‖(Vt+ηI)−1 6 η−1/2 ‖θ?‖2 = η−1/2 ‖f‖Γ. A simple application of Lemma 2 now
yields

ηΦ(x)>(Vt + ηI)−1Φ(x) = ηΦ(x)>(Φ>XtΦXt + ηI)−1Φ(x)

= Φ(x)>Φ(x)− Φ(x)>Φ>Xt(ΦXtΦ
>
Xt + ηInt)

−1ΦXtΦ(x)

= Γ(x, x)−Gt(x)>(Gt + ηInt)
−1Gt(x) = Γt(x, x). (11)

We then have
∥∥Φ(x)>(Vt + ηI)−1Φ(x)

∥∥1/2
= η−1/2 ‖Γt(x, x)‖1/2. We conclude the proof from Lemma 3 and using

Sylvester’s identity to get
det
(
I + η−1Vt

)
= det

(
I + η−1Φ>XtΦXt

)
= det

(
Int + η−1ΦXtΦ

>
Xt
)

= det
(
Int + η−1Gt

)
. (12)
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C REGRET ANALYSIS OF MT-KB

C.1 Properties of Multi-task Predictive GP Variance

Lemma 4 (Sum of predictive variances) For any η > 0 and t > 1,

1

η

t∑
s=1

tr (Γs(xs, xs)) = log det
(
Int + η−1Gt

)
=

t∑
s=1

log det
(
In + η−1Γs−1(xs, xs)

)
.

Proof For the first part, we observe from (11) that

1

η

t∑
s=1

tr (Γs(xs, xs)) =

t∑
s=1

tr
(
Φ(xs)

>(Vs + ηI)−1Φ(xs)
)

=

t∑
s=1

tr
(
(Vs + ηI)−1Φ(xs)Φ(xs)

>)
=

t∑
s=1

tr
(
(Vs + ηI)−1 ((Vs + ηI)− (Vs−1 + ηI))

)
6

t∑
s=1

log

(
det(Vs + ηI)

det(Vs−1 + ηI)

)
= log det

(
I + η−1Vt

)
= log det

(
Int + η−1Gt

)
.

Here, the last equality follows from (12). The inequality follows from the fact that for two p.d. matrices A and B such that
A−B is p.s.d., tr

(
A−1(A−B)

)
6 log

(
det(A)
det(B)

)
Calandriello et al. (2019).

For the second part, we obtain from Schur’s determinant identity that
det
(
Int + η−1Gt

)
= det

(
In(t−1) + η−1Gt−1

)
×

det
(
In + η−1Γ(xt, xt)− η−1Gt−1(xt)

> (In(t−1) + η−1Gt−1

)−1
η−1Gt−1(xt)

)
= det

(
In(t−1) + η−1Gt−1

)
det
(
In + η−1Γt−1(xt, xt)

)
= . . .

=

t∏
s=1

det
(
In + η−1Γs−1(xs, xs)

)
.

We conclude the proof by applying logarithm on both sides.

Lemma 5 (Predictive variance geometry) Let ‖Γ(x, x)‖ 6 κ. Then, for any η > 0 and t > 1,

Γt(x, x) � Γt−1(x, x) � (1 + κ/η) Γt(x, x).

Proof Let us define V t = Vt + ηI for all t > 0. We then have from (11) that

Γt(x, x) = ηΦ(x)>V
−1

t Φ(x)

= ηΦ(x)>
(
V t−1 + Φ(xt)Φ(xt)

>)−1
Φ(x)

= ηΦ(x)>V
−1

t−1Φ(x)−

ηΦ(x)>V
−1

t−1Φ(xt)
(
In + Φ(xt)

>V
−1

t−1Φ(xt)
)−1

Φ(xt)
>V
−1

t−1Φ(x)

= Γt−1(x, x)− η−1Γt−1(xt, x)>
(
In + η−1Γt−1(xt, xt)

)−1
Γt−1(xt, x)

� Γt−1(x, x).
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Here in the third step, we have used the Sherman-Morrison formula and in the last step, we have used the positive
semi-definite property of multi-task kernels. To prove the second part, we first note that

1

η
Γt(x, x) = Φ(x)>

(
V t−1 + Φ(xt)Φ(xt)

>)−1
Φ(x)

= Φ(x)>V
−1/2

t−1

(
I + V

−1/2

t−1 Φ(xt)Φ(xt)
>V
−1/2

t−1

)−1

V
−1/2

t−1 Φ(x) . (13)

Further, since ‖Γ(x, x)‖ 6 κ, we have λmax (Γ(x, x)) 6 κ, and hence,
Γt(x, x) � Γt−1(x, x) � Γt−2(x, x) � . . .Γ0(x, x) = Γ(x, x) � κIn. (14)

Since V
−1/2

t−1 Φ(xt)Φ(xt)
>V
−1/2

t−1 and Φ(xt)
>V
−1

t−1Φ(xt) have same set of non-zero eigenvalues, we now obtain from (14)

that V
−1/2

t−1 Φ(xt)Φ(xt)
>V
−1/2

t−1 � κ
η I . Then (13) implies that

Γt(x, x) � η Φ(x)>V
−1

t−1Φ(x)/ (1 + κ/η) = Γt−1(x, x)/ (1 + κ/η) ,

which completes the proof.

C.2 Regret Bound for MT-KB (Proof of Theorem 2)

Since the scalarization functions sλ is L-Lipschitz in the `2 norm, we have
|sλ (f(x))− sλ (µt−1(x))| 6 L ‖f(x)− µt−1(x)‖2 .

Since µ0(x) = 0, Γ0(x, x) = Γ(x, x) and ‖f‖Γ 6 b, we have

∀λ ∈ Λ, ‖f(x)− µ0(x)‖2 =
∥∥Γ>x f

∥∥
2
6 ‖f‖Γ ‖Γx‖ = ‖f‖Γ

∥∥Γ>x Γx
∥∥1/2

6 b ‖Γ0(x, x)‖1/2 .
Then, from Theorem 1 and Lemma 4, the following holds with probability at least 1− δ:

∀t > 1,∀x ∈ X ,∀λ ∈ Λ, |sλ (f(x))− sλ (µt−1(x))| 6 Lβt−1 ‖Γt−1(x, x)‖1/2 , (15)

where βt = b+ σ√
η

√
2 log(1/δ) +

∑t
s=1 log det (In + η−1Γs−1(xs, xs)), t > 0. We can now upper bound the instanta-

neous regret at time t > 1 as
rt := E [sλ (f(x?))]− E [sλ (f(xt))]

6 E [sλ (µt−1(x?))] + Lβt−1 ‖Γt−1(x?, x?)‖1/2 − E [sλ (f(xt))]

6 E [sλ (µt−1(xt))] + Lβt−1 ‖Γt−1(xt, xt)‖1/2 − E [sλ (f(xt))]

6 2Lβt−1 ‖Γt−1(xt, xt)‖1/2 .
Here in the first and third step, we have used (15). The second step follows from the choice of xt. Since βt is a monotonically
increasing function in t, we have the cumulative regret

RC(T ) :=

T∑
t=1

rt 6 2LβT

T∑
t=1

‖Γt−1(xt, xt)‖1/2 6 2LβT

√√√√(1 + κ/η)T

T∑
t=1

‖Γt(xt, xt)‖,

where the last step is due to the Cauchy-Schwartz inequality and Lemma 5. We now obtain from Lemma 4 that βT 6
b+ σ√

η

√
2 (log(1/δ) + γnT (Γ, η)), which concludes the proof.

C.3 Inter-task Structure in Regret for Separable Kernels (Proof of Lemma 1)

For separable multi-task kernels Γ(x, x′) = k(x, x′)B, the kernel matrix is given by GT = KT ⊗B, where KT is kernel
matrix corresponding to the scalar kernel k and ⊗ denotes the Kronecker product. Let {αt}Tt=1 denote the eigenvalues of
KT . Then the eigenvalues of GT are given by αtξi, 1 6 t 6 T , 1 6 i 6 n, where ξi’s are the eigenvalues of B. We now
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have

log det(InT + η−1GT ) =

T∑
t=1

n∑
i=1

log(1 + αtξi/η)

=
∑

i∈[n]:ξi>0

T∑
t=1

log(1 + αtξi/η)

=
∑

i∈[n]:ξi>0

log det
(
IT + (η/ξi)

−1KT

)
.

Taking supremum over all possible subsets XT of X , we then obtain that γnT (Γ, η) 6
∑
i∈[n]:ξi>0 γT (k, η/ξi).

To prove the second part, we use the feature representation of the scalar kernel k. To this end, we let ϕ : X → `2 be a feature
map of the scalar kernel k, so that k(x, x′) = ϕ(x)>ϕ(x′) for all x, x′ ∈ X . We now define a map ϕXt : `2 → Rt by

ϕXtθ :=
[
ϕ(x1)>θ, . . . , ϕ(xt)

>θ
]>
, ∀ θ ∈ `2.

We also let vt := ϕ>XtϕXt be a map from `2 to itself. For any α > 0, we then obtain from Lemma 2 that

α ϕ(x)>(vt + αI)−1ϕ(x) = α ϕ(x)>(ϕ>XtϕXt + αI)−1ϕ(x)

= ϕ(x)>ϕ(x)− ϕ(x)>ϕ>Xt(ϕXtϕ
>
Xt + αIt)

−1ϕXtϕ(x)

= k(x, x)− kt(x)>(Kt + αIt)
−1kt(x),

where kt(x) = [k(x1, x), . . . , k(xt, x)]> and Kt = [k(xi, xj)]
t
1,j=1. We then have from (7) that

‖Γt(x, x)‖ = max
16i6n

ξi

(
k(x, x)− kt(x)>

(
Kt +

η

ξi
It

)−1

kt(x)

)

= max
16i6n

ξi ·
η

ξi
ϕ(x)>

(
vt +

η

ξi
I

)−1

ϕ(x)

6 η ϕ(x)>
(
vt +

η

κ
I
)−1

ϕ(x).

Here, in the last step we have used that ξi 6 κ for all i ∈ [n]. This holds from our hypothesis ‖Γ(x, x)‖ 6 κ and k(x, x) = 1.
We now observe that

(
vt + η

κI
)−1 � (vt + ηI)

−1 for κ 6 1 and
(
vt + η

κI
)−1 � κ (vt + ηI)

−1 for κ > 1. Therefore

‖Γt(x, x)‖ 6 ηmax{κ, 1}ϕ(x)> (vt + ηI)
−1
ϕ(x).

A simple application of Lemma 4 for n = 1 and Γ(·, ·) = k(·, ·) now yields
T∑
t=1

‖Γt(x, x)‖ 6 ηmax{κ, 1}
T∑
t=1

ϕ(xt)
> (vt + ηI)

−1
ϕ(xt)

= ηmax{κ, 1} log det
(
IT + η−1KT

)
6 2ηmax{κ, 1}γT (k, η),

which completes the proof.

C.4 Inter-task Structure in Regret for Sum of Separable Kernels

We now present a generalization of Lemma 1 for multi-task kernels of the form Γ(x, x′) =
∑M
j=1 kj(x, x

′)Bj .
This class of kernels is called the sum of separable (SoS) kernel and includes the diagonal kernel Γ(x, x′) =
diag (k1(x, x′), . . . , kn(x, x′)) as a special case.

Lemma 6 (Inter-task structure in regret for SoS kernel) Let Γ(x, x′) =
∑M
j=1 kj(x, x

′)Bj and Bj ∈ Rn×n be positive
semi-definite. Then

γnT (Γ, η) 6
M∑
j=1

ρBj max{ξBj , 1}γT (kj , η),

T∑
t=1

‖Γt(xt, xt)‖ 6 2η

M∑
j=1

max{ξBj , 1}γT (kj , η),

where ρBj and ξBj denote the rank and the maximum eigenvalue ofBj , respectively and γT (kj) is the maximum information
gain corresponding to scalar kernel kj . Moreover, if Γ(x, x′) = diag (k1(x, x′), . . . , kn(x, x′)) and each kj is a stationary
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kernel, then

γnT (Γ, η) 6
n∑
j=1

γT (kj , η),

T∑
t=1

‖Γt(xt, xt)‖ 6 2η max
16j6n

γT (kj , η).

Proof We let, for each scalar kernel kj , a feature map ϕj : X → `2, so that kj(x, x′) = ϕj(x)>ϕj(x
′). We now define the

feature map Φ : X → L(Rn, `2) of the multi-task kernel Γ(x, x′) =
∑M
j=1 kj(x, x

′)Bj by

Φ(x)y :=
(
ϕ1(x)⊗B1/2

1 y, . . . , ϕM (x)⊗B1/2
M y

)
, ∀ x ∈ X , y ∈ Rn ,

with the inner product

Φ(x)>Φ(x′) :=

M∑
j=1

(
ϕj(x)⊗B1/2

j

)> (
ϕj(x

′)⊗B1/2
j

)
=

M∑
j=1

ϕj(x)>ϕj(x
′) ·Bj .

We then have

Vt :=

t∑
s=1

Φ(xs)Φ(xs)
> =

t∑
s=1

M∑
j=1

ϕj(xs)ϕj(xs)
> ⊗Bj =

M∑
j=1

vt,j ⊗Bj ,

where vt,j :=
∑t
s=1 ϕj(xs)ϕj(xs)

>. We further obtain from (11) that

Γt(x, x) =

M∑
j=1

η
(
ϕj(x)⊗B1/2

j

)> M∑
j=1

vt,j ⊗Bj + ηI

−1 (
ϕj(x)⊗B1/2

j

)
.

Now eachBj is a positive semi-definite matrix and so is vt,j⊗Bj . Hence, for for all j ∈ [M ],
(∑M

j=1 vt,j ⊗Bj + ηI
)−1

�
(vt,j ⊗Bj + ηI)

−1. Therefore

Γt(x, x) �
M∑
j=1

η
(
ϕj(x)⊗B1/2

j

)>
(vt,j ⊗Bj + ηI)

−1
(
ϕj(x)⊗B1/2

j

)
=

M∑
j=1

Γt,j(x, x), (16)

where Γt,j(x, x) := η
(
ϕj(x)⊗B1/2

j

)>
(vt,j ⊗Bj + ηI)

−1
(
ϕj(x)⊗B1/2

j

)
. Now, let (ξj,i, uj,i) denotes the i-th eigen-

pair of Bj . A similar argument as in (5) then yields

(vt,j ⊗Bj + ηI)
−1

=

n∑
i=1

(ξj,ivt,j + ηI)
−1 ⊗ uj,iu>j,i .

We then have from the mixed product property of Kronecker product and the orthonormality of {uj,i}ni=1 that

Γt,j(x, x) =

n∑
i=1

η ξj,iϕj(x)> (ξj,ivt,j + ηI)
−1
ϕj(x) · uj,iu>j,i

=

n∑
i=1

η ϕj(x)>
(
vt,j +

η

ξj,i
I

)−1

ϕj(x) · uj,iu>j,i .

Since
(
vt + η

ξj,i
I
)−1

� (vt + ηI)
−1 for ξj,i 6 1 and

(
vt + η

ξj,i
I
)−1

� ξj,i (vt + ηI)
−1 for ξj,i > 1, we now have

tr(Γt,j(x, x)) 6 η
∑

i∈[n]:ξj,i>0

max{ξj,i, 1}ϕj(x)> (vt,j + ηI)
−1
ϕj(x)

6 η ρBj max{ξBj , 1}ϕj(x)> (vt,j + ηI)
−1
ϕj(x).

Similarly
‖Γt,j(x, x)‖ 6 η max

16i6n
max{ξj,i, 1}ϕj(x)> (vt,j + ηI)

−1
ϕj(x)

6 ηmax{ξBj , 1}ϕj(x)> (vt,j + ηI)
−1
ϕj(x).

Let KT,j = [kj(xp, xq)]
T
p,q=1 denotes the kernel matrix corresponding to the scalar kernel kj . An application of Lemma 4
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for n = 1 and Γ(·, ·) = kj(·, ·) now yields
T∑
t=1

tr (Γt,j(xt, xt)) 6 η ρBj max{ξBj , 1} log det
(
IT + η−1KT,j

)
and

T∑
t=1

‖Γt,j(xt, xt)‖ 6 η max{ξBj , 1} log det
(
IT + η−1KT,j

)
.

We then have from (16) and Lemma 4 that

log det
(
InT + η−1GT

)
=

1

η

T∑
t=1

tr (Γt(xt, xt))

6
1

η

M∑
j=1

T∑
t=1

tr (Γt,j(xt, xt))

6
M∑
j=1

ρBj max{ξBj , 1} log det
(
IT + η−1KT,j

)
.

Taking supremum over all possible subsets XT of X , we now obtain that γnT (Γ, η) 6
∑M
j=1 ρBj max{ξBj , 1}γT (kj , η).

We further have from (16) that
T∑
t=1

‖Γt(xt, xt)‖ 6
M∑
j=1

T∑
t=1

‖Γt,j(xt, xt)‖ 6 2η

M∑
j=1

max{ξBj , 1}γT (kj , η),

which completes the proof for the first part.

For the diagonal kernel, M = n and each Bj is a diagonal matrix with 1 in the j-th diagonal entry and 0 in all others. In this
case, we have

Γt(x, x) = η

n∑
j=1

ϕj(x)> (vt,j + ηI)
−1
ϕj(x) ·Bj .

We then have from Lemma 4 that

log det
(
InT + η−1GT

)
=

1

η

T∑
t=1

tr (Γt(xt, xt))

=

T∑
t=1

n∑
j=1

ϕj(xt)
> (vt,j + ηI)

−1
ϕj(xt) · tr (Bj)

=

n∑
j=1

T∑
t=1

ϕj(xt)
> (vt,j + ηI)

−1
ϕj(xt)

=

n∑
j=1

log det
(
IT + η−1KT,j

)
.

Taking supremum over all possible subsets XT of X , we now obtain that γnT (Γ, η) 6
∑n
j=1 γT (kj , η). We further have

‖Γt(x, x)‖ = max
16j6n

η ϕj(x)> (vt,j + ηI)
−1
ϕj(x) .

Let j?(x) = argmax16j6n kj(x, x). Since each kj is stationary, i.e., kj(x, x′) = kj(x− x′), we have j?(x) is independent
of x. We now let j? = j?(x) for all x. Then it can be easily checked that

‖Γt(x, x)‖ = η ϕj?(x)> (vt,j? + ηI)
−1
ϕj?(x) .

We now obtain from Lemma 4 that
T∑
t=1

‖Γt(xt, xt)‖ = η

T∑
t=1

ϕj?(xt)
> (vt,j? + ηI)

−1
ϕj?(xt)

= η log det
(
IT + η−1KT,j?

)
6 2η max

16j6n
γT (kj , η) ,

which completes the proof for the second part.
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D ANALYSIS OF MT-BKB

D.1 Trading-off Approximation Accuracy and Size

Given a dictionary Dt = {xi1 , . . . , ximt}, we define a map ΦDt : `2 → Rnmt by

ΦDtθ :=

[
1

√
pt,i1

(
Φ(xi1)>θ

)>
, . . . ,

1
√
pt,imt

(
Φ(ximt )

>θ
)>]>

, ∀ θ ∈ `2, (17)

where pt,ij = min
{
q
∥∥∥Γ̃t−1(xij , xij )

∥∥∥ , 1} for all j ∈ [mt].

Lemma 7 (Approximation properties) For any T > 1, ε ∈ (0, 1) and δ ∈ (0, 1], set ρ = 1+ε
1−ε and q = 6ρ ln(2T/δ)

ε2 . Then,
for any η > 0, with probability at least 1− δ, the following hold uniformly over all t ∈ [T ] :

(1− ε)Φ>XtΦXt − εηI � Φ>DtΦDt � (1 + ε)Φ>XtΦXt + εηI ,

mt 6 6ρq (1 + κ/η)

t∑
s=1

‖Γs(xs, xs)‖ .

Proof Let St be an nt-by-nt block diagonal matrix with i-th diagonal block [St]i = 1√
pt,i

In if xi ∈ Dt, and [St]i = 0 if

xi /∈ Dt, 1 6 i 6 t. We then have Φ>DtΦDt = Φ>XtS
>
t StΦXt . The proof now can be completed by following Calandriello

et al. (2019, Theorem 1).

Remark 5 Note that although tuning the approximation trade-off parameter q requires the knowledge of the time horizon T
in advance, Lemma 7 is quite robust to the uncertainty on T . If the horizon is not known, then after the T -th step, one can
increase q according to the new desired horizon, and update the dictionary with this new value of q. Combining this with a
standard doubling trick preserve the approximation properties Calandriello et al. (2019).

Constructing Approximating Confidence Sets We now focus on the dictionary Dt chosen by MT-BKB at each step and
discuss a principled approach to compute the approximations µ̃t(x) and Γ̃t(x, x). To this end, we let

Pt = Φ>Dt
(
ΦDtΦ

>
Dt
)+

ΦDt (18)

denote the symmetric orthogonal projection operator on the subspace of L
(
Rn, `2

)
that is spanned by Φ(xi1), . . . ,Φ(ximt ).

We also let Φ̂t(x) = PtΦ(x) denote the projection of Φ(x). We now define a map Φ̂Xt : `2 → Rnt by

Φ̂Xtθ :=

[(
Φ̂t(x1)>θ

)>
, . . . ,

(
Φ̂t(xt)

>θ
)>]>

, ∀ θ ∈ `2.

We then have Φ̂Xt = ΦXtPt and Φ̂XtΦ̂
>
Xt = ΦXtPtΦ

>
Xt .

Lemma 8 (Approximation as given by projection) For any η > 0 and t > 1, we have

µ̃t(x) = Φ(x)>
(
V̂t + ηI

)−1 t∑
s=1

Φ̂t(xs)ys and Γ̃t(x, x) = ηΦ(x)>
(
V̂t + ηI

)−1

Φ(x),

where V̂t := Φ̂>XtΦ̂Xt .

Proof We first note that
Φ̃t(x)>Φ̃t(x

′) = G̃t(x)>G̃+
t G̃t(x

′) = Φ(x)>PtΦ(x′).

We now define an nt× nmt matrix Φ̃Xt =
[
Φ̃t(x1), . . . , Φ̃t(xt)

]>
. We then have

Φ̃XtΦ̃t(x) = ΦXtPtΦ(x) = Φ̂XtΦ(x), Φ̃XtΦ̃
>
Xt = ΦXtPtΦ

>
Xt = Φ̂XtΦ̂

>
Xt , (19)
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where Pt is the projection operator as defined in (18). We also have Ṽt :=
∑t
s=1 Φ̃t(xs)Φ̃t(xs)

> = Φ̃>XtΦ̃Xt . Therefore

µ̃t(x) = Φ̃t(x)>(Φ̃>XtΦ̃Xt + ηInmt)
−1

t∑
s=1

Φ̃t(xs)ys

= Φ̃t(x)>(Φ̃>XtΦ̃Xt + ηInmt)
−1Φ̃>XtYt

= Φ̃t(x)>Φ̃>Xt(Φ̃XtΦ̃
>
Xt + ηInt)

−1Yt

= Φ(x)>Φ̂>Xt(Φ̂XtΦ̂
>
Xt + ηInt)

−1Yt

= Φ(x)>(Φ̂>XtΦ̂Xt + ηI)−1Φ̂>XtYt = Φ(x)>(V̂t + ηI)−1
t∑

s=1

Φ̂t(xs)ys ,

where in third and fifth step, we have used Lemma 2, and in fourth step, we have used (19). Further
Γ̃t(x, x) = Γ(x, x)− Φ̃t(x)>Φ̃t(x) + ηΦ̃t(x)>(Φ̃>XtΦ̃Xt + ηInmt)

−1Φ̃t(x)

= Γ(x, x)− Φ̃t(x)>
(
Inmt − η(Φ̃>XtΦ̃Xt + ηInmt)

−1
)

Φ̃t(x)

= Γ(x, x)− Φ̃t(x)>Φ̃>Xt(Φ̃XtΦ̃
>
Xt + ηInt)

−1Φ̃XtΦ̃t(x)

= Φ(x)>Φ(x)− Φ(x)>Φ̂>Xt(Φ̂XtΦ̂
>
Xt + ηInt)

−1Φ̂XtΦ(x)

= Φ(x)>
(
I − Φ̂>Xt(Φ̂XtΦ̂

>
Xt + ηInt)

−1Φ̂Xt

)
Φ(x)

= ηΦ(x)>(Φ̂>XtΦ̂Xt + ηI)−1Φ(x) = ηΦ(x)>(V̂t + ηI)−1Φ(x),

where in third and sixth step, we have used Lemma 2, and in fourth step, we have used (19).

Lemma 9 (Multi-task concentration under Nyström approximation) Let f ∈ HΓ(X ) and the noise vectors {εt}t>1 be
σ-sub-Gaussian. Further, for any η > 0, ε ∈ (0, 1) and t > 1, let (1−ε)Φ>XtΦXt−εηI � Φ>DtΦDt � (1+ε)Φ>XtΦXt+εηI .
Then, for any δ ∈ (0, 1], with probability at least 1− δ, the following holds uniformly over all x ∈ X and t > 1:

‖f(x)− µ̃t(x)‖2 6

(
cε ‖f‖Γ +

σ
√
η

√
2 log(1/δ) + log det(Int + η−1Gt)

)∥∥∥Γ̃t(x, x)
∥∥∥1/2

,

where cε = 1 + 1√
1−ε .

Proof Let us first define α̃t(x) := Φ(x)>
(
V̂t + ηI

)−1∑t
s=1 Φ̂t(xs)f(xs), where V̂t = Φ̂>XtΦ̂Xt . We now note that

f(x) = Φ(x)>θ? and α̃t(x) = Φ(x)>
(
V̂t + ηI

)−1

Φ̂>XtΦXtθ
? for some θ? ∈ `2, so that ‖f‖Γ = ‖θ?‖2. We then have

‖f(x)− α̃t(x)‖2 =

∥∥∥∥Φ(x)>
(
θ? −

(
V̂t + ηI

)−1

Φ̂>XtΦXtθ
?

)∥∥∥∥
2

6

∥∥∥∥Φ(x)>
(
V̂t + ηI

)−1/2
∥∥∥∥∥∥∥∥θ? − (V̂t + ηI

)−1

Φ̂>XtΦXtθ
?

∥∥∥∥
(V̂t+ηI)

=

∥∥∥∥Φ(x)>
(
V̂t + ηI

)−1

Φ(x)

∥∥∥∥1/2 ∥∥∥(V̂t + ηI
)
θ? − Φ̂>XtΦXtθ

?
∥∥∥
(V̂t+ηI)

−1

= η−1/2
∥∥∥Γ̃t(x, x)

∥∥∥1/2 ∥∥∥ηθ? − Φ̂>Xt

(
ΦXt − Φ̂Xt

)
θ?
∥∥∥
(V̂t+ηI)

−1

6 η−1/2
∥∥∥Γ̃t(x, x)

∥∥∥1/2
(
η ‖θ?‖(V̂t+ηI)−1 +

∥∥∥Φ̂>XtΦXt (I − Pt) θ?
∥∥∥

(V̂t+ηI)
−1

)
6

(
‖θ?‖2 + η−1/2

∥∥∥∥(V̂t + ηI
)−1/2

Φ̂>XtΦXt (I − Pt) θ?
∥∥∥∥

2

)∥∥∥Γ̃t(x, x)
∥∥∥1/2

.

Here in the fourth step, we have used Lemma 8 and in the second last step, we have used Φ̂Xt = ΦXtPt, where Pt is the
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projection operator as defined in (18). The last step is controlled as ‖θ?‖(V̂t+ηI)−1 6 η−1/2 ‖θ?‖2. We now have∥∥∥∥(V̂t + ηI
)−1/2

Φ̂>XtΦXt (I − Pt) θ?
∥∥∥∥

2

6

∥∥∥∥(V̂t + ηI
)−1/2

Φ̂>Xt

∥∥∥∥ ‖ΦXt (I − Pt)‖ ‖θ?‖2

6
∥∥ΦXt(I − Pt)Φ>Xt

∥∥1/2 ‖θ?‖2 ,

where we have used that
∥∥∥(V̂t + ηI)−1/2Φ̂>Xt

∥∥∥ =
∥∥∥Φ̂Xt(Φ̂

>
XtΦ̂Xt + ηI)−1Φ̂>Xt

∥∥∥1/2

6 1 and (I − Pt)2 = I − Pt. We now

observe from Lemma 2 and our hypothesis (1− ε)Φ>XtΦXt − εηI � Φ>DtΦDt � (1 + ε)Φ>XtΦXt + εηI that

I − Pt � I − Φ>Dt(ΦDtΦ
>
Dt + ηInmt)

−1ΦDt = η(Φ>DtΦDt + ηI)−1 � η

1− ε
(Φ>XtΦXt + ηI)−1,

and therefore,
∥∥ΦXt(I − Pt)Φ>Xt

∥∥1/2
6
√

η
1−ε

∥∥ΦXt(Φ
>
XtΦXt + ηI)−1Φ>Xt

∥∥1/2
6
√

η
1−ε . Putting it all together, we now

have

‖f(x)− α̃t(x)‖2 6 ‖θ?‖2

(
1 +

1√
1− ε

)∥∥∥Γ̃t(x, x)
∥∥∥1/2

= cε ‖f‖Γ
∥∥∥Γ̃t(x, x)

∥∥∥1/2

, (20)

where we have used that ‖θ?‖2 = ‖f‖Γ and cε = 1 + 1√
1−ε . We further obtain from Lemma 8 that

‖µ̃t(x)− α̃t(x)‖2 =

∥∥∥∥∥Φ(x)>
(
V̂t + ηI

)−1 t∑
s=1

Φ̂t(xs)(ys − f(xs))

∥∥∥∥∥
2

6

∥∥∥∥Φ(x)>
(
V̂t + ηI

)−1/2
∥∥∥∥
∥∥∥∥∥

t∑
s=1

Φ̂t(xs)εs

∥∥∥∥∥
(V̂t+ηI)

−1

=

∥∥∥∥Φ(x)>
(
V̂t + ηI

)−1

Φ(x)

∥∥∥∥1/2 ∥∥∥Φ̂>XtEt

∥∥∥
(V̂t+ηI)

−1

= η−1/2
∥∥∥Γ̃t(x, x)

∥∥∥1/2 ∥∥∥Φ̂>XtEt

∥∥∥
(V̂t+ηI)

−1
,

where Et =
[
ε>1 , . . . , ε

>
t

]>
denotes an nt× 1 vector formed by concatenating the noise vectors εi, 1 6 i 6 t. We now have∥∥∥Φ̂>XtEt

∥∥∥2

(V̂t+ηI)
−1

= E>t Φ̂Xt

(
Φ̂>XtΦ̂Xt + ηI

)−1

Φ̂>XtEt

= E>t

(
Int − η

(
Φ̂XtΦ̂

>
Xt + ηInt

)−1
)
Et

6 E>t

(
Int − η

(
ΦXtΦ

>
Xt + ηInt

)−1
)
Et

= E>t ΦXt
(
Φ>XtΦXt + ηI

)−1
Φ>XtEt =

∥∥Φ>XtEt
∥∥2

(Vt+ηI)
−1 ,

where in second and fourth step, we have used Lemma 2, and in third step, we have used Φ̂XtΦ̂
>
Xt = ΦXtPtΦ

>
Xt � ΦXtΦ

>
Xt .

We then have

‖µ̃t(x)− α̃t(x)‖2 6 η−1/2

∥∥∥∥∥
t∑

s=1

Φ(xs)εs

∥∥∥∥∥
(Vt+ηI)

−1

∥∥∥Γ̃t(x, x)
∥∥∥1/2

= η−1/2 ‖St‖(Vt+ηI)−1

∥∥∥Γ̃t(x, x)
∥∥∥1/2

, (21)

where St :=
∑t
s=1 Φ(xs)εs. Combining (20) and (21) together, we now obtain

‖f(x)− µ̃t(x)‖2 6 ‖f(x)− α̃t(x)‖2 + ‖α̃t(x)− µ̃t(x)‖2

6
(
cε ‖f‖Γ + η−1/2 ‖St‖(Vt+ηI)−1

)∥∥∥Γ̃t(x, x)
∥∥∥1/2

.

We now conclude the proof using Lemma 3.
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D.2 Controlling Approximate Predictive Variance

We now show that an accurate dictionary helps us to control the approximate predictive variances

Lemma 10 (Approximate predictive variance control) For any η > 0 and ε ∈ (0, 1), let ρ = (1 + ε)/(1 − ε) and
(1− ε)Φ>XtΦXt − εηI � Φ>DtΦDt � (1 + ε)Φ>XtΦXt + εηI . Then

1

ρ
Γt(x, x) � Γ̃t(x, x) � ρΓt(x, x).

Proof We first note that Φ̂>XtΦ̂Xt = PtΦ
>
XtΦXtPt, where Pt is the projection operator as defined in (18). Then our

hypothesis (1− ε)Φ>XtΦXt − εηI � Φ>DtΦDt � (1 + ε)Φ>XtΦXt + εηI can be re-formulated as
1

1 + ε
PtΦ

>
DtΦDtPt −

εη

1 + ε
Pt � Φ̂>XtΦ̂Xt �

1

1− ε
PtΦ

>
DtΦDtPt +

εη

1− ε
Pt.

Since, by definition, PtΦ>Dt = Φ>Dt and Pt � I , we have
1

1 + ε
Φ>DtΦDt −

εη

1 + ε
� Φ̂>XtΦ̂Xt �

1

1− ε
Φ>DtΦDt +

εη

1− ε
,

and, thus, in turn
1

1 + ε

(
Φ>DtΦDt + ηI

)
� Φ̂>XtΦ̂Xt + ηI � 1

1− ε
(
Φ>DtΦDt + ηI

)
.

We now obtain from our hypothesis that
1− ε
1 + ε

(
Φ>XtΦXt + ηI

)
� Φ̂>XtΦ̂Xt + ηI � 1 + ε

1− ε
(
Φ>XtΦXt + ηI

)
.

This further implies that
1− ε
1 + ε

Φ(x)>(Vt + ηI)−1Φ(x) � Φ(x)>
(
V̂t + ηI

)−1

Φ(x) � 1 + ε

1− ε
Φ(x)> (Vt + ηI)

−1
Φ(x),

which completes the proof.

D.3 Regret and Complexity Bounds for MT-BKB (Proof of Theorem 3)

Since the scalarization functions sλ is L-Lipschitz in the `2 norm, we have
∀λ ∈ Λ, |sλ (f(x))− sλ (µ̃t−1(x))| 6 L ‖f(x)− µ̃t−1(x)‖2 .

Since µ̃0(x) = 0, Γ̃0(x, x) = Γ(x, x) and ‖f‖Γ 6 b, we have

‖f(x)− µ̃0(x)‖2 =
∥∥Γ>x f

∥∥
2
6 ‖f‖Γ ‖Γx‖ = ‖f‖Γ

∥∥Γ>x Γx
∥∥1/2

6 b
∥∥∥Γ̃0(x, x)

∥∥∥1/2

.

Further, since log(1 + ax) 6 a log(1 + x) holds for any a > 1 and x > 0, we obtain from Lemma 4 and Lemma 10 that

log det
(
Int + η−1Gt

)
=

t∑
s=1

log det
(
In + η−1Γs−1(xs, xs)

)
6 ρ

t∑
s=1

log det
(
In + η−1Γ̃s−1(xs, xs)

)
, (22)

where ρ = 1+ε
1−ε . Let us now assume, for any t > 1, that

(1− ε)Φ>XtΦXt − εηI � Φ>DtΦDt � (1 + ε)Φ>XtΦXt + εηI. (23)
Then, from (22) and Lemma 9, the following holds with probability at least 1− δ/2:

∀t > 1,∀x ∈ X ,∀λ ∈ Λ, |sλ (f(x))− sλ (µ̃t−1(x))| 6 Lβ̃t−1

∥∥∥Γ̃t−1(x, x)
∥∥∥1/2

, (24)
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where β̃t = cεb + σ√
η

√
2 log(2/δ) + ρ

∑t
s=1 log det

(
In + η−1Γ̃s−1(xs, xs)

)
, t > 0 and cε = 1 + 1√

1−ε . We can now

upper bound the instantaneous regret at time t > 1 as
rt := E [sλ (f(x?))]− E [sλ (f(xt))]

6 E [sλ (µ̃t−1(x?))] + Lβ̃t−1

∥∥∥Γ̃t−1(x?, x?)
∥∥∥1/2

− E [sλ (f(xt))]

6 E [sλ (µ̃t−1(xt))] + Lβ̃t−1

∥∥∥Γ̃t−1(xt, xt)
∥∥∥1/2

− E [sλ (f(xt))]

6 2Lβ̃t−1

∥∥∥Γ̃t−1(xt, xt)
∥∥∥1/2

.

Here in the first and third step, we have used (24). The second step follows from the choice of xt. Since β̃t is a monotonically
increasing function in t, we now have

RC(T ) :=

T∑
t=1

rt 6 2Lβ̃T

T∑
t=1

∥∥∥Γ̃t−1(xt, xt)
∥∥∥1/2

6 2Lβ̃T

√√√√ρT

T∑
t=1

‖Γt−1(xt, xt)‖

6 2Lβ̃T

√√√√ρ(1 + κ/η)T
T∑
t=1

‖Γt(xt, xt)‖,

where the second last step is due to the Cauchy-Schwartz inequality and Lemma 10, and the last step is due to Lemma 5. A
similar argument as in (22) now yields

T∑
t=1

log det
(
In + η−1Γ̃t−1(xt, xt)

)
6 ρ

T∑
t=1

log det
(
In + η−1Γt−1(xt, xt)

)
= ρ log det

(
InT + η−1GT

)
6 2ργnT (Γ, η).

We then have β̃T 6 cεb + σ√
η

√
2 (log(2/δ) + ρ2γnT (Γ, η)). Setting q = 6ρ ln(4T/δ)

ε2 , we now have from Lemma 7, that

with probability at least 1− δ/2, uniformly across all t ∈ [T ], the dictionary size mt 6 6ρq (1 + κ/η)
∑t
s=1 ‖Γs(xs, xs)‖

and (23) is true. Using a union bound argument, we then obtain, with probability at least 1− δ, the cumulative regret

RMT-BKB
C (T ) 6 2L

(
cεb+

σ
√
η

√
2 (log(1/δ) + ρ2γnT (Γ, η))

)√√√√ρ(1 + κ/η)T

T∑
t=1

‖Γt(xt, xt)‖ .

We conclude the proof by noting that ρ = 1+ε
1−ε > 1 and cε = 1 + 1√

1−ε 6 2ρ.

E ON PARETO OPTIMALITY AND RANDOM SCALARIZATIONS

In this section, we show that our algorithms can be adapted to achieve a low Bayes regret. We recall that for a set of points
XT = {x1, . . . , xT }, the Bayes regret is defined as

RB(T ) := E [rλ(T )] , where rλ(T ) := max
x∈X

sλ (f(x))− max
x∈XT

sλ (f(x)) .

If sλ is Lipschitz continuous and montonically increasing, then a low value of Bayes’ regret implies that f(XT ) spans the
high probability regions (w.r.t. the prior Pλ) of the Pareto front f(Xf ). To see this, we first note that monotonicity ensures
x?λ := argmaxx∈X sλ (f(x)), the maximizer of the scalarized objective is a Pareto optimal point, i.e., x?λ ∈ Xf (Roijers
et al., 2013). Thus, the prior Pλ defines a probability distribution over the Pareto optimal set Xf , and thus, in turn, over the
Pareto front f(Xf ). Next, we observe that it requires the point-wise regret rλ(T ) to be low for all λ ∈ Λ that has high mass,
to achieve a low Bayes regret. Now, the point-wise regret rλ(T ) = 0 if x?λ ∈ XT . Then, by the Lipschitz continuity, a low
value of RB(T ) will essentially imply f(XT ) to "span" the high probability regions of f(Xf ).

Controlling the Bayes Regret Following Paria et al. (2020), we bound the Bayes regret by a surrogate regret measure,
defined as

R′(T ) :=

T∑
t=1

E
[
sλt
(
f(x?λt)

)
− sλt (f (xt))

]
, where λt

i.i.d.∼ Pλ, ∀t 6 T .
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Paria et al. (2020) show that under some mild conditions (Λ is a bounded set and sλ is Lipschitz continuous in λ), then
RB(T ) 6 1

TR
′(T ) + o(1). A sub-linear growth of R′(T ) with T then implies that RB(T )→0 as T→∞. We now adapt

MT-KB with random scalarizations to ensure a sub-linear growth of R′(T ). (A similar analysis follows for MT-BKB.) At
each round t, we modify the acquisition function for MT-KB as

u′t(x) = sλt (µt−1(x)) + Lβt−1 ‖Γt−1(x, x)‖1/2 , where λt ∼ Pλ .
We then select the point xt that maximizes this modified acquisition function u′t.

Now, since the scalarization function sλ is L-Lipschitz in the `2 norm, we have with probability one, the following:
|sλt (f(x))− sλt (µt−1(x))| 6 L ‖f(x)− µt−1(x)‖2 .

Then, from Theorem 1 and Lemma 4, the following holds with probability at least 1− δ:

∀t > 1,∀x ∈ X , |sλt (f(x))− sλt (µt−1(x))| 6 Lβt−1 ‖Γt−1(x, x)‖1/2 , (25)

where βt = b+ σ√
η

√
2 log(1/δ) +

∑t
s=1 log det (In + η−1Γs−1(xs, xs)), t > 0. We can now upper bound the instanta-

neous surrogate regret at time t > 1 as
r′(t) := sλt

(
f(x?λt)

)
− sλt (f(xt))

6 sλt
(
µt−1(x?λt)

)
+ Lβt−1

∥∥Γt−1(x?λt , x
?
λt)
∥∥1/2 − sλt (f(xt))

6 sλt (µt−1(xt)) + Lβt−1 ‖Γt−1(xt, xt)‖1/2 − sλt (f(xt))

6 2Lβt−1 ‖Γt−1(xt, xt)‖1/2 .
Here in the first and third step, we have used (25). The second step follows from the choice of xt. Since βt is a monotonically
increasing function in t, we have

R′(T ) := E

[
T∑
t=1

r′(t)

]
6 2LβT

T∑
t=1

‖Γt−1(xt, xt)‖1/2

6 2LβT

√√√√(1 + κ/η)T

T∑
t=1

‖Γt(xt, xt)‖

6 2LβT
√

2(κ+ η)TγnT (Γ, η) ,

where the second last step is due to the Cauchy-Schwartz inequality and Lemma 5, and the last step follows from Lemma 4.
We further obtain from Lemma 4 that βT 6 b+ σ√

η

√
2 (log(1/δ) + γnT (Γ, η)), yielding the desired sub-linear growth of

R′(T ) with T .

Comparison of Bayes Regret We compare the Bayes regret RB(T ) of MT-KB and MT-BKB (using random scalariza-
tions) with independent task benchmarks IT-KB, IT-BKB and MOBO in Figure 4. We observe that learning the tasks
together yields better if not similar performance compared to learning the tasks independently.
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Figure 4: Comparison of Bayes regret of MT-KB and MT-BKB with IT-KB, IT-BKB and MOBO using Chebyshev scalarization.

F ADDITIONAL DETAILS ON EXPERIMENTS

Comments on Parameters Used We set the confidence radii (i.e., βt and β̃t) of MT-KB and MT-BKB exactly as given
in Theorem 2 and Theorem 3, respectively. Similarly, for IT-KB and IT-BKB, we use respective choices of radii given in
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Chowdhury and Gopalan (2017) and Calandriello et al. (2019) in the context of single task BO and suitably blow those up
by a
√
n factor to account for n tasks. For MOBO, we use the UCB acquistion function and set the radius as specified in

Paria et al. (2020). To make the comparison uniform across all experiments, we do not tune any hyper-parameter for any
algorithm and for a particular hyperparameter, we always use the same value in all algorithms. The hyper-paramter choices
are specified in Section 5. We though believe that careful tuning of hyper-parameters might lead to better performance in
practice.

A Note on the Sensor Data The data was collected at 30 second intervals for 5 consecutive days starting Feb. 28th 2004
from 54 sensors deployed in the Intel Berkeley Research lab. We have downloaded the data previously from the webpage
http://db.csail.mit.edu/labdata/labdata. But the link appears to be broken now. We can share a copy of
our downloaded version if asked to do so.

http://db.csail.mit.edu/labdata/labdata
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