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Abstract

We consider multi-objective optimization (MOO)
of an unknown vector-valued function in the non-
parametric Bayesian optimization (BO) setting.
Our aim is to maximize the expected cumulative
utility of all objectives, as expressed by a given
prior over a set of scalarization functions. Most
existing BO algorithms do not model the fact that
the multiple objectives, or equivalently, tasks can
share similarities, and even the few that do lack
rigorous, finite-time regret guarantees that capture
explicitly inter-task structure. In this work, we
address this problem by modelling inter-task de-
pendencies using a multi-task kernel and develop
two novel BO algorithms based on scalarization
of the objectives. Our algorithms employ vector-
valued kernel regression as a stepping stone and
belong to the upper confidence bound class of al-
gorithms. Under a smoothness assumption that
the unknown vector-valued function is an element
of the reproducing kernel Hilbert space associated
with the multi-task kernel, we derive worst-case
regret bounds for our algorithms that explicitly
capture the similarities between tasks. We numeri-
cally benchmark our algorithms on both synthetic
and real-life MOO problems, and show the advan-
tages offered by learning with multi-task kernels.

1 INTRODUCTION

Bayesian optimization (Frazier, 2018; Archetti and Can-
delieri, 2019) is a popular online learning approach for
optimizing a black-box function with expensive, noisy eval-
uations, having been extensively applied in various applica-
tions such as hyper-parameter tuning (Snoek et al., 2012),
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sensor selection (Garnett et al., 2010), synthetic gene design
(Gonzalez et al., 2015), etc. In many practical scenarios,
one is required to optimize multiple objectives together, and
moreover, these objectives can be conflicting in nature. For
example, consider drug discovery, where each function eval-
uation is a costly laboratory experiment and its output is
a measurement of both the potency and side-effects of a
candidate drug (Paria et al., 2020). These two objectives
are typically conflicting in nature, since one would like
to maximize the potency of drug while also keeping its
side-effects to a minimum. Other examples include trade-
offs such as bias and variance, accuracy and calibration
(Guo et al., 2017), accuracy and fairness (Zliobaite, 2015)
etc. These problems can be framed as that of optimizing a
vector-valued function f = (f1, . . . , fn), where each of its
components is a real-valued function and corresponds to a
particular objective or task.

The traditional goal in online MOO is a search goal – find
the the set of Pareto optimal points using as few interactions
with the environment as possible, where intuitively a point is
Pareto optimal if there is no way to improve on all objectives
simultaneously (Knowles, 2006). This is however, quite dif-
ferent than the corresponding optimization goal, where the
learner seeks to maximize the total utility earned from all its
decisions or equivalently, minimize the regret or shortfall in
total utility compared to that of an optimal decision. This
goal is relevant in many practical online MOO settings in
which every decision that is taken carries utility or value.
For example, consider the selection of different preventive
strategies against an emerging epidemic under conflicting
objectives like minimizing the infection rate while sustain-
ing the economic growth (Roijers et al., 2017). In such
cases, there is no separate budget or time devoted to purely
exploring the unknown environment; rather, we need to use
our interactions with the environment efficiently, as we care
about the utility accrued during learning and hence, explo-
ration and exploitation must be carefully balanced. Since
one often cannot optimize all fi’s simultaneously, what the
optimal point is depends on the preferences of end user re-
garding the trade-offs between the different objectives. The
preferences are typically expressed in terms of a scalarisa-
tion function (Roijers et al., 2013). Random scalarizations,
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in particular, have been shown to be flexible enough to also
model user preferences in capturing the whole or a part of
the Pareto front (Paria et al., 2020).

Most multi-objective BO approaches maintain n differ-
ent Gaussian processes or, in short GPs (Gramacy, 2020),
one for each task or objective fi (Zuluaga et al., 2013;
Hernández-Lobato et al., 2016). However, in general, the
tasks share some underlying structure, and cannot be treated
as unrelated objects. By making use of this structure, one
might benefit significantly by learning the tasks simulta-
neously as opposed to learning them independently. For
example, consider predicting consumer preferences simulta-
neously based on their past history (Evgeniou et al., 2005).
Each task is to learn the preference of a particular consumer,
and the tasks are related since people with similar tastes tend
to buy similar items. Other examples include simultaneous
estimation of many related indicators in economic fore-
casting (Greene, 2003), predicting tumour behaviour from
multiple related diseases (Rifkin et al., 2003) etc. However,
assuming similarities in a set of tasks and blindly learning
them together can be detrimental (Caruana, 1997). Hence,
it is important to have a model that will benefit the learning
in case of related tasks and will not hurt performance when
the tasks are unrelated. This can be achieved by maintaining
a multi-task GP over f , which directly induces correlations
between tasks (Bonilla et al., 2008). In the context of BO,
Swersky et al. (2013) empirically demonstrate the utility of
this model in a number of applications, and Astudillo and
Frazier (2019) provide an asymptotic convergence analysis
under a special setting of composite objective functions and
noise-free evaluations. However, a formal finite time regret
analysis showing the effectiveness of multi-task GPs over
independent GPs in the context of noisy MOO has not been
rigorously pursued. Against this backdrop, we make the
following contributions:

• We develop two novel BO algorithms – multi-task ker-
nelized bandits (MT-KB) and multi-task budgeted ker-
nelized bandits (MT-BKB) – that are based on scalar-
ization technique, and can leverage similarities be-
tween tasks to optimize them more efficiently.

• Our algorithms use vector-valued kernel ridge regres-
sion as a building block and follow the general template
of the upper-confidence-bound class of algorithms. In
fact, MT-BKB is the first algorithm that employs the
Nyström approximation technique in the context of
multi-task kernels.

• Under the assumption that the objective function has
smoothness compatible with a joint kernel on its do-
main and components, we derive regret guarantees for
our algorithms that explicitly capture the inter-task
structure. These are the first worst-case (frequentist)
regret bounds for multi-objective BO, and are proved
by deriving a novel concentration inequality for the

estimate of the vector-valued objective function, which
might be of independent interest.

• Finally, our algorithms are simple to implement when
the kernel decouples between tasks and domain, and
we report numerical results on synthetic as well as real-
world based datasets, for which the algorithms are seen
to perform favourably.

Related Work Popular multi-objective BO strategies in-
clude Predictive Entropy Search (Hernández-Lobato et al.,
2016), max-value entropy search (Belakaria et al., 2019),
Pareto active learning (Zuluaga et al., 2013), expected hyper-
volume improvement (Emmerich and Klinkenberg, 2008),
sequential uncertainty reduction (Picheny, 2015) and scalar-
ization based approaches (Knowles, 2006; Zhang and Li,
2007; Paria et al., 2020). Swersky et al. (2013) develop
multi-task BO strategies with applications in the settings
where one cares about learning an expensive primary task
based on observations from a cheaper secondary task or
transferring the learned knowledge from an already com-
puted task to a new task, hence their framework does not
always need simultaneous observations from all tasks. On
the other hand, similar to the multi-objective BO strategies
mentioned above, we care for optimizing all the tasks to-
gether and hence require observations from all of them to
ensure a (global) no-regret performance. These strategies,
however, model each task independently, and hence, fail to
capture any structure present between the tasks. We model
all the tasks together using multi-task kernels, and hence
describe our framework as “multi-task” optimization.

In the field of geostatistics (Wackernagel, 2013), and more
recently in supervised learning (Liu et al., 2018), multi-
task GPs and associated kernels have gained a lot of trac-
tion. Also, a lot of work has been done in the context of
vector-valued or “multi-task” learning with kernel meth-
ods (Micchelli and Pontil, 2005; Baldassarre et al., 2012;
Grünewälder et al., 2012), and this paper complements the
literature by considering an online learning setting. A sim-
ple version of multi-objective black box optimization – in
the form of online learning in finite multi-armed bandits
(MABs) – has been considered in (Drugan and Nowe, 2013;
Drugan and Nowé, 2014). This paper, in effect, generalize
these works to the more challenging setting of infinite-armed
bandits, which has been studied extensively in the single
task setting (Srinivas et al., 2010; Chowdhury and Gopalan,
2017; Scarlett et al., 2017).

2 PROBLEM STATEMENT

We consider the problem of optimizing a vector-valued
function f(x) = [f1(x), . . . , fn(x)]>∈Rn over a compact
domain X ⊂ Rd as follows. At each round t, a learner
queries f at a single point xt∈ X , and observes a noisy
output yt=f(xt)+εt, where εt∈Rn is a zero-mean σ-sub-
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Gaussian random vector conditioned onFt−1, the σ-algebra
generated by the random variables {xs, εs}t−1

s=1 and xt. By
this we mean that there exists a σ>0, such that

∀α∈Rn,∀t>1, E
[
exp(α>εt)

∣∣Ft−1

]
6exp

(σ2‖α‖22
2

)
.

The query point xt at round t is chosen causally depend-
ing upon the history {(xs, ys)}t−1

s=1 of query and output se-
quences available up to round t−1. Furthermore, it depends
on the end user’s preference regrarding the trade-offs be-
tween different objectives. These preferences are commonly
expressed using a scalarization function, also known as
a utility function, sλ : Rn → R, where λ ∈ Λ ⊂ Rn is a
weight vector parameterizing sλ (Roijers et al., 2013). We
assume that the scalarization function is L-Lipschitz in the
`2-norm, i.e., |sλ(u)− sλ(v)|6L ‖u− v‖2 for all λ ∈ Λ
and u, v∈Rn. The Lipschitz constant can be explicitly cal-
culated for commonly used scalarization functions, e.g., the
linear scalarization sλ(y)=

∑n
i=1 λiyi and the Chebyshev

scalarization sλ(y)=mini6n λi(yi−zi), where λ lies in the
set Λ = {λ∈Rn :λi> 0 ∀i6n, ‖λ‖1 = 1} and z∈Rn is a
reference point (Nakayama et al., 2009).

Regularity Assumptions If the user preference or equiv-
alently, the weight vector λ is known beforehand, it is possi-
ble to apriori scalarize the objective vectors f(x) and apply
standard single-objective BO algorithms. However, often
we do not know λ in advance and hence, in such cases we
need a model that expresses the multiple objectives explic-
itly. As discussed before, existing works those model each
scalar objective fi independently fail to capture the struc-
ture present between different objectives. In contrast, we
propose to capture the inter-task structure by modelling the
vector-valued function f directly.

Multi-task Kernel and Its RKHS We call a mapping
Γ:X×X→Rn×n, a multi-task kernel on X if Γ(x, x′)>=
Γ(x′, x) for any x, x′∈X , and

∑m
i,j=1 y

>
i Γ(xi, xj)yj > 0

for xi ∈ X and yi ∈ Rn for all i ∈ [m], m ∈ N.1 Given a
continuous (relative to the induced matrix norm) multi-task
kernel Γ on X , there exists a unique (modulo an isome-
try) vector-valued reproducing kernel Hilbert space (RKHS)
of vector-valued continuous functions g : X → Rn, with
Γ as its reproducing kernel (Carmeli et al., 2010). We
denote this RKHS as HΓ(X ), with the corresponding in-
ner product 〈·, ·〉Γ. Then, for every x ∈ X , there exists
a bounded linear operator Γx : Rn → HΓ(X ) such that
Γ(x, x′) = Γ>x Γx′ for all x′ ∈ X and g(x) = Γ>x g for all
g ∈ HΓ(X ). Here, Γ>x denotes the adjoint of Γx (with a
slight abuse of notation), and it is the unique operator satis-
fying 〈Γ>x g, y〉2 =〈g,Γxy〉Γ for all g∈HΓ(X ) and y∈Rn.
We assume that the objective function f is an element of
the RKHS HΓ(X ) and its norm associated to HΓ(X ) is
bounded, i.e., there exists a b < ∞ such that ‖f‖Γ 6 b.

1In its more general form, this definition can be lifted from Rn
to any arbitrary Hilbert spaceH (Caponnetto et al., 2008).

This is a measure of smoothness of f , since, by the re-
producing property, ‖f(x)−f(x′)‖2 6 ‖f‖Γ ‖Γx−Γx′‖,
where ‖Γx‖ := sup‖y‖261 ‖Γxy‖Γ denotes the operator
norm. Further, we assume that there exists a κ < ∞ such
that ‖Γ(x, x)‖ 6 κ for all x ∈ X . Note that in the single-
task setting (n = 1), the kernel Γ is scalar-valued and the
RKHS HΓ(X ) consists of real-valued functions. In this
case, the bounded norm assumption holds for stationary
kernels, e.g., the squared exponential (SE) kernel and the
Matérn kernel (Srinivas et al., 2010).

Examples of Multi-task Kernels It is possible to con-
struct multi-task (MT) kernels using scalar kernels k :
X ×X → R+. Evgeniou et al. (2005) consider the ker-
nel Γ(x, x′) = k(x, x′) (ωIn+(1−ω)1n/n), where In is
the n×n identity matrix, 1n is the n×n all-one matrix and
ω ∈ [0, 1] is a parameter that governs the similarity level
between components of f . The choice ω= 1 corresponds
to assuming that all tasks are unrelated and possible simi-
larity among them is not exploited. Conversely, ω = 0 is
equivalent to assuming that all tasks are identical and can
be explained by the same function. Swersky et al. (2013)
consider a more general class of kernels known as the in-
trinsic coregionalization model (ICM), which includes the
aforementioned kernel as a special case. The kernels are of
the form Γ(x, x′) = k(x, x′)B, where B is an n×n p.s.d.
matrix that encodes the inter-task structure and can model
both positive or negative correlation between different tasks.
This class of kernels is called separable since it allows to
decouple the contribution of input and output in the covari-
ance structure (Alvarez et al., 2011). We consider stationary
scalar kernels k with unit variances – to avoid redundancy in
the parameterization – since the variances can be captured
fully by B (Bonilla et al., 2008). The main advantage of
ICM is that one can use the eigen-system of B to define a
new coordinate system where Γ becomes block diagonal, re-
ducing the computational burden to a great extent. The diag-
onal MT kernel Γ(x, x′) = diag (k1(x, x′), . . . , kn(x, x′))
has the same advantage, but corresponds to treating each
task independently using different scalar kernels kj . How-
ever, in general, a MT kernel will not be diagonal, and
moreover cannot be reduced to a diagonal one by linearly
transforming the output space. For example, it is impossible
to reduce the kernel Γ(x, x′) =

∑M
j=1 kj(x, x

′)Bj , M 6= 1,
to a diagonal one, unless all the n×n matrices Bj are simul-
taneously diagonalizable (Caponnetto et al., 2008).

Performance Metric The difficulty of specifying the ex-
act scalarization is apparent when the end user is not a single
person but a certain population whose members have dif-
ferent preferences regarding different objectives. In such
settings, it is desirable to design algorithms that can per-
form well on average across the entire population of users,
i.e., for a family of scalarization functions. To this end, we
assume a (known) prior distribution Pλ with support on Λ,
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the set of preferences (weights) of all users. This intuitively
translates to a prior over the set of scalarizations (sλ)λ∈Λ.
(Note that the Dirac-delta distribution2 yields a determin-
istic scalarization.) We consider the optimization goal and
define the expected utility of a decision x for a scalarization
function sλ and probability distribution Pλ as E [sλ(f(x))].
The learner’s performance over a time budget T is measured
by the cumulative regret, defined as

RC(T )=
∑T

t=1
E
[
sλ (f(x?))−sλ (f (xt))

]
,

where x?=argmaxx∈X E
[
sλ (f(x?))

]
is the decision that

fetches the maximum expected utility. The regret measures
the amount of expected utility the learner gives up by not
knowing the function f in advance and and taking the op-
timal decision from the start. We will be concerned with
algorithms that attain sublinear regret RC(T )=o(T ) in the
number of rounds they face, since, for instance, an algorithm
that does not adapt its decisions depending on past experi-
ence can easily be seen to achieve linear (Ω(T )) regret.

3 OUR APPROACH

We follow the general template of upper confidence bound
(UCB) class of BO algorithms (Srinivas et al., 2010) suit-
ably adapted to the multi-task setting. At each round t, we
compute a multi-task acquisition function ut :X →R to act
as an UCB for the expected (w.r.t. the prior Pλ) scalarized
objective E [sλ(f(x))]. Whenever ut(x) is a valid UCB,
i.e., E [sλ(f(x))] 6 ut(x), and it converges to sλ (f(x))
“sufficiently" fast, then selecting candidates that are optimal
with respect to ut leads to low cumulative regret, i.e., the ex-
pected utility E [sλ(f(xt))] at xt∈argmaxx∈X ut(x) tends
to the optimal expected utility E [sλ(f(x?))] as t increases.
It now remains to design a principled multi-task acquisi-
tion function ut based on the scalarization sλt , and in what
follows, we shall describe two algorithms for that.

3.1 Algorithm 1: Multi-task Kernelized Bandits
(MT-KB)

Given the data {(xi, yi)}ti=1 ⊂ X ×Rn, we first aim to
find an estimate of f by solving a vector-valued regression
problem:

min
f∈HΓ(X )

∑t

i=1
‖yi−f(xi)‖22+η ‖f‖2Γ ,

where η > 0 is a regularizing parameter. Micchelli and
Pontil (2005) show that the solution of this minimiza-
tion problem can be written as µt =

∑t
i=1 Γxiαi. Here,

{αi}ti=1 ⊆Rn is the unique solution of the linear system
of equations

∑t
i=1 (Γ(xj , xi)+ηδj,i)αi = yj , 1 6 j 6 t,

where δj,i denotes the Kronecker-delta function. Now, by

2A Dirac-delta is a probability distribution that puts mass 1 on
exactly one point in the probability space.

the reproducing property, we have
µt(x)=Γ>x µt=Gt(x)>(Gt+ηInt)

−1Yt, (1)
where the kernel matrix Gt = [Γ(xi, xj)]

t
i,j=1 is a t× t

block matrix with each block being an n×n matrix (so
that Gt is an nt×nt matrix), Yt =

[
y>1 , . . . , y

>
t

]>
is an

nt×1 vector with the outputs concatenated, and Gt(x) =[
Γ(x, x1)>, . . . ,Γ(x, xt)

>]> is an nt×n matrix. Notice
that Gt(x) can be interpreted as an embedding of a point x
supported over the points x1, . . . , xt observed so far. Now,
if an arm x is sufficiently unexplored, the estimate µt(x)
will, in general, have high variance. One natural way of
specifying the uncertainty around µt(x) is the following
multi-task kernel:

Γt(x, x
′)=Γ(x, x′)−Gt(x)>(Gt+ηInt)

−1Gt(x
′) , (2)

To see this, we draw a connection to multi-task Gaussian
processes (MT-GPs) (Liu et al., 2018). Let f∼GP(0,Γ) be
a sample from a zero-mean MT-GP with covariance func-
tion Γ (i.e., E [fi(x)] = 0 and E [fi(x)fj(x

′)] = Γ(x, x′)ij
for all i, j6n and x, x′∈X ), and assume that the observa-
tion noise vectors {εt}t>1 are independent and N (0, ηIn)
distributed. Then the posterior distribution of f conditioned
on the data {(xi, yi)}ti=1 is also a MT-GP with mean µt and
covariance Γt, yielding a natural uncertainty model. Now,
inspired by the optimism-in-face-of-uncertainty principle,
we compute the acquisition function for the next round as

ut+1(x)=E [sλ (µt(x))]+L·βt ‖Γt(x, x)‖1/2 , (3)
where L is the Lipschitz constant of the scalarization func-
tion. As a result, selecting the arm xt+1 with the highest
ut+1 inherently trades off exploitation, i.e., picking points
with high expected utility E [sλ (µt(x))], with exploration,
i.e., picking points with high uncertainty ‖Γt(x, x)‖1/2. The
parameter βt balances between these two objectives, and
needs be tuned properly to guarantee low regret. (Due to
space constraint, we defer the pseudo-code of MT-KB to
Appendix A.)

Computational Complexity of MT-KB Maximizing the
acquisition function ut(x) over X is in general NP-hard
even for a single task, since it is a highly non-convex func-
tion. To simplify the exposition, in what follows, we will
assume that an efficient oracle to optimize ut(x) is provided
to us, and the per step cost comes only from computing
ut(x).3 Now, the cost of computing ut(x) is dominated
by the cost of inversion of the nt × nt kernel matrix, and
thus in principle scales as O(n3t3).4 We note that the cubic
dependency with time t is present even in the single-task
(n = 1) setting (Shahriari et al., 2015) and in this case, in
fact, MT-KB reduces to the well-known GP-UCB algorithm

3The BO literature offers many techniques to approximately
maximize the acquisition function by grid search or Branch and
Bound methods (Brochu et al., 2010). (The expectation E[sλ(·)]
can be approximated using classical sampling techniques.)

4This can be reduced to O(n3t2) using Schur’s complement
with an additional storage cost of O(n2t2).
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(Srinivas et al., 2010; Chowdhury and Gopalan, 2017).

Remark 1 The diagonal multi-task kernel Γ(x, x′) =
diag (k1(x, x′), . . . , kn(x, x′)) corresponds to treating
each task independently and the problem reduces to invert-
ing n kernel matrices yielding a per-step cost of O(nt3) for
MT-KB. This is similar to the prior works (Zuluaga et al.,
2013; Hernández-Lobato et al., 2016; Belakaria et al., 2019;
Paria et al., 2020) which models each task fi as independent
samples from scalar Gaussian processes GP(0, ki).

One common approach to improve computational scalability
in kernel methods is the Nyström approximation (Drineas
and Mahoney, 2005), which restricts the embeddings Gt(x)
and the kernel matrix Gt to be supported on a subset (dic-
tionary) Dt of selected points. However, this can lead to
sub-optimal choices and large regret if Dt is not sufficiently
accurate. This brings about a trade-off between larger and
more accurate dictionaries, or smaller and more efficient
ones. The BKB algorithm solves this for single-task BO
(Calandriello et al., 2019). We now generalize BKB for
multiple tasks to improve over the O(n3t3) cost of MT-KB.

3.2 Algorithm 2: Multi-task Budgeted Kernelized
Bandits (MT-BKB)

The central idea behind this algorithm is to evaluate an ap-
proximate acquisition function ũt(x), which remains a valid
UCB over the expected scalarized objective E [sλ (f(x))]
and at the same time is sufficiently close to ut(x) to en-
sure low regret. Given the data {(xi, yi)}ti=1, we start with
an empty set (or, as dubbed in Calandriello et al. (2019),
dictionary) Dt = ∅ and iterate over the set {x1, . . . , xt} to
updateDt as follows. For each candidate xi, we compute an
inclusion probability pt,i, and add xi to Dt with probability
pt,i. The inclusion probabilities pt,i need to be set suitably
so that the dictionary is small enough without compromis-
ing on its accuracy. Once the sampling is over, let Dt be
given by the set {xi1 , . . . , ximt}, where mt is the size of
Dt and ij6 t for each j6mt. Given the dictionary Dt, let
G̃t(x) =

[
Γ(xi1 , x)>/

√
pt,i1 , . . . ,Γ(ximt , x)>/

√
pt,imt

]>
be the nmt×n embedding of x supported over all points
in Dt and G̃t =

[
Γ(xiu , xiv )/

√
pt,iupt,iv

]mt
u,v=1

be the cor-
responding nmt×nmt kernel matrix, properly reweighted
by the inclusion probabilities. Then we compute the Nys-
tröm embeddings as Φ̃t(x) =

(
G̃

1/2
t

)+
G̃t(x), where (·)+

denotes the pseudo-inverse. We now use these embeddings
to approximate µt and Γt as

µ̃t(x)=Φ̃t(x)>(Ṽt+ηInmt)
−1
∑t

s=1
Φ̃t(xs)ys ,

Γ̃t(x, x
′)=Γ(x, x′)−Φ̃t(x)>Φ̃t(x

′)

+η ·Φ̃t(x)>(Ṽt+ηInmt)
−1Φ̃t(x

′) ,

where Ṽt =
∑t
s=1 Φ̃t(xs)Φ̃t(xs)

> is an nmt×nmt ma-
trix. Finally, similar to (3), we compute the acquisition
function for the next round as ũt+1(x) = E [sλ (µ̃t(x))]+

L · β̃t‖Γ̃t(x, x)‖1/2, with β̃t governing the exploration-
exploitation tradeoff. The inclusion probabilities for the next
round are computed as pt+1,i = min

{
q‖Γ̃t(xi, xi)‖, 1

}
,

where q>1 is a parameter trading-off the size of the dictio-
nary and accuracy of the approximation. We note here that
constructing Dt based on approximate posterior variance
sampling is well-studied for scalar kernels Alaoui and Ma-
honey (2015), and in this work, we introduce it for the first
time for MT kernels. (Pseudo-code of MT-BKB is deferred
to Appendix A.)

Computational Complexity of MT-BKB Computing
the dictionary involves a linear search over all selected
points while the inclusion probabilities are computed al-
ready at the previous round, and thus requires O(t) time
per step. The Nyström embeddings Φ̃t(x) can be computed
in O(n3m3

t ) time, since an inversion of the matrix G̃t is
required. By using these embeddings, Ṽt can now be com-
puted and inverted inO(n2m2

t t) andO(n3m3
t ) time, respec-

tively. Since, in general, mt6 t, the total per step cost of
computing the acquisition function ũt(x) is now O(n3m2

t t)
as opposed to the O(n3t3) cost of MT-KB. The computa-
tional advantage of MT-BKB is clearly visible when the
dictionary size mt is near constant at every step, i.e., when
mt=Õ(1), where Õ(·) hides constant and log factors. We
shall see in Section 4.2 that this holds, for example, for the
intrinsic coregionalization model (ICM) with the squared
exponential kernel in its scalar part.

3.3 Improved Computational Complexity of MT-KB
and MT-BKB for ICM Kernels

The computational cost of our algorithms can be greatly
reduced for ICM (separable) kernels Γ(x, x′)=k(x, x′)B.
Let {ξi}ni=1 be the eigenvalues of B with corresponding
orthonormal eigenvectors {ui}ni=1. We then have the
kernel matrix Gt =

∑n
i=1 ξiKt ⊗ uiu>i and the output

vector Yt =
∑n
i=1 Y

i
t ⊗ ui, where ⊗ denotes the Kro-

necker product, Kt = [k(xi, xj)]
t
i,j=1 is the kernel matrix

of the scalar kernel k and Y it = [y>1 ui, . . . , y
>
t ui]

>.
Plugging these into (1) and (2), and using proper-
ties of Kronecker product, we now obtain µt(x) =∑n
i=1 ξikt(x)>(ξiKt + ηIt)

−1Y it ui and ‖Γt(x, x)‖ =
maxi6n ξi

(
k(x, x)−ξikt(x)>(ξiKt+ηIt)

−1kt(x)
)
,

where kt(x) = [k(x1, x), . . . , k(xt, x)]>. We see that the
eigen-decomposition of B needs to be computed only
once at the beginning and then, in the new coordinate
system, we essentially have to solve n independent
problems. Specifically, at round t, we need to project the
vector-valued output yt to all coordinates and compute n
matrix-vector multiplications of size t. However, since the
kernel matrix Kt is rescaled by the eigenvalues ξi, we have
to perform only one t× t inversion. Hence, the per-step
time complexity of MT-KB is now O

(
n2+(n+t)t2

)
as

opposed to O(n3t3) for general MT kernels. Similarly, the
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per-step cost of MT-BKB can be substantially improved to
O
(
n2+(n+mt)mtt

)
from the O(n3m2

t t) cost in general.
Therefore, the kernels of this form allow for a near-linear
(in time t) per-step cost of MT-BKB at the price of the
eigen-decomposition of B. This is substantially better than
the O(nt3) per step-cost of existing multi-objective BO
approaches (Hernández-Lobato et al., 2016; Paria et al.,
2020). (We defer the details to Appendix A.)

Practical Considerations Similar to existing works with
scalar kernels, our algorithms too need to know the multi-
task kernel in advance. It is, however, common practice
to randomly sample a small fraction of the design space,
and optimize the kernel parameters prior to running BO
algorithms (Zuluaga et al., 2013). We also require that
the prior distribution Pλ to be known. Our algorithms are
fully amenable to changing the prior interactively, say by
incorporating interactive user feedback similar to the line
of Roijers et al. (2017). In fact, our framework allows us to
perform a joint posterior inference on the GP model and the
weight distribution. We, however, note that this is not the
goal of this work and we focus solely on developing theory
for multi-task BO.

4 THEORETICAL RESULTS

4.1 A Concentration Inequality for Vector-valued
RKHS function

We now present the first theoretical result of this work, a
concentration inequality for the estimate of the unknown
multi-objective function f , which is then used to prove the
regret bounds for our algorithms. Complete proofs of all
results presented in this section are deferred to the appendix.

Theorem 1 (Multi-task concentration) Let f ∈ HΓ(X )
and the noise vectors {εt}t>1 be σ-sub-Gaussian. Then,
for any η>0 and δ∈(0, 1], with probability at least 1− δ,
the following holds uniformly over all x∈X and t>1 :

‖f(x)−µt(x)‖26αt ‖Γt(x, x)‖1/2 , where

αt=‖f‖Γ+ σ√
η

√
2 log(1/δ) + log det(Int+η−1Gt) .

The significance of this bound can be better understood by
studying the log-determinant term, and for this, we again
draw a connection to MT-GPs. If f ∼GP(0,Γ) and εt ∼
N (0, ηIn) i.i.d., then the mutual information between f and
the outputs Yt is exactly equal to 1

2 log det(Int+η
−1Gt)),

and it is a measure for the reduction in the uncertainty or,
equivalently, the information gain about f . Note that while
we use GPs to describe the uncertainty in estimating the
unknown function f , the bound is frequentist and does not
need any Bayesian assumption about f . Similar to the
single-task setting Durand et al. (2018), the bound is proved
by deriving a new self-normalized concentration inequality

for martingales in the `2 space.5 We note here that Astudillo
and Frazier (2019) consider the much simpler setting of
noise-free outputs and their bound can be re-derived as a
special case of Theorem 1.

Remark 2 The multi-task kernel Γ can be seen as a scalar
kernel, Γ(x, x′)ij=k ((x, i), (x′, j)), i, j6n, and Gt as an
nt×nt kernel matrix of k evaluated at points (xs, i), s6 t,
i6n. In this case, one can use (Chowdhury and Gopalan,
2017, Theorem 2) to derive concentration bounds for each
task fi separately and combine them together to obtain
a result similar to Theorem 1 but with a notable change –
‖Γt(x, x)‖ being replaced by tr(Γt(x, x)). Thus, in general,
we prove a tighter concentration inequality which eventually
leads to a O(

√
n) factor saving in the final regret bound.

4.2 Regret Bound for MT-KB

Theorem 1 allows for a principled way to tune the con-
fidence radii (βt, β̃t) of our algorithms and achieve low
regret. We now present the regret bound of MT-KB, which,
to the best of our knowledge, is the first frequentist regret
guarantee for multi-task BO under a general MT kernel.

Theorem 2 (Cumulative regret of MT-KB) Let
f ∈ HΓ(X ), ‖f‖Γ 6 b and ‖Γ(x, x)‖ 6 κ for all x.
Let sλ be L-Lipschitz and {εt}t>1 be σ-sub-Gaussian.
Then, for any η > 0 and δ ∈ (0, 1], MT-KB with βt = b+

σ√
η

√
2 log(1/δ)+

∑t
s=1 log det (In+η−1Γs−1(xs, xs)),

enjoys, with probability at least 1−δ, the regret bound

RMT-KB
C (T )62L

(
b+

σ
√
η

√
2 log(1/δ)+γnT (Γ, η)

)
×
√

(1+κ/η)T
∑T

t=1
‖Γt(xt, xt)‖ ,

where γnT (Γ, η) := maxXT⊂X
1
2 log det

(
InT +η−1GT

)
denotes the maximum information gain.

Theorem 2, along with the upper bound∑T
t=1‖Γt(xt, xt)‖ 6 2ηγnT (Γ, η), yields the more

compact regret bound Õ
(
b
√
TγnT (Γ, η)+γnT (Γ, η)

√
T
)
.

We note here that the bound for single-task case (Chowd-
hury and Gopalan, 2017) can be recovered by setting n = 1.
Furthermore, since the single-task bound is shown to be
tight upto a poly-logarithmic factor (Scarlett et al., 2017),
our bound, we believe, is also tight in terms of dependence
on T . Now, we instantiate Theorem 2 for separable MT
kernels to point out the novel insights and improvements
that our analysis unearths as compared to existing work.

5Theorem 1 can even be generalized to the regime of infinite-
task learning (Kadri et al., 2016; Brault et al., 2019), where the
observations lie in a Hilbert spaceH, and thus can be of indepen-
dent interest. The only technical assumption that one will need is
that the multi-task kernel Γ(x, x) has a finite trace, which trivially
holds in the finite-task setting.
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Lemma 1 (Inter-task structure in regret bound) Let B
be an n×n p.s.d. matrix and Γ(x, x′) = k(x, x′)B. Let
‖Γ(x, x)‖ 6 κ and k(x, x)=1 for all x∈X . Then

γnT (Γ, η)6
∑

i∈[n]:ξi>0
γT (k, η/ξi) , and∑T

t=1
‖Γt(xt, xt)‖62ηmax{κ, 1}γT (k, η) ,

where ξ1, . . . , ξn are the eigenvalues of B and γT (k, α) :=
maxXT⊂X

1
2 log det

(
IT +α−1KT

)
, α>0, is the maximum

information gain associated with the scalar kernel k.

While information gain is a well understood quantity for
scalar kernels (Srinivas et al., 2010), Lemma 1 aims to char-
acterize it for multi-task kernels. In particular, we show
that information gain (and, therefore, our regret bound) for
separable MT kernels can effectively capture the structure
between different tasks by means of the spectral properties
of the task-similarity matrix B. For example, consider the
case B = ωIn+ (1−ω)1n/n, ω ∈ [0, 1], which has one
eigenvalue equal to 1 and all others equal to ω. In this case,
γnT (Γ, η)6γT (k, η)+(n−1)γT (k, η/ω). Now γT (k, η/ω)
is an increasing function in ω, and in fact, γT (k, η/ω)=0
when ω=0. Hence, a low value of ω, i.e., a high amount of
similarity between tasks, yields a low cumulative regret and
vice-versa. Moreover, for the extreme two cases of ω= 0
(all tasks identical) and ω=1 (all tasks unrelated), the regret
bounds are Õ(γT (k, η)

√
T ) and Õ(γT (k, η)

√
nT ), respec-

tively. The bounds clearly assert that similar objectives can
be learnt much faster together rather than learning them
separately. To the best of our knowledge, this intuitive but
important observation is not captured by any of the existing
theoretical analysis for multi-objective BO (Zuluaga et al.,
2013; Belakaria et al., 2019; Paria et al., 2020).

Remark 3 Theorem 2 is applicable to any general multi-
task kernel, and in the special case of the diagonal ker-
nel Γ(x, x′)=diag (k1(x, x′), . . . , kn(x, x′)), yields, along
with Lemma 1, a regret bound of Õ(maxi γT (ki, η)

√
nT ).

This bound, together with the discussion above, suggest that
whereas on the one hand MT-KB exploits similarities be-
tween tasks efficiently, its performance on the other hand
does not suffer when the tasks are unrelated. Another im-
portant point to note here is that we analyze the frequentist
(worst-case) regret, which is a stronger notion of regret com-
pared to the Bayesian one (defined as the expected cumula-
tive regret under a prior distribution of f ) as considered in
previous works (Belakaria et al., 2019; Paria et al., 2020).

Remark 4 Deshmukh et al. (2017) consider separable
multi-task kernels in the finite action contextual bandit set-
ting. While we capture their setting as a special case, their
algorithm doesn’t work when the action set is continuous.

4.3 Regret and Complexity Bound for MT-BKB

We now present regret and complexity guarantees for MT-
BKB, which, to the best of our knowledge, are first of their
kinds for multi-task BO under kernel or GP approximation.

Theorem 3 (Regret bound and complexity of MT-BKB)
For any η > 0, ε ∈ (0, 1) and δ ∈ (0, 1], let ρ = 1+ε

1−ε and
q=6ρ log(4T/δ)/ε2. Then, under the same hypothesis as
Theorem 2, if we run MT-BKB with β̃t=b

(
1+1/

√
1−ε

)
+

σ√
η

√
2 log(2/δ)+ρ

∑t
s=1 log det

(
In+η−1Γ̃s−1(xs, xs)

)
,

then, with probability at least 1− δ, the following holds:

RMT-BKB
C (T ) 6 2ρ3/2RMT-KB

C (T ), and

∀t 6 T, mt 6 6ρq(1+κ/η)
∑t

s=1
‖Γs(xs, xs)‖ .

Theorem 3 shows that MT-BKB can achieve an order-wise
similar regret scaling as MT-KB (up to a constant factor),
but only at a fraction of the computational cost. To see
this, we again consider the kernel Γ(x, x′)=k(x, x′)B. In
this case, Theorem 3 and Lemma 1 together imply that the
dictionary size mt is Õ (γt(k, η)). Now γt is itself bounded
for specific scalar kernels k, e.g., it is O

(
(ln t)d

)
for the

squared exponential kernel Srinivas et al. (2010), yielding
mt to be Õ(1). This leads to a near-linear (in time t) per-step
cost for MT-BKB compared to the cubic cost for MT-KB.
Further, it is worth noting that MT-BKB can adapt to any
desired accuracy level ε of the Nyström approximation. A
low value of ε corresponds to high desired accuracy and MT-
BKB adapts to it by inducing more and more points in the
dictionary, yielding accurate embeddings and thus, in turn,
low regret. Conversely, if one is willing to compromise on
the accuracy (given by a high value of ε), then MT-BKB can
greatly reduce the size of the dictionary, yielding a low time
complexity. The analysis follows in the footsteps of Calan-
driello et al. (2019), but is carefully generalized to consider
multi-task kernels. The regret bound is crucially achieved
by showing that Γt(x, x)/ρ � Γ̃t(x, x) � ρΓt(x, x), i.e.,
MT-BKB’s variance estimates are always almost close to
the exact ones (A�B denotes that the matrixA−B is p.s.d.).
This not only helps us avoid variance starvation which is
known to happen with classical sparse GP approximations
Wang et al. (2018), but also, allows us to set β̃t efficiently
and in a data-adaptive way.

4.4 Pareto Optimality and Random Scalarization

Our results in the previous sections show that both MT-
KB and MT-BKB enjoy sublinear upper bound over the
cumulative regret. In this section, we briefly discuss and
argue that our algorithms can be suitably modified to sample
from the whole or a part of the Pareto front.

A point x is said to be Pareto dominated by x′ if f(x)≺
f(x′), i.e., fi(x)6 fi(x

′) for all i6 n and fj(x)< fj(x
′)
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for some j6n. A point is Pareto optimal if it is not Pareto
dominated by any other points. The Pareto front of f is de-
noted by f(Xf ), whereXf is the set of Pareto optimal points
and f(A) :={f(x)|x∈A} for any set A. The goal here is
to find a set of T points spanning a particular region of the
Pareto front as specified by user preferences encoded in the
prior distribution Pλ. To this end, we consider the Bayes
regret introduced in Paria et al. (2020) as a performance
metric, which is defined as
RB(T )=E

[
maxx∈X sλ (f(x))−maxx∈XT sλ (f(x))

]
,

where XT := {x1, . . . , xT } is the set of decisions taken
by the learner. Paria et al. (2020) argue that in addition
to being Lipschitz continuous if the scalarization func-
tion is also monotonically increasing in all objectives, i.e.,
sλ(f(x))<sλ(f(x′)) whenever f(x)≺ f(x′), then a low
value of Bayes’ regret implies that f(XT ) spans the high
probability regions (w.r.t. the prior Pλ) of the Pareto front
f(Xf ). (Monotonicity holds, e.g., for linear and Chebyshev
scalarizations.) We refer the interested reader to Paria et al.
(2020) for details.

In Appendix E, we show in detail that a simple modification
to our algorithms using random scalarizations leads to low
Bayes regret. Specifically, at each round t, we randomly
sample a weight vector λt from the distribution Pλ, and
replace E[sλ(·)] in the acquisition function (3) by the ran-
dom scalarization sλt(·). We would like to stress that while
the approach of Paria et al. (2020) is agnostic to the inter-
task structure, our model perfectly captures the similarities
present between different tasks. (A numerical comparison
is presented in the appendix.)

5 EXPERIMENTS

In order to investigate the practical benefits offered by learn-
ing with multi-task kernels, we compare MT-KB and MT-
BKB with single-task BO algorithms that enjoy regret guar-
antees under RKHS smoothness assumptions. Specifically,
we consider GP-UCB (Chowdhury and Gopalan, 2017) and
its Nyström approximate version BKB (Calandriello et al.,
2019) as baselines, where each task is learnt independently
and inter-task structure is not exploited. We inflate the con-
fidence sets of GP-UCB and BKB properly so that they
generalize to multi-objective setting and remain competi-
tive. We call these baselines independent task kernelized
bandits (IT-KB) and budgeted kernelized bandits (IT-BKB),
respectively. Furthermore, whenever the objective func-
tion f is not explicitly generated from an RKHS, we com-
pare our algorithms with the MOBO algorithm of (Paria
et al., 2020), which model each task with an independent
GP. Since MOBO were originally developed to minimize the
Bayes regret (RB(T )), we modify it suitably to tackle the
cumulative regret metric (RC(T )) and remain competitive.

In all simulations, we set η = 0.1, δ = 0.1 and ε = 0.5,
and approximate E[sλ(·)] by a sample average. We fol-
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Figure 1: Comparison of average cumulative regret of MT-KB and
MT-BKB with IT-KB and IT-BKB under Chebyshev scalarization
on functions from RKHS for (a) 2 tasks and (b) 20 tasks.

low the approach of Paria et al. (2020) to sample from Pλ.
First, we sample u uniformly from [0, 1]n. Then, we set
λ= u/ ‖u‖1 for the linear scalarization and λ= α/‖α‖1,
where αi=‖u‖1 /ui, i6n, for the Chebyshev scalarization.
We set the lipschitz constant L=1 for both scalarizations.
Whenever f is not generated explicitly from an RKHS, we
set b= maxx∈X ‖f(x)‖2. We compare the algorithms on
the following MOO problems and plot mean and standard
deviation (over 10 independent trials) of the time-average
cumulative regret 1

TRC(T ).

RKHS Function We generate a vector-valued RKHS ele-
ment as f(·)=

∑
i650 Γ(·, xi)ci, where the domain X is an

0.01-net of the interval [0, 1], each xi∈X and each ci is uni-
formly sampled from [−1, 1]n. We consider the MT kernel
Γ(x, x′)=k(x, x′)B adopting a SE kernel with lengthscale
0.2 for its scalar part and set B = A>A, where the ele-
ments of the n×n matrix A is uniformly sampled from
[0, 1]. The noise vectors are generated i.i.d. N (0, σ2In)
with σ = 0.1. We compare the algorithms for n = 2 and
n=20 tasks. We observe that the average cumulative regret
decays much rapidly for MT-KB and MT-BKB compared
to their respective independent task counterparts IT-KB and
IT-BKB which are oblivious to the task similarity matrix B
(Fig. 1). This validates our theory that learning with MT
kernels is much faster than learning the tasks independently
– even more so when number of tasks are higher.

Perturbed Sine Function We study a setting similar to
Baldassarre et al. (2012), where X is an 0.01-net of the
interval [0, 1] and there are n=4 tasks. Each task is given
by a function fi(x)=sin(2πx) + 0.6f pert

i (x) corrupted by
Gaussian noise of variance 0.01. Each perturbation function
f pert
i is a weighted sum of three Gaussians of width 0.1

centered at x1 = 0.05, x2 = 0.4 and x3 = 0.7, where task-
specific weights are carefully chosen in order to yield tasks
that are related by the common function, but also have
local differences. We run IT-KB, IT-BKB and MOBO with
the SE kernel k(x, x′), and MT-KB and MT-BKB with
the MT kernel Γ(x, x′)=k(x, x′) (ωIn+(1−ω)1n/n) that
imposes a common similarity among all components. We
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Figure 2: Comparison of average cumulative regret of MT-KB,
MT-BKB, IT-KB, IT-BKB and MOBO under Chebyshev scalariza-
tion on (a) perturbed sine and (b) shifted Branin-Hoo functions.
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Figure 3: Comparison of average cumulative regret of MT-KB
and MT-BKB with IT-KB, IT-BKB and MOBO on sensor data
under (a) Chebyshev and (b) linear scalarization.

plot results for ω=0.4 (Fig. 2).

Shifted Branin-Hoo The Branin-Hoo function, defined
over a subset of R2, is a common benchmark for BO (Jones,
2001). We consider 9 shifted Branin-Hoo’s as related tasks,
where the i-th task is a translation of the function by i%
along either axis. We use the same kernels as in the previous
experiment and plot results for ω=0.5 (Fig. 2).

Sensor measurements We take temperature, light and
humidity measurements from 54 sensors collected in the
Intel Berkeley lab (Srinivas et al., 2010). Here we have 3
tasks, one for each variable, and each task fi(x) is given by
the empirical mean of 50% of the readings recorded at the
sensor placed at location x. We take remaining readings to
estimate an ICM (separable) kernel and run our algorithms
with this kernel. Specifically, for its scalar part, we fit an
SE kernel on sensor locations, and for its matrix part, we
estimate inter-task similarities as B= 1

mR
>K−1R, where

m denotes number of readings, R is an m×3 matrix of
readings for all tasks and K is the m×m gram matrix of SE
kernel. The idea is to de-correlate R with K−1 first so that
only correlation with respect to B is left. We compute the
empirical variance of sensor readings for each task and take
the largest of those as the noise variance σ2. We see that
the regret performance of MT-KB and MT-BKB are much
better than IT-KB, IT-BKB and MOBO that do not use the
inter-task structure in the form of the matrix B (Fig. 3).

6 CONCLUSIONS

To the best of our knowledge, we prove the first rigorous
regret bounds for multi-task Bayesian optimization that cap-
ture inter-task dependencies. We have demonstrated the
shortcoming of modelling each task independently without
making use of task similarities, and developed algorithms
using multi-task kernels, which perform well in practice.
We believe that our regret bounds are tight in terms of de-
pendence on the time horizon. However, whether the depen-
dence on the inter-task structure is optimal or not remains
an important open question.
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