
Online k-means Clustering

A Proofs of Results from Section 3

A.1 Proofs from Section 3.1

Let’s look at the projection of a set of centers C to the set of sites S. This projection is a multiset defined as
Π(C, S) = {arg mins∈S(‖s− µ‖2) |µ ∈ C}. Let C ′ = Π(C, S) such that C

′

i is the projected point corresponding
to Ci. We define the projection infinity distance of C onto S as the maximum distance between these pairs, i.e.
maxi∈1...|C| ‖C

′

i − Ci‖2, and denote it as ‖Ci − S‖∞.

The following lemma comes from the folklore.

Lemma 5. Let µ be the centroid (mean) of a set of points P , and µ̂ another point in space. Then `(µ̂, P) =
|P | · ‖µ− µ̂‖22 + `(µ, P).

Corollary 3. Let P be a set of points, µ the set of k optimal centers, and µ̂ k alternative centers such that
‖µ− µ̂‖∞ ≤ ε then `(µ̂, P) ≤ |P | · ε2 + `(µ, P)

We now turn to the main theorem

Theorem 5. Let S = {iδ | 0 ≤ i ≤ δ−1}d ⊂ Rd be the set of sites and let E = {C ⊂ S | |C| = k} be the set of
experts (k-centers chosen out of the sites). Then, for any 0 < α ≤ 1/4, with δ = T−α, the MWUA with the expert
set E achieves regret Õ(T 1−2α); the per round running time is O(Tαkd).

Proof. Following section (3.9) in Arora et al. (2012). The grid distance δ results with n = 1
δd

sites hence N =
(
n
k

)
experts, which is N = O(δ−kd). Denote the regret with respect to the grid experts as the grid-regret. Running a
single step in MWUA requires sampling and weight update, taking O(kdN) time and the algorithm guarantees a
grid-regret of at most 2

√
ln(N)T = 2

√
kd ln(δ−1)T .

Let Cg = Π(C?T + 1, S) be the closest grid sites to C?T + 1. Because ‖c∗T+1 − Cg‖∞ ≤
√
d

2 δ, (3) gives

`(Cg, X1:T)− `(C?T + 1, X1:T) ≤ dδ2

4 T . Hence the regret of the algorithm is at most 2
√
kd ln(δ−1)T + dδ2

4 T , so

choosing δ = T−α/2 for α ∈ (0, 1
2] yields an algorithm with Õ(T 1−α) regret and a per step time complexity of

O(Tαkd/2).

A.2 Proofs from Section 3.2

The following is a proof for Theorem 2

Proof. We will reduce the offline problem with point set P to the online problem by generating a stream X of T
uniformly sampled points from P and running A on X; A generates T intermediate cluster centers {Ct}Tt=1, and
we return the best one with respect to the entire set P .

Denote the best offline k-means solution as C?– the optimal clustering for the stream C?T + 1 may not coincide
with the optimal offline clustering C?, but it must perform at least as good as C? on X1:T . Denote r the internal
randomness of A. The regret guarantee gives

Er[EX [

T∑
t=1

`(Ct, xt)− `(C?T + 1, X)]] ≤ Tα

Using the linearity of expectation and noticing C?T + 1 doesn’t depend on r.

T∑
t=1

Er[EX [`(Ct, xt)]] ≤ Tα + EX [`(C?T + 1, X)]

≤ Tα + EX [`(C?, X)]

Using ∀C : Ext [`(C, xt)] = `(C,P)
|P |

T∑
t=1

Er[EX [
`(C,P)

|P |
]] ≤ Tα +

TOPT

|P |

Cohen-Addad et al.

Define εt s.t. Er[EX [`(C,P)]] = (1 + εt)OPT. Because C? is optimal, we know ∀t : εt ≥ 0.

T∑
t=1

(1 + εt)OPT

|P |
≤ Tα +

TOPT

|P |

Rearranging

T∑
t=1

εt ≤
|P |Tα

OPT

Denote ε∗ = mint(εt)

T · ε∗ ≤ |P |T
α

OPT

ε∗ ≤ |P |T
α−1

OPT

So provided OPT−1 = poly(|P |) one can choose T = poly(|P |) s.t. ε∗ is arbitrarily small. ε∗ is a non-negative
random variable, hence this condition suffices to produce an approximation algorithm with arbitrary ε for k-means.
Awasthi et al. (2015) shows that this is NP-hard, finishing the proof.

B Proofs from Section 4

The following is a proof for Theorem 3

Proof. We will present an algorithm that generates a stream of points on a line, for k = 2 and any value of T ,
such that the regret FTL obtains for the stream can be bounded from below by c · T where c is some constant.
Extending the result to arbitrary k can be done by contracting the bounding box where the algorithm generates
points by a factor of 2k, and adding data points outside of it in k − 2 equally spaced locations, to force the
creation of k − 2 clusters, one for each location.

The stream will consist of points in 3 locations −δ, 0, (1− δ) for δ < 1
4 . We will call Ct a (−δ)-clustering if it puts

all the points at (−δ) in one cluster and the rest in the other cluster, and a (1− δ)-clustering puts all the point
at (1 − δ) in one cluster and the rest in the other cluster. We will define a stream that has a (1 − δ) optimal
C?T + 1 clustering.

We will keep the amount of points in 0 and (−δ) equal up to a difference of 1 at any step by alternative between
the two any time we put points in one of them. There exists n∗ = f(δ) = O(δ−2) such that if there is one point
at (1− δ) and n∗ points in each of 0,−δ then the optimal clustering is the (1− δ)-clustering and for n∗ + 1 points
in each of 0,−δ the optimal clustering is the (−δ)-clustering.

Our algorithm will start with a point in (1− δ) making Ct a (−δ)-clustering. The next points will be added as
follows– as long as Ct is a (1− δ)-clustering add a point to (−δ) or 0, balancing them; if Ct has just become a
(−δ)-clustering, the next point will be (1− δ), inflicting an loss for FTL which depends only on δ hence it is O(1),
and making Ct+1 a (1− δ)-clustering again. Halt when we have T points.

When the algorithm halts a (1− δ)-clustering is either the optimal clustering or is at most O(1) below the optimal
clustering, so we will say that C?T + 1 is a (1 − δ)-clustering without loss of generality. FTL will jump from
(−δ)-clustering to (1− δ)-clustering O(T/n∗) times, and suffer a loss of at least the loss C?T + 1 incurs at that
step (because we balance (−δ) and 0, FTL moves the lower cluster away from the middle hence suffer a slightly
larger loss than C?T + 1 at the next stage). This means that the regret is larger than O(T/n∗) which is bounded
from below by a linear function in T for a fixed δ.

Online k-means Clustering

C Details and Proofs of Results from Section 5

C.1 Incremental Coreset

C.1.1 Maintaining an O(1)-Approximation for k-means

The first part of our algorithm is to maintain an incremental bicriteria (O(k log2 T), O(1))-approximate solution
S(t) for the k-means problem. Namely, S(t) contains at most O(k log2 T) centers and its loss is at most some
constant times the loss of the best k-means solution using at most k centers. Moreover, the sequence {S(t)}Tt=1

is an incremental clustering : First, it must be a monotone sequence, i.e. for any time step t, S(t−1) ⊆ S(t).
Furthermore, if a data point x of the data stream is assigned to a center point c ∈ S(t) at time t, it remains
assigned to c in any S(τ) for t ≤ τ ≤ T , i.e. until the end of the algorithm.

To achieve this, we will use the algorithm of Liberty et al. (2016) (for the k-median problem one can use Charikar
et al. (2003)), which we call Acop, and whose performance guarantees are summarized by the following proposition,
that is a restating from Liberty et al. (2016).

Theorem 6 (Liberty et al. (2016)). Let ∆ > 0 and δ > 0 be two parameters for Acop. Consider a set of T points
such that the optimal k-means cost is at most T∆ and at least δ, then with probability at least 1/2, at any time t,
the output of Acop is a set of O(k log(T∆/δ)) centers which form an O(1)-approximation to the k-means problem
defined by the t first elements.

We claim that we may assume without loss of generality that the pairwise distance between input points is at
least d/T 3 since making such an additive error of d/T 3 for each of the T input points yields an additive regret of
d/T 2 < d

√
(T), our total target bound of the regret. Thus, up to losing a constant factor in the regret bound, we

may assume that δ > 1/T 3 (since the case where all the input points are at at most k different locations can be
easily detected and so the optimum solution pays at least d2/T 6 and at most dT since the maximum distance
is
√
d. We thus have that the Liberty et al. (2016)’s theorem yields a bicriteria (O(k log T), O(1))-approximate

solution.

C.1.2 Maintaining an explicit incremental coreset for k-means

Our algorithm maintains a coreset Q based on the solutions S(t) for 1 ≤ t ≤ T , maintained by Acop. It makes use
of coresets through the coreset construction introduced by Chen (2009) whose properties are summarized in the
following theorem.

Theorem 7 (Thm. 5.5/3.6 in Chen (2009)). Given a set P of T points in a metric space and parameters
1 > εc > 0 and λ > 0, one can compute a weighted set Q such that |Q| = O(kε−2

c log T (k log T + log(1/λ)) and Q
is a (1 + εc)-coreset of P for k-means clustering, with probability 1− λ.

We now review the coreset construction of Chen. Given a bicriteria (α, β)-approximation S
(t)
0 to the k-means

problem, Chen’s algorithm works as follows. For each center c ∈ S(t)
0 , consider the cluster of c, namely the set

of points in P whose closest center in S
(t)
0 is c and proceed as follows. For each i, we define the ith ring of c

to be the set of points of cluster c that are at distance [2i, 2i+1) to c. The coreset construction simply samples
ζ ≥ βε−4

c k log T points among the points whose distance to c is in the range [2i, 2i+1) (if the number of such
points is below ζ simply take the whole set). This ensures that the total number of points in the coreset is
αkζ log ∆, where ∆ is the maximum to minimum distance ratio (which can be assume to be polynomial in n
without loss of generality).

Our algorithm uses the bicriteria approximation algorithm Acop of Section C.1.1 as follows. For each solution S(t)

stored by Acop, the algorithm uses it to compute a coreset via a refinement of Chen’s construction. Consider
first applying Chen’s construction to a solution S(t) maintained by Acop. Since Acop is incremental, whatever
decisions the algorithm has made until time t, center open and point assignment, will remain unchanged until the
end. Thus, applying Chen’s construction seems possible. The only problem is that for a given set S(t), a given
center c ∈ S(t) and a given ring of c, we don’t know in advance how many points are going to end up in the ring
and so, what should be sampling rate so as to sample Θ(ζ) elements uniformly, and define a mapping that assigns
the same number of points to each coreset point of the ring.

To circumvent this issue, our algorithm proceeds as follows. We break the set of points in the given ring of a
cluster center into epochs. The set of points which are the mth points inserted in the given ring of a cluster

Cohen-Addad et al.

center for m ∈ [(1 + ε)j , (1 + ε)j+1) forms the jth epoch of this ring. Our algorithm aims at sampling ζ points in
each epochs. It immediately follows that the coreset size is at most O(ε−1 log T) times larger than the size of the
coreset constructed by Chen’s algorithm and so of total size poly(k log Tε−1). The quality of the coreset is at
least as good as the one produced by Chen’s algorithm. Then, our algorithm works as follows: for each epoch j
consisting of less than log2 nζ points, the algorithm keeps all the points (with weight 1), mapping each point
to itself. For the other epochs, our algorithm keeps each point of epoch j with probability (ζ log n)/(ε(1 + ε)j).
Thus, an immediate application of multiplicative Chernoff bound shows that the number of points sampled during
epoch j is at most (1 + ε)ζ log n with high probability. Taking a union bound over all epochs, all centers and all
rings shows that the total size of the coreset computed is of the claimed size.

We now describe how the assignment φ is computed. The assignment provided is as follows. For a given epoch j
of a ring of a cluster with center c, each point is assigned to the earliest inserted non-full sampled point of the
epoch (or if no point of the epoch has been sampled so far), or to the center c if all sampled points of the epoch
are full. A sampled point is said to be full if the total assigned point is more than (1 + ε)2(ε(1 + ε)j)/(ζ log n).

Lemma 6. For any 0 < ε < 1/2, for any time t, the coreset at time t is an O(ε)-coreset.

Proof. We break the analysis into complete epochs and incomplete epoch. An epoch j is complete if epoch j + 1 is
non-empty.

Consider a complete epoch j of a ring of a cluster with center c. We first argue that the number of points of this
epoch assigned to c is at most ε2(1 + ε)j .

The `th point of the epoch gets assigned to c if and only if the number of sampled points at time ` is smaller than

δ` =
`(ζ log n)

(1 + ε)2(ε(1 + ε)j)

On the other hand, the expected number of sampled points when the `th point gets inserted is

µ` = ` · (ζ log n)

(ε(1 + ε)j)
.

Thus, if ` ≥ ε2(1 + ε)j , then an immediate application of multiplicative Chernoff bound yields that the number of
sampled points at time ` is at least (1− 1/ log n)µ` with high probability, and so at least δ`. Conditioning on this
even happening for all ` ≥ ε2(1 + ε)j , it follows that non of the `th inserted points, for ` ≥ ε2(1 + ε)j , is assigned
to c.

Finally, we only have to worry about the `th inserted points, for ` ≤ ε2(1 + ε)j . However, in the worst case all of
them gets assigned to c, but this is at most ε2(1 + ε)j as desired. This implies that the total number of points of
a given ring assigned to c is at most ε times the size of the ring. For this set of points, the cost increase in any
solution is by triangle inequality at most twice the cost paid in the bicriteria approximation, and so at most an ε
fraction of the cluster cost. Therefore at most an O(ε) fraction of the optimum solution. Finally, condition on

the event that the number of point sampled ζ̂ is in [(1− ε)ζ log n; (1 + ε)ζ log n] (since this event happens with
high probability, we will remove the conditioning by taking a union bound over the probability of failure at the
end). Hence, the weight of each coreset point in our construction is within a (1 + ε) factor of its weight in Chen’s
construction and so the coreset guarantees induced by Chen’s construction is preserved up to a (1 + ε) factor.

Finally turn to an incomplete epoch j: the distance between the locations the points of epoch j are mapped to in
the coreset and their original locations is at most twice their cost in the constant factor approximation. Since an
incomplete epoch is of size at most ε times the total number of points already inserted in the ring, the triangle
inequality implies that the total cost difference for the points in the incomplete error is at most 2ε times the
total cluster cost. Overall clusters of the bicriteria approximation, this error is at most O(ε) times the cost of the
optimum solution. We conclude that Ct is an ε-coreset.

C.2 Hierarchical Region Decomposition

C.2.1 Detailed Algorithm Description

Given a sequence of points in Rd, we describe an algorithm that maintains a hierarchical region decomposition
with d-dimensional hypercube regions as follows. Let εhrd > 0 be a parameter s.t. εhrd

2T 3
√
d

is a power of 2, and

Online k-means Clustering

denote δt = εhrd
2t3 and δT = εhrd

2T 3 . One can obtain a Full Grid of side length εhrd
2T 3
√
d

(diameter δT) by repeated

halving of all regions of space; Denote the region tree structure that corresponds to this process as the Full Grid
Tree. Consider a step t, R ∈ Rt and x ∈ [0, 1]d. Denote the diameter of R as ∆R, and R(x) = min

p∈R
‖p− x‖2 the

distance between R and x. Notice that if x ∈ R then R(x) = 0. We define the refinement criteria induced by x at
time t as q(R), which takes the value true if and only if the diameter of R is smaller or equal max(εhrd ·R(x)/2, δt).
At a given time t, a new point xt is received and the hierarchical region decomposition obtained at the end of
time t− 1, Ht−1, is refined using Algorithm 2, which guarantees that all the new regions satisfy the refinement
criteria induced by all the points X1:t at the corresponding insertion times.

C.2.2 Structural Properties

Proposition 2. Consider the hierarchical region decomposition {R1, . . . ,Rt} produced by the algorithm at any
time t. Consider a region R ∈ Rt−1 and let ∆R be the diameter of region R, then the following holds. Either
region R belongs to Rt or each child region of R in Rt has diameter at most 1

2∆R.

Corollary 4. Consider {Rt ∈ Rt}Tt=1 such that ∀t : Rt+1 ⊆ Rt, a sequence of nested regions of length T . We
say that such a sequence cannot be refined more than Λ times, i.e. |{t|Rt+1 6= Rt}| ≤ Λ. Proposition 2 along with
the fact that the algorithm does not refine regions with diameter smaller than δT give us that

Λ ≤ − log
(
δT /
√
d
)

= − log

(
εhrd

2T 3
√
d

)
.

The proof of the following is provided in Appendix C.

Lemma 7. For any stream, using the above algorithm, we have that the total number of regions that are added at
step t is at most (9

√
d/εhrd)

d log(T 3).

Proof. At any time step t, each point xt corresponds to a refinement criteria at time t over regions in the Full
Grid Tree, namely, q(·), s.t. there exists a frontier (i.e. the leaves of a subtree of the Full Grid Tree) that separates
the vertices from above, which have q(R) = False, and the vertices below have q(R) = True. This frontier can be
thought of as the minimal refinement requirement along each path in the Full Grid Tree that corresponds to
adding xt. In order to satisfy the requirements of all the points in the stream and have that all the regions in Rt
have q(R) = True (for the corresponding time steps t′ ≤ t) the algorithm iterates the existing frontier in the Full
Grid Tree that corresponds to the current region decomposition and extends it to match the requirements due to
X1:t−1 together with the new minimum requirements introduced by the new point. Hence the algorithm removes
a subset of regions from the Rt−1 and replaces them with a subset of the frontier that corresponds to xt. We now
turn to prove that the frontier in the Full Grid Tree of any point in space is of size (9

√
d/εhrd)d log(T 3), proving

the lemma.

Let x denote an arbitrary point in space whose frontier size we are trying to bound. The frontier is made up of
an area in space close to x that contains only regions of the minimum diameter δT , where we use T instead of t
as it lower bounds for the diameter. When the distance from x is larger than rhrd = 2δT /εhrd the dominant term
in the refinement criteria is εhrd ·R(x)/2, hence this is a hypersphere of radius rhrd centered around x.

Outside of the rhrd sphere we will have thick shells with inner radius rhrd · 2i and outer radius of rhrd · 2i+1 where
i is some nonnegative integer, where the refinement criteria requires that the maximum diameter will be δT · 2i.

Consider a bounding box for the shell that corresponds to i ≥ 0. The sides of such a hypercube are of length
2 · rhrd · 2i+1. In order to partition this hypercube to regions of diameter δT · 2i we require (8

√
d/εhrd)d regions. If

we iterate the shells from the outermost shell inward, we can assume that a sphere twice as large as shell i was
already partitioned to regions with half the resolution of shell i before iterating shell i.

Now we can account for the fact that the spheres, of radius r, are not aligned with the regions of the Full Grid
Tree for the corresponding resolution/depth. Let us extend the bounding box of shell i such that it is aligned
with the full grid in the resolution of the next shell (i+ 1). This means that the edge length of the box is enlarged
by at most two units of edge length δT · 2i/

√
d from each side, resulting in (4 + 8

√
d/εhrd)d ≤ (9

√
d/εhrd)d regions,

for sufficiently small εhrd.

There are at most log(1/rhrd) = log(2T 3) shells, and noticing that the innermost shell accounts for the core, this
gives the bound.

Cohen-Addad et al.

Corollary 5. Let R ∈ Rt be any region at step t and S = {R′ ∈ Rt+1|R′ ⊆ R} be the set of regions that refine
R in the next time step. Defining β = log maxt,R |S| which we refer to as the log max branch, we have

β = log max
t,R
|S| ≤ log

(9
√
d

εhrd

)d
log(T 3)

 ,

due to Lemma 7. Furthermore for sufficiently large T we have that β ≤ d · Λ.

We will now present a few properties related to the approximation of the k-means problem.

Lemma 8. Let εhrd > 0. Consider an online instance of the weighted k-means problem where a new point and its
weight are inserted at each time step. Let xt be the weighted point that arrives at time t, such that its weight
is bounded by t. Consider the hierarchical region decomposition with parameter εhrd produced by the algorithm
Ht = {R1, . . . ,Rt}, for some time step t.

Consider two multisets of k centers S = {c1, . . . , ck}, S′ = {c′1, . . . , c′k} such that for all i ∈ {1 . . . k}, ci and c′i are
contained in the same region of the Region Decomposition of step t. Then, the following holds.

∀1 ≤ τ < t, `(S′, xτ) ≤ (1 + εhrd)`(S, xτ) + εhrd/τ
5

Proof. Fix τ and focus on ci the cluster center in S closest to xτ , and its corresponding c′i.

consider the region R containing ci. If R also contains xτ then, since xτ has been inserted to the stream and so
R has diameter of at most δt. Because c′i is also contained in this region the weighted loss is at most τ · (εhrd2τ3)2.

Thus, we turn to the case where R does not contain xτ , hence ||xτ − ci|| > 0. Denote r = ||xτ − ci||. By definition
of the algorithm and again since xτ has already been inserted to the stream, this region must be a hypercube with
a diameter of at most ∆R ≤ max(εhrd · r/2, εhrd2τ3) since otherwise, the region is refined again when xτ is inserted.
Cauchy Schwartz gives us

||xτ − c′i||2 ≤ ||xτ − ci||2 + 2||xτ − ci|| · ||ci − c′i||+ ||ci − c′i||2 ≤ r2 + r ·∆R+ (∆R)2

If r ≤ 1/τ3 then ∆R ≤ εhrd/2τ3, hence

||xτ − c′i||2 ≤ ||xτ − ci||2 + εhrd/τ
6

Otherwise, εhrd · r/2 > εhrd
2τ3 hence ∆R ≤ εhrd · r/2

||xτ − c′i||2 ≤ ||xτ − ci||2(1 + εhrd)

Hence, accounting for the τ weight one gets

`(S′, xτ) ≤ `(S, xτ)(1 + εhrd) + εhrd/τ
5

For shorthand, we write S∗ = C∗T+1, the best solution in hindsight. The next lemma follows directly from applying
Lemma 8 to the approximate centers of S∗ induced by H, and summing over t.

Lemma 9. For the optimal set of candidate centers in hindsight S∗ and S̃t the approximate centers induced by
the Hierarchical Region Decomposition at time step t, for a weighted stream X1:t

(1− εhrd)OPT− 2εhrd ≤
T∑
t=1

`(S̃t+1, xt) ≤ (1 + εhrd)OPT + 2εhrd.

As Lemma 4 gives that that S̃t+1 6= S̃t at most k · Λ times (each of the k regions may be refined Λ times), and
the loss is bounded by d, then along with Lemma 9 we get the following Corollary 1.

Online k-means Clustering

C.3 MTMW

The following is a proof for Lemma 2

Proof. We will show a proof by induction on the subtree height h. For h = 1 we have Ṽ = {v} hence the property
holds. For h+ 1 we can denote the children of v as U and use the induction hypothesis for each child’s subtree
and get that ∑

v′∈Ṽ

M(v′) =
∑
v′∈U

M(v′) =
∑
v′∈U

M(v)/|U | =M(v)

Where the last equality used the recursive mass definition.

The following is a proof for Theorem 1

Proof. For a rooted path p = (v1 . . . vT) define the uniform weight of p at time t with respect to the stream X1:t,

as u
(t)
p =

∏t−1
τ=1(1 − η`1(vτ , xτ)), which corresponds to the weight MWUA with uniform initial weights would

associate that expert p before witnessing xt. We extend this notation for any rooted path p, as long as it has

length at least t. In our modified algorithm, the weight associated to expert p at step t is w
(t)
p = M(p)u

(t)
p .

Denote p(v) the path from the root to vertex v. Using the modified initial weight, the probability MWUA will
output the prediction that corresponds to any node vt at depth t at step t, due to choosing some path that
contains it, is given by (before normalizing)

w(t)
vt =

∑
p∈P(TT):vt∈p

w(t)
p =

∑
p∈P(TT):vt∈p

u(t)
p · M(p) = u

(t)
p(vt)

· M(vt)

The weight and mass are functions of known quantities at step t, where the equality is from the definition of u
(t)
p

and due to Lemma 2. Following the proof of Theorem (2.1) of Arora et al. (2012), we define

Φ(t) =
∑

p∈P(TT)

w(t)
p (m(t))p = `1(p, xt) (p(t))p ∝ w(t)

p

The potential, the loss vector, and the normalized probability vector, respectively. For any path p, due to the fact
Φ(1) = 1 we can modify Equation (2.2) in (Arora et al., 2012) to

Φ(T+1)/M(p) ≤ (1/M(p)) exp(−η
T∑
t=1

m(t) · p(t))

Using the weight of p after the last step as lower bound for Φ(T+1), we change Equation (2.4) to

Φ(T+1)/M(p) ≥ w(T+1)
p /M(p) = u(T+1)

p

Hence the rest of the proof is left intact, where n (the amount of experts) is replaced with (1/M(p)), so the
regret changes to √

−T ln(M(p)))

The running time is composed of sampling a path which is done by iterating the vertices of depth t and calculating
their weights, which finishes the proof.

C.4 Combining the Components

The following is a proof for Lemma 3

Proof. Denote the times where S̃t 6= S̃t−1 as t1, t2 . . . tT0
, where we consider t1 = 1 for this purpose, and T0 is the

amount of different time steps where this occurs. For ease of notation we denote tT0+1 = T + 1. Furthermore, we
use X[a:b) to denote Xa:b−1. As S̃t = S̃t−1 for any other time step we have that S̃ti+1−1 = S̃ti hence

T∑
t=1

`(S̃t, xt) =

T0∑
i=1

`(S̃ti , X[ti:ti+1)) ≤
T0∑
i=1

`(S̃ti+1−1, X[ti:ti+1))

Cohen-Addad et al.

Excluding the T0 points that resulted with a region refinement from the sum, and using the fact that the loss is
bounded by d

T∑
t=1

`(S̃t, xt) ≤
T0∑
i=1

`(S̃ti+1−1, X[ti:ti+1−1)) + dT0

≤
T0∑
i=1

(
`(S̃ti+1−1, X[1,ti+1−1))− `(S̃ti+1−1, X[1,ti))

)
+ dT0

As the loss is nonnegative

T∑
t=1

`(S̃t, xt) ≤
T0∑
i=1

(
`(S̃ti+1−1, X[1,ti+1−1))− `(S̃ti+1−1, X[1,ti−1))

)
+ dT0

Using the coreset property

T∑
t=1

`(S̃t, xt) ≤
T0∑
i=1

(1 + εc)`(S̃ti+1−1, χ(X[1,ti+1−1)))−

T0∑
i=1

(1− εc)`(S̃ti+1−1, χ(X[1,ti−1))) + dT0

As the Hierarchical Region Decomposition Hti+1−1 was constructed according to χ(X1:ti+1−2) (which contains
χ(X1:ti−2)), one can use Corollary 9 and get

T∑
t=1

`(S̃t, xt) ≤
T0∑
i=1

(1 + εc)(1 + εhrd)`(S
∗, χ(X[1,ti+1−1)))−

T0∑
i=1

(1− εc)(1− εhrd)`(S∗, χ(X[1:ti−1))) + dT0 + 2εhrd

Now the series telescope, and along with εc, εhrd < 1 rearranging gives

T∑
t=1

`(S̃t, xt) ≤
T0∑
i=1

((εc + εhrd)`(S
∗, χ(X[1,ti+1−1)))) + `(S∗, χ(X[1,T))) + 2dT0

As the loss is nonnegative we can extend the substreams until T, and using the coreset property

T∑
t=1

`(S̃t, xt) ≤((1 + εc) + 8T0(εc + εhrd))`(S
∗, X1:T) + 2dT0

finally, with Lemma 4 we have that T0 ≤ k · Λ, which finishes the proof.

The following is a proof for Lemma 4

Proof. Using Lemma 4 we can see that log(deg(vt)) can take a non zero value at most kΛ times, each is bounded
by k · β as each node can be replaced by ((9

√
d/εhrd)

d log(T 3))k children nodes in the k-tree.

The following is a proof for Theorem 4

Proof. Using the bounds for εhrd, εc we have that

Λ = log(
2T 3
√
d

εhrd
) ≤ log(

4adT 6k2

ε2
) ≤ 2 log(

akT 3
√
d

ε2
)

Online k-means Clustering

Next we will show that εhrd is of the same order as ε/kΛ

εhrd · kΛ ≤ ε2

ak2 log(T 3
√
d)
· 2k log(

ak
√
dT 3

ε2
) ≤

≤ 2ε2

ak log(T 3
√
d)

log(T 3
√
d)k log(

a

ε2
) ≤ 4(

ε√
a

)2 log(

√
a

ε
) ≤ 2ε√

a

As stated in Corollary 5, for sufficiently large T we have β < d · Λ, hence, along with Lemma 4, we have that

MWUA has a regret w.r.t. the best path of kΛ
√
dT ≤ 2k log(akT

3
√
d

ε2)
√
dT . For a ≥ 342 we get 2ε√

a
≤ ε

17 , which

makes Lemma 3 bound the ε-Approximate Regret of the best path. hence the final regret of

O

(
k log

(
akT 3

√
d

ε2

)
√
d3T

)
+ ε · OPT

Furthermore, as |QT | ≤ k2 log4(T)ε−4
c = O(k10 log8(T) log4(d)ε−8), using Lemma 7 with N = |QT | we can bound

the k-tree vertices by the amount of leaves times the depth T , and have that the runtime is

O(T (|QT |(32
√
d/εhrd)

d log(T 3))k) = T ·O(k10 log9(T) log4(d)ε−8)kO(
√
dk2 log(T)ε−2)dk

