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This document is the appendix of the paper ”Offline detection of change-point in the mean for stationary graph
signals”, co-authored by Alejandro de la Concha, Nicolas Vayatis, and Argyris Kalogeratos, which was published
in the 24th International Conference on Artificial Intelligence and Statistics (AISTATS) 2021. It contains proofs
of theorems and technical supplementary material.

1 Proof of Theorems 1 and 2

We present the proofs of Theorem 1 and Theorem 2 of the main text. For completeness, we introduce key
components such as basic concepts and results from the model selection literature.

The model selection framework offers an answer to the question: how to choose the function pen(d) and the level
of sparsity of the graph signals with respect to the Graph Fourier Transform (GFT) in order to guarantee good
performance in practice of the proposed algorithms.

Definition 5. Given a separable Hilbert space H, a generalized linear Gaussian model is defined by:

Yε(g) = 〈f, g〉H + εW (g), for all g ∈ H, (1)

where W is an isonormal process (Definition 6).

Definition 6. A Gaussian process (W (g))g∈H is said to be isonormal if it is centered with covariance given by
E[W (h)W (g)] = 〈h, g〉H for all h, g ∈ H.

An isonormal process is the natural extension of the notion of standard normal random vector to the infinite
dimensional case.

As stated in the main text, the change-point detection problem can be restated as a generalized linear Gaussian
model, where H = RT×p: the dot product 〈h, g〉H is the one inducing the Frobenius norm divided by T. Finally,
the isonormal process (W (µ̃))µ̃∈RT×p is defined by:

W (µ̃) :=
tr(ηTµ̃)

T
, (2)

where η ∈ RT×p is a matrix whose rows follow a centered multivariate Gaussian distribution with covariance
matrix Ip. It is easy to show that W (µ̃) satisfies Definition 6.

Theorem 3, which can be found as Theorem 4.18 in Massart and Picard (2003), details the model selection
procedure and provides us with an oracle-type inequality for this kind of estimators. The result applies for a
more general model selection procedure which allows us to deal with non-linear models. Both Theorem 1 and
Theorem 2 are a direct consequence of this result.

Theorem 3. Let {Sm}m∈M be some finite or countable collection of closed convex subsets of H. It is assumed that
for any m ∈ M , there exits some almost surely continuous version W of the isonormal process on Sm. Assume
furthermore the existence of some positive and non-decreasing continuous function φm defined on (0,+∞) such
that φm(x)/x is non-increasing and

2E

[
sup
g∈Sm

(
W (g)−W (h)

‖g − h‖2 + x2

)]
≤ x−2φm(x) (3)

for any positive x and any point h in Sm. Let define Dm > 0 such that

φm(ε
√
Dm) = εDm, (4)



Supplementary Material

and consider some family of weights {xm}m∈M such that

∑
m∈M

e−xm = Σ <∞. (5)

Let K be some constant with K > 1 and take

pen(m) ≥ Kε2
(√

Dm +
√

2xm

)2
. (6)

Set for all g ∈ H, γ(g) = ‖g‖2 − 2Yε(g) and consider some collection of pm−approximate penalized least squares

estimators {f̂m}m∈M i.e, for any m ∈M ,

γ
(
f̂m

)
≤ γ(g) + ρ, for all g ∈ Sm. (7)

Defining a penalized ρ−LSE as f̂ = f̂m̂, the following risk bounds holds for all f ∈ H

E
[∥∥∥f̂ − f∥∥∥2] ≤ C(K)

[
inf
m∈M

(
d(f, Sm)2 + pen(m)

)
+ ε(Σ + 1) + ρ

]
. (8)

Theorem 3 requires us to have a predefined list of estimators that will be related with a list of closed convex
subsets of H. It states that we are able to recover a penalization term pen(m) which allows us to find a model
satisfying an oracle kind inequality if we manage to control a kind of standardized version of the isonormal
process and to design a set of weights for the elements in our list of candidate models. Theorem 4 is a restricted
version of Theorem 3 which is more handy when dealing with the `1-penalization term. This version of the
theorem appears as Theorem A.1 in Massart and Meynet (2011).

Theorem 4. Let {Sm}m∈M be a countable collection of convex and compact subsets of a Hilbert space H: lets
define for any m ∈M ,

∆m = E
[

sup
h∈Sm

W (h)

]
, (9)

and consider weights {xm}m∈M such that

Σ :=
∑
m∈M

e−xm <∞.

Let K > 1 and assume that, for any m ∈M ,

pen(m) ≥ 2Kε
(

∆m + εxm +
√

∆mεxm

)
. (10)

Given a non-negative ρm,m ∈M ,define a ρm-approximate penalized least squares estimator as any f̂ ∈ Sm̂, m̂ ∈
M , such that

γ(f̂) + pen(m̂) ≤ inf
m∈M

(
inf
h∈Sm

γ(h) + pen(m) + ρm

)
. (11)

Then, there is a positive constant C(K) such that for all f ∈ H and z > 0, with probability larger than 1−Σe−z,∥∥∥f − f̂∥∥∥2 + pen(m̂) ≤ C(K)

[
inf
m∈M

(
inf
h∈Sm

‖f − h‖2 + pen(m) + ρm

)
+ (1 + z)ε2

]
. (12)

After integrating the inequality with respect to z leads to the following risk bound:

E
[∥∥∥f − f̂∥∥∥2 + pen(m̂)

]
≤ C(K)

[
inf
m∈M

(
inf
h∈Sm

‖f − h‖2 + pen(m) + ρm

)
+ (1 + Σ)ε2

]
. (13)



Finally, we will make use of the following lemma that can be found as Lemma 2.3 in Massart and Meynet (2011),
a concentration inequality for real-valued random variables.

Lemma 2. Let {Zi, i ∈ I} be a finite family of real-valued random variables. Let ψ be some convex and
continuously differentiable function on [0, b), with 0 < b ≤ ∞, such that ψ(0) = ψ′(0) = 0. Assume that
∀γ ∈ (0, b) and ∀i ∈ I, ψZi(γ) ≤ ψ(γ). Then, using any measurable set B with P[B > 0] we have:

E[supi∈I Zi1B ]

P[B]
≤ ψ∗−1

(
log

|I|
P[B]

)
.

In particular, if one assumes that for some non-negative number ε, ψ(γ) = γ2ε2

2 ∀γ ∈ (0,∞), then:

E [supi∈I Zi1B ]

P [B]
≤ ε

√
2 log

|I|
P(B)

≤ ε
√

2 log |I|+ ε

√
2 log

1

P(B)
. (14)

Proof of Theorem 1 . Let us define the set S(m,τ):

S(m,τ) :=
{
µ̃ ∈ Fτ , ‖µ̃‖[τ ] ≤ mε

}
, (15)

where ‖µ̃‖[τ ] =
∑dτ
l=1 Iτl‖µ̃τl‖1

T .

And M := N∗ × T , where T is the set of all possible segmentations of a stream of length T .

We denote by τ̂ and ˆ̃µτ̂ the estimators obtained by solving the Problem of Eq 5 of the main text and we will
define dτ̂ := |τ̂ | − 1 . Denote by m̂ the smallest integer such that ˆ̃µτ̂ belongs to Sm̂, i.e.

m̂ =

⌈
|| ˆ̃µτ̂ ||[τ ]
ε

⌉
, (16)

then,

γ(ˆ̃µτ̂ ) + λm̂ε+ pen(dτ̂ ) ≤ γ(ˆ̃µτ̂ ) + λ|| ˆ̃µτ̂ ||[τ̂ ] + λε+ pen(dτ̂ )

≤ inf
τ∈T

inf
µ̃∈S(m,τ)

[
γ(µ̃) + λ ‖µ̃‖[τ ] + pen(dτ )

]
+ λε (Definition of ˆ̃µτ̂ and τ̂ )

≤ inf
(m,τ)∈M

inf
µ̃∈S(m,τ)

[γ(µ̃) + λmε+ pen(dτ )] + λε.

In conclusion, we have the following result:

γ(ˆ̃µτ̂ ) + pen(m̂, τ̂) ≤ inf
(m,τ)∈M

[
inf

µ̂∈S(m,τ)

γ(µ̃) + pen(m, τ) + ρ

]
, (17)

where ρ = λε > 0 and pen(m, τ) = λmε+ pen(dτ ) > 0.

Ineq. 17 implies ˆ̃µτ̂ is a ρ-approximated least squares estimator. Then, the only hypothesis that remains to be
proved is Expression 10.

We start by getting an upper bound for ∆m. By the definition of the isonormal process (W (µ̃))µ̃∈RT×p , we know
it is continuous. This implies that it achieves its maximum at S(m,τ), a compact set, let call ĝ this point, then:

E[|W (ĝ)|] = E
[∣∣∣∣ tr(ζTĝ)

T

∣∣∣∣] =E

[∣∣∣∣∣
p∑
i=1

T∑
t=1

ζ
(i)
t ĝ

(i)
t

T

∣∣∣∣∣
]

≤
T∑
t=1

p∑
i=1

∣∣∣∣∣ ĝ(i)tT
∣∣∣∣∣E
[

max
{i=1,..,p}

|ζ(i)t |
]

≤
Dτ∑
l=1

Iτl
T
‖ĝτl‖1 E

[
max

{i=1,..,p}
{ζ(i)t ,−ζ(i)t }

]
≤‖ĝ‖[τ ]

√
2 log 2p (Lemma 2)

≤
√

2mε
√

log 2 + log p. (Eq. 15)

(18)
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Let us define the x(m,τ) = γm + dτL(dτ ), where γ > 0. L(dτ ) = 2 + log T
dτ

is a constant that just depends on
the cardinality of the segmentation induced by τ . Then:

Σ =

( ∑
m∈N∗

e−γm

)(∑
τ∈T

e−dτL(dτ )

)

=

(
1

eγ − 1

)( T∑
d=1

e−dL(d)|{τ ∈ T , |dτ | = d}|

)

≤
(

1

eγ − 1

)( T∑
d=1

e−dL(d)
(
T

d

))

≤
(

1

e
γ
T − 1

)( T∑
d=1

e−
dL(d)
T

(
eT

d

)d)

≤
(

1

eγ − 1

)( T∑
d=1

e−d(L(d)−1−log
T
d )

)

≤
(

1

eγ − 1

)(
1

e− 1

)
<∞.

(19)

Finally, let us fix η = (3
√

2− 2)−1 > 0, K = 3
2+η > 1, γ =

√
log p+L−

√
log p+log 2

K . It is clear γ > 0 since L > log 2.

Then by the expressions of Eq. 18 and Eq. 19, and the useful inequality 2
√
ab ≤ aη−1 + bη, we have:

2
Kε

T

[
∆(m,τ) + εx(m,τ) +

√
∆(m,τ)εx(m,τ)

]
≤ 2

Kε

T

[(
1 +

η

2

)
∆(m,τ) +

(
1 +

η−1

2

)
x(m,τ)ε

]
≤ 2

Kε2

T

[(
1 +

η

2

)(√
2m(

√
log p+ log 2)

)
+(

1 +
η−1

2

)
(γm+ dτL(dτ ))

]
≤ 3
√

2
ε2

T

[(√
log p+ log 2 +Kγ

)
m+ dτL(dτ )

]
≤ 3
√

2
ε2

T

[(√
log p+ L

)
m+ dτL(dτ )

]
≤ 3
√

2
ε2

T

(√
log p+ L

)
m+

dτ
T

(
c1 + c2 log

T

dτ

)
≤ λmε+ pen(dτ ) = pen(m, τ).

(20)

Then Eq. 10 is satisfied.

We can conclude by Eq. 17, 19 and 20 that, if the hypotheses of Theorem 4 are satisfied, then there exists a
positive constant C(K) such that µ∗ ∈ RT×p and z > 0, with probability larger that 1− Σe−z,∥∥∥ ˆ̃µτ̂ − µ∗

∥∥∥2
F

T
+ pen(m̂) + pen(dτ̂ ) ≤ C(K)

[
inf

(τ,m)∈M
inf

µ̃∈S(m,τ)

(
‖µ̃− µ∗‖2F

T
+ λmε+ pen(dτ )

)
+ λε+ (1 + z)ε2

]

≤ C(K)

[
inf
τ∈T

inf
µ̃∈Fτ

(
‖µ̃− µ∗‖2F

T
+ λ ‖µ̃‖[τ ] + pen(dτ )

)
+ 2λε+ (1 + z)ε2

]
.

(21)

Thanks to the last expression, we have that:∥∥∥ ˆ̃µτ̂ − µ∗
∥∥∥2
F

T
+ λ

∥∥∥ ˆ̃µτ̂

∥∥∥
[τ ]

+ pen(dτ̂ ) ≤ C(K)

[
inf
τ∈T

inf
µ̃∈Fτ

(
‖µ̃− µ∗‖2F

T
+ λ ‖µ̃‖[τ ] + pen(dτ )

)
+ 2λε+ (1 + z)ε2

]
.

(22)



After integrating this inequality, we get the desired result.

Proof of Theorem 2 . We will call SDm the space generated by m specific elements of the standard basis of
Rp and let us define the set S(Dm,τ) as:

S(Dm,τ) := {µ̃ ∈ Fτ |µ̃τl ∈ SDm for all l ∈ {1, ..., dτ}} , (23)

This implies that we restrict the means defined in each of the segments to be elements of SDm .

Let define M ⊂ {1, ..., p} × T and let us denote ˆ̃µLSE
τ̂LSE and τ̂LSE the solutions to the following optimization

problem:

(ˆ̃µLSE
τ̂LSE , τ̂LSE) := argmin

(τ∈T ,µ̃∈S(Dm,τ))


dτ∑
l=1

 τl∑
t=τl−1+1

p∑
i=1

(ỹ
(i)
t − µ̃

(i)
τl )2

T

+K1
Dm

T

+
dτ
T

(
K2 +K3 log

T

dτ

)} (24)

In order to obtain a oracle inequality for this estimator, we will rely on the result stated in Theorem 3. This
means that we need to verify Ineq. 3 and Ineq. 6 for a set of weights satisfying Ineq. 5. We will begin by proving
Ineq. 3. Let ĝ, f̂ ∈ S(Dm,τ), then we have:

W (ĝ)−W (ĥ) =
tr(ηTĝ)

T
− tr(ηTĥ)

T

≤
∑

i∈Suppm

T∑
t=1

ζ
(i)
t (ĝ

(i)
t − ĥ

(i)
t )

T

≤
∑

i∈Suppm

√√√√ T∑
t=1

(ζ
(i)
t )2

T

√√√√ T∑
t=1

(ĝ
(i)
t − ĥ

(i)
t )2

T
(Cauchy-Schwarz Ineq.)

≤

√√√√ ∑
i∈Suppm

T∑
t=1

(ζ
(i)
t )2

T

√√√√ ∑
i∈Suppm

T∑
t=1

(ĝ
(i)
t − ĥ

(i)
t )2

T
(Cauchy-Schwarz Ineq.)

=
∥∥∥ĝ − ĥ∥∥∥

H

√√√√ ∑
i∈Suppm

T∑
t=1

(ζ
(i)
t )2

T
.

(25)

Thanks to this inequality and the fact that ζ
(i)
t follows a standard Gaussian distribution, we derive the following

expression for each h ∈ S(Dm,τ):

2E

 sup
ĝ∈S(Dm,τ)

W (ĝ)−W (ĥ)∥∥∥ĝ − ĥ∥∥∥2
H

+ x2


 ≤ x−1E

 sup
ĝ∈S(Dm,τ)

W (ĝ)−W (ĥ)∥∥∥ĝ − ĥ∥∥∥
H



≤ x−1

E
 sup
g∈S(Dm,τ)

W (ĝ)−W (ĥ)∥∥∥ĝ − ĥ∥∥∥
H

2


1/2

(Jensen’s ineq.)

≤ x−1
E
 ∑
i∈Suppm

∑T
t=1(ζ

(i)
t )2

T

1/2

= x−1
√
Dm. ( (ζ

(i)
t ) follows a standard Gaussian distribution).

(26)

We can conclude that Ineq. 3 with φm(x) = x
√
Dm, from which is straightforward to derive Dm.

Next, we define x(m,τ) = γDm + dτL(dτ ), where γ > 0 and L(dτ ) = 2 + log T
dτ

, which is a constant that only
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depends on the cardinality of the segmentation induced by τ . Then:

Σ =
∑

(m,τ)∈M

e−x(m,τ) =

 ∑
m∈N∗,m≤p

e−γDm

(∑
τ∈T

e−dτL(dτ )

)

≤
(

1

eγ − 1

)( T∑
d=1

e−dL(d)|{τ ∈ T , |dτ | = d}|

)

≤
(

1

eγ − 1

)( T∑
d=1

e−dL(d)
(
T

d

))

≤
(

1

eγ − 1

)( T∑
d=1

e−dL(d)
(
eT

d

))d

≤
(

1

eγ − 1

)( T∑
d=1

e−d(L(d)−1−log
T
d )

)

≤
(

1

eγ − 1

)(
1

e− 1

)
<∞.

(27)

Let fix η > 0, C > 2 + 2
η , then K = Cη

2(1+η) > 1. And fix 0 < δ < 1 such that γ = 1− δ > 0. By using the useful

inequality 2
√
ab ≤ aη−1 + bη.

Kε2

T

(√
Dm +

√
2(γDm + dτL(dτ )

)2
≤ Kε2

T

(√
(1 + γ)Dm +

√
2dτL(dτ )

)2
(Triangle inequality)

≤ Kε2

T

(
(1 + γ)Dm + 2

√
2(1 + γ)DmdτL(dτ )

+2dτL(dτ ))

≤ Kε2

T
((1 + γ)Dm + 2dτL(dτ )

+(1 + γ)Dmη + 2dτL(dτ )η−1
)

≤ Kε2

T

(
(1 + γ)(1 + η)Dm + (2 + η−1)dτL(dτ )

)
≤
(
Cη(2− δ)ε2Dm

T
+ Cε2

dτ
T
L(dτ )

)
= K1

Dm

T
+
dτ
T

(
c1 + c2 log

T

dτ

)
= pen(m, τ).

(28)

As the hypotheses of Theorem 3 are satisfied, we obtain the desired result.
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