
Supplementary Materials for
Improving KernelSHAP: Practical Shapley Value

Estimation via Linear Regression

1 CALCULATING A EXACTLY

Recall the definition of A, which is a term in the solution to the Shapley value linear regression problem:

A = E[ZZT].

The entries of A are straightforward to calculate because Z is a random binary vector with a known distribution.
Recall that Z is distributed according to p(Z), which is defined as:

p(z) =

{
Q−1µSh(Z) 0 < 1T z < d

0 otherwise,

where the normalizing constant Q is given by:

Q =
∑

0<1T z<d

µSh(z)

=

d−1∑
k=1

(
d

k

)
d− 1(

d
k

)
k(d− k)

= (d− 1)
d−1∑
k=1

1

k(d− k)
.

Although Q does not have a simple closed-form solution, the expression above can be calculated numerically.
The diagonal entries Aii are then given by:

Aii = E[ZiZi] = p(Zi = 1)

=

d−1∑
k=1

p(Zi = 1|1TZ = k)p(1TZ = k)

=

d−1∑
k=1

(
d−1
k−1

)(
d
k

) ·Q−1

(
d

k

)
d− 1(

d
k

)
k(d− k)

=

∑d−1
k=1

1
d(d−k)∑d−1

k=1
1

k(d−k)

.

This is equal to 1
2 regardless of the value of d. To see this, consider the probability p(Zi = 0):

Shapley Value Estimation via Linear Regression

p(Zi = 0) = 1− p(Zi = 1)

= 1−
∑d−1
k=1

1
d(d−k)∑d−1

k=1
1

k(d−k)

=

∑d−1
k=1

1
d(d−k)∑d−1

k=1
1

k(d−k)

= p(Zi = 1)

⇒ Aii =
1

2
.

Next, consider the off-diagonal entries Aij for i 6= j:

Aij = E[ZiZj] = p(Zi = Zj = 1)

=

d−1∑
k=2

p(Zi = Zj = 1|1TZ = k)p(1TZ = k)

=

d−1∑
k=2

(
d−2
k−2

)(
d
k

) ·Q−1

(
d

k

)
d− 1(

d
k

)
k(d− k)

=
1

d(d− 1)

∑d−1
k=2

k−1
d−k∑d−1

k=1
1

k(d−k)

.

The value for off-diagonal entries Aij depends on d, unlike the diagonal entries Aii. Although it does not have
a simple closed-form expression, this value can be calculated numerically in O(d) time.

2 VARIANCE REDUCTION PROOF

We present a proof for Theorem 1, and we prove that a weaker condition than Gv � 0 holds for all cooperative
games (the diagonal elements satisfy (Gv)ii ≥ 0 for all games v).

2.1 Theorem 1 Proof

In Section 4.2, we proposed a variance reduction technique that pairs each sample zi ∼ p(Z) with its complement
1− zi when estimating b. We now provide a proof for the condition that must be satisfied for the estimator β̌n
to have lower variance than β̄n. As mentioned in the main text, the multivariate CLT asserts that

b̄n
√
n

D−→ N (b,Σb̄)

b̌n
√
n

D−→ N (b,Σb̌),

where

Σb̄ = Cov
(
Zv(Z)

)
,

Σb̌ = Cov
(1

2

(
Zv(Z) + (1− Z)v(1− Z)

))
.

We can also apply the multivariate CLT to the Shapley value estimators β̄n and β̌n. We can see that

β̄n
√
n

D−→ N (β∗,Σβ̄)

β̌n
√
n

D−→ N (β∗,Σβ̌),

where, due to their multiplicative dependence on b estimators, the covariance matrices are defined as

Σβ̄ = CΣb̄C
T

Σβ̌ = CΣb̌C
T .

Next, we examine the relationship between Σb̄ and Σb̌ because they dictate the relationship between Σβ̄ and Σβ̌ .

To simplify our notation, we introduce three jointly distributed random variables, M0, M1 and M̄ , which are
all functions of the random variable Z:

M0 = Zv(Z)− E[Z]v(0)

M1 = (1− Z)v(1− Z)− E[1− Z]v(0)

M̄ =
1

2

(
M0 +M1

)
.

To understand M̄ ’s covariance structure, we can decompose it using standard covariance properties and the fact
that p(z) = p(1− z) for all z:

Cov(M̄, M̄)ij =
1

4
Cov(M0

i +M1
i ,M

0
j +M1

j)

=
1

4

(
Cov(M0

i ,M
0
j) + Cov(M1

i , M̄
1
j) + Cov(M0

i ,M
1
j) + Cov(M1

i ,M
0
j)
)

=
1

2

(
Cov(M0

i ,M
0
j) + Cov(M0

i ,M
1
j)
)
.

We can now compare Σb̄ to Σb̌. To account for each M̄ sample requiring twice as many cooperative game
evaluations as M0, we compare the covariance Cov(b̄2n) to the covariance Cov(b̌n):

n
(

Cov(b̄2n)− Cov(b̌n)
)
ij

= −1

2
Cov(M0

i ,M
1
j).

Based on this, we define Gv as follows:

Gv = −Cov(M0
i ,M

1
j)

= −Cov
(
Zv(Z)− E[Z]v(0), (1− Z)v(1− Z)− E[1− Z]v(0)

)
= −Cov

(
Zv(Z), (1− Z)v(1− Z)

)
.

This is the matrix referenced in Theorem 1. Notice that Gv is the negated cross-covariance between M0 and M1,
which is the off-diagonal block in the joint covariance matrix for the concatenated random variable (M0,M1).
This matrix is symmetric, unlike general cross-covariance matrices, and its eigen-structure determines whether
our variance reduction approach is effective. In particular, if the condition Gv � 0 is satisfied, then we have

Shapley Value Estimation via Linear Regression

Cov(b̄2n) � Cov(b̌n),

which implies that

Cov(β̄2n) � Cov(β̌n).

Since the inverses of two ordered matrices are also ordered, we get the result:

Cov(β̄2n)−1 � Cov(β̌n)−1.

This has implications for quadratic forms involving each matrix. For any vector a ∈ Rd, we have the inequality

aTCov(β̄2n)−1a ≤ aTCov(β̌n)−1a.

The last inequality has a geometric interpretation. It shows that the confidence ellipsoid (i.e., the confidence
region, or prediction ellipsoid) for β̌n is contained by the corresponding confidence ellipsoid for β̄2n since large
values of n lead each estimator to converge to its asymptotically normal distribution. This is because the
confidence ellipsoids are defined for α ∈ (0, 1) as

Ē2n,α =
{
a ∈ Rd : (a− β∗)TCov(β̄2n)−1(a− β∗) ≤

√
χ2
d(α)

}
Ěn,α =

{
a ∈ Rd : (a− β∗)TCov(β̌n)−1(a− β∗) ≤

√
χ2
d(α)

}
,

where χ2
d(α) denotes the inverse CDF of a Chi-squared distribution with d degrees of freedom evaluated at α.

More precisely, we have Ěn,α ⊆ Ē2n,α because

(a− β∗)TCov(β̌n)−1(a− β∗) ≤
√
χ2
d(α)

⇒(a− β∗)TCov(β̄2n)−1(a− β∗) ≤
√
χ2
d(α).

This completes the proof.

2.2 A Weaker Condition

Consider the matrix Gv, which for a game v is defined as

Gv = −Cov
(
Zv(Z), (1− Z)v(1− Z)

)
.

A necessary (but not sufficient) condition for Gv � 0 is that its diagonal elements are non-negative. We can
prove that this weaker condition holds for all games. For an arbitrary game v, the diagonal value (Gv)ii is given
by:

(Gv)ii = −Cov
(
Ziv(Z), (1− Zi)v(1− Z)

)
= −E

[
Zi(1− Zi)v(Z)v(1− Z)

]
+ E

[
Ziv(Z)

]
E
[
(1− Zi)v(1− Z)

]
= E

[
Ziv(Z)

]2
= E

[
v(S)|i ∈ S

]2
≥ 0.

Geometrically, this condition means that the confidence ellipsoid Ē2n,α extends beyond the ellipsoid Ěn,α in the
axis-aligned directions. In a probabilistic sense, it means that the variance for each Shapley value estimate is
lower when using the paired sampling technique.

3 SHAPLEY EFFECTS

Shapley Effects is a model explanation method that summarizes the model f ’s sensitivity to each feature [3]. It
is based on the cooperative game

w̃(S) = Var
(
E[f(X)|XS]

)
. (1)

To show that Shapley Effects can be viewed as the expectation of a stochastic cooperative game, we reformulate
this game (Covert et al. [1]) as:

w̃(S) = Var
(
E[f(X)|XS]

)
= Var

(
f(X)

)
− EXS

[
Var(f(X)|XS)

]
= c− EXS

[
EXD\S |XS

[(
E[f(X)|XS]− f(XS , XD\S)

)2]]
= c− EX

[(
E[f(X)|XS]− f(X)

)2]
.

If we generalize this cooperative game to allow arbitrary loss functions (e.g., cross entropy loss for classification
tasks) rather than MSE, then we can ignore the constant value and re-write the game as

w̃(S) = −EX
[
`
(
E[f(X)|XS], f(X)

)]
.

Now, it is apparent that Shapley Effects is based on a cooperative game that is the expectation of a stochastic
cooperative game, or w̃(S) = EX [W̃ (S,X)], where W̃ (S,X) is defined as:

W̃ (S,X) = −`
(
E[f(X)|XS], f(X)

)
.

Unlike the stochastic cooperative game implicitly used by SAGE, the exogenous random variable for this game
is U = X.

4 STOCHASTIC COOPERATIVE GAME PROOFS

For a stochastic cooperative game V (S,U), the generalized Shapley values are given by the expression

Shapley Value Estimation via Linear Regression

φi(V) =
1

d

∑
S⊆D\{i}

(
d−1

|S|

)−1

EU
[
V (S ∪ {i}, U)−V (S,U)

]
=

1

d

∑
S⊆D\{i}

(
d−1

|S|

)−1

EU
[
V (S ∪ {i}, U)

]
− EU

[
V (S,U)

]
.

The second line above shows that the generalized Shapley values are equivalent to the Shapley values of the
game’s expectation, or φi(V̄), where V̄ (S) = EU [V (S,U)]. Based on this, we can also understand the values
φ1(V), . . . , φd(V) as the optimal coefficients for the following weighted least squares problem:

min
β0,...,βd

∑
z

p(z)
(
β0 + zTβ − EU

[
V (z, U)

])2

s.t. β0 = EU
[
V (0, U)

]
, 1Tβ = EU

[
V (1, U)

]
− EU

[
V (0, U)

]
.

Using our derivation from the main text (Section 3.3), we can write the solution as

β∗ = A−1
(
b− 1

1TA−1b− EU [V (1, U)] + EU [V (0, U)]

1TA−11

)
,

where A and b are given by the expressions

A = E[ZZT]

b = EZ
[
Z
(
EU [V (Z,U)]− EU [V (0, U)]

)]
.

Now, we consider our adaptations of KernelSHAP and unbiased KernelSHAP and examine whether these esti-
mators are consistent or unbiased. We begin with the stochastic version of KernelSHAP presented in the main
text (Section 5.3). Recall that this approach uses the original A estimator Ân and the modified b estimator b̃n,
which is defined as:

b̃n =
1

2

n∑
i=1

zi
(
V (zi, ui)− EU

[
V (0, U)

])
.

As mentioned in the main text, the strong law of large numbers lets us conclude that limn→∞ Ân = A. Thus,
we can understand the b estimator’s expectation as follows:

E
[
b̃n
]

= EZU
[
Z
(
V (Z,U)− EU

[
V (0, U)

])]
= EZ

[
Z
(
EU [V (Z,U)]− EU [V (0, U)]

)]
= b.

With this, we conclude that limn→∞ b̃n = b and that β̃n are consistent, or

lim
n→∞

β̃n = β∗.

To adapt unbiased KernelSHAP to the setting of stochastic cooperative games, we use the same technique of

pairing independent samples of Z and U . To estimate b, we use an estimator ˜̄bn defined as:

˜̄bn =
1

n

n∑
i=1

ziV (zi, ui)− E
[
Z
]
EU
[
V (0, U)

]
.

We then substitute this into a Shapley value estimator as follows:

˜̄βn = A−1
(

˜̄bn − 1
1TA−1˜̄bn − v(1) + v(0)

1TA−11

)
. (2)

This is consistent and unbiased because of the linear dependence on ˜̄bn and the fact that ˜̄bn is unbiased:

E
[˜̄bn] = EZU

[
ZV (Z,U)− E

[
Z
]
EU
[
V (0, U)

]]
= EZ

[
Z
(
EU [V (Z,U)]− EU [V (0, U)]

)]
= b.

With this, we conclude that E[˜̄βn] = β∗ and limn→∞
˜̄βn = β∗.

5 EXPERIMENT DETAILS

Here, we provide further details about experiments described in the main body of text.

5.1 Datasets and Hyperparameters

For all three explanation methods considered in our experiments – SHAP [2], SAGE [1] and Shapley Effects [3]
– we handled removed features by marginalizing them out according to their joint marginal distribution. This
is the default behavior for SHAP, but it is an approximation of what is required by SAGE and Shapley Effects.
However, this choice should not affect the outcome of our experiments, which focus on the convergence properties
of our Shapley value estimators (and not the underlying cooperative games).

Both SAGE and Shapley Effects require a loss function (Section 3). We used the cross entropy loss for SAGE
and the soft cross entropy loss for Shapley Effects.

For the breast cancer (BRCA) subtype classification dataset, we selected 100 out of 17,814 genes to avoid
overfitting on the relatively small dataset size (only 510 patients). These genes were selected at random: we
tried ten random seeds and selected the subset that achieved the best performance to ensure that several relevant
BRCA genes were included. A small portion of missing expression values were imputed with their mean. The
data was centered and normalized prior to fitting a `1 regularized logistic regression model; the regularization
parameter was chosen using a validation set.

5.2 SHAP Run-time Comparison

To compare the run-time of various SHAP value estimators, we sought to compare the ratio of the mean number
of samples required by each method. For a single example x whose SHAP values are represented by β∗, the
mean squared estimation error can be decomposed into the variance and bias as follows:

E
[
||β̂n − β∗||2

]
= E

[
||β̂n − E[β̂n]||2

]
+
∣∣∣∣E[β̂n]− β∗

∣∣∣∣2.
Since we found that the error is dominated by variance rather than bias (Section 4.1), we can make the following
approximation to relate the error to the trace of the covariance matrix:

Shapley Value Estimation via Linear Regression

E
[
||β̂n − β∗||2

]
= E

[
||β̂n − E[β̂n]||2

]
+
∣∣∣∣E[β̂n]− β∗

∣∣∣∣2
≈ E

[
||β̂n − E[β̂n]||2

]
= Tr

(
Cov(β̂n)

)
. (3)

If we define convergence based on the mean estimation error falling below a threshold value t, then the convergence
condition is

E
[
||β̂n − β∗||2

]
≤ t.

Using our approximation (Eq. 3), we can see that this condition is approximately equivalent to

E
[
||β̂n − β∗||2

]
≈ Tr

(
Cov(β̂n)

)
≈

Tr(Σβ̂)

n
≤ t.

For a given threshold t, the mean number of samples required to explain individual predictions is therefore based
on the mean trace of the covariance matrix Σβ̂ (or the analogous covariance matrix for a different estimator). To
compare two methods, we simply calculate the ratio of the mean trace of the covariance matrices. These ratios
are reported in Table 1, where each covariance matrix is calculated empirically across 100 runs with n = 2048
samples.

6 CONVERGENCE EXPERIMENTS

In Section 4.1, we empirically compared the bias and variance for the original and unbiased versions of Ker-
nelSHAP using a single census income prediction. The results (Figure 1) showed that both versions’ estimation
errors were dominated by variance rather than bias, and that the original version had significantly lower variance.
To verify that this result is not an anomaly, we replicated it on multiple examples and across several datasets.

First, we examined several individual predictions for the census income, German credit and bank marketing
datasets. To highlight the effectiveness of our paired sampling approach (Section 4.2), we added these methods
as additional comparisons. Rather than decomposing the error into bias and variance as in the main text, we
simply calculated the mean squared error across 100 runs of each estimator. Figure 1 shows the error for several
census income predictions, Figure 3 for several bank marketing predictions, and Figure 5 for several credit quality
predictions. These results confirm that the original version of KernelSHAP converges significantly faster than the
unbiased version, and that the paired sampling technique is effective for both estimators. The dataset sampling
approach (original KernelSHAP) appears preferable in practice despite being more difficult to analyze because
it converges to the correct result much faster.

Second, we calculated a global measure of the bias and variance for each estimator using the same datasets
(Table 1). Given 100 examples from each dataset, we calculated the mean bias and mean variance for each
estimator empirically across 100 runs given n = 256 samples. Results show that the bias is nearly zero for all
estimators, not just the unbiased ones; they also show that the variance is often significantly larger than the
bias. However, when using the dataset sampling approach (original) in combination with the paired sampling
technique, the bias and variance are comparably low (≈ 0) after 256 samples. The only exception is the unbiased
estimator that does not use paired sampling, but this is likely due to estimation error because its bias is provably
equal to zero.

Finally, Section 4.3 also proposed assuming that the original KernelSHAP estimator’s variance reduces at a rate
of O(1

n), similar to the unbiased version (for which we proved this rate). Although this result is difficult to prove
formally, it seems to hold empirically across multiple predictions and several datasets. In Figures 2, 4 and 6,
we display the product of the estimator’s variance with the number of samples for the census, bank and credit
datasets. Results confirm that the product is roughly constant as the number of samples increases, indicating
that the variance for all four estimators (not just the unbiased ones) reduces at a rate of O(1

n).

0 1 2 3 4 5 6
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030
M

ea
n

Sq
ua

re
d

Er
ro

r
Estimation Error (Example 1)

0 1 2 3 4 5 6
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010 Estimation Error (Example 2)

0 1 2 3 4 5 6
Game Evals (x1000)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

M
ea

n
Sq

ua
re

d
Er

ro
r

Estimation Error (Example 3)

0 1 2 3 4 5 6
Game Evals (x1000)

0.000

0.001

0.002

0.003

0.004

0.005 Estimation Error (Example 4)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Original Unbiased Original (Variance Reduction) Unbiased (Variance Reduction)

Figure 1: Census income SHAP value estimation error on four predictions.

0 1000 2000 3000 4000 5000 6000
10−2

10−1

100

Va
ria

nc
e

×
Sa

m
pl

es

Variance Estimate (Example 1)

0 1000 2000 3000 4000 5000 6000

10−2

10−1

100

Variance Estimate (Example 2)

0 1000 2000 3000 4000 5000 6000
Game Evals

10−2

10−1

100

Va
ria

nc
e

×
Sa

m
pl

es

Variance Estimate (Example 3)

0 1000 2000 3000 4000 5000 6000
Game Evals

10−1

100

101 Variance Estimate (Example 4)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Original Unbiased Original (Variance Reduction) Unbiased (Variance Reduction)

Figure 2: Census income SHAP value variance estimation on four predictions.

Shapley Value Estimation via Linear Regression

0 1 2 3 4 5 6
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010
M

ea
n

Sq
ua

re
d

Er
ro

r
Estimation Error (Example 0)

0 1 2 3 4 5 6
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005 Estimation Error (Example 1)

0 1 2 3 4 5 6
Game Evals (x1000)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

M
ea

n
Sq

ua
re

d
Er

ro
r

Estimation Error (Example 2)

0 1 2 3 4 5 6
Game Evals (x1000)

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005 Estimation Error (Example 3)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Original Unbiased Original (Variance Reduction) Unbiased (Variance Reduction)

Figure 3: Bank marketing SHAP value estimation error on four predictions.

0 1000 2000 3000 4000 5000 6000

10−1

100

Va
ria

nc
e

×
Sa

m
pl

es

Variance Estimate (Example 0)

0 1000 2000 3000 4000 5000 6000
10−3

10−2

10−1

Variance Estimate (Example 1)

0 1000 2000 3000 4000 5000 6000
Game Evals

10−1

100

Va
ria

nc
e

×
Sa

m
pl

es

Variance Estimate (Example 2)

0 1000 2000 3000 4000 5000 6000
Game Evals

10−2

10−1

100 Variance Estimate (Example 3)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Original Unbiased Original (Variance Reduction) Unbiased (Variance Reduction)

Figure 4: Bank marketing SHAP value variance estimation on four predictions.

0 1 2 3 4 5 6
0.000

0.002

0.004

0.006

0.008

0.010

0.012
M

ea
n

Sq
ua

re
d

Er
ro

r
Estimation Error (Example 0)

0 1 2 3 4 5 6
0.000

0.002

0.004

0.006

0.008

0.010

0.012 Estimation Error (Example 1)

0 1 2 3 4 5 6
Game Evals (x1000)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

M
ea

n
Sq

ua
re

d
Er

ro
r

Estimation Error (Example 2)

0 1 2 3 4 5 6
Game Evals (x1000)

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150 Estimation Error (Example 3)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Original Unbiased Original (Variance Reduction) Unbiased (Variance Reduction)

Figure 5: German credit SHAP value estimation error on four predictions.

0 1000 2000 3000 4000 5000 6000

10−2

100

102

Va
ria

nc
e

×
Sa

m
pl

es

Variance Estimate (Example 0)

0 1000 2000 3000 4000 5000 6000

10−2

100

102 Variance Estimate (Example 1)

0 1000 2000 3000 4000 5000 6000
Game Evals

10−3

10−1

101

Va
ria

nc
e

×
Sa

m
pl

es

Variance Estimate (Example 2)

0 1000 2000 3000 4000 5000 6000
Game Evals

10−1

101

Variance Estimate (Example 3)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Original Unbiased Original (Variance Reduction) Unbiased (Variance Reduction)

Figure 6: German credit SHAP value variance estimation on four predictions.

Shapley Value Estimation via Linear Regression

Table 1: Global measures of bias and variance for each SHAP value estimator. Each entry is the mean bias and
mean variance calculated empirically across 100 examples (bias/variance, lower is better).

Census Income Bank Marketing German Credit

Unbiased 0.0002/0.0208 0.0001/0.0125 0.0026/0.2561
Unbiased + Paired Sampling 0.0000/0.0068 0.0000/0.0066 0.0000/0.0062
Original (KernelSHAP) 0.0000/0.0007 0.0000/0.0006 0.0000/0.0002
Original + Paired Sampling 0.0000/0.0001 0.0000/0.0001 0.0000/0.0000

7 ALGORITHMS

Here, we provide pseudocode for the estimation algorithms described in the main text. Algorithm 1 shows the
dataset sampling approach (original KernelSHAP) with our convergence detection and paired sampling tech-
niques. Algorithm 2 shows KernelSHAP’s adaptation to the setting of stochastic cooperative games (stochastic
KernelSHAP). Algorithm 3 shows the unbiased KernelSHAP estimator, and Algorithm 4 shows the adaptation
of unbiased KernelSHAP to stochastic cooperative games.

References

[1] Ian Covert, Scott Lundberg, and Su-In Lee. Understanding global feature contributions with additive impor-
tance measures. Advances in Neural Information Processing Systems, 34, 2020.

[2] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In Advances in
Neural Information Processing Systems, pages 4765–4774, 2017.

[3] Art B Owen. Sobol’ indices and Shapley value. SIAM/ASA Journal on Uncertainty Quantification, 2(1):
245–251, 2014.

Algorithm 1: Shapley value estimation with dataset sampling (KernelSHAP)

Input: Game v, convergence threshold t, intermediate samples m
// Initialize

n = 0
A = 0
b = 0

// For tracking intermediate samples

counter = 0
Atemp = 0
btemp = 0
estimates = list()

// Sampling loop

converged = False
while not converged do

// Draw next sample

Sample z ∼ p(Z)
if variance reduction then

Asample = 1
2

(
zzT + (1− z)(1− z)T

)
bsample = 1

2

(
zv(z) + (1−z)v(1−z)− v(0)

)
else

Asample = zzT

bsample = z
(
v(z)− v(0)

)
// Welford’s algorithm

n = n + 1
A += (Asample − A) / n
b += (bsample − b) / n
counter += 1
Atemp += (Asample − Atemp) / counter
btemp += (bsample − btemp) / counter

if counter == m then
// Get intermediate estimate

βm = Atemp−1
(

btemp− 11T Atemp−1btemp−v(1)+v(0)
1T Atemp−11

)
estimates.append(βm)
counter = 0
Atemp = 0
btemp = 0

// Get estimates, uncertainties

βn = A−1
(

b− 11T A−1b−v(1)+v(0)
1T A−11

)
Σβ = m · Cov(estimates) // Empirical covariance

σn =
√

diag(Σβ)/n // Element-wise square root

// Check for convergence

converged =
(

max(σn)
max(βn)−min(βn) < t

)
end
return βn, σn

Shapley Value Estimation via Linear Regression

Algorithm 2: Shapley value estimation with dataset sampling for stochastic cooperative games

Input: Game V , convergence threshold t, intermediate samples m
// Initialize

n = 0
A = 0
b = 0

// For tracking intermediate samples

counter = 0
Atemp = 0
btemp = 0
estimates = list()

// Sampling loop

converged = False
while not converged do

// Draw next sample

Sample z ∼ p(Z)
Sample u ∼ p(U)
if variance reduction then

bsample = 1
2

(
zV (z, u) + (1−z)V (1−z, u)− EU [V (0, U)]

)
Asample = 1

2

(
zzT + (1− z)(1− z)T

)
else

bsample = z
(
V (z, u)− EU [V (0, U)]

)
Asample = zzT

// Welford’s algorithm

n = n + 1
b += (bsample − b) / n
A += (Asample − A) / n
counter += 1
btemp += (bsample − btemp) / counter
Atemp += (Asample − Atemp) / counter

if counter == m then
// Get intermediate estimate

βm = Atemp−1
(

btemp− 11T Atemp−1btemp−EU [V (1,U)]+EU [V (0,U)]
1T Atemp−11

)
estimates.append(βm)
counter = 0
Atemp = 0
btemp = 0

// Get estimates, uncertainties

βn = A−1
(

b− 11T A−1b−EU [V (1,U)]+EU [V (0,U)]
1T A−11

)
Σβ = m · Cov(estimates) // Empirical covariance

σn =
√

diag(Σβ)/n // Element-wise square root

// Check for convergence

converged =
(

max(σn)
max(βn)−min(βn) < t

)
end
return βn, σn

Algorithm 3: Unbiased Shapley value estimation

Input: Game v, convergence threshold t
// Initialize

Set A (Section 3.3)
Set C (Eq. 13)
n = 0
b = 0
bSSQ = 0

// Sampling loop

converged = False
while not converged do

// Draw next sample

Sample z ∼ p(Z)
if variance reduction then

bsample = 1
2

(
zv(z) + (1−z)v(1−z)− v(0)

)
else

bsample = zv(z)− 1
2v(0)

// Welford’s algorithm

n = n + 1
diff = (bsample − b)
b += diff / n
diff2 = (bsample − b)
bSSQ += outer(diff, diff2) // Outer product

// Get estimates, uncertainties

βn = A−1
(

b− 11TA−1b−v(1)+v(0)
1TA−11

)
Σb = bSSQ / n

Σβ = CΣbC
T

σn =
√

diag(Σβ)/n // Element-wise square root

// Check for convergence

converged =
(

max(σn)
max(βn)−min(βn) < t

)
end
return βn, σn

Shapley Value Estimation via Linear Regression

Algorithm 4: Unbiased Shapley value estimation for stochastic cooperative games

Input: Game V , convergence threshold t
// Initialize

Set A (Section 3.3)
Set C (Eq. 13)
n = 0
b = 0
bSSQ = 0

// Sampling loop

converged = False
while not converged do

// Draw next sample

Sample z ∼ p(Z)
Sample u ∼ p(U)
if variance reduction then

bsample = 1
2

(
zV (z, u) + (1−z)V (1−z, u)− EU

[
V (0), U

])
else

bsample = zV (z, u)− 1
2EU [V (0, U)]

// Welford’s algorithm

n = n + 1
diff = (bsample − b)
b += diff / n
diff2 = (bsample − b)
bSSQ += outer(diff, diff2) // Outer product

// Get estimates, uncertainties

βn = A−1
(

b− 11TA−1b−EU [V (1,U)]+EU [V (0,U)]
1TA−11

)
Σb = bSSQ / n

Σβ = CΣbC
T

σn =
√

diag(Σβ)/n // Element-wise square root

// Check for convergence

converged =
(

max(σn)
max(βn)−min(βn) < t

)
end
return βn, σn

	alternative title
	VARIANCE REDUCTION PROOF
	Theorem 1 Proof
	A Weaker Condition

	SHAPLEY EFFECTS
	STOCHASTIC COOPERATIVE GAME PROOFS
	EXPERIMENT DETAILS
	Datasets and Hyperparameters
	SHAP Run-time Comparison

	CONVERGENCE EXPERIMENTS
	ALGORITHMS

