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Abstract

The Shapley value concept from cooperative
game theory has become a popular technique
for interpreting ML models, but efficiently
estimating these values remains challenging,
particularly in the model-agnostic setting.
Here, we revisit the idea of estimating Shap-
ley values via linear regression to understand
and improve upon this approach. By ana-
lyzing the original KernelSHAP alongside a
newly proposed unbiased version, we develop
techniques to detect its convergence and cal-
culate uncertainty estimates. We also find
that the original version incurs a negligible
increase in bias in exchange for significantly
lower variance, and we propose a variance re-
duction technique that further accelerates the
convergence of both estimators. Finally, we
develop a version of KernelSHAP for stochas-
tic cooperative games that yields fast new es-
timators for two global explanation methods.

1 INTRODUCTION

Shapley values are central to many machine learning
(ML) model explanation methods (e.g., SHAP, IME,
QII, Shapley Effects, Shapley Net Effects, SAGE)
[24, 25, 38, 13, 32, 23, 12]. Though developed in the co-
operative game theory context [36], recent work shows
that Shapley values provide a powerful tool for explain-
ing how models work when either individual features
[24], individual neurons in a neural network [18], or in-
dividual samples in a dataset [17] are viewed as players
in a cooperative game. They have become a go-to solu-
tion for allocating credit and quantifying contributions
due to to their appealing theoretical properties.
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The main challenge when using Shapley values is cal-
culating them efficiently. A naive calculation has com-
putational complexity that is exponential in the num-
ber of players, so numerous approaches have been pro-
posed to accelerate their calculation. Besides brute-
force methods [23], other techniques include sampling-
based approximations [38, 37, 10, 12], model-specific
approximations (e.g., TreeSHAP) [1, 25] and a linear
regression-based approximation (KernelSHAP) [24].

Here, we revisit the regression-based approach to ad-
dress several shortcomings in KernelSHAP. Recent
work has questioned whether KernelSHAP is an un-
biased estimator [29], and, unlike sampling-based esti-
mators [6, 26, 12], KernelSHAP does not provide un-
certainty estimates. Furthermore, it provides no guid-
ance on the number of samples required because its
convergence properties are not well understood.

We address each of these problems, in part by building
on a newly proposed unbiased version of the regression-
based approach. Our contributions include:

1. Deriving an unbiased version of KernelSHAP and
showing empirically that the original version in-
curs a negligible increase in bias in exchange for
significantly lower variance

2. Showing how to detect KernelSHAP’s conver-
gence, automatically determine the number of
samples required, and calculate uncertainty esti-
mates for the results

3. Proposing a variance reduction technique that
further accelerates KernelSHAP’s convergence

4. Adapting the regression-based approach to
stochastic cooperative games [9] to provide fast
new approximations for two global explanation
methods, SAGE [12] and Shapley Effects [32]

With these new insights and tools, we offer a more
practical approach to Shapley value estimation via lin-
ear regression.1

1https://github.com/iancovert/shapley-regression

https://github.com/iancovert/shapley-regression
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2 THE SHAPLEY VALUE

We now provide background information on coopera-
tive game theory and the Shapley value.

2.1 Cooperative Games

A cooperative game is a function v : 2d 7→ R that re-
turns a value for each coalition (subset) S ⊆ D, where
D = {1, . . . , d} represents a set of players. Coopera-
tive game theory has become increasingly important in
ML because many methods frame model explanation
problems in terms of cooperative games [11]. Notably,
SHAP [24], IME [38] and QII [13] define cooperative
games that represent an individual prediction’s depen-
dence on different features. For a model f and an input
x, SHAP (when using the marginal distribution [24])
analyzes the cooperative game vx, defined as

vx(S) = E[f(xS , XD\S)], (1)

where xS ≡ {xi : i ∈ S} represents a feature subset
and XS is the corresponding random variable. Two
other methods, Shapley Effects [32] and SAGE [12],
define cooperative games that represent a model’s be-
havior across the entire dataset. For example, given a
loss function ` and response variable Y , SAGE uses a
cooperative game w that represents the model’s pre-
dictive performance given a subset of features XS :

w(S) = −E
[
`
(
E[f(X) | XS ], Y

)]
. (2)

Several other techniques also frame model explanation
questions in terms of cooperative games, where a tar-
get quantity (e.g., model loss) varies as groups of play-
ers (e.g., features) are removed, and the Shapley value
summarizes each player’s contribution [11].

2.2 Shapley Values

The Shapley value [36] assumes that the grand coali-
tion D is participating and seeks to provide each player
with a fair allocation of the total profit, which is rep-
resented by v(D). Fair allocations must be based on
each player’s contribution to the profit, but a player’s
contribution is often difficult to define. Player i’s
marginal contribution to the coalition S is the differ-
ence v(S ∪ {i})− v(S), but the marginal contribution
typically depends on which players S are already par-
ticipating.

The Shapley value resolves this problem by deriving
a unique value based on a set of fairness axioms; see
[36, 30] for further detail. It can be understood as a

player’s average marginal contribution across all pos-
sible player orderings, and each player’s Shapley value
φ1(v), . . . , φd(v) for a game v is given by:

φi(v) =
1

d

∑
S⊆D\{i}

(
d− 1

|S|

)−1(
v(S∪{i})−v(S)

)
. (3)

Many ML model explanation methods can be under-
stood in terms of ideas from cooperative game theory
[11], but the Shapley value is especially popular and is
also widely used in other fields [2, 33, 39].

2.3 Weighted Least Squares Characterization

While we can characterize the Shapley value in many
ways, the perspective most relevant to our work is
viewing it as a solution to a weighted least squares
problem. Many works have considered fitting simple
models to cooperative games [8, 20, 19, 14, 15, 28],
particularly additive models of the form

u(S) = β0 +
∑
i∈S

βi.

Such additive models are known as inessential games,
and although a game v may not be inessential, an
inessential approximation can help summarize each
player’s average contribution. Several works [8, 20, 14]
model games by solving a weighted least squares prob-
lem using a weighting function µ:

min
β0,...,βd

∑
S⊆D

µ(S)
(
u(S)− v(S)

)2

.

Perhaps surprisingly, different weighting kernels µ
lead to recognizable optimal regression coefficients
(β∗1 , . . . β

∗
d) [11]. In particular, a carefully chosen

weighting kernel yields optimal regression coefficients
equal to the Shapley values [8, 24]. The Shapley kernel
µSh is given by

µSh(S) =
d− 1(

d
|S|
)
|S|(d− |S|)

,

where the values µSh({}) = µSh(D) = ∞ effectively
enforce constraints β0 = v({}) for the intercept and∑
i∈D βi = v(D)−v({}) for the sum of the coefficients.

Lundberg and Lee [24] used this Shapley value inter-
pretation when developing an approach to approxi-
mate SHAP values via linear regression.
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3 LINEAR REGRESSION
APPROXIMATIONS

As noted, Shapley values are difficult to calculate be-
cause they require examining each player’s marginal
contribution to every possible subset (Eq. 3). This
leads to run-times that are exponential in the num-
ber of players, so efficient approximations are of great
practical importance [38, 37, 24, 10, 1, 25, 12]. Here,
we revisit the regression-based approach presented
by Lundberg and Lee (KernelSHAP) [24] and then
present an unbiased version of this approach whose
properties are simpler to analyze.

3.1 Optimization Objective

The least squares characterization of the Shapley
value suggests that we can calculate the values
φ1(v), . . . , φd(v) by solving the optimization problem

min
β0,...,βd

∑
0<|S|<d

µSh(S)
(
β0 +

∑
i∈S

βi − v(S)
)2

s.t. β0 = v({}), β0 +

d∑
i=1

βi = v(D). (4)

Notation. We introduce new notation to make the
problem easier to solve. First, we denote the non-
intercept coefficients as β = (β1, . . . , βd) ∈ Rd. Next,
we denote each subset S ⊆ D using the corresponding
binary vector z ∈ {0, 1}d, and with tolerable abuse of
notation we write v(z) ≡ v(S) and µSh(z) ≡ µSh(S)
for S = {i : zi = 1}. Lastly, we denote a distribution
over Z using p(z), where we define p(z) ∝ µSh(z) when
0 < 1T z < d and p(z) = 0 otherwise. With this, we
can rewrite the optimization problem as

min
β0,...,βd

∑
z

p(z)
(
v(0) + zTβ − v(z)

)2

s.t. 1Tβ = v(1)− v(0). (5)

3.2 Dataset Sampling

Solving the problem in Eq. 5 requires evaluating the
cooperative game v with all 2d coalitions. Evaluat-
ing v(0) and v(1) is sufficient to ensure that the con-
straints are satisfied, but all values v(z) for z such
that 0 < 1T z < d are required to fit the model exactly.
KernelSHAP manages this challenge by subsampling a
dataset and optimizing an approximate objective. We
refer to this approach as dataset sampling. Using n
independent samples zi ∼ p(Z) and their values v(zi),
KernelSHAP solves the following problem:

min
β0,...,βd

1

n

n∑
i=1

(
v(0) + zTi β − v(zi)

)2

s.t. 1Tβ = v(1)− v(0). (6)

The dataset sampling approach, also applied by LIME
[35], offers the flexibility to use only enough samples to
accurately approximate the objective. Given a set of
samples (z1, . . . , zn), solving this problem is straight-
forward. The Lagrangian with multiplier ν ∈ R is
given by:

L̂(β, ν) = βT
( 1

n

n∑
i=1

ziz
T
i

)
β

− 2βT
( 1

n

n∑
i=1

zi
(
v(zi)− v(0)

))
+

1

n

n∑
i=1

(
v(zi)− v(0)

)2
+ 2ν

(
1Tβ − v(1) + v(0)

)
.

If we introduce the shorthand notation

Ân =
1

n

n∑
i=1

ziz
T
i and b̂n =

1

n

n∑
i=1

zi

(
v(zi)− v(0)

)
,

then we can use the problem’s KKT conditions [5] to
derive the following solution:

β̂n = Â−1
n

(
b̂n − 1

1T Â−1
n b̂n − v(1) + v(0)

1T Â−1
n 1

)
. (7)

This method is known as KernelSHAP [24], and the
implementation in the SHAP repository2 also allows
for regularization terms in the approximate objective
(Eq. 6), such as the `1 penalty [40]. While this ap-
proach is intuitive and simple to implement, the esti-
mator β̂n is surprisingly difficult to characterize. As
we show in Section 4, it is unclear whether it is unbi-
ased, and understanding its variance and rate of con-
vergence is not straightforward. Therefore, we derive
an alternative approach that is simpler to analyze.

3.3 An Exact Estimator

Consider the solution to the problem that uses all 2d

player coalitions (Eq. 5). Rather than finding an ex-
act solution to an approximate problem (Section 3.2),

2http://github.com/slundberg/shap

http://github.com/slundberg/shap
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we now derive an approximate solution to the exact
problem. The full problem’s Lagrangian is given by

L(β, ν) = βTE[ZZT ]β

− 2βTE
[
Z
(
v(Z)− v(0)

)]
+ E

[(
v(Z)− v(0)

)2]
+ 2ν

(
1Tβ − v(1) + v(0)

)
,

where we now consider Z to be a random variable dis-
tributed according to p(Z). Using the shorthand no-
tation

A = E[ZZT ] and b = E
[
Z
(
v(Z)− v(0)

)]
,

we can write the solution to the exact problem as:

β∗ = A−1
(
b− 1

1TA−1b− v(1) + v(0)

1TA−11

)
. (8)

Due to our setup of the optimization problem, we have
the property that β∗i = φi(v). Unfortunately, we can-
not evaluate this expression in practice without eval-
uating v for all 2d coalitions S ⊆ D.

However, knowledge of p(Z) means that A ∈ Rd×d can
be calculated exactly and efficiently. To see this, note
that (ZZT )ij = ZiZj = 1(Zi = Zj = 1). Therefore,
to calculate A, we need to estimate only p(Zi = 1) for
diagonal valuesAii and p(Zi = Zj = 1) for off-diagonal
values Aij . See Appendix A for their derivations.

Since b cannot be calculated exactly and efficiently due
to its dependence on v, this suggests that we should
use A’s exact form and approximate β∗ by estimating
(only) b. We propose the following estimator for b:

b̄n =
1

n

n∑
i=1

ziv(zi)− E[Z]v(0).

Using this, we arrive at an alternative to the original
KernelSHAP estimator, which we refer to as unbiased
KernelSHAP :

β̄n = A−1
(
b̄n − 1

1TA−1b̄n − v(1) + v(0)

1TA−11

)
. (9)

In the next section, we compare these two approaches
both theoretically and empirically.

4 ESTIMATOR PROPERTIES

We now analyze the consistency, bias and variance
properties of the Shapley value estimators, and we
consider how to detect, forecast, and accelerate their
convergence.

4.1 Consistency, Bias and Variance

A consistent estimator is one that converges to the cor-
rect Shapley values β∗ given a sufficiently large number
of samples. If the game v has bounded value, then the
strong law of large numbers implies that

lim
n→∞

Ân = A and lim
n→∞

b̂n = lim
n→∞

b̄n = b,

where the convergence is almost sure. From this, we
see that both estimators are consistent:

lim
n→∞

β̂n = lim
n→∞

β̄n = β∗.

Next, an unbiased estimator is one whose expectation
is equal to the correct Shapley values β∗. This is diffi-
cult to verify for the KernelSHAP estimator β̂n due to
the interaction between Ân and b̂n (see Eq. 7). Both

Ân and b̂n are unbiased, but terms such as E[Â−1
n b̂n]

and E[Â−1
n 11T Â−1

n b̂n/(1
T Â−1

n 1)] are difficult to char-
acterize. To make any claims about KernelSHAP’s
bias, we rely instead on empirical observations.

In contrast, it is easy to see that the alternative esti-
mator β̄n is unbiased. Because of its linear dependence
on b̄n and the fact that E[b̄n] = b, we can see that

E[β̄n] = β∗.

We therefore conclude that the alternative estimator
β̄n is both consistent and unbiased, whereas the orig-
inal KernelSHAP (β̂n) is only provably consistent. It
is for this reason that we refer to β̄n as unbiased Ker-
nelSHAP.

Regarding the estimators’ variance, unbiased Ker-
nelSHAP is once again simpler to characterize. The
values β̄n are a function of b̄n, and the multivariate
central limit theorem (CLT) [41] asserts that b̄n con-
verges in distribution to a multivariate Gaussian, or

b̄n
√
n

D−→ N (b,Σb̄), (10)

where Σb̄ = Cov
(
Zv(Z)

)
. This implies that for the

estimator β̄n, we have the convergence property

β̄n
√
n

D−→ N (β∗,Σβ̄), (11)
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where, due to its linear dependence on b̄n (see Eq. 9),
we have the covariance Σβ̄ given by

Σβ̄ = CΣb̄C
T (12)

C = A−1 − A−111TA−1

1TA−11
. (13)

This allows us to reason about unbiased KernelSHAP’s
asymptotic distribution. In particular, we remark that
β̄n has variance that reduces at a rate of O( 1

n ).

In comparison, the original KernelSHAP estimator β̂n
is difficult to analyze due to the interaction between
the Ân and b̂n terms. We can apply the CLT to either
term individually, but reasoning about β̂n’s distribu-
tion or variance remains challenging.

To facilitate our analysis of KernelSHAP, we present
a simple experiment to compare the two estimators.
We approximated the SHAP values for an individual
prediction in the census income dataset [22] and em-
pirically calculated the mean squared error relative to
the true SHAP values3 across 250 runs. We then de-
composed the error into bias and variance terms as
follows:

E
[
||β̂n − β∗||2

]︸ ︷︷ ︸
Error

= E
[
||β̂n − E[β̂n]||2

]︸ ︷︷ ︸
Variance

+
∣∣∣∣E[β̂n]− β∗

∣∣∣∣2.︸ ︷︷ ︸
Bias

Figure 1 shows that the error for both estimators is
dominated by variance rather than bias.4 It also shows
that KernelSHAP incurs virtually no bias in exchange
for significantly lower variance. In Appendix F, we
provide global measures of the bias and variance to
confirm these observations across multiple examples
and two other datasets. This suggests that although
KernelSHAP is more difficult to analyze theoretically,
it should be used in practice because its bias is negli-
gible and it converges faster.

4.2 Variance Reduction via Paired Sampling

Having analyzed each estimator’s properties, we now
consider whether their convergence can be accelerated.
We propose a simple variance reduction technique that
leads to significantly faster convergence in practice.

When sampling n subsets according to the distribution
zi ∼ p(Z), we suggest a paired sampling strategy where

3The true SHAP values use a sufficient number of sam-
ples to ensure convergence (see Section 4.3).

4The unbiased approach appears to have higher bias
due to estimation error, but its bias is provably zero.
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Figure 1: SHAP error decomposition for the original
and unbiased KernelSHAP estimators. The bias and
variance are calculated empirically across 250 runs.

each sample zi is paired with its complement5 1− zi.
To show why this approach accelerates convergence,
we focus on unbiased KernelSHAP, which is easier to
analyze theoretically.

When estimating b for unbiased KernelSHAP (β̄n),
consider using the following modified estimator that
combines zi with 1− zi:

b̌n =
1

2n

n∑
i=1

(
ziv(zi) + (1−zi)v(1−zi)− v(0)

)
. (14)

Substituting this into unbiased KernelSHAP (Eq. 9)
yields a new estimator β̌n that preserves the properties
of being both consistent and unbiased:

β̌n = A−1
(
b̌n − 1

1TA−1b̌n − v(1) + v(0)

1TA−11

)
. (15)

For games v that satisfy a specific condition, we can
guarantee that this sampling approach leads to β̌n hav-
ing lower variance than β̄n, even when we account for
b̌n requiring twice as many cooperative game evalua-
tions as b̄n (see proof in Appendix B).

Theorem 1. The difference between the covariance
matrices for the estimators β̄2n and β̌n is given by

Cov(β̄2n)− Cov(β̌n) =
1

2n
CGvC

T ,

where Gv is a property of the game v, defined as

Gv = −Cov
(
Zv(Z), (1− Z)v(1− Z)

)
.

For sufficiently large n, Gv � 0 guarantees that the
Gaussian confidence ellipsoid Ē2n,α for β̄2n contains
the corresponding confidence ellipsoid Ěn,α for β̌n, or
Ěn,α ⊆ Ē2n,α, at any confidence level α ∈ (0, 1).

5We call 1− z the complement because it is the binary
vector for D \ S, where S corresponds to z.
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Figure 2: Gaussian 95% confidence ellipsoids for two
SHAP values in a census income prediction (from 250
runs). The estimators use an equal number of samples.

Theorem 1 shows that β̌n is a more precise estima-
tor than β̄2n when the condition Gv � 0 is satisfied
(i.e., Gv is positive semi-definite). This may not hold
in the general case, but in Appendix B we show that
a weaker condition holds for all games: the diagonal
values of Gv satisfy (Gv)ii ≥ 0 for any game v. Ge-
ometrically, this weaker condition means that Ē2n,α

extends beyond Ěn,α in the axis-aligned directions.

Figure 2 illustrates the result of Theorem 1 by show-
ing empirical 95% confidence ellipsoids for two SHAP
values. Although a comparable condition is difficult
to derive for the original KernelSHAP estimator (β̂n),
we find that the paired sampling approach yields a
similar reduction in variance. Our experiments pro-
vide further evidence that this approach accelerates
convergence for both estimators (Section 6).

4.3 Convergence Detection and Forecasting

One of KernelSHAP’s practical shortcomings is its lack
of guidance on the number of samples required to ob-
tain accurate estimates. We address this problem by
developing an approach for convergence detection and
forecasting.

Previously, we showed that unbiased KernelSHAP
(β̄n) has variance that reduces at a rate O( 1

n ) (Eq. 10).
Furthermore, its variance is simple to estimate in prac-
tice: we require only an empirical estimate Σ̂b̄ of Σb̄
(defined above), which we can calculate using an online
algorithm, such as Welford’s [42].

We also showed that the original KernelSHAP (β̂n)
is difficult to characterize, but its variance is empiri-
cally lower than the unbiased version. Understanding
its variance is useful for convergence detection, so we
propose an approach for approximating it. Based on
the results in Figure 1, we may hypothesize that Ker-
nelSHAP’s variance reduces at the same rate of O( 1

n );
in Appendix F, we examine this by plotting the prod-

uct of the variance and the number of samples over the
course of estimation. We find that the product is con-
stant as the sample number increases, which suggests
that the O( 1

n ) rate holds in practice. This property
is difficult to prove formally, but it can be used for
simple variance approximation.

When running KernelSHAP, we suggest estimating the
variance by selecting an intermediate value m such
that m << n and calculating multiple independent
estimates β̂m while accumulating samples for β̂n. For
any n, we can then approximate Cov(β̂n) as

Cov(β̂n) ≈ m

n
Cov(β̂m),

where Cov(β̂m) is estimated empirically using the mul-

tiple independent estimates β̂m. This online approach
has a negligible impact on the algorithm’s run-time,
and the covariance estimate can be used to provide
confidence intervals for the final results.

Whether we use the original or unbiased version of
KernelSHAP, the estimator’s covariance at a given
value of n lets us both detect and forecast convergence.
For detection, we propose stopping at the current value
n when the largest standard deviation is a sufficiently
small portion t (e.g., t = 0.01) of the gap between
the largest and smallest Shapley value estimates. For
unbiased KernelSHAP, this criterion is equivalent to:

max
i

√
1

n
(Σ̂β̄)ii < t

(
max
i

(β̄n)i −min
i

(β̄n)i

)
.

To forecast the number of samples required to reach
convergence, we again invoke the property that esti-
mates have variance that reduces at a rate of O( 1

n ).

Given a value t and estimates β̄n and Σ̂β̄ , the approx-

imate number of samples N̂ required is:

N̂ =
1

t2

( maxi

√
(Σ̂β̄)ii

maxi (β̄n)i −mini (β̄n)i

)2

.

This allows us to forecast the time until convergence
at any point during the algorithm. The forecast is
expected to become more accurate as the estimated
terms become more precise.

Our approach is theoretically grounded for unbiased
KernelSHAP, and the approximate approach for the
standard version of KernelSHAP relies only on the as-
sumption that Cov(β̂n) reduces at a rate of O( 1

n ). Ap-
pendix G shows algorithms for both approaches, which
illustrate both variance reduction and convergence de-
tection techniques.
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Figure 3: Shapley value-based explanations with 95% uncertainty estimates. Left: SHAP values for a single
prediction with the census income dataset. Right: SAGE values for the German credit dataset.

5 STOCHASTIC COOPERATIVE
GAMES

We have thus far focused on developing a regression-
based approach to estimate Shapley values for any co-
operative game. We now discuss how to adapt this
approach to stochastic cooperative games, which leads
to fast estimators for two global explanation methods.

5.1 Stochastic Cooperative Games

Stochastic cooperative games return a random value
for each coalition of participating players S ⊆ D. Such
games are represented by a function V that maps coali-
tions to a distribution of possible outcomes, so that
V (S) is a random variable [9, 7].

To aid our presentation, we assume that the uncer-
tainty in the game can be represented by an exogenous
random variable U . The game can then be denoted by
V (S,U), where V (·, U) is a deterministic function of
S for any fixed value of the variable U .

Stochastic cooperative games provide a useful tool for
understanding two global explanation methods, SAGE
[12] and Shapley Effects [32]. To see why, assume an
exogenous variable U = (X,Y ) that represents a ran-
dom input-label pair, and consider the following game:

W (S,X, Y ) = −`
(
E
[
f(X)|XS

]
, Y
)
. (16)

The game W evaluates the (negated) loss with respect
to the label Y given a prediction that depends only on
the features XS . The cooperative game used by SAGE
can be understood as the expectation of this game, or
w(S) = EXY

[
W (S,X, Y )

]
(see Eq. 2). Shapley Effects

is based on the expectation of a similar game, where
the loss is evaluated with respect to the full model pre-
diction f(X) (see Appendix C). As we show next, an
approximation approach tailored to this setting yields

significantly faster estimators for these methods.

5.2 Generalizing the Shapley Value

It is natural to assign values to players in stochastic
cooperative games like we do for deterministic games.
We propose a simple generalization of the Shapley
value for games V (S,U) that averages a player’s
marginal contributions over both (i) player orderings
and (ii) values of the exogenous variable U :

φi(V ) =
1

d

∑
S⊆D\{i}

(
d−1

|S|

)−1

EU
[
V (S∪{i}, U)−V (S,U)

]
.

Due to the linearity property of Shapley values [36, 30],
the following sets of values are equivalent:

1. The Shapley values of the game’s expectation
v̄(S) = EU [V (S,U)], or φi(v̄)

2. The expected Shapley values of games with fixed
U , or EU [φi(vU )] where vu(S) = V (S, u)

3. Our generalization of Shapley values to the
stochastic cooperative game V (S,U), or φi(V )

The first two list items suggest ways of calculating
the values φi(V ) using tools designed for determin-
istic cooperative games. However, the expectation
EU
[
V (S,U)

]
may be slow to evaluate (e.g., if it is

across an entire dataset), and calculating Shapley val-
ues separately for each value of U would be intractable
if U has many possible values. We therefore introduce
a third approach.

5.3 Shapley Value Approximation for
Stochastic Cooperative Games

We now propose a fast, regression-based approach for
calculating the generalized Shapley values φi(V ) of
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Figure 4: Convergence forecasting for SHAP, Shapley
Effects and SAGE. The required number of samples is
compared with the predicted number across 100 runs
(with 90% confidence intervals displayed).

stochastic cooperative games V (S,U). Fortunately, it
requires only a simple modification of the preceding
approaches.

First, we must calculate the values EU
[
V (1, U)

]
and

EU
[
V (0, U)

]
for the grand coalition and the empty

coalition. Next, we replace our previous b estimators
(b̂n and b̄n) with estimators that use n pairs of inde-
pendent samples zi ∼ p(Z) and ui ∼ p(U). To adapt
the original KernelSHAP to this setting, we use

b̃n =
1

2

n∑
i=1

zi
(
V (zi, ui)− EU

[
V (0, U)

])
.

We then substitute this into the KernelSHAP estima-
tor, as follows:

β̃n = Â−1
n

(
b̃n − 1

1T Â−1
n b̃n − v(1) + v(0)

1T Â−1
n 1

)
. (17)

By the same argument used in Section 3.2, this ap-
proach estimates a solution to the weighted least
squares problem whose optimal solution is the gener-
alized Shapley values φi(V ). This adaptation of Ker-
nelSHAP is consistent, and the analogous version of
unbiased KernelSHAP is consistent and unbiased (see
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Figure 5: Convergence acceleration for SAGE and
Shapley Effects. The ratio of the maximum standard
deviation to the gap between the largest and smallest
Shapley values is compared across six estimators.

Appendix D). These can be run with our paired sam-
pling approach, and we can also provide uncertainty
estimates and detect convergence (Section 4).

6 EXPERIMENTS

We conducted experiments with four datasets to
demonstrate the advantages of our Shapley value esti-
mation approach. We used the census income dataset
[22], the Portuguese bank marketing dataset [31],
the German credit dataset [22], and a breast cancer
(BRCA) subtype classification dataset [4]. To avoid
overfitting with the BRCA data, we analyzed a ran-
dom subset of 100 out of 17,814 genes (Appendix E).
We trained a LightGBM model [21] for the census
data, CatBoost [34] for the credit and bank data, and
logistic regression for the BRCA data. Code for our
experiments is available online.

To demonstrate local and global explanations with un-
certainty estimates, we show examples of SHAP [24]
and SAGE [12] values generated using our estima-
tors (Figure 3). Both explanations used a conver-
gence threshold of t = 0.01 and display 95% confi-
dence intervals, which are features not previously
offered by KernelSHAP. We used the dataset sam-
pling approach for both explanations, and for SAGE
we used the estimator designed for stochastic cooper-
ative games. These estimators are faster than their
unbiased versions, but the results are nearly identical.
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Table 1: SHAP estimator run-time comparison. Each value represents the ratio of the average number of samples
required relative to the fastest estimator for that dataset (lower is better).

Census Income Bank Marketing German Credit BRCA Subtypes

Unbiased 380.63 176.45 17437.44 90.40
Unbiased + Paired Sampling 128.60 90.61 422.17 40.44
Original (KernelSHAP) 12.74 7.41 13.74 2.49
Original + Paired Sampling 1.00 1.00 1.00 1.00

To measure run-time differences between each esti-
mator when calculating SHAP values, we compared
the number of samples required to explain 100 in-
stances for each dataset (Table 1). Rather than re-
porting the exact number of samples, which is depen-
dent on the convergence threshold, we show the ratio
between the number of samples required by each es-
timator; this ratio is independent of the convergence
threshold when convergence is defined by the mean
squared estimation error falling below a fixed value
(Appendix E). Table 1 displays results based on 100
runs for each instance. Results show that the dataset
sampling approach (original) is consistently faster than
the unbiased estimator, and that paired sampling en-
ables significantly faster convergence. In particular,
we find that our paired sampling approach yields a
9× speedup on average over the original Ker-
nelSHAP.

To investigate the accuracy of our convergence fore-
casting method, we compared the predicted number
of samples to the true number across 250 runs. The
number of samples depends on the convergence thresh-
old, and we used a threshold t = 0.005 for SHAP and
t = 0.02 for Shapley Effects and SAGE. Figure 4 shows
the results for SHAP (using the census data), Shapley
Effects (using the bank data) and SAGE (using the
BRCA data). In all three cases, the forecasts be-
come more accurate with more samples, and
they vary within an increasingly narrow range
around the true number of required samples.
There is a positive bias in the forecast, but the bias
diminishes with more samples.

Finally, to demonstrate the speedup from our ap-
proach for stochastic cooperative games, we show that
our stochastic estimator converges faster than a naive
estimator based on the underlying game’s expectation
(see Section 5.2). We plotted the ratio between the
maximum standard deviation and the gap between
the smallest and largest values, which we used to de-
tect convergence (using a threshold t = 0.01). Fig-
ure 5 shows that the stochastic approach dramatically
speeds up both SAGE (using the BRCA data) and
Shapley Effects (using the bank data), and that the
paired sampling technique accelerates convergence for

all estimators. The estimators based on the game’s
expectation are prohibitively slow and could not be
run to convergence. The fastest estimators for
both datasets are stochastic estimators using
the paired sampling technique, and only these
methods converged for both datasets in the number
of samples displayed. As is the case for SHAP, the
dataset sampling approach is often faster than the un-
biased approach, but the latter is slightly faster for
SAGE when using paired sampling.

7 DISCUSSION

This paper described several approaches for estimat-
ing Shapley values via linear regression. We first in-
troduced an unbiased version of KernelSHAP, with
properties that are simpler to analyze than the orig-
inal version. We then developed techniques for de-
tecting convergence, calculating uncertainty estimates,
and reducing the variance of both the original and un-
biased estimators. Finally, we adapted our approach
to provide significantly faster estimators for two global
explanation methods based on stochastic cooperative
games. Our work makes significant strides towards
improving the practicality of Shapley value estimation
by automatically determining the required number of
samples, providing confidence intervals, and accelerat-
ing the estimation process.

More broadly, our work contributes to a mature liter-
ature on Shapley value estimation [6, 26] and to the
growing ML model explanation field [32, 38, 13, 24, 12].
We focused on improving the regression-based ap-
proach to Shapley value estimation, and we leave to
future work a detailed comparison of this approach
to sampling-based [38, 37, 10, 12] and model-specific
approximations [1, 25]. We also believe that certain
insights from our work may be applicable to LIME,
which is based on a similar dataset sampling approach;
recent work has noted LIME’s high variance when
using an insufficient number of samples [3], and an
improved understanding of its convergence properties
[16, 27] may lead to approaches for automatic conver-
gence detection and uncertainty estimation.
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