Approximately Solving Mean Field Games via
Entropy-Regularized Deep Reinforcement Learning
Supplementary Materials

A Experimental Details

A.1 Algorithms

Algorithm 1 Exact fixed point iteration

1: Initialize u° = ¥(q) as the mean field induced by the uniformly random policy gq.
2: for k=0,1,--- do
3:  Compute the Q-function Q*(u*,t,s,a) for fixed pu*.
4:  Choose 7% € II such that nf(a | s) = a € argmax,c4 Q"(u*,t,s,a) for all t € T,s € S,a € A by
putting all probability mass on the first optimal action, or evenly on all optimal actions.
Optionally: Overwrite 7% «+ %_Hwk + kiﬂﬂkfl. (FP averaged policy)
Compute the mean field g**! = ¥(7*) induced by m*.
Optionally: Overwrite pu**! < k%_lpk*l + kkﬁuk. (FP averaged mean field)
end for

Algorithm 2 Boltzmann / RelEnt iteration
1: Input: Temperature n > 0, prior policy g € II.
2: Initialize 1 = ¥(q) as the mean field induced by g.
3: for k=0,1,--- do
4:  Compute the Q-function (Boltzmann) or soft Q-function (RelEnt) Q(u*,t,s,a) for fixed u*.
gt(als) exp(Q(Hk;]t,s‘a)

S ren a(a’]s) exp (b))
Optionally: Overwrite n* « Zgm* + Zywh~1. (FP averaged policy)
Compute the mean field p**! = ¥(7*) induced by m*.

Optionally: Overwrite p**! < k%_l,uk“'l + kiﬂuk. (FP averaged mean field)
end for

5. Define 7% by 7F(a | s) =

forallt e T,s€ S,a € A.

Algorithm 3 Boltzmann DQN iteration

: Input: Temperature n > 0, prior policy g € II.

: Input: Simulation parameters, DQN hyperparameters.

. Initialize u° ~ ¥(q) as the mean field induced by ¢ using Algorithm

: for k=0,1,--- do

Approximate the Q-function Q*(u*,t,s,a) using Algorithm 4/ on the MDP induced by p*.

* k
e e

DU W N =

@

Define 7% by 7F(a | 5) =

——~%—~ forallt e T,se€ S,a € A
Sare aela']s) exp (LTl

Approximately simulate mean field g**! ~ ¥(7*) induced by 7% using Algorithm
8: end for

I
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Algorithm 4 DQN

1: Input: Number of epochs L, mini-batch size IV, target update frequency M, replay buffer size D.

2: Input: Probability of random action ¢, Discount factor v, ADAM and gradient clipping parameters.
3: Initialize network Qyg, target network Qg < @y and replay buffer D of size D.

4: for L epochs do

5 fort=1,...,7 do

6: One environment step

7 Let new action a; <— argmax,c 4 Qo(t, s,a), or with probability e sample uniformly random instead.
8: Sample new state s;pq1 ~ p(- | S¢, at).

9: Add transition tuple (s, at, 7(st, at), s¢41) to replay buffer D.
10: One mini-batch descent step
11: Sample from the replay buffer: {(s},a},r{,s!,1)}i=1,.... v ~ D.
12: Compute loss Jo = S0, (i +ymaxeea Q(t +1,80,,,a') — Q(t, st ai))%
13: Update 6 according to VgJg using ADAM with gradient norm clipping.
14: if number of steps mod M = 0 then
15: Update target network 6’ < 6.
16: end if
17:  end for
18: end for

Algorithm 5 Stochastic mean field simulation

1: Input: Number of mean fields K, number of particles M, policy .
2: for k=1,...,K do

3 Initialize particles 20, ~ ug for all m = 1,..., M.

4: forteT do

5: Define empirical measure G} < fo:l gt -

6 form=1,...,M do

7 Sample action a ~ (- | x%,).

8 Sample new particle state x5! ~ p(- | 2t a, GF).
9 end for
10:  end for
11: end for

12: return average empirical mean field (+ 22{21 GMier

A.2 TImplementation details

For all the DQN experiments, we use the configurations given in Table [I| and hyperparameters given in Table
Note that we add epsilon scheduling and a discount factor to DQN for stability reasons, i.e. the loss term
has an additional factor smaller than one before the maximum operation, cf. Mnih et al.| (2013)). For the
action-value network, we use a fully connected dueling architecture (Wang et al.| (2016])) with one shared hidden
layer of 256 neurons, and one separate hidden layer of 256 neurons for value and advantage stream each. As the
activation function, we use ReLU. Further, we use gradient norm clipping and the ADAM optimizer. To allow for
time-dependent policies, we append the current time to the observations.

We transform all discrete-valued observations except time to corresponding one-hot vectors, except in the
intractably large Taxi environment where we simply observe one value in {0, 1} for each tile’s passenger status.
For evaluation of exploitability, we compare the values of the optimal policy and the evaluated policy in the MDP
induced by the mean field generated by the evaluated policy. In intractable cases, we use DQN to approximately
obtain the optimal policy. In this case, we obtain the values by averaging over many episodes in the MDP induced
by the mean field generated by the evaluated policy via Algorithm

A.3 Problems

Summarizing properties of the considered problems are given in Table



Algorithm 6 Prior descent

1: Input: Number of outer iterations I.

2: Input: Initial prior policy ¢ € II.

3: for outer iteration i =1,...,1 do

4:  Find 7 heuristically or minimally such that Algorithm [2] with temperature 7 and prior ¢ converges.
5:  if no such 7 exists then
6 return ¢
7.  end if
8
9

q « solution of Algorithm [2] with temperature n and prior g.
: end for

Table 1: Boltzmann DQN Iteration Parameters

Parameter RPS SIS Taxi
Fixed point iteration count 1000 50 15
Number of particles for mean field 1000 1000 200
Number of mean fields 5 5 5

Number of episodes for evaluation 2000 2000 500

LR. Similar to the example mentioned in the main text, we let a large number of agents choose simultaneously
between going left (L) or right (R). Afterwards, each agent shall be punished proportional to the number of
agents that chose the same action, but more-so for choosing right than left.

More formally, let S = {C,L, R}, A= S\ {C}, no(C) = 1, r(s,a, ) = —1yz3(s) - s (L) — 2 - 1y (5) - pe(R)
and 7 = {0,1}. Note the difference to the toy example in the main text: right is punished more than left. The
transition function allows picking the next state directly, i.e. for all 5,5’ € S,a € A,

P(St+1 = S/ | St = S,At = CL) = 1{81}((1) .

For this example, we have Ko = 1 since the return @ of the initial state changes linearly with 1 and lies between
0 and —2, while the distance between two mean fields is also bounded by 2. Analogously, Ky = 1 since (¥ (7))
similarly changes linearly with 7y, and both can change at most by 2. Thus, we obtain guaranteed convergence
via Boltzmann iteration if > 1. In numerical evaluations, we see convergence already for n > 0.7.

RPS. This game is inspired by [Shapley| (1964)) and their generalized non-zero-sum version of Rock-Paper-Scissors,
for which classical fictitious play would not converge. Each of the agents can choose between rock, paper and
scissors, and obtains a reward proportional to double the number of beaten agents minus the number of agents
beating the agent. We modify the proportionality factors such that a uniformly random prior policy does not
constitute a mean field equilibrium.

Let S ={0,R,P,S}, A=S\{0}, po(0) =1, T ={0,1}, and for any a € A, u; € P(S),
T’(R,a,,LLt) =2 /u’t(S) -1 :LLt(P)a
T(Paa‘7ut) =4- ,ut(R) -2 ,ut(S)v
7(Ssa, pe) =6 pe(P) = 3 pe(R).

The transition function allows picking the next state directly, i.e. for all s,s" € S,a € A,

]P)(St+1 = Sl | St = S,At = CL) = 1{5/}(61) .

SIS. In this problem, a large number of agents can choose between social distancing (D) or going out (U). If
a susceptible (S) agent chooses social distancing, they may not become infected (I). Otherwise, an agent may
become infected with a probability proportional to the number of agents being infected. If infected, an agent will
recover with a fixed chance every time step. Both social distancing and being infected have an associated cost.
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Table 2: DQN Hyperparameters

Hyperparameter Value
Replay buffer size 10000
ADAM Learning rate 0.0005
Discount factor 0.99

Target update frequency 500
Gradient clipping norm 40

Mini-batch size 128
Epsilon schedule 1 linearly down to 0.02 at 0.8 times maximum steps
Total epochs 1000

Table 3: Problem Properties

Problem |T] S| |A|

LR 2 3 2
RPS 2 4 3
SIS 50 2 2
Taxi 100 ~227 5

Let S = {S, I}, A= {U,D}, po(I) = 0.6, r(s,a, ) = —1473(s) —0.5-1;py(s) and T = {0,...,50}. We find that
similar parameters produce similar results, and set the transition probability mass functions as

]P)(St+1 :S|St:_[) :03
P(Sis1 =18 =5,4,=U) =09 1, (I)
P(St+1 :I|St:S,At:D) =0.

Taxi. In this problem, we consider a K x L grid. The state is described by a tuple (x,y,2’,y’, p, B) where (z,y)
is the agent’s position, (2’,y’) indicates the current desired destination of the passenger or is (0, 0) otherwise, and
p € {0,1} indicates whether a passenger is in the taxi or not. Finally, B is a K X L matrix indicating whether a
new passenger is available for the taxi on the corresponding tile. All taxis start on the same tile and have no
passengers in the queue or on the map at the beginning. The problem runs for 100 time steps.

The taxi can choose between five actions W, U, D, L, R, where W (Wait) allows the taxi to pick up / deliver
passengers, and U, D, L, R (Up, Down, Left, Right) allows it to move in all four directions. As there are many
taxis, there is a chance of a jam on tile s given by min(0.7,10 - p(s)), i.e. the taxi will not move with this
probability. The taxi also cannot move into walls or back into the starting tile, in which case it will stay on its
current tile. With a probability of 0.8, a new passenger spawns on one randomly chosen free tile of each region.
On picking up a passenger, the destination is generated by randomly picking any free tile of the same region.
Delivering passengers to a destination and picking them up gives a reward of 1 in region 1 and 1.2 in region 2.

For our experiments, we use the following small map, where S denotes the starting tile, 1 denotes a free tile from
region 1, 2 denotes a free tile from region 2 and H denotes an impassable wall:

I I R e
NN N R
NN T ==

This produces a similar situation as in LR, where a fraction of taxis should choose each region so the values balance
out, while also requiring solution of a problem that is intractable to solve exactly via dynamic programming.
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Figure 1: Mean exploitability (straight lines), maximum and minimum (dashed lines) over the final 10 iterations
of the last outer iteration. 50 outer iterations and 100 inner iterations each; (a, d) LR; (b, ) RPS; (c, f) SIS.
Maximum entropy (MaxEnt) results begin at higher temperatures due to limited floating point accuracy. The
exploitability of the initial uniform prior policy is indicated by the dashed horizontal line.
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Figure 2: Mean exploitability over the final 10 iterations. Dashed lines represent maximum and minimum over the
final 10 iterations. (a) LR, 10000 iterations; (b) RPS, 10000 iterations; (c) SIS, 1000 iterations. The exploitability
of the uniform prior policy is indicated by the dashed horizontal line.

In Figure [l we observe that prior descent for both Boltzmann and RelEnt MFE with the same uniform prior
policy performs qualitatively similarly, and coincide in LR and SIS except for numerical inaccuracies. It can be
seen that using a temperature sufficiently low to converge in LR and RPS allows prior descent to descend to
the exact MFE iteratively. In SIS on the other hand, picking a fixed temperature that converges for the initial
uniform prior policy does not guarantee monotonic improvement of exploitability afterwards. Instead, by applying
the heuristic

Niv1 =" C

for each outer iteration i, where ¢ > 1 adjusts the temperature after each outer iteration, we avoid scanning
over all temperatures in each step and reach convergence to a good approximate mean field equilibrium for both
Boltzmann and MaxEnt iteration.
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Figure 3: (a) Difference between current and final minimum exploitability over the last 10 iterations; (b) Distance
between current and final mean field, cut off at 500 iterations for readability. Plotted for the n-RelEnt iterations
in SIS for the indicated temperature settings and uniform prior policy.
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Figure 4: Difference between current and final estimated minimum exploitability over the last 5 iterations. (a) SIS,
50 iterations; (b) Taxi, 15 iterations. Plotted for the n-Boltzmann DQN iteration for the indicated temperature

settings and uniform prior policy.

In Figure [2 empirical results are shown for fictitious play variants averaging only policy or mean field. In the
simple one-step toy problems LR and RPS, averaging the policies appears to converge to the exact solution
without regularization and to the regularized solution with regularization. Averaging the mean fields on the other
hand fails, since this method can only produce deterministic policies. By applying any amount of regularization,
averaging the mean fields is led to success in LR and SIS. Nonetheless, both methods fail to converge to the MFE
in SIS and produce worse results than obtained by prior descent in Figure [T

In Figure [3] we depict the convergence of exploitability and mean field of MaxEnt iteration in SIS. The results are
qualitatively similar with Boltzmann iteration and, as in the main text, show the convergence behaviour near the

critical temperature leading to convergence.

In Figure [4 we depict the convergence of exploitability for Boltzmann DQN iteration in SIS and Taxi during one
of the runs. All 4 other runs show similar qualitative behaviour. As can be seen, the highest temperature of
0.2 shows less oscillatory behaviour, stabilizing Boltzmann DQN iteration. In Taxi, it can be seen that the used
temperatures are insufficient to allow Boltzmann DQN iteration to converge. We believe that using prior descent
could allow for better results. We could not verify this due to the high computational cost, as this includes
repeatedly and sequentially solving an expensive reinforcement learning problem.

Finally, in Figure [§] we depict the resulting behavior in the SIS case. In the Boltzmann iteration result, at the
beginning the number of infected is high enough to make social distancing the optimal action to take. As the
number of infected falls, it reaches an equilibrium point where both social distancing or potentially getting
infected are of equal value. Finally, as the game ends at time ¢ = T' = 50, there is no point in social distancing
any more. Our approach yields intuitive results here, while exact fixed point iteration and FP fail to converge.
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Figure 5: Fraction of infected agents and fraction of susceptible agents picking social distancing over time. (a, d):
Boltzmann iteration (n = 0.07); (b, e): exact fixed point iteration; (c, f): fictitious play (averaging both policy
and mean field) results in SIS after 500 iterations. More iterations and averaging only policy or mean field show
same qualitative results.

B Proofs

B.1 Completeness of mean field and policy space

Lemma B.1.1. The metric spaces (II,dry) and (M,dpr) are complete metric spaces.

Proof. The metric space (M, dp,) is a complete metric space. Let (1" ),eny € MY be a Cauchy sequence of mean
fields. Then by definition, for any ¢ > 0 there exists integer N > 0 such that for any m,n > N we have

dm(p™, ™) < 0.5¢

n m 1 n m
— Ve T dry (1) = 5 D0 (s) = i (s)] < 0.52
sES

= VteT,seS:|ui(s)—ul(s) <e.

By completeness of R there exists the limit of (u}(s))nen for all t € T, s € S, suggestively denoted by i (s). The
mean field p = {pt}+e7 with the probabilities defined by the aforementioned limits fulfills 4™ — p and is in M,
showing completeness of M.

We do this analogously for (II, dyy). Thus, (II, dyy) and (M, dp) are complete metric spaces. O

B.2 Lipschitz continuity

Lemma B.2.1. Assume bounded and Lipschitz functions f : X — R and g : X — R mapping from a metric
space (X, dx) into R with Lipschitz constants C¢,Cy and bounds |f(z)] < My, |g(x)| < My. The sum of both
functions f + g, the product of both functions f - g and the mazimum of both functions max(f,g) are all Lipschitz
and bounded with Lipschitz constants Cy + Cy, (MyCy + M,Cy), max(Cy,Cy) and bounds My + My, MyM,,
max(My, My).

Proof. Let x,y € X be arbitrary. By the triangle inequality, we obtain
1f (@) +9(x) = (f(y) + 9)| < |f (@) = FW)l + lg(x) —9(W)| < (Cf + Cy)dx (z,y).

Analogously, we obtain

[f(@)g(x) = f(y)g()] < |f(2)g(x) — f(@)g(W)| + |f(2)g(y) — f(y)g(y)| < (M;Cy + MyCy)dx (x,y) .



Approximately Solving Mean Field Games via Entropy-Regularized Deep Reinforcement Learning

For the maximum of both functions, consider case by case. If f(z) > g(z) and f(y) > g(y) we obtain

[max(f(z), g(x)) —max(f(y),9(y))| = |f(x) = f(y)| < Crdx(x,y)

and analogously for g(z) > f(z) and g(y) > f(y)

lmax(f(x),g(z)) — max(f(y), 9(y))| = lg(z) — g9(y)| < Cydx(z,y).

On the other hand, if g(z) < f(z) and g(y) > f(y) , we have either g(y) > f(z) and thus

imax(f(z), g(x)) — max(f(y), 9(y))| = [f(x) — 9(¥)| = 9(y) — f(x) < g(y) — g(2) < Cydx(2,y)

or g(y) < f(z) and thus

lmax(f(x),g(z)) —max(f(y), 9(y)| = [f(z) — g()| = f(x) — g(y) < f(z) = fly) < Crdx(z,y).

The case for f(z) < g(z) and f(y) > g(y) as well as boundedness is analogous. O

B.3 Proof of Proposition 1

Proof. Since we work with finite 7, S, A, we identify the space of mean fields M with the | 7|(|S| — 1)-dimensional
simplex S|7|(s1-1) € RITIUSI=1) via the values of the probability mass functions at all times and states. Analo-

gously the space of policies II is identified with S)7s|(.4j—1) € RI7TISIGAI=D),

Define the set-valued map I: S|T1151(14]-1) = 29IT11s1(141-1) mapping from a policy 7 represented by the input
vector, to the set of vector representations of optimal policies in the MDP induced by ¥(r).

A policy 7 is optimal in the MDP induced by p € M if and only if its value function defined by

Vﬂ(ﬂ’atas) = Z '/Tt(a | S) (T(Svaa /ut) + Z p(sl | S,CL,ILLt)Vﬂ-(,LL,t#» 175/)> )

acA s'eS

is equal to the optimal action-value function defined by

* _ / * /
Vv (:U"tvs) - I&a} (7”(8,0,, /u't) + Z p(s | s,a,ut)V (Mat + la S ))

s'eS

for every t € T,s € S, with terminal conditions V*(u,T,s) = V™(u,T,s) = 0. Moreover, an optimal policy
always exists. For more details, see e.g. |Puterman| (2014). Define the optimal action-value function for every
teT,s€S,a€e Avia

Q*(/l, t, S, a) = T(Sv a, :U't) + Z p(sl | S, a, ,u't)V*(HJa t+ 1a 5/)
s’eS
with terminal condition @Q*(u, T, s,a) = 0. Then, the following lemma characterizes optimality of policies.

Lemma B.3.1. A policy 7 fulfills = € T'(7) if and only if

mi(a|s) >0 = a € argmax Q*(¥(7),t,s,a’)
a’€ A

forallt € T,s€S,a € A

Proof. To see the implication, consider w € f‘(fr) Then, if the right-hand side was false, there exists a maximal
te T ands €S, a€ Asuch that m(a | s) > 0 but a ¢ argmax,,c 4 Q*(¥(7),t,s,a’). Since for any ¢’ > t we have
optimality, V™ (u,t+1,s") = V*(u,t + 1,5') by induction. However, V7 (u,t,s) < V*(u,t, s) since the suboptimal
action is assigned positive probability, contradicting optimality of 7. On the other hand, if the right-hand side is
true, then V7™ (u,t,s) = V*(u,t, s) by induction, which implies that 7 is optimal. [ |



We will now check that the requirements of Kakutani’s fixed point theorem hold for I'. The finite-dimensional
simplices are convex, closed and bounded, hence compact. I' maps to a non-empty set, as the induced mean field
is uniquely defined and any finite MDP (induced by this mean field) has an optimal policy.

For any T, f‘(w) is convex, since the set of optimal policies is convex as shown in the following. Consider a convex
combination @ = Am + (1 — A)«’ of optimal policies 7, 7' for A € [0,1]. Then, the resulting policy will be optimal,
since we have

fi(a]s) >0 = m(a|s)>0Vm(a]s)>0 = acargmaxQ*(V(7),t,s,a)
acA

for any t € T,s € S,a € A and thus optimality by Lemma [B:3:1}

Finally, we show that I has a closed graph. Consider arbitrary sequences (m,, 7’,) = (,7') with 7/, € T'(m,,). It is
then sufficient to show that 7’ € f(ﬂ) By the standing assumption, we have continuity of ¥ and p — Q*(u, ¢, s, a)
for any t € T,s € S,a € A, as sums, products and compositions of continuous functions remain continuous.
Therefore, the composition 7 — Q*(¥(r),t,s,a) is continuous. To show that 7/ € I'(r), assume that 7’ & I'(r).
By Lemma [B.3.1] there exists t € 7,5 € S,a € A such that 7{(a | s) > 0 and further there exists a’ € A such that
Q*(V(nm),t,s,a") > Q*(¥(r),t,s,a). Fix such an o’ € A. Let 6 = Q*(¥(rw),t,s,a’) — Q*(¥(r),t,s,a), then by
continuity there exists € > 0 such that for all 7 € II we have

dn(i,m) <& = |Q*(V(7),t,5,a) — Q" (U(r),t,5,a)| < g

By convergence, there is an integer N € N such that for all n > N we have dp (7, 7) < ¢ and therefore

5 )
Q*(Y(mp), t,s8,a") > Q*(V(n),t,s,a") — 3= Q*(¥(m),t,s,a) + 3> Q*(V(my),t,s,a).
Since (7],)¢(a | 8) — 7wi(a | 8) > 0, there also exists M € N such that for all m > M,
[(m)i(a ] s) = mi(a | s)] <mi(als).

Let n > max(N, M), then it follows that (7],):(a | s) > 0 but a ¢ argmax, . 4 Q*(¥(7),t,s,a’) since we have
Q*(¥(my),t,5,a") > Q*(¥(my), t,s,a), contradicting 7/, € T'(w,,) by Lemma B.3.1} Hence, I' must have a closed
graph.

By Kakutani’s fixed point theorem, there exists a fixed point 7* that generates some mean field ¥(7*). The
associated pair (7*, U(7*)) is an MFE by definition. O

B.4 Proof of Proposition 3

Proof. The space of mean fields (M, dp,) is equivalent to convex and compact finite-dimensional simplices. In
this representation, each coordinate of the operators I', (1) and T',, () consists of compositions, sums and products
of continuous functions, since the functions r(s, a, u¢) and p(s’ | s, a, py) are assumed to be continuous. Existence
of a fixed point follows immediately by Brouwer’s fixed point theorem. O

B.5 Proof of Theorem 1

Proof. The proof is a slightly simplified version of the one found in Saldi et al.| (2018]). Note that we require the
results later, so for convenience we give the full details.

The empirical measure G is a random variable on P(S), i.e. its law £L(GF)) € P(P(S)) is a distribution over
probability measures. Since we want to show convergence of the empirical measure to the mean field, let us pick
a metric on P(P(S)). Remember that we metrized P(S) with the total variation distance. We metrize P(P(S))
with the 1-Wasserstein metric defined for any ®, ¥ € P(P(S)) by the infimum over couplings

Wi(P, ) = inf E|drv (X1, X2)] .

1( s ) z:(xl):g,la(xz):qz [ Tv( 1, 2)]

Lemma B.5.1. Let {®,},en be a sequence of measures with ®, € P(P(S)) for all n € N. Further, let p € P(S)
arbitrary. Then, the following are equivalent.
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(a) Wi(®p,8,) =0 asn— oo

(b) E[|F(X,) — F(X)|]] = 0 as n — oo for any continuous, bounded F : P(S) — R, any sequence { X, }nen of
P(S)-valued random variables and any P(S)-valued random variable X with L(X,) = ®, and L(X) = .

(c) E[|Xn(f) = X(H)]] = 0 asn — oo for any f : S — R, any sequence {Xp}nen of P(S)-valued random
variables and any P(S)-valued random variable X with L(X,,) = @, and L(X) =¢,.

Proof. Define the only possible coupling A, = ®,, x J,,.
(b), (¢) = (a):
Define F(z) = x(s) and fs(s") = 1(,(s") for all s € S, where Fj is continuous. By assumption,

Wl((I)n,(SM) = E[dTV(XnaX)]

inf
L(X ) =@, L(X)=0,

1
"2 /7>(S)><7>(8) Zs A,
—;EEMMMQX@HHO

since for any s € S, we have

E[[Xn(s) = X(s)[] = E[|Fs(Xn) = Fo(X)|] = E[|Xn(fs) = X(f)] -

(a) = (b), (c):
We have

E[[F(Xn) - F(X)]] = / |F(v) = F(v')] An(dv,dV')

P(S)XP(S)

= [ 1F@) - o] #(a)
P(S)

S [ IF@) = Fol8u(dv) =0
P(S)

by continuity and boundedness of |F(v) — F(u)|, and convergence in W; implying weak convergence. Analogously,
E[[Xn(f) = X(HI] :/ w(f) = u(f)| Pn(dv) — w(f) = ()l 6u(dv) =0
P(S) P(S)

since f and thus [v(f) — u(f)| is automatically bounded from finiteness of S, and v(f) = >, sv(s)f(s) =
Y ses M(s)f(s) as v — p in total variation distance implies continuity of [v(f) — u(f)|. |

First, it is shown that when all other agents follow the same policy 7, then the empirical distribution is essentially
the deterministic mean field as N — oo, i.e. L(G§)) — L(u) = 0y, with = ¥(r)

Lemma B.5.2. Consider a set of policies (7,7, ...,m) € II'V for all agents. Under this set of policies, the law of
the empirical distribution E(Ggﬁ) € P(M) converges to §,, where p =¥ (m) as N — oo in 1-Wasserstein distance.

Proof. Define the Markov kernel P, such that its probability mass function fulfills
PtTV(SI ‘ S) = Z Trt(a ‘ 5)p(8/ | S, a, V)
acA

forany t € T,s € S,v € P(S), 7 € II and analogously

P ()= S 0(s) S mla | s)p(s' | s,0,0)

seS acA



for any 7 € P(S). Note that ;11 = p Py,

(g) for mean fields p = ¥(7) induced by .
We show that E HGQC(f) — ,ut(f)H — 0 as N — oo for any function f: S — R and any time ¢ € 7. From this,

the desired result follows by Lemma Since G§ () = + f\il ds:(-) and Sf ~ o we have at time ¢ = 0 that

N

I ICHRSANICH)

i=1

lim E[|Gg,(f) — po(f)|] = lim E =0

N —o0 N—o0

by the strong law of large numbers and the dominated convergence theorem.

Assuming this holds for ¢, then for ¢ + 1 we have

E||GE,, ()~ m ()] <EHGSM N -Gy
+E [[6471() - GE T Pey (1]
+EHGN "Pray (f) — GY, Py (/)]
+E (|68 Poy () — mePr, (f)]]

where we defined GN )= o j\iQ ds: ()

For the first term, we have as N — oo

N
E[|6Y..(f) - Gﬁj(f)H:]E 7 2 (5h) Zf )
1 1
Hf St+1 +’N_N— ‘ZE |f i+1)
% + N](VN_—ll)) max|f(s)] = 0.

For the second term, as N — oo we have by Jensen’s inequality and bounds |f| < My (by finiteness of S)
2
e| | =E[ |

1 N i i 2
SM;E[E [(F(SE) —E (S50 | S,

1 2

G5 () = G5, Py (f)

2
G ~ GY P (f )] 'St”

N 2

N 1 Z 1) —E[f( Z+1)])‘ |St]

=2

=E

[EE—

)

For the third term, we again have as N — oo

STGE ) -G () D mlals) Y p(s | 5,0,GY)f(s)

sES acA s'eS

( - ) S mal 5 3 o | S0, €215

=2 a€A s’eS

E (|68 Ploy (f) — GY, Py (5)]] :El

+E

|

Y mlal 81 Y (s | S a, GE)F)

a€A s'eS




Approximately Solving Mean Field Games via Entropy-Regularized Deep Reinforcement Learning

N-1 1
= <N(N—1) +N> max |f(s)] = 0.

For the fourth term, define F': P(S) — R, F(v) = vP[,(f) and observe that I is continuous, since v — v’ if and
only if v(s) — v/(s) for all s € S, and therefore (as p is assumed continuous by Assumption 1)

F(v) =vPL(f) =Y v(s) Y mlals) Y p(s' | s a,v)f(s)

sES acA s'eS

is continuous for any s’ € §. By Lemma we have from the induction hypothesis th — u that

E[|GY Proy () = mPr, (]| =0
Therefore, E HGQ\CH (f) — ,ut+1(f)H — 0 which implies the desired result by induction. |

Consider the case where all agents follow a set of policies (7%, ,...,n) € IIV for each N € N. Define new
single-agent random variables S and A}’ with S{' ~ po and

P(Af =a|S;'=s)=n(a|s),
]P)(SfLFI = 8/ | S# = SﬂA? = CL) :p(sl | s7a7/1't)7
where the deterministic mean field p is used instead of the empirical distribution.

Lemma B.5.3. Consider an equicontinuous, uniformly bounded family of functions F on P(S) and define

Fy(v) = sup |f(v) — f(pe)]

fer

for any t € T. Then, Fy is continuous and bounded and by Lemma[B.5.1] we have

lim E

N —oco

[ @) - fw] -

feF

Proof. F; is continuous, since for v,, — v

|Fi(vn) — Fe(v)| = |sup [ f(v) — f(pe)] — sup [f() — f(pe)]
fer

< sup [f(v) = f(V)] =0
feF feF

by equicontinuity. Further, F} is bounded since |Fy(v)| < sup;cz |f(v)| + [f(u¢)| is uniformly bounded. By
Lemma we have W1(GY,6,,) = 0 as N — oo, therefore Lemma applies. |

Lemma B.5.4. Suppose that at some time t € T, it holds that
Jim [£(8¢)(gn) = £(SE) (gn)] =0
—00
for any sequence of functions {gn }nen from S to R that is uniformly bounded. Then, we have

lim |£(S},GY)(Tn) — L(SY, pe)(Tw)| =0

N—o0

for any sequence of functions {Tn}nen from S x P(S) to R that is equicontinuous and uniformly bounded.

Proof. We have

|£(SE, G§)(Tv) = L(ST, 1) (Tn)] < [L£(SE, GS)(Tw) = L(S{ 1) (Tw)| + |£(S, pue) () — LOSE 1) (T )|



The first term becomes
|L(SH,GE)(Tw) — L(S}, ) (Tw)| = ‘/TN(x,y)c(sg,Gth)(dx,du) - /TN(x,y)E(Stl,ut)(d%du)
<E[E(|Tn(z,GS,) — Tn(z, )| S]]

<E

sup |f(Gg,,)f(ut)|] =0

FE{TNn (V) }ver(s).Nen

by Lemma m since {Tn }nen is equicontinuous and uniformly bounded. Similarly for the second term,

(%) () = £(SE ) (T = | [ Tl £053 ) ) — [ Tot )5t ) i )
S E HTN(Stl?H't) - TN(S#ﬁJ't)H —0
by the assumption, since Ty fulfills the condition of being uniformly bounded. |

Lemma B.5.5. For any sequence {gn}nen of functions from S to R that is uniformly bounded, we have
Jim [£(8¢)(gn) = L(SE)(gn)] =0
—00
for all timest € T.

Proof. Define Iy as
Ini(s,v) Zwt (a]s) Zp(s’\s,a,l/)gN(s’).
acA s'eS

{In (8, ) }ses,nen is equicontinuous, since for any v, v’ € M with dpy (v,v') = 0,

sup  |Ini(s,v) —Inu(s, V)] < M, sup Z N (a | s) Z (p(s" | s,a,v) —p(s' | s,a,v"))
s€S,NeN s€S,NeN 5=

< ! /
M, |S|I£1€a§<r;16aj<rsngx|p(s | s,a,v) —p(s’ | s,a,0")] =0

since |gn| < M, is uniformly bounded and p is continuous by assumption. Furthermore, {n¢(s,v) is always
uniformly bounded by M,. Now the result can be shown by induction.

For t = 0, £(SE) = L(S}) fulfills the hypothesis. Assume this holds for ¢, then

[£(St1)(gn) = L(SE) (an)] = |£(SE, GE ) (Un,e) — L(SE ) (Ine)| = 0
as N — oo by Lemma [B.5.4] [ |
Thus, for any sequence of policies {7} ey with 7% € II for all N € N, the achieved return of the N-agent game

converges to the return of the mean field game under the mean field generated by the other agent’s policy 7 as
N — oo.

Lemma B.5.6. Let {7"}yen with 7 € 11 for all N € N be an arbitrary sequence of policies and © € TI

an arbitrary policy. Further, let the mean field u = ¥(w) be generated by w. Then, under the joint policy

(7N, 7,..., ), we have as N — oo that

|J1N(7TN,7T,...,’/T)7JM(7TN)| —0.
Proof. Define for any t € 7, N € N

ran (s, V) = Z r(s,a, )7 (a | 5)

acA
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such that the family {r ~(s,)}ses,nen is equicontinuous, since for any v,v" € M as dum (v, V') = 0,

max max
s€eS NeN

Tan (8,0) = 1o (s, 1/)‘ -0

by continuity of r. The function r_~ is uniformly bounded for all N € N by assumption of uniformly bounded r.

By Lemma [B.5.4] and Lemma
lim |E[r(S},4;,G3,)] —E[r(S}', A}, w)]] |

N—oo
ZA;LHIOO‘E [ (1,68)] B[ N(S;‘,ut)” —0.
such that we have
1 41 _ g _
]\/]:E;noo}Jl 77T7"' ’|<Z hm |IE Stht7G )] ]E[T(StaAtalu/t)H_O'
tET
which is the desired result. | |

From Lemma [B.5.6} it follows that for any sequence of optimal exploiting policies {7V} yey with 7% € II for all
N € N and

¥ € argmax JN (m, 7%, ..., 7%)
mell

for all N € N, it holds that for any MFE (7*, u*) € I x M,

o) < u
) < g )
= J" (")
:J\;gnooJl( e, T)

and by instantiating for arbitrary e > 0, for sufficiently large N we obtain

IN(EN 1) — e = max JY (m, L) — €
mell

< max J* (n) — =
mell

= (") -
= JN(x*, 7", .., 1)

which is the desired approximate Nash property that applies to all agents by symmetry. O

B.6 Proof of Theorem 2

Proof. If ® or ¥ is constant, or if the restriction ¥ [, of ¥ to Il is constant, then I' = ¥ o ® is constant.
Assume that this is not the case.

Then there exist distinet m, 7" € g such that ¥(n) # ¥(n'). By definition of IIg there also exist distinct
w, i € M such that ®(u) = 7 and (') = 7. Note that for any v, € M with T'(v) # T'(v'),

dm(C(v),T(") > min dm (¥ (), U(n"))

! €Ellg , m#T’
where the right-hand side is greater zero by finiteness of IIg. This holds for pu, i’

To show that I' cannot be Lipschitz continuous, assume that I' has a Lipschitz constant C' > 0. We can find an
integer N such that

z+1) dm (,U,7 /L/) < minw,w’el'[q),ﬂ';éﬂ'/ dM(\II(W)a \I](,]TI))

da(p', N1 e



for all i € {0,..., N — 1} by defining

. i N—i,
po=pH s

for all i € {0,..., N}, and p* € M holds. By the triangle inequality

da(D(p), T(1)) < daa(L (), T(ph)) + ..+ dp (DY), T(u™))

there exists a pair (u?, u**1) with T'(u?) # T(u**1). For this pair, we have

da(D(u), D)) = dp(D(p), T(W)) = min  da(P(m), ¥(n)).

' €llg ,m#ET!

On the other hand, since I' is Lipschitz with constant C', we have

dp(T(ph), D) < C-dp(p', ™) < min dp(¥(n), ¥(x'))

7w, €llg ,mH# T’
which is a contradiction. Thus, I' cannot be Lipschitz continuous and by extension cannot be contractive. O
B.7 Proof of Theorem 3

Proof. Foralln > 0,ue M,t € T,s€S,a € A, the soft action-value function of the MDP induced by pu € M is
given by

Qnlpt.s,a) =r(s,a,p) + Y p(s'| s,a,m)nlog > qrar(a’ | s)exp

s'eS a’'€ A

Qn(u,t—i—l,s’,a')
n

and terminal condition Qn (u, T —1,s,a) = r(s,a, pr—1). Analogously, the action-value function of the MDP
induced by pu € M is given by

* t — / * t 1 ! i
Q" (u,t,s,a) T(S’a’utHS%p(s |37a>ﬂt>g}g§Q (ut+1,5,a")

and the similarly defined policy action-value function for 7 € II is given by

Q" (p,t,s,a) =r(s,a, ) + Z p(sl | s,a, put) Z 7Tt+1(a/ | S/)QW(/Jvt + lvslva/)a
s'eS a’€A

with terminal conditions Q*(u, T — 1,s,a) = Q™ (u, T — 1,5,a) = (s, a, ur—1).

We will show that we can find a Lipschitz constant K 3, of Qn that is independent of 7 if 5 is not arbitrarily

small. To show this, we will explicitly compute such a Lipschitz constant. Note first that Qm Q* and Q7 are all
uniformly bounded by M¢ = |T|M, by assumption, where M, is the uniform bound of r.

Lemma B.7.1. The functions Qn(,u,t, s,a), Q*(u,t,s,a) and Q™ (u,t,s,a) are uniformly bounded for all n >
O peM,teT,seS,ae Aby

@yt 5,0)| < (T = )M, < TM, = Mg
where M, is the uniform bound of |r(s,a, ut)| < M, and T = |T].
Proof. Make the induction hypothesis for all ¢ € 7 that
Qliastis )| < (T =)0,
forallp > 0,u € M,s € §,a € A and note that this holds for t =T — 1, as by assumption

Qo1 T = 1,5,0)| = Ir(s,a. )] < M,
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The induction step from ¢ + 1 to t holds by

~ Qn(p,t+1,5,a
Qn(/’%tvsaa)’ = T(Sva,ut) + Z p(S/ | S, a, ,U/t)nlog Z Qt-‘rl(a/ | 8/) exXp ( W(M )
s’eS a’e A n
A t+1.5.a
< Ir(s, a, pe)| + nmax |log > qriaa’ | s exp Qnlpt 11,5, )
a’€A U
T—t—1)M,
< M, + 1 |log (exp (()>)‘
n
=M, +(T—-t—1)M,=(T —t)M,.
By maximizing over all ¢ € 7, we obtain the uniform bound. The other cases are analogous. |

Now we can find a Lipschitz constant of Qn(u, t,s,a) that is independent of 1.

Lemma B.7.2. Let C, be a Lipschitz constant of pn — r(s, a, ) and C,, a Lipschitz constant of in — p(s’ | s, a, py).

Further, let Nmin > 0. Then, for all 1 > Nmin,t € T, the map p— Qn(1,t,s,a) is Lipschitz for all s € S,a € A

with a Lipschitz constant Kt independent of n. Therefore, by picking K~ = maxic7 Ké? , we have one single
n

Lipschitz constant for all n > nmm,t eT,seS,ac A

Proof. We show by induction that for all t € T,s € S,a € A, we can find Lipschitz constants such that
Qy(u,t, s,a) is Lipschitz in g with a Lipschitz constant that does not depend on 7.

To see this, note that this is true for t =T — 1 and any s € S,a € A, as for any u, u’ we have
‘QNU(/% T — 1a S, a) - Qn(:u/a T - 1a S, a)‘ = ‘T(S, a>MT71) - T(S7 a7/J’IT71)‘ S CTdM(:U/7M/) .
The induction step from t 4+ 1 to ¢ is

’Qn(u,t, s,a) — Qn(u,t, s, a)‘

< Ir(s,a,p) —r(s,a, py)| + Z
s'eS

QN /7t+ 178/7 a/
—p(s' | 5,0, 1)nlog 3 qra(a’| ) exp ( ald )

a’€eA N

)o(pt+ 1,8, d
log Z qey1(a’ | 8") exp <QU(M )>

a’€eA n

Jt4+1,8.d
710g Z qt+1(a, | 5/) exp (Q’O(M )>|

a’eA N

Q 7t + 1) 8/7 a‘/
p(s" | s,a, pe)nlog Y qiia(d | s') exp ( il )

a’€eA n

< Crdm(p, 1) +7]|S|max1

M
IS max = p(s” | 5,0 1) = p(s' | 5, )

'es
a1 (a’ ] ") eXP( )

< Crdpm(p, 1) +1|S| max
st | Sareadenla” | 8)exp (%

s'eS

y (@it + 1,5, 0) = Qo t 4+ 1,5, d)
+18Mo - Cydpa (i )

AlGmax M,
< Crdpa(p, p') + M exp (2 ' 77Q> Kz?tldM(u7u’) +[SIMCpd (s 1)

< (0t 2 e (22 et 4 51010 ) e )

Gmin min




where we use the mean value theorem to obtain some &, € [-Mq, Mg] for all a € A bounded by Lemma B.7.1|,

Lemma for the second inequality, and defined gmax = MmaxieT ses,ac4 G1(@ | S); Gmin = MiNteT se5,0e4 (@
s). Since s € S,a € A were arbitrary, this holds for all s € S,a € A.

Thus, as long as 7 > Nmin, we have the Lipschitz constant Kt = (CT + 4max oy (%) Kgrl + |S|MQCP)
n n

Gmin TImin

independent of 7, since by induction assumption K gl is independent of 7. |
"

The optimal action-value function and the policy action-value function for any fixed policy are Lipschitz in pu.

Lemma B.7.3. The functions p— Q*(u,t,s,a) and p— Q™ (u,t,s,a) for any fixed m €I, t € T,s € S,a € A
are Lipschitz continuous. Therefore, for any fired m € II we can choose a Lipschitz constant Kqg for all
teT,seS,ac A by taking the mazimum over all Lipschitz constants.

Proof. The action-value function is given by the recursion
Q* (it 5,0) = r(s,a, ) + Y (s | 8,0, ) max Q" (u, t + 1,5’ ')
e a’€A

with terminal condition Q*(u, T —1,,a) = r(s,a, pr—1). The functions r(s,a, ) and p(s’ | s, a, ) are Lipschitz
continuous by Assumption 2. Note that for any p, ' € M and any t € T, dry (i, 1) < dar(p, p'). Therefore,
the terminal condition and all terms in the above recursion are Lipschitz. Further, Q*(u,t, s, a) is uniformly
bounded, since r is assumed uniformly bounded.

Since a finite maximum, product and sum of Lipschitz and bounded functions is again Lipschitz and bounded by
Lemma, we obtain Lipschitz constants K¢ ; s of the maps yu — Q*(u,t,s,a) forany t € T,s € S,a € A
and define Kg = maxie7 ses,acA KQ,t,5,a- The case for Q7 with fixed 7 € II is analogous. |

The same holds for ¥(7) mapping from policy 7 to its induced mean field.

Lemma B.7.4. The function V(r) is Lipschitz with some Lipschitz constant Ky .

Proof. Recall that W(7) maps to the mean field p starting with pg and obtained by the recursion

pri1(s") = Z ZP(S, | 5,0, pe)me(a | s)pe(s) -

sES acA

We proceed analogously to Lemma 1 is uniformly bounded by normalization. The constant function
7 +— puo(s) is Lipschitz and bounded for any s € S. The functions r(s,a, u:) and p(s’ | s,a, pt) are Lipschitz
continuous by Assumption 2. Since a finite sum, product and composition of Lipschitz and bounded functions is
again Lipschitz and bounded by Lemma we obtain Lipschitz constants Ky ; s of the maps m — p,(s) for
any t € T,s € S and define Ky = maxye7 ses Kw s, which is the desired Lipschitz constant of W. |

Finally, the map from an energy function to its associated Boltzmann distribution is Lipschitz for any n > 0 with
a Lipschitz constant explicitly depending on 7.

Lemma B.7.5. Let n > 0 arbitrary and f, : M — R be a Lipschitz continuous function with Lipschitz constant
Ky for any a € A. Further, let g : A — R be bounded by gmax > g(a) > gmin > 0 for any a € A. The function

gla) exp (£01))

S weagla)exp (L))

(AI-D)K¢g2 ..
209510

o

is Lipschitz with Lipschitz constant K = for any a € A.

Proof. Let u, ' € M be arbitrary and define

Agfar(p) = far (1) — fap)
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for any o’ € A, which is Lipschitz with constant 2K . Then, we have

gla)exp (L2) gla)exp ()
Sweas(@)exp (B2) 5, ygla)exp (542)
! 1

A, B o Aqfur (1!

1 + Za ' ta g(a)) exp ( far (M)) 1 + Za’;éa L‘;((a)) exp ( fn (p ))
(a) 1 o
G@ 7 P (*)

; a” Ear
a'#a (1 + et gg((a) exp ( . ))
D |
a’#a (1 + max exp (T))

2 2
Ymax / (|A‘ — 1)ngmax
S 2Kyd -
= ngs,, 2 Pl 219t

IA

5" (Aafar(p) — Aafa/(//))

—

IN

) ‘Aafa’ (ﬂ) — Ay far (:“/)|

“d (s 1)

where we applied the mean value theorem to obtain some &,, € R for all a’ € A and used the maximum i of the

function f(x) = % at z = 0. |

For RelEnt MFE, by Lemma we obtain a Lipschitz constant K¢ of u — Qn(u, t,s,a) as long as 1 > Nmin

for some 7yin > 0. Furthermore, note that for 7/ = i)n(u), we have

| el (B2) g o (5520
70 5) ~ 7 a | )| = : - : .
Sweate(d | s)exp (SL220) 5, o yaula | 5)exp (Sl

We obtain the Lipschitz constant of (f,, by applying Lemma m to each of the maps given by

qi(a | s)exp (7@’(”{;75@))

Sweat(d | 5)exp (Gultsted)

forallt € T,s € S,a € A, resulting in the Lipschitz property

o

dr(®, (), &, (1)) = mogemay Z ] [a | s) = 7 a | 9))|
|A| Qmax ’ |'A| (|'A| - 1)K-7 QI211aX ’
<) "a, ~dp(p, p') = L (i)

2
acA nqmln 277qmin
where we define gmax = MaxieT scs,ac4 ¢:(a | s) and analogously gmin = MineT scs,0ca Gla | s).

By Lemma U () is Lipschitz with some Lipschitz constant Kg. Therefore, the resulting Lipschitz constant
(A=) K5, K gpax
2’rlqrznin

of the composition f,, =WVo <i>,, is and leads to a contraction for any

< A| (A - 1)K@nmq§m>
n > max TMmin 3 .
2qmin

Analogously for Boltzmann MFE, by Lemma the mapping u — Q*(u, t, s, a) is Lipschitz with some Lipschitz
constant Kq- forallt € T,s € S,a € A. For 7" = ®, (1), we have

, g:(a | s)exp (M) a:(a | 5)exp (M)
m (] s) = Ma | s)| = C;'*( Sy C;’( L
,t,s,a *(u! t,s,a’

Sweala | s)exp (L)) 57 gyl | s)exp (L)




We obtain the Lipschitz constant of ®, by applying Lemma [B.7.5] to each of the maps given by

qi(a | s) exp (W)

Sweat(d | s)exp (FleLeed)

forallt € T,s € S,a € A, resulting in the Lipschitz property

(@, (1), @y () = maxmax Y |xf"(a | 5) =t "(a | 5))|
A

o

_ |‘A| (|"4| B 1)KQ*qI2nax
2045

_ 2
< Z (|A| I)KQ*Qmax

“da (s ') dm (s ')

2
acA 277Qmin

By Lemmam U(7) is Lipschitz with some Lipschitz constant Ky. The resulting Lipschitz constant of the
ig AIAIZD K or Ku g,
S 2

2nqmin

composition I';, = ¥ o &, and leads to a contraction for any

g s LA = DEq-Kughy,
2qr2nin

where for the uniform prior policy, gmax = @min- If required, the Lipschitz constants can be computed recursively

according to Lemma O

B.8 Proof of Theorem 4

Proof. Consider any sequence (7}, i1 )en of n,-Boltzmann or 7,-RelEnt MFE with 7, — 0" as n — oco. Note
that a pair (7%, %) is completely specified by pf, since 7 = @, (uf) or 7 = ®,, (u%) uniquely. Therefore,
it suffices to show that the associated functions (i — Q%) (1, t,s,a))nen and (u — QP (W) (1, t, 5, a))pen
converge uniformly to p — Q*(u,t, s,a), from which the desired result will follow. For definitions of the different
action-value functions, see Appendix [B7]

Note that pointwise convergence is insufficient, since there is no guarantee that p, itself will converge as n — oo.
However, we can obtain uniform convergence by pointwise convergence and equicontinuity. For RelEnt MFE, we
will additionally require uniform convergence of the sequence (p + Q,, (i, t, 5,a))nen With 7, — 0. We begin
with pointwise convergence of (j — Q% (") (1, t, s, a))nen to the optimal action-value function p — Q*(u,t, s, a).

Lemma B.8.1. Any sequence of functions (i — Q%W (u,t,5, a))nen with n, — 0T converges pointwise to
p— Q*(p,t,s,a) forallt € T,s € S,a € A.

Proof. Fix u € M. We make the induction hypothesis for arbitrary ¢ € 7 that for all s € S,a € A,e > 0, there
exists n’ € N such that for any n > n’ we have

Q¥ (u,t,5,0) — Q" (,t, 5,0)| <&
The induction hypothesis is fulfilled for ¢t =T — 1, as by definition
QCDTM (1) (:U’7 tv S, a’) - Q* (p’a t7 S, CL) = |T(Sa a, ﬂt) - 7‘(8, a, ,ut)| =0.

Assume that the induction hypothesis is fulfilled for ¢ + 1, then at time ¢ let s € S,a € A,e > 0 arbitrary.

Furthermore, let s’ € S arbitrary. Collect all optimal actions into a set Ag;,t CA e ford e .Af,;)t we have

Q*(,LL, t, Slv aopt) = maXQ*(Hv t, 5,7 CL) .
acA

We define the minimal action gap

!
AQpin = , min Q" (1,8, aopt) — Q7 (11,1, 8, asup)) > 0
Aopt €A, asub EANAS ¢
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such that for arbitrary suboptimal actions asup € A\ A opt and optimal actions aept € Aopt7
Q* (M»t7 Slvaopt) - Q (;U/vt S asub) > AQmm .

This is well defined if there are suboptimal actions, since there is always at least one optimal action. If all actions
are optimal, we can skip bounding the probability of taking suboptimal actions and the result will hold trivially.
Thus, we assume henceforth that there exists a suboptimal action.

It follows that the probability of taking suboptimal actions as,n € A\ .Aopt disappears, since

qt(asub | 8)

Za’eA g(a’ | s)exp (Q*(u,t,s,a ) f*(uymsyasub))
1

- qi(a’|s) Q* (w,t,5,a")—Q* (1,t,5,as5ub)
1+ 2 wea qftasubl )exp( n : )

1]s)

<
- 9t (@opt|s) Q* (1,t,5,a0pt) —Q* (14,t,5,a5ub)
L4 G aals) P ( = )

1]s)
o aAQ
T+ e eXP( X )

as 1 — 01 for some arbitrary optimal action aep € Aopt Since s’ € § was arbitrary, this holds for all s’ €S.

Therefore, by finiteness of S and A we can choose ny € N such that for all n > ny and for all agy, € A\ .A opt We
have 7, sufficiently small such that

(P, (1)e(asub | 87) =

A

— 0

IN

€

(@ (1)e(asn | 8') < 5

where Mg is the uniform bound of Q% (1),

Further, by induction assumption, we can choose ny o for any s’ € S,a’ € A such that for all n > ny , we have

Q¥ (41,8, a) = Q@ (st 1,0} <

wl M

Therefore, as long as n > n’ = max(n1, maxy s o'eANs' o’ ), We have

‘Q‘I’nn(“) (u7 t,s, a) — Q*(,U/7 t,s, a)‘

> (s | s,a,m) (Z (B, (1))e(a’ | $)QP W) (p,t + 1, a") — max Q(u,t + 1, s, a”)) ‘

s'eS a’eA

< ’ D, (1 _ * o n
< max %:A(%( i@ | $NQPm W (pt+1,5,a') max Q(p,t+1,5',a")

< / D, (1 _ * ron
< max > (@, (w)ield | QP (p,t 41,8, d) max Q(p,t+1,5',a")
a’€AS!

opt

tmax| D (R, ()i’ | QYW (u,t 41,5 a)
a’€A\AS,,

<max| ST @y, ()@ | Q0O (b +1,5,0) ST (B, (1)@ | 5) max @t + 1, a")

s'eS
a eA;pt a eA;pt



/ / * / " * / 1
T+ max Z, (@, ()e(a" | 8') max Q" (u, ¢ +1,8",a") — max Q*(u,t + 1,5, a")
a’€AS

opt

@y,
Fmax| D (@, ()ila | QT (it 41, a)
a’€ A\ AS!

opt

< max max

Q':I)nn (se) (M? i+ 17 S/a Cl/) - ma‘}j Q* (M? i+ 1) 8/7 CL”)
a’’e

8'€S "’IEAg;t
! !/ / !/

tmax Mo = Y (By,(n)eld’ | )| +maxMo| Y (By()ela’| )

a’€A\AZ, a’€A\AS,
€ € €
< s+ 7 AMo+ 577 |AlMg =¢.
3 3lAMg A[Me 3| A Mg A[Me
Since s € §,a € A,e > 0 were arbitrary, the desired result follows immediately by induction. |

As we have no control over u* and the sequence (7, puk),eny may not even converge, pointwise convergence is
insufficient. To obtain uniform convergence, we shall use compactness of M and equicontinuity.

Lemma B.8.2. The family of functions F = {p — Q%W (p,t, s, a) }y>0,teT scS,acA 1S equicontinuous, i.e. for
any € >0 and any p € M, we can choose a 6 > 0 such that for all ' € M with dp(u,p') < 6 and any f € F
we have

[f(p) = f(u)] <e.

Proof. Fix an arbitrary u € M. We make the (backwards in time) induction hypothesis for all ¢t € T that for any
s€S,a€ A esq >0, there exists §; 5, > 0 such that for any p/ € M with da(p, p') < 81,54 and any f € F
we have

Q¥ () (,t,s,a) — Q¢’77(u/)(ul7t, 5,a)| < Etsq-

The induction hypothesis is fulfilled for t =T — 1, as by assumption, v — r(s,a, ;) is Lipschitz with constant
Cy > 0. Therefore, for all s € S,a € A we can choose dp_; 5, = Stc’sr"’ such that for any u, p with da(p, p') < ¢
we have

‘Qq:‘n(#) (/”'a t7 87 CL) - Qén(ul)(/’(',7 ta Sa Cl)‘ = |T(87 a‘7 Mt) - T(S7 CL, :U/;)| S C”dM (/’[’? :u/) < 575787(1 N

Assume that the induction hypothesis holds for ¢ + 1, then at time ¢ let ;54 > 0,5 € S,a € A arbitrary. By
definition, we have

Q0 (1t 5,0) = Q0 5, a)|

rsia i) + 30 p(s [ saum) 3 (@) (a! | )QP Pyt + 1, ')

s'eS a’€A
—r(s,a, ) = Y p(s" [ s,0,00) Y (@y(p))esa(a’ | )QT ) (Wt 41,5, a)
s'eS a’'eA

< |T(S’ a, /’Lt) - T(Sv a, N;&)'

>

(p(sl | S, @, ,Uft) - p(sl I s,a,ug)) Z ((I)n(/‘))ﬂrl(a/ ‘ s/)Q(I)”(M)(:uvt"_ 1, slv al)

s'eS a’'€e A
+ > p(s' s a,pmp) Y ((<I>n(u))t+1(a' )T (1t + 1,5 a’) — (@ (1))esa(a | $HQT ) ('t + 1,8'70'))‘
s’eS a’'€eA
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< |7"(8, a, /J't) - T(S7 a, /1';5)|

+ > |0 s a,m0) = p(s' | 5,0, 00) Y (@) esa(a’ | 8)QP W (u,t+ 1,8, a)
$'ES a’'€A

i 30 (@) (@ [ QT (1 41,8 0) — (@ (Y ea(a’ | QT (1 41,8 ))
a'€As!

opt

+max| D (@y(m)esa(a’ | )Q™ 0 oyt 41,8 a') = (@ (1)o@ | )QP W (st +1,5',a))
a’ €A\AS,,

where we define A3, C A for any s’ € S to include all optimal actions aop; € Ag;t such that

opt
Q*(lu“v ta 8,7 aopt) = max Q*(,U, ta 8,7 CL) .
acA

We bound each of the four terms separately.

For the first term, we choose 6} s.a = &% by Lipschitz continuity such that
Et.s,
‘T(S7avut) _T(S7aa ,LL;)| < ia

for all p/ with daq(p, i) < 6} 4 4

For the second term, we choose 67, , = 4|suv1 o such that for any u' € M with da(u, ') < 62, , we have

t,s,a

Do [ siaipm) = (s [ s,a,1) Y (Ey(p)ern(@ | $HQ™ W (pt + 1,8, )

s'eS a’'€A

< 1SICydaaliu, 1) Mg < =2

where Mg denotes the uniform bound of @) and C), is the Lipschitz constant of v — p(s' | s, a,vy).

For the third and fourth term, we first fix s’ € S and define the minimal action gap as

’
Aan;ﬁ = min (Q*(/.L, L, 8,7 @opt) - Q*(Ua t, 8/, asub)) :
Qopt EAOptaaiub cA\ AL

opt

This is well defined if there are suboptimal actions, since there is always at least one optimal action. If all actions
are optimal, we can skip bounding the probability of taking suboptimal actions and the result will still hold.
Henceforth, we assume that there exists a suboptimal action.

By Lipschitz continuity of u — Q*(u,t, s,a) from Lemma implying uniform continuity, there exists some
5% > 0 such that

t,s,a
AQS
Q" (1. 0) — @ (') < 2
for all ¢/ € M,a € A where dp(p, 1) < 5t3§a, and thus
AQS iy
AQm;ﬁ = min (Q* (//a ta S/a aopt) - Q* (/’Lla ta Sla asub)) > —“min .
Aopt €A aeun EAVAS 2

Under this condition, we can now show that the probability of any suboptimal action can be controlled. Define

— a’l|s _ als /
Iqmn = MilteT 5€S,aeA,a’€ A qt((a|ls)) > 0 and max = IMaXte7T,5€S,acA,a’€A qt((al‘s)) > 0. Let agup € A\Agpta then
we either have

|( @y (1)1 (asun | 87) = (@ (1)) 41(asun | 5]



1

B ae(a’]s") Q* (11,t,8',07) = Q* (1,5, Gsup)
L+ Z '#asub gt (asub|s’) exXp ( n )
1
qi(a’ls’) Q*(p',t,s",0") —Q* (1 t,8" ,asun)
1 +2 @' Feuy @t (azun]s?) P ( n )
1
S . * t ! ,)7Q*( t ’7 )
1 + maxa/#aSUb Rflmn exp <Q (p,t,8"5a . Myt1,8",Gsub )
1
+ i Q*(p/ t,s",a")—Q*(p',t,s" ,asub)
1 +maXa’7ﬁasub R;nln eXp( MBo51,87, ; M 51,8",asub )
1 1
< ’ + !
s i s’
1 + len eXp <AQmm ) 1 + Rglln eXp (Agmin )
n
= — 8;/.;b|{i4|
i AQu Q
1+ Ry™ exp < o )
if €15, > 16Mg|A| trivially, or otherwise if n < nfr;in with
= AQ
min — 16M A )
2lo 0g (% Rf}]m)

in which case we arbitrarily define 5;1 SS o = 1, or if neither apply, then n > Uﬁiin and thus

(@ (1) i1 (asun | 87) = (P (1)) 141(asun | 5)]

1
) 1+ a’'#asup qt(asu}‘)sls/) exp (Q*(“’t’sl7a/)_$*(“’t75"asub))
1
1 Tty L ap (L) 0 )
Za/#asub th(;(i/b‘\sz’) (exp (Q*(H,’m,’a,)j?*(Hl’t’S”as"b)) — exp (Q*(“’tlslaa')*f*(u’t,S’,asub)))

(1+...).(1+...)

S R;nax Z exp (Q*(,Ul, t7 S/a Cl/) - Q* (,u/a t7 S/a asub)) — exp (Q*(,u7 ta 3/7 al) - Q*(,uv ta 3/7 asub)) ‘
a/;éa ub n n

< Rmax Z 50/ Y 1 * ro * /

= flg 7exp /~L tS a) Q (N?tvsaasub))_(Q (/l,t,S,a)_Q (Natasvasub)”
a’#asub

< Ry™IA[ )(lQ (Wt s a") = Q" (. t, 8", a) +1Q7(n, 1, 8", asun) — Q7 (1,1, 8", aup))

2o (i

S/ eXp
77I'ﬂll’l 77

st

€t,s,a
< Ry™A| - —— 2Kqd i
- | | fnin P T)min > @ M(M ) 8M ‘A|
by the mean value theorem with some &,/ € [-2Mg,2Mg] for all ' € A, where we abbreviated the denominator

(I4+---)-(1+---) >1, as long as we choose

’
s
!
4,8" €t,s,aMmin

t,s,a —
8Mgq|A|? Rax - exp (

)-2KQ

Mmin
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and dy(p, p') < 52{’;/&, where K¢ is the Lipschitz constant of p — Q*(u,t, s,a) given by Lemma

Since s € S was arbitrary, we now define 67, , = mingcs 55’,’;/&, 6t sa = Minges 5?5;1 and let daq(p, p') <
min(87 , 4,07, ). Under these assumptions, for the third term we have approximate optimality for all optimal

actions in .Aglpt, since by induction assumption we can choose 6;11 ¢ o for all ' € S,a’ € A such that for all

€ M with dag(p, p') < 041,570 1t holds that

Cn ) (yt+1.8.a) — @, (u') T /‘< €t,s,a .
Q (M? )S?a/) Q (M7 78)0’) 16‘A|+8

and therefore for all ;' € M, as long as da(ps, p') < mingres.a’e A Or41,s/,a, We have

max > (@y()ega (@ | QT (ot + 1,5 a") = D (@y())esa(a’ | QT (1t 41,5, d)
s'e
@ EAZ, a’€AS

opt

Smax| 3 @)@ [ QMO+ 1,500 Y @) (@ | QU 141, a)
s'e
a’€AS, a’€AS,

+H}g§ Z ((I)n(ﬂ))t-l—l(a/ | SI)Q(I)T’(#,)(,U/,t—F 1,5’,a’) _ Z ((I)n(,u/»t-&-l(a/ | s')Qé"(‘“)(,u',t—i- 1,5’,&’)
a’EAg;t a/eAs’

opt

< max max ‘Q{’"(“)(u,t—l— 1,8, a)— QP W) (W t+1, s',a')‘
s’eSa’eA

+ max Z ((q>n(ﬂ))t+1(a/ | S,) - ((I)n(:u,))ﬂrl(a/ | 8/)) (Q@n(ul)(ulﬂt +1, 5/7 a/) - Qq)n(H) (M7t+ L 8/7 a/)>

s'eS ,
a’€AS,

x| 30 (@)@ 8) ~ @0 s | ) QP (41,
a'CAS

opt

< max max ‘Q‘b”(“)(mt—i— 1,8 ,a") — Q‘I’n(u’)(u’,t +1, s’,a’)‘
s’€S a’eA

+ max max 2| A ‘Q‘b”(",)(u’, t+1,8,a")— QW (ut+ 1,5, a’)‘
s’eSa’eA

D, (1) t+1.5.a"
s [ L)

D (@)@ |8) = (@y(u))esa(a’ | 1)

a’€A\AS,
Ets,a €t,s,a E':t,s,a
<(1+2|A|)-716|A|+8+MQ|A\-78MQ|A| <=

where we use that for any o’ € .Af)/pt we have

QUM (it + 1,8 a) = max QT (u,t + 1,5, ")
a’’ e

Analogously, for the fourth term we have

ves ST (@)@’ | $)QT W (it + 1,8, d)) — (By (1)) e (a” | 8)QP W) (1t + 1,8, a))
s'e
a’€ A\ AS!

opt

<max D0 [@y()ea(@ [ SRVt + 18 ) = (@ (1)’ | QT (Wt 41, a)
s’'e
a’' €A\ A2

opt



+ max Z ‘(@n(u))tﬂ(a’ | SNQE (1 b+ 1,8 a") — (@ (1)) i1 (a’ | QT (Wt + 1,5, d")

s'eS ,
a’ €ANAG
D, (1) o D, (w1 o
< maxmax | Q™0 t +1,5',0') = QP+ 1,5, a)
s’eS a’eA
+max Mg Y (@)@’ [ ) = (By(1))iga(a’ | 8)]
s'eS
a’€A\AS,
Et s.a Et,s,a Et,s,a
< b MolAl - »S, _ Sbs,
s+ MolAl SMq|A| 4

under the previous conditions, since as long as we have daq(p, ') < d¢q1.6 .00 for all s € S,a’ € A from before,
we have

Et,s,a €t,s,a

(I)ﬂ(u) t 1 ' al) — 11)77(”/) It 1 ! < <
Q (M7 + 7S7a’) Q (:U/7 + 783a) 16|.A|+8 ]

Finally, by choosing d; s, such that all conditions are fulfilled, i.e.

3 4 :
t,s,a’ 6t,s,a7 5t,s,a? s’Egl,ln A5t+1,s’,a’> >0 3

a’'e

Ot,5, = IMin (525178@, 67
the induction hypothesis is fulfilled, since then for any p’ with daq(p, ') < 0¢,s,4 We have

‘Qq’”(“) (11, 5,a) — QP (1 1,5, a)‘ < Etsa-

Since n > 0 is arbitrary, the desired result follows immediately, as we can set €, 5, =€ foreacht € T,s € S,a € A
and obtain ¢ = maxie7 scS,acA 0t,5,q, fulfilling the required equicontinuity property at p. |

From equicontinuity, we get the desired uniform convergence via compactness.

Lemma B.8.3. If (fn)nen with f, : M — R is an equicontinuous sequence of functions and for all p € M we
have fn () — f(u) pointwise, then fn(1) — f(p) uniformly.

Proof. Let € > 0 arbitrary, then there exists by equicontinuity for any point 4 € M a §(u) such that for all
w' € M with daq(p, ') < 8(u) we have for all n € N

€
|fn(/’6) - fn(ul>| < 5
which via pointwise convergence implies

|f(p) = F(u')] <

Wl m

Since M is compact, it is separable, i.e. there exists a countable dense subset (u;);en of M. Let 6(u) be as
defined above and cover M by the open balls (Bj,,)(1;)) en. By the compactness of M, finitely many of these
balls B(g(ﬂnl)(unl)7 o ,Bg(unk)(,unk) cover M. By pointwise convergence, for any ¢ = 1,...,k we can find an
integer n; such that for all n > n; we have

€
<z

| fr(tins) — f(hin,) 3

r n; and arbitrary p € M, we have

.....

[Fa0) = LU < 1) = Falpn )]+ alpind) = ) 4+ | Fan) = Sl < 545 + 5 <<

for some center point p,, of a ball containing p from the finite cover. |

Therefore, a sequence of Boltzmann MFE with vanishing 7 is approximately optimal in the MFG.
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Lemma B.8.4. For any sequence (75, uk )nen of nn-Boltzmann MFE with n, — 07 and for any € > 0 there
exists integer N € N such that for all integers n > N we have

JHn (%) > max JHn (1) — e .

™
Proof. By Lemma F=(ur Q¥ W (1,t,8,a))y>01eT,se5.ae4 18 equicontinuous. Therefore, any sequence
(= Q®m W (1, t,5,a))nen with 7, — 07 is also equicontinuous for any t € T,s € S,a € A.

Furthermore, by Lemma [B.8.1} the sequence (p — Q®m () (1, t,5,a)),en converges pointwise to pu — Q*(u, t, s, a)
foranyt € T,s € S,a € A.

By Lemma , we thus have ‘Q‘bnn W (p,t,s,a) — Q*(p, t, s, a)‘ — 0 uniformly. Therefore, for any € > 0, there
exists an integer N by uniform convergence such that for all integers n > N we have

Qﬂ—:l (l’(‘:wta 5, CL) > Q*(/J/:mta S, a/) —&= maﬁ{Qﬂ(,u/:pt? Saa) — &,
TE
and since by Lemma we have

() = 3 mols) - 3 QT (it ,) = 3 po(s) - max 37 Q7 (us ) — & = max JH () — e,

seS acA seES aEA
the desired result follows immediately. |
Finally, we show approximate optimality in the actual N-agent game as long as a pair (7%, u*) € II x M
with p* = ¥(7*) has vanishing exploitability in the MFG. By Lemma for any sequence (7}, ik )nen of

Np-Boltzmann MFE with 7,, — 07 and for any € > 0 there exists an integer n’ € N such that for all integers
n > n’ we have

JHn (1) > max JHn (n) — ¢ .

™

Let ¢’ > 0 be arbitrary and choose a sequence of optimal policies {7V} yen such that for all N € N we have

N € argmax JN (m, 7k, .. 7).
well

By Lemma there exists N’ € N such that for all N > N’ and all n > n’, we have

/

* g
m)—e—€ < Hn () —e — =
grrlgng( Vs ey M) =€ — € Smax Jin (m) —e — o
* e
SJ#"(WZ)—E
< IN(mp )

which is the desired approximate Nash equilibrium property since ¢, &’ are arbitrary. This applies by symmetry to
all agents.

For RelEnt MFE, the same can be done by first showing the uniform convergence of the soft action-value function
to the usual action-value function. For this, note that the smooth maximum Bellman recursion converges to the
hard maximum Bellman recursion for any fixed pu.

Lemma B.8.5. For any f: A— R and any g : A — R with g(a) > 0 for all a € A, we have

hm nlogz exp—)—maxf( ).

acA
Proof. Let 6§ = % — 400. Then, by L’Hospital’s rule we have

i 985 aca9(@ep(0f(@) _ | Eacagl@)exp (3f(a) f(a)
P 0 sotoo e 9(a)exp (3f(a))




b Daeas@ e O — masiea S(0) fla)
sotoo ) aca9(a)exp (6(f(a) — maxaen f(a)))
|Amax| maXge A f(a)

- — max f(a)

|-Amax| acA

where | Apax| is the number of elements in A that maximize f. |

Using this result, we can show pointwise convergence of the soft action-value function to the action-value function.

Lemma B.8.6. Any sequence of functions (u — an(u,t,s,a))neN with 0, — 07 converges pointwise to
e Q*(u,t,s,a) forallt € T,s € S,a € A.

Proof. Fix p € M. We show by induction that for any € > 0, there exists 1, > 0 such that for all n < n; we have
‘Qn(u,t, s,a) — Q*(,u,t,s,a)‘ <eforallteT,seS,a € A This holds for t =T — 1 and arbitrary s € S,a € A

by Lemma since r(s, a, ur—1) is independent of 7. Assume this holds for ¢ + 1 and consider ¢. Then, by the
induction assumption we can choose 7,41 > 0 such that for < 7,1, as n — 0" we have

- Do(pt+1,8,d
Qupst,s,0) =r(s,a,m) + Y p(s' | s,a,m)nlog Y qipa(a’ | s')exp (Q”(” )>

s'eS a’€A N
Q (it +1,5,a') + 5
< r(s,am) + 3 (6 | 5,0 m0108 3 qiea(@ | ) exp ( 2
s'eS a’€A N
— T(Sa avﬂt) + Z p(sl | S,G,Mt) max Q*(/Jﬂt + ]-1 Slva/) + E
s a’€eA 2

by Lemma and monotonicity of log and exp. Analogously,

[ S]]
N————

- M,t—i— 1,5, a
Qulists.0) 2 r(ssage) + 3 00! 5.0, n1os 3 e’ o) exp (£ -
s'eS a’eA
=
2"

— r(s,a, ) —I—Z s |saut)maXQ (u,t+1,8,a") —
s'eS

Therefore, we can choose 1, < 7m:41 such that for all n < n, we have

<e€

Qﬂ(ﬂvt78aa) - Q*(:uﬂtvsva)‘ = ‘Qn(uvtasva) - (r(svanut) + Z p(S, | S, a, ;U't) g,lgﬁQ*(ﬂat"_ 1,8/,0/)>

s'eS

which is the desired result. | |

We can now show that the soft action-value function converges uniformly to the action-value function as n — 0*.

Lemma B.8.7. Any sequence of functions (u an (11,t,8,0))neny with 9, — 0T converges uniformly to
w— Q*(u,t,s,a) forallt € T,s € S,a € A.

Proof. First, we show that Qn(u, t,s,a) is monotonically decreasing in n for > 0, i.e. %Qn(u, t,s,a) <0 for all

teT,seS,a€ A This is the case for t =T — 1 and arbitrary s € S, a € A, since Q,,(,u,T —1,s,a) is constant.
Assume this holds for ¢ + 1, then for ¢ and arbitrary s € S,a € A we have

0 =~ Q(u,t—i—Ls’,a’)
%Qn(uvtvsva) = p(s'|s,a,m)log Y qra(d | s')exp < .

s'eS a’eA N

e | s (e131) () 041,00

1
n
Qn(u,tﬂs o )

+ > (s | 5,0, pe)n

s'eS Z(L’GA th(a’ | S/) exp (
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Qn(mtﬂ,s’,a’)) Qu(p,t+1,s,a")

(Qn(ﬂyt—F 1,8’,&’)) B Dowendiri(a | S’)exp( - :
n

< max | log Z qir1(a’ | 8")exp

= Qq(p,t+1,s" a’
* a’eA n( ))

Yoweadiri(a | s')exp ( 7

_ Qupttl,s’,a)
- n
the convex function ¢(x) = xlogx we have

Z qe+1(a’ | s")plexp&ar) > ¢ (Z Gev1(a’ | Sl)expfa/>

by induction hypothesis. Let &,/ € R and s’ € S arbitrary, then by Jensen’s inequality applied to

a’€A a’eA
= > an(d | )éwexpl > (Z gr1(a’ | s") exp &v) log (Z gr1(a’ | 8')eXp£a/>
a’€eA a’€A a’€eA

— log (Z Gera(@ | ) expéa

a’€A

o Za’EA Qt+1(a/ | Sl)fa’ €xXp fa’
(ZalgA Qt+1(a, | 8/) €xXp ga’) -

such that Qn (4, t, 8,a) is monotonically decreasing for all ¢t € T,s € S, a € A by induction.

Furthermore, M is compact and both Q,, and () are compositions, sums, products and finite maxima of continuous
functions in p and therefore continuous in p by the standing assumptions. Since (p +— Q (u, t,8,a))neny With
n, — 01 converges pointwise to p +— Q*(u,t,s,a) forallt € T,s € S,a € A by Lemma 6, by Dini’s theorem
the convergence is uniform. ]

Now that Q,, converges uniformly against @, we can show that RelEnt MFE have vanishing exploitability by
replicating the proof for Boltzmann MFE.

Lemma B.8.8. Any sequence of functions (pu +— Q‘i’"n () (p,t, s,0))nen with n, — 07 converges pointwise to
w— Q*(u,t,s,a) forallt € T,s € S,a € A.

Proof. The proof is the same as in Lemma [B:8.1] The only difference is that we additionally choose ny € N in
each induction step such that for all n > ny we have

: . AQu

‘QTI(:UW ta S, a’) - Q (M? t? S, (L)‘ S T
forallt € T,s € §,a € A, which is possible, since by Lemma Qn converges uniformly against Q). As long
as we choose n/ = max(nl, Mg, MaXs eS,a’c A Ns' a ), the rest of the proof will apply. [ |

Lemma B.8.9. Any sequence of functions (p — QP (1) (p,t,8,a))nen with n, — 0 fulfills equicontinuity for
large enough n: For any e > 0 and any p € M, we can choose a 6 > 0 and an integer n’ € N such that for all
@€ M with da(p, 1) < & and for all n > n' we have

QP (1, 5,0) = Q¥ Uy 5, 0)| < .

Proof. To obtain the desired property, we replicate the proof of Lemma by setting F = (u —
Qom (“)(u,t, $,a))nen- Any bounds for Qn can be instantiated by the corresponding bound for ) and then
bounding the distance between both by uniform convergence. The only differences lie in bounding the terms

(P (1) (st | ) = (B, (1) (@ | )

where the action-value function has been replaced with the soft action-value function. Smce an uniformly
converges to (), we instantiate additional requirements Nt NtsS o tolet n > Nfs > Nt s.a large enough
such that 7 is sufficiently small enough.

s,a?’

The first difference is to obtain

’
AQL N

Q~77'rz (M/ata57a) - an (/’('7t75aa) < 4



for all ' e M,t € T,s € S,a € A with dp(p, ') sufficiently small. We choose 63
the original proof, such that if d(u, p') < 53

t,s,a°

slightly stronger than in

t,s,a

we have

’
S
AC2min

|Q*</”//7ta S,CL) —Q*(,u,t,s,a)| < 12

We must then additionally choose Ng‘;lsﬂ € N for each induction step via uniform convergence from Lemma W

such that as long as n > Nt we have

s,a?

) : AQuin
)an(/’[/7t7s7a’) - Q (/J/,t,S,a)‘ < T .

This implies the required inequality

Qﬁn(ul7t757a) - an(u,t,s,a)‘ S ‘an(ﬂl7t757a) - Q*(Ulvtasaa)‘ + ‘Q*(/J//)tvsva') - Q*(Uata57a)|

+ ’Q (u,t,s,a) 7an(uﬂt757a)’ < T

and we can proceed as in the original proof.

The second difference lies in choosing (5t s.q- Note that an is still bounded by Mg, see Lemma However,
since @, might no longer be Llpschltz with the same constant as Q*, we choose an additional integer Nts;a eN

for each induction step by Lemma such that as long as n > Nt s,a» We have
€t,s,a
~ . . T6M |A\
’an(ﬂ,t,s,a)—Q (Matasva)lgAZ?: ~ oM.
4Rma"\.,4| exp ( e Q)

for any ' € M,t € T,s € S,a € A. The required bound then follows immediately from

‘((I)Tln( asub ‘ S ( T],L asub ‘ 5 |
Rmax exp ( M t S a) Qﬂn (Mlyt,Slyasub)> — exp <Q77” (,ll/7t78/7(l/) — an (u,t,s’,asub)>‘
'#abub n n
< S0 Lo ()@ 005 = Q005 ) @i ts5) = @y ()
a’' #asub
< Al e (22 ) (|00, 000020) = Q') @ et ) = B 0t )
< RmaX|A| —— €Xp < > QKQdM(‘LL, ) —+ 4Aé)
M 5tsa €t,s,a
< R™|A L 2K oda (11, 1t < _Cbs,
A Xp( P2 ) Rl ) + oty < grreey

as in the original proof by letting da(p, ') < 5he

ts.q and choosing

/
4,s’ Et,s anmln

16MQ|A|2RmaX exp (

2) 2K

Min

n> N¢

The rest of the proof is analogous. We obtain the additional requirement n > Nt fs.a

for some integers

Nfs a,NtSS qsandeacht € T,5s€S,s' €S5,a € A By choosing n’ = maxie7 se5,5/€5,ae4 max(Nt < a,Nt s.a)s the

desired result holds as long as n > n/'. |

s,a?

From this property, we again obtain the desired uniform convergence via compactness of M.
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Lemma B.8.10. Any sequence of functions (p — Q‘i’"n ) (p,t, s,0))nen with 0, — 07 converges uniformly to
= Q*(u,t,s,a) forallt € T,s € S,a € A.

Proof. Fixe > 0,t € T,s € S,a € A. Then, there exists by Lemma for any point 1 € M both 6(p) and n’
such that for all y/ € M with da(p, p') < 6(u) for all n > n’ we have

QP t,5,0) = QP ) (it 5,0) | <

wl ™

which via pointwise convergence from Lemma [B.8.8| implies

|Q*(/~L7t, S, a) - Q*(/Ll,t, Saa)l S

w| ™

Since M is compact, it is separable, i.e. there exists a countable dense subset (u;);en of M. Let §(u) be as
defined above and cover M by the open balls (Bj,,)(1;)) en- By the compactness of M, finitely many of these
balls Bé(unl)(l‘m)v . ,Ba(unk)(unk) cover M. By pointwise convergence from Lemma foranyi=1,...,k
we can find integers m; such that for all n > m; we have

QP ) (1, 5,a) — Q (fin, 5, a)| <

Wl ™

Taken together, we find that for n > max(n/, max;—1 ., m;) and arbitrary p € M, we have

Q<i>,," (w) (p,t,8,0) — Q* (u,t, s, a)) < ’Qénn (w) (1,t,s,a) — Q‘i’nn (”"i)(ﬂni,t s’a)’
+ 'Q&)Tm (Hni)(,unmta S, a) - Q*(,uni, t,s, a)’
+ |Q*(:U’nn t7 S, CL) - Q*(/l, t, S, a)|

<§+§+§<5
3 3 3

for some center point p,, of a ball containing p from the finite cover. |

As a result, a sequence of RelEnt MFE with 7 — 0% is approximately optimal in the MFG.

Lemma B.8.11. For any sequence (7%, ) nen 0f Mn-RelEnt MFE with n, — 07 and for any € > 0 there exists
integer n’ € N such that for all integers n > n’ we have

JHu (%) > max JHn (1) — €

Proof. By Lemma [B.8.10, we have ‘Q‘i’nn ) (p, t, s,a) — Q*(p,t,s,a)| — 0 uniformly. Therefore, for any £ > 0,

there exists by uniform convergence an integer n’ such that for all integers n > n’ we have
Qﬂ—:l (/’(‘:7,7 ta 5, a) > Q*(/J’:“ ta 5, a‘) —&= maﬁ{ Qﬂ(,u:;a t7 S, Cl) - &,
kS
and since by Lemma[B.3.1] we have

JH;(T(:L) = ZMO(S) ’ Z QW;(M:wtvS’a) 2 ZMO(S) ' ITIrlealzI( Z Q" (tpst,8,0) — = max J#n (m) —¢,

mell
sES acA sES acA

the desired result follows immediately. |

By repeating the previous argumentation for Boltzmann MFE with Lemma and replacing Lemma [B.8.4]
with Lemma [B:8:T1] we obtain the desired result for RelEnt MFE. O



C Relative entropy mean field games

We show that the necessary conditions for optimality hold for the candidate solution. (For further insight, see
also Neu et al.| (2017)), Haarnoja et al.| (2017) and references therein.) Fix a mean field 4 € M and formulate the
induced problem as an optimization problem, with p;(s) as the probability of our representative agent visiting
state s € S at time ¢ € T, to obtain

le%rx Zzpt Zﬂ-t a| ) (S7a’hut)

t=0 seS acA
subject to  pii1(s Zpt Z mi(a | s)p(s' | s, a, ) vs' € S,t€{0,...,T —2},
s€S acA
1:Zpt(s) vt € {0,...,T — 1},
seS
1:Z7rt(a|s) Vse S,te{0,...,T -1},
acA

0 < pe(s),0 < m(al s) VseS,ac A te{0,..., T —1},

to(s) = po(s) VseS.
Note that if the agent follows the mean field policy of the other agents, we have p; = ;. The optimized objective
is just the expectation E [Z;‘F:_Ol (S, At)} . As in|Belousov and Peters| (2019), we change this objective to include

a KL-divergence penalty weighted by the state-visitation distribution p;(-) by introducing the temperature n > 0
and prior policy ¢q € II to obtain

s ZZpt ) milal )r(s.a, ) nzzpt )Dx(m(- | 5) [ (-] )

t=0 seS acA t=0 seS
subject to pii1(s Zpt Z mi(a | s)p(s' | s, a, ) vs' € S,t€{0,...,T —2},
seES acA
1:Zpt(s) vt e {0,...,T —1},
seS
1:Z7rt(a|s) Vse S,te{0,...,T —1},
acA

0 < pe(s),0 < m(a]s) VseS,ac A te{0,..., T —1},
1o(s) = po(s) Vs € S.

We ignore the constraints 0 < m:(a | s) and 0 < p(s) and see later that they will hold automatically. This results
in the simplified optimization problem

max ZZpt )Y mila ] s)r(s, a, ) UZZM )Dxr(me(- | 5) [ qe- | )

Pt,Tt

t=0 scS acA t=0 scS
subject to  pii1(s Zpt Z mi(a| 8)p(s' | s,a, ps) vs' € S,t€{0,...,T — 2},
s€ES acA
I:Zpt(s) vt e {0,...,T — 1},
s€ES

1:Z7rt(a|s) Vse S,te€{0,...,T -1},
acA

to(s) = po(s) Vs € S,

for which we introduce Lagrange multipliers A1 (¢, s), A\a(¢), As(t, s), Aa(s) and the Lagrangian

me(a | S
L(p;'/T )\1;A2,)‘37>\4 Zzpt Zﬂ-t a‘ ) <r(sva’“t) 77710g qt((a||8))>
t

t=0 seS a€A
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T-1
=Y > M) (Pt+1 = pu(s) > milals)p(s' | Svaaﬂt)>

t=0 s’eS sES acA
T-1

Z Ao (t (1 - Z pi(s >

t=0 seS

T-1

=303 alts (Zm(a|s)1>

t=0 seS acA

Aa(s) (no(s) = po(s))

»
mM
%}

with the artificial constraint A\ (7' — 1, s) = 0, which allows us to formulate the following necessary conditions for
optimality. For V., (qs)L and all s € S,a € A,t € {0,...,T — 1}, we obtain

|
Viitals) L = pi(s) (r(s,a,ut) nlog n+ Z Ai(t, s)p(s' | s,a m)) — As(t,s) =0
s'eS
r(s,0, 100) = 1+ X es Mt SID(' | 5,0, p10) — 2203

=7, (a|s)=qla]|s)exp 7

For Va,L and all s € S,t € {0,...,T — 1}, by inserting 7} we obtain

!
Viasts)L =1~ Z mi(a|s) =0
acA

T(Sa a, Ht) -1 + ZS/ES A1(167 S/)p(sl | S, a, ,u‘t) - A;P((t‘;i)

n

= 1= th(a|s)exp
acA

which is fulfilled by choosing

As(t, s) = npe(s)log Z qi(a | s)exp
acA

(7’(8, a, N’t) - + ZS’GS Al(tv Sl)p(sl | S, a, ﬂt))
n

since it fulfills the required equation

r(s,a, 1) =1+ Yyes Mt (s | 5,0, 1) — 2502
Z qi(a | s)exp
acA N
T(Sv a, /’Lt) -1 + ES’GS )‘1(757 Sl)p(s/ | S, a, /’[’t)
= Z qi(a | s)exp
acA N
-1
s &y —-n+ ’ A ta ! ! ) Wy
.(th(als)exp<r(sam) N+ 2 ges Mt s')p(s |5a/“)>> =1.
acA N
Finally, inserting A3 and 7*, for V, ;)L we obtain
VoL = Zwt(a | s) (r(s,a,ut) nlog + Z A (t,8)p(s" | s,a, ) + Aot )) —A(t—1,5)
acA s'eS

= S mlal9) (n+ 2000 + Ai”(“)) a1 L0

oA pi(s)

which implies

(T(Sv a, Nt) -1n + ZS’ES Al(t? sl)p(sl | S, a, ,Ut))

)\I(tfl,s):77+)\2(t)+7710g2qt(a|s)exp )

acA



We can subtract Ay(¢) and shift the time index to obtain the soft value function Vn (i, t, s) defined via terminal
condition V,(u, T, s) = 0 and the recursion

Vo(ut,s) =nlog Y qila | s)exp

(T(S, a, ,U’t) + ZS’ES ‘7?7(:”7 t + 1) S/)p(s/ | S, a, Mt))
acA

n

since then, by normalization the optimal policy for all s € S,a € A,t € {0,...,T — 1} is equivalent to

Qt(a | 8) exp (r(s,a,mHZs/es 21(t,5/)P(5/|5,a,Ht)>

(5 ) TS M (6 )P( 10 )
Swreatila’ | 5)exp (LR cs D 2)
r(s,a,ut)+2 g cs Vn(#7t+1,8’)P(8'|Sﬁa,ut))
qi(a | s)exp ( .

(520 1) TS e Va (it L3 )P [0 i) ),
Za’E.A qi(a’ | s)exp ( S

m(als) =

n

To obtain a recursion in @), define

A ) at+17 ,7 !
Qulpts,0) = r(s,a,m) + Y p(s' | 5,0, m)nlog Y quyr(a’ | 8') exp <Q"(“ > ‘”)

s'eS a’cA K
with terminal condition Qn(u, T,s,a) = 0 to obtain

qi(a | s)exp (762"(“,’;’8’(1))

Sweald | s)exp (lete))

m(als) =

which is the desired result as n* fulfills all constraints and determines p uniquely. For the uniform prior
qi(a | s) = 1/|A|, we obtain the maximum entropy solution.
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