Approximately Solving Mean Field Games via
Entropy-Regularized Deep Reinforcement Learning
Supplementary Materials

A Experimental Details

A.1 Algorithms

Algorithm 1 Exact fixed point iteration

1: Initialize u° = ¥(q) as the mean field induced by the uniformly random policy gq.
2: for k=0,1,--- do
3:  Compute the Q-function Q*(u*,t,s,a) for fixed pu*.
4:  Choose 7% € II such that nf(a | s) = a € argmax,c4 Q"(u*,t,s,a) for all t € T,s € S,a € A by
putting all probability mass on the first optimal action, or evenly on all optimal actions.
Optionally: Overwrite 7% «+ %_Hwk + kiﬂﬂkfl. (FP averaged policy)
Compute the mean field g**! = ¥(7*) induced by m*.
Optionally: Overwrite pu**! < k%_lpk*l + kkﬁuk. (FP averaged mean field)
end for

Algorithm 2 Boltzmann / RelEnt iteration
1: Input: Temperature n > 0, prior policy g € II.
2: Initialize 1 = ¥(q) as the mean field induced by g.
3: for k=0,1,--- do
4:  Compute the Q-function (Boltzmann) or soft Q-function (RelEnt) Q(u*,t,s,a) for fixed u*.
gt(als) exp(Q(Hk;]t,s‘a)

S ren a(a’]s) exp (b))
Optionally: Overwrite n* « Zgm* + Zywh~1. (FP averaged policy)
Compute the mean field p**! = ¥(7*) induced by m*.

Optionally: Overwrite p**! < k%_l,uk“'l + kiﬂuk. (FP averaged mean field)
end for

5. Define 7% by 7F(a | s) =

forallt e T,s€ S,a € A.

Algorithm 3 Boltzmann DQN iteration

: Input: Temperature n > 0, prior policy g € II.

: Input: Simulation parameters, DQN hyperparameters.

. Initialize u° ~ ¥(q) as the mean field induced by ¢ using Algorithm

: for k=0,1,--- do

Approximate the Q-function Q*(u*,t,s,a) using Algorithm 4/ on the MDP induced by p*.

* k
e e

DU W N =

@

Define 7% by 7F(a | 5) =

——~%—~ forallt e T,se€ S,a € A
Sare aela']s) exp (LTl

Approximately simulate mean field g**! ~ ¥(7*) induced by 7% using Algorithm
8: end for

I




Approximately Solving Mean Field Games via Entropy-Regularized Deep Reinforcement Learning

Algorithm 4 DQN
1: Input : Number of epochsL, mini-batch size N, target update frequency M, replay bu er size D.

2: Input : Probability of random action , Discount factor , ADAM and gradient clipping parameters.
3: Initialize network Q , target network Q o Q and replay bu er D of sizeD.

4: for L epochsdo

5. for t=1;:::;T do

6: One environment step

7: Let new action a;  argmax,,, Q (t;s;a), or with probability = sample uniformly random instead.
8: Sample new statesi+1 p( j St;ar)-

9: Add transition tuple (st;a;r(st;a;);St+1) to replay buer D.

10: One mini-batch descent step

11: Sample from the repl)alay buer: f(si;al;r};sl,)G=1.:n D .

12: Compute l0ssJg = |1, i+ maxgos Q(t+1;s,;:;a) Q(t;si;al) 2

13: Update accordingtor Jg using ADAM with gradient norm clipping.

14: if number of stepsmodM =0 then

15: Update target network ©

16: end if

17:  end for

18: end for

Algorithm 5 Stochastic mean eld simulation
1: Input : Number of mean elds K, number of particles M, policy

3: Initialize particles X,On oforallm=1;:::;M.
4: for t2T do P
.. K M
5 De ne empirical measure G; m=1 XL, -
6: for m=1;:::;M do
7 Sample actiona  ( j x!,).
8 Sample new particle statex¥*  p( j x,;a; Gf).
9 end for
10:  end for
11: end for

., P
12: return  average empirical mean eld(& ., G¥)ior

A.2 Implementation details

For all the DQN experiments, we use the con gurations given in Table[1 and hyperparameters given in Tabl¢]2.
Note that we add epsilon scheduling and a discount factor to DQN for stability reasons, i.e. the loss term
has an additional factor smaller than one before the maximum operation, cf.| Mnih et al. |(2013). For the
action-value network, we use a fully connected dueling architecture| (Wang et al. (2016)) with one shared hidden
layer of 256 neurons, and one separate hidden layer of 256 neurons for value and advantage stream each. As the
activation function, we use ReLU. Further, we use gradient norm clipping and the ADAM optimizer. To allow for
time-dependent policies, we append the current time to the observations.

We transform all discrete-valued observations except time to corresponding one-hot vectors, except in the
intractably large Taxi environment where we simply observe one value irf 0; 1g for each tile's passenger status.
For evaluation of exploitability, we compare the values of the optimal policy and the evaluated policy in the MDP
induced by the mean eld generated by the evaluated policy. In intractable cases, we use DQN to approximately
obtain the optimal policy. In this case, we obtain the values by averaging over many episodes in the MDP induced
by the mean eld generated by the evaluated policy via Algorithm [5.

A.3 Problems

Summarizing properties of the considered problems are given in Tablg] 3.



Algorithm 6 Prior descent
1: Input : Number of outer iterations | .
2: Input : Initial prior policy q2

4: Find heuristically or minimally such that Algorithm 2 with temperature and prior g converges.
5. if nosuch existsthen

6: return g

7:  endif

8: g solution of Algorithm 2 with temperature  and prior g.

9: end for

Table 1: Boltzmann DQN Iteration Parameters

Parameter RPS SIS Taxi
Fixed point iteration count 1000 50 15
Number of particles for mean eld 1000 1000 200
Number of mean elds 5 5 5

Number of episodes for evaluation 2000 2000 500

LR. Similar to the example mentioned in the main text, we let a large number of agents choose simultaneously
between going left L) or right ( R). Afterwards, each agent shall be punished proportional to the number of
agents that chose the same action, but more-so for choosing right than left.

More formally, let S = fC;L;Rg, A = SnfCg, o(C)=1,r(s;a; t)= 1Lig(s) (L) 2 Lirg(s) (R)
and T = f0;1g. Note the di erence to the toy example in the main text: right is punished more than left. The
transition function allows picking the next state directly, i.e. for all s;s°2S;a2A,

P(Sts1 = 8% St = s;A = @) = 1tsog(a)

For this example, we haveK o =1 since the return Q of the initial state changes linearly with ; and lies between
0 and 2, while the distance between two mean elds is also bounded by. Analogously, K =1 since(( )):
similarly changes linearly with o, and both can change at most by2. Thus, we obtain guaranteed convergence
via Boltzmann iteration if > 1. In numerical evaluations, we see convergence already for 0:7.

RPS. This game is inspired by Shapley (1964) and their generalized non-zero-sum version of Rock-Paper-Scissors,
for which classical ctitious play would not converge. Each of the agents can choose between rock, paper and
scissors, and obtains a reward proportional to double the number of beaten agents minus the number of agents
beating the agent. We modify the proportionality factors such that a uniformly random prior policy does not
constitute a mean eld equilibrium.

Let S=fO;R;P;Sg, A=Snf0g, ¢o(0)=1,T =f0;1g, andforanya2A; { 2P (S),
rRia; )=2 «(S) 1 «(P);
r(P;a; 1)=4 «(R) 2 «(S);
rS;a; )=6 (P) 3 (R):

The transition function allows picking the next state directly, i.e. for all s;s°2S;a2A,

P(St+1 = Soj St = S;A = @)= ligog(a):

SIS. In this problem, a large number of agents can choose between social distancing (D) or going out (U). If
a susceptible (S) agent chooses social distancing, they may not become infected (I). Otherwise, an agent may
become infected with a probability proportional to the number of agents being infected. If infected, an agent will
recover with a xed chance every time step. Both social distancing and being infected have an associated cost.
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Table 2: DQN Hyperparameters

Hyperparameter Value
Replay bu er size 10000
ADAM Learning rate 0:0005
Discount factor 0:99

Target update frequency 500
Gradient clipping norm 40

Mini-batch size 128
Epsilon schedule 1 linearly down to 0:02 at 0:8 times maximum steps
Total epochs 1000

Table 3: Problem Properties

Problem jTj |Sj A

LR 2 3 2
RPS 2 4 3
SIS 50 2 2
Taxi 100 227 5

Let S=1S;1g, A=1fU;Dg, o(l)=0:6,r(s;a; 1)= 114(s) 05 Lipg(s)andT = f0;:::;509. We nd that
similar parameters produce similar results, and set the transition probability mass functions as
P(St+1 = SjS=1)=0:3
P(Sts1 = 1 ]St = S;A = U)=0:9% (1)
P(St+1 = 1S =S;Ai=D)=0:

Taxi. In this problem, we consider ak L grid. The state is described by a tuple(x;y; x%y% p; B) where (x;y)
is the agent's position, (x%y9) indicates the current desired destination of the passenger or i€0; 0) otherwise, and
p 2 f 0; 1g indicates whether a passenger is in the taxi or not. Finally,B is aK L matrix indicating whether a
new passenger is available for the taxi on the corresponding tile. All taxis start on the same tile and have no
passengers in the queue or on the map at the beginning. The problem runs for 100 time steps.

The taxi can choose between ve actionsW; U;D;L; R, where W (Wait) allows the taxi to pick up / deliver
passengers, andJ; D;L; R (Up, Down, Left, Right) allows it to move in all four directions. As there are many
taxis, there is a chance of a jam on tiles given by min(0:7;10 ((s)), i.e. the taxi will not move with this
probability. The taxi also cannot move into walls or back into the starting tile, in which case it will stay on its
current tile. With a probability of 0:8, a new passenger spawns on one randomly chosen free tile of each region.
On picking up a passenger, the destination is generated by randomly picking any free tile of the same region.
Delivering passengers to a destination and picking them up gives a reward df in region 1 and 1:2 in region 2.

For our experiments, we use the following small map, wheré& denotes the starting tile, 1 denotes a free tile from
region 1,2 denotes a free tile from region 2 andH denotes an impassable wall:
0 1

NNNI R R R
NN R e e
MNNN TR R R

This produces a similar situation as in LR, where a fraction of taxis should choose each region so the values balance
out, while also requiring solution of a problem that is intractable to solve exactly via dynamic programming.



A.4  Further experiments

Figure 1: Mean exploitability (straight lines), maximum and minimum (dashed lines) over the nal 10 iterations
of the last outer iteration. 50 outer iterations and 100 inner iterations each; (a, d) LR; (b, e) RPS; (c, f) SIS.
Maximum entropy (MaxEnt) results begin at higher temperatures due to limited oating point accuracy. The
exploitability of the initial uniform prior policy is indicated by the dashed horizontal line.

Figure 2: Mean exploitability over the nal 10 iterations. Dashed lines represent maximum and minimum over the
nal 10 iterations. (a) LR, 10000 iterations; (b) RPS, 10000 iterations; (c) SIS, 1000 iterations. The exploitability
of the uniform prior policy is indicated by the dashed horizontal line.

In Figure 1, we observe that prior descent for both Boltzmann and RelEnt MFE with the same uniform prior
policy performs qualitatively similarly, and coincide in LR and SIS except for numerical inaccuracies. It can be
seen that using a temperature su ciently low to converge in LR and RPS allows prior descent to descend to
the exact MFE iteratively. In SIS on the other hand, picking a xed temperature that converges for the initial
uniform prior policy does not guarantee monotonic improvement of exploitability afterwards. Instead, by applying
the heuristic

i+1 = i C
for each outer iteration i, wherec 1 adjusts the temperature after each outer iteration, we avoid scanning

over all temperatures in each step and reach convergence to a good approximate mean eld equilibrium for both
Boltzmann and MaxEnt iteration.
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Figure 3: (a) Di erence between current and nal minimum exploitability over the last 10 iterations; (b) Distance
between current and nal mean eld, cut o at 500 iterations for readability. Plotted for the  -RelEnt iterations
in SIS for the indicated temperature settings and uniform prior policy.

Figure 4. Di erence between current and nal estimated minimum exploitability over the last 5 iterations. (a) SIS,
50 iterations; (b) Taxi, 15 iterations. Plotted for the -Boltzmann DQN iteration for the indicated temperature
settings and uniform prior policy.

In Figure 2 empirical results are shown for ctitious play variants averaging only policy or mean eld. In the
simple one-step toy problems LR and RPS, averaging the policies appears to converge to the exact solution
without regularization and to the regularized solution with regularization. Averaging the mean elds on the other
hand fails, since this method can only produce deterministic policies. By applying any amount of regularization,
averaging the mean elds is led to success in LR and SIS. Nonetheless, both methods fail to converge to the MFE
in SIS and produce worse results than obtained by prior descent in Figure 1.

In Figure 3 we depict the convergence of exploitability and mean eld of MaxEnt iteration in SIS. The results are
gualitatively similar with Boltzmann iteration and, as in the main text, show the convergence behaviour near the
critical temperature leading to convergence.

In Figure 4 we depict the convergence of exploitability for Boltzmann DQN iteration in SIS and Taxi during one
of the runs. All 4 other runs show similar qualitative behaviour. As can be seen, the highest temperature of
0:2 shows less oscillatory behaviour, stabilizing Boltzmann DQN iteration. In Taxi, it can be seen that the used
temperatures are insu cient to allow Boltzmann DQN iteration to converge. We believe that using prior descent
could allow for better results. We could not verify this due to the high computational cost, as this includes
repeatedly and sequentially solving an expensive reinforcement learning problem.

Finally, in Figure 5 we depict the resulting behavior in the SIS case. In the Boltzmann iteration result, at the
beginning the number of infected is high enough to make social distancing the optimal action to take. As the
number of infected falls, it reaches an equilibrium point where both social distancing or potentially getting
infected are of equal value. Finally, as the game ends at timé= T =50, there is no point in social distancing
any more. Our approach yields intuitive results here, while exact xed point iteration and FP fail to converge.



Figure 5: Fraction of infected agents and fraction of susceptible agents picking social distancing over time. (a, d):
Boltzmann iteration ( = 0:07); (b, e): exact xed point iteration; (c, f): ctitious play (averaging both policy
and mean eld) results in SIS after 500 iterations. More iterations and averaging only policy or mean eld show
same qualitative results.

B Proofs

B.1 Completeness of mean eld and policy space

Lemma B.1.1. The metric spaces( ;d ) and (M ;dy ) are complete metric spaces.

Proof. The metric space(M ;dy ) is a complete metric space. Lef "),on 2 M N be a Cauchy sequence of mean
elds. Then by de nition, for any "> 0 there exists integerN > 0 such that for any m;n >N we have

dv ( "; ™)< 05"
1X :
82T dn (i M= 119 [EI<05
s2S
=) 8 t2T;s2S:j {(s) {(s)j<":

By completeness ofR there exists the limit of ( ['(s))n2n forall t 2 T;s2 S, suggestively denoted by ((s). The
mean eld = f (gor with the probabilities de ned by the aforementioned limits fullls " ! andisinM ,
showing completeness oM .

We do this analogously for( ;d ). Thus, ( ;d ) and (M ;dy ) are complete metric spaces. O

B.2 Lipschitz continuity

Lemma B.2.1. Assume bounded and Lipschitz functiong : X ! Randg: X ! R mapping from a metric
space(X;dx ) into R with Lipschitz constants Cs ; Cg and boundsjf (x)j My, jg(x)j Mg. The sum of both
functions f + g, the product of both functionsf g and the maximum of both functionsmax(f;g) are all Lipschitz
and bounded with Lipschitz constantC; + Cg, (M Cq + M4Cs ), max(Cs ; Cg) and boundsMt + Mgy, Mt Mg,
max(Ms ; Mg).

Proof. Let x;y 2 X be arbitrary. By the triangle inequality, we obtain

FO)+ax) (FMW+ay)i jfx) fi+jax) aly)i (Cr + Codx (x;y):
Analogously, we obtain

JF09g()  fyay)i j f09a(x)  f09ay)i+ it (x)aly) fa)i (Mt Cq+ MgCr)dx (X;y):
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For the maximum of both functions, consider case by case. If (xX) g(x) andf(y) g(y) we obtain

jmax(f (x);9(x))  max(f (y);g(y)i = if (x) £ Crdx (xy)

and analogously forg(x) f(x) andg(y) f(y)

jmax(f (x); 9(x))  max(f (y);9(y)j = ja(x) 9(¥)j Cgdx (X;y):

On the other hand, if g(x) <f (x) and g(y) f(y) , we have eitherg(y) f (x) and thus

jmax(f (x);9(x))  max(f (y);9(y)i = if () 9(y)i=aly) fx)<gly) 9(x) Cydx(xy)

or g(y) <f (x) and thus

jmax(f (x);9(x))  max(f (y);g(yDi=if () ogi=Ffx) ay) f(x) ) Crdx(xy):

The case forf (x) <g(x) andf (y) g(y) as well as boundedness is analogous. O

B.3 Proof of Proposition 1

Proof. Since we work with nite T;S;A, we identify the space of mean eldsM with the jTj(jSj 1)-dimensional
simplex Sirjjsj 1) RITIGSI 1) via the values of the probability mass functions at all times and states. Analo-

gously the space of policies is identi ed with Sitjsj 4 1y RTISIOA D,

De ne the set-valued map " : Siriisi Gaj 1! 25misi & v mapping from a policy represented by the input
vector, to the set of vector representations of optimal policies in the MDP induced by ().

A policy is optimal in the MDP induced by 2 M if and only if its value function de ned by
I

X X
V (;ts)= (ajs) r(s;a; )+ ps’js;a; OV (5t +1;89)
a2A s02S

is equal to the optimal action-value function de ned by

|
« !
V(Gts)=max r(sia 9+ p(s’isia )V (Gt +158)
a
s02S8

for everyt 2 T ;s 2 S, with terminal conditions V (;T;s) V (;T;s) 0. Moreover, an optimal policy
always exists. For more details, see e.g. Puterman (2014). De ne the optimal action-value function for every
t2T;s2S;a2A via

X
Q(itsia)=r(sia )+ ps’isia; )V (5t +1;89)
s02S
with terminal condition Q (;T;s;a) 0. Then, the following lemma characterizes optimality of policies.

Lemma B.3.1. Apolicy fullls 2 71~)ifand only if

(ajs)>0 =) a2argmaxQ ((* ):t;s;a%
af2A
forallt2T;s2S;a2A.

Proof. To see the implication, consider 2 “(?). Then, if the right-hand side was false, there exists a maximal
t2T ands2S;a2A suchthat ((ajs)> 0but a62argmax,,, Q (( A);t;s;a%. Since for anyt®>t we have
optimality, V (;t +1;8% =V (;t +1;s% by induction. However, V (;t;s )<V (;t;s) since the suboptimal
action is assigned positive probability, contradicting optimality of . On the other hand, if the right-hand side is
true, then V (;t;s )=V (;t;s) by induction, which implies that is optimal.



We will now check that the requirements of Kakutani's xed point theorem hold for ". The nite-dimensional
simplices are convex, closed and bounded, hence compaé.maps to a non-empty set, as the induced mean eld
is uniquely de ned and any nite MDP (induced by this mean eld) has an optimal policy.

Forany , "( ) is convex, since the set of optimal policies is convex as shown in the following. Consider a convex
combination ~ = +(1 ) ©of optimal policies ; °for 2 [0;1]. Then, the resulting policy will be optimal,
since we have

~(ajs)>0=) ((ajs)>0_ ajs)>0 =) a2argmaxQ ((* );t;s;a)
a2A

foranyt2T;s2S;a2A and thus optimality by Lemma B.3.1.

Finally, we show that " has a closed graph. Consider arbitrary sequencés Hr (5 Ywith 22 ). ltis
then su cient to show that  °2 "( ). By the standing assumption, we have continuity of and ! Q (;t;s;a)
foranyt 2 T;s2 S;a2 A, as sums, products and compositions of continuous functions remain continuous.
Therefore, the composition | Q (( );t;s;a) is continuous. To show that °2 "( ), assume that 962"( ).
By Lemma B.3.1 there existst 2 T ;s 2 S;a2 A such that Xajs) > 0 and further there exists a®2 A such that
Q(( ints;a%>Q (( ):ts;a). Fixsuchana2 A. Let Q(( )ts;a% Q (( );ts;a), then by
continuity there exists " > 0 such that for all ~ 2  we have

d (v )<" =i Q" ytsia) Q(( )tsia)< 5:

By convergence, there is an integeN 2 N such that for all n>N we haved ( ,; ) <" and therefore

Q(( n)itsia)>Q (( )itsia) 5=Q(( )tsia)+ 5>Q (( a)itsia):
Since( 9i(ajs)! Xajs)> 0, there also existsM 2 N such that for all m>M |,
jCax(@is)  faj9i< dajs):

Let n > max(N; M ), then it follows that ( 9)¢(ajs) > 0 but a62argmax,;,n Q (( );t;s;a% since we have

Q (( n)its;a%>Q (( n);ts;a), contradicting 0 2 “( n) by Lemma B.3.1. Hence,”" must have a closed
graph.

By Kakutani's xed point theorem, there exists a xed point that generates some mean eld( ). The
associated pair( ; ()) is an MFE by de nition. O

B.4 Proof of Proposition 3

Proof. The space of mean elds(M ;dy ) is equivalent to convex and compact nite-dimensional simplices. In
this representation, each coordinate of the operators™ ( ) and ( ) consists of compositions, sums and products
of continuous functions, since the functionsr (s;a; ) and p(s®j s;a; ) are assumed to be continuous. Existence
of a xed point follows immediately by Brouwer's xed point theorem. O

B.5 Proof of Theorem 1

Proof. The proof is a slightly simpli ed version of the one found in Saldi et al. (2018). Note that we require the
results later, so for convenience we give the full details.

The empirical measureGg‘I is a random variable onP(S), i.e. its law L(Ggl) 2 P (P(9)) is a distribution over
probability measures. Since we want to show convergence of the empirical measure to the mean eld, let us pick
a metric on P(P(S)). Remember that we metrizedP (S) with the total variation distance. We metrize P(P(S))
with the 1-Wasserstein metric de ned for any ; 2 P (P(S)) by the in mum over couplings

Wi( 1) LX) "?I(Xz): E[drv (X1, X2)] :

Lemma B.5.1. Letf ,gn2n be a sequence of measures with, 2 P (P(S)) for all n 2 N. Further, let 2P (S)
arbitrary. Then, the following are equivalent.
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@ Wi( n; )! Oasn!il
(b) E[[F(Xn) F(X)j]! Oasn!1 for any continuous, boundedF : P(S)! R, any sequencd X gn2n Of
P (S)-valued random variables and anyP (S)-valued random variableX with L(X,)= , andL(X)=

(c) E[[Xn(f) X(f)j]! Oasn!1 foranyf :S ! R, any sequencef X,gnan Of P(S)-valued random
variables and anyP (S)-valued random variableX with L(X,)= , andL(X) =

Proof. De ne the only possible coupling , n

(b), ) =) (a):
Dene Fs(x) x(s)andfs(s) 1 Sg(so) for all s2 S, where Fs is continuous. By assumption,
w ; = inf E Xn; X
1( n» ) L(En): Inn;L(X ): [dTV( n» )]
1 X

=3 Xa(9) X(9id .
P(S)P (S) s25
X

- 1% Eixo9 x@ilt o
2528

since for anys 2 S, we have

E[Xn(s) X(s)jl= E[Fs(Xn) Fs(X)jl= E[Xn(fs) X(fs)jl:

@ =) (), (o)

We have
Z

EfF(Xn) FX)j]l= JF() F(9 a(d:d 9
PSP (5)

= JFC) F(C)i n(d)
(s)

! JFC) F()i (d)=0
P(S)

by continuity and boundedness ofjF( ) F( )j, and convergence inW; implying weak convergence. Analogously,
A Z

EfXa(f) X(H)l= P(S)i(f) (F)j n(d)! F’(S)J'(f) (fi (d)=0

P
gncef and thus j (f) (f)j is automatically bounded from niteness of S, and (f) = 5 (sS)f (s)!
s (9)f(s)as ! in total variation distance implies continuity of j (f) (f)j.

First, it is shown that when all other agents follow the same policy , then the empirical distribution is essentially
the deterministic mean eldasN !1 ,i.e. L(th) 'L (1) L with = ()
Lemma B.5.2. Consider a set of policies(= ;:::; )2 N for all agents. Under this set of policies, the law of
the empirical distribution L(th) 2P (M) convergesto , where = ( )asN !1 in 1-Wasserstein distance.
Proof. De ne the Markov kernel P, such that its probability mass function ful lls

Py (7] 9) t(@js)p(s’js;a; )

a2A

foranyt2T;s2S; 2P(S); 2 and analogously

X X _ _
Py (89 ~(s) (@js)p(s’j s;a; )
s2S a2A



for any ~2 P (S). Note that +; = (P,  (g) formean elds = ( ) induced by

We show that E GN (f) t(f) ' OasN!1 forany anCtIOI’] f:S! Randanytimet2T. From this,
the desired result follows by Lemma B.5.1. SlnceGN 0) W iz1 s ()and S) o We have at timet =0 that
n #
lim E GY (f) (f) = lim E ix“ f(S) E f(S) =0
N1 So 0 N1 N i1 0 0
by the strong law of large numbers and the dominated convergence theorem.

Assuming this holds fort, then for t + 1 we have
h i h i
E G§,(f) wa(f) E ﬁgt” (f) Gg,'(f)

+E Gg '(f) GY 'P. ()
h B

i

i
+ EhGg‘ 1pt;th (f) G§ Pt;Ggi (f)
+E thpt;egt(f) P (F)

P
where we denedGg () iy N si()

For the rst term, we have as N |1

h N N 1 | 1 X i 1 X i
E Gs., (1) Gs, /() =B o 16Gm) g )
i=1 i=2
1 1 1

X ,
NE fGS) + g 1 E fS)

1 N

1 L
— - | .
NTNN 1 maxjf (st 0

For the second term, asN ! 1 we have by Jensen's inequality and bound$f j M; (by niteness of S)

2 2
N1 N1 _ N1 N1 ;
E Gsx+1 () GSI Pt;Gg[ +(f) =EE Gsnl () GS\ Pt:Gg[ (f) ]S
B #Ht
1 X : - . :
=EE g (G EfSa) s
i=2
1 h h . . , i
- _  EE f(S,,) Ef(S, i S
(N 1)2i:2 (St+1) (St+2)
1 2
- 1 0:
N AmEr o
For the third term, we again have asN !1
. #
h N1 ! X N 1 N X R 0; N
E Gs, Py oy (f) Gs, tGN (f) =E Gg, () Gs,(s) t(ajs) p(s°j s;a;GY,)f (s9)
! . s2S a2A s02s 4
1 1 XX iy X 0i qi-5-aN
E N 1 N t(@aj S) p(s’j S;:a;Gg))f (9

i=2 a2A s02S
#

1 X .
+E N ((aj st) p(s®j St;a; G )f (s9
a2A s02S
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N 1 1 N
- — | .
NN DTN mEdrei o

For the fourth term, dene F :P(S)! R,F( )= P, (f) and observe thatF is continuous, since ! Oif and
onlyif (s)! 9s) forall s2S, and therefore (asp is assumed continuous by Assumption 1)

X X X 0.
F()= Py (F)= (s) @js)  ps°jsia; )f(s)
s2S a2A s02S
is continuous for anys®2 S. By Lemma B.5.1, we have from the induction hypothesing‘t I ¢ that

h i
E thpt;eg (f) Py (F) ! O:

h i

Therefore, E Gg‘m (f) t+1 (f) ! O which implies the desired result by induction.

Consider the case where all agents follow a set of policigsN; ;:::; )2 N for eachN 2 N. De ne new
single-agent random variablesS, and A, with S, o and

P(A; = aj S
P(Syy = 801 S = siA,

)= {(ajs);
a)= p(sjs;a 1);

where the deterministic mean eld is used instead of the empirical distribution.

Lemma B.5.3. Consider an equicontinuous, uniformly bounded family of functionsF on P(S) and de ne

Fe() supjf () f( o)
f 2F

forany t 2 T. Then, F; is continuous and bounded and by Lemma B.5.1 we have
" #

H N _
nggn E szqu f(Gs) f() =0
Proof. F; is continuous, since for !

JFe(n) Fe()i= supjf () f( i supif () f(j supjf() f(9i! O
f 2F f 2F f 2F

by equicontinuity. Further, F; is bounded sincejFi( )j sup e jf ( )j + jf ( 1)j is uniformly bounded. By
Lemma B.5.2, we haver(GNt; )l OasN !l | therefore Lemma B.5.1 applies.

Lemma B.5.4. Suppose that at some tima 2 T, it holds that
JimL(Sh(av) L (S)(e) =0
for any sequence of functiond gy gy 2n from S to R that is uniformly bounded. Then, we have
NIilgn L(SHGE)(Th) L (S o)(Tn) =0
for any sequence of functiond Ty gy2n from S P (S) to R that is equicontinuous and uniformly bounded.

Proof. We have

L(SHGY )Th) L (S; o(Tn)  L(SHGE)Tn) L (St o(Th) + L(SH o(Tn) L (S o)(Tn)



The rst term becomes

VA VA
L(SHGs)(Th) L (S o(Tn) = Tl IL(SHGs)(dxd ) T (6 IL(S; o(dxd )
E.E Tn(XG5) Tn(x o) S 4
E sup f(G§) f(y ! O

f2f Tn (5 )9 2p (s)Nn 2N

by Lemma B.5.3, sincef Ty gn 2n IS equicontinuous and uniformly bounded. Similarly for the second term,
Z Z
L(SH oO(Tn) L (S5 o(Tn) = Tn(x IL(SH O(dxd ) T (6 IL(S; o(dxd)
E TN(Stli ) Tn(So 1) ' O
by the assumption, sinceTy ful lls the condition of being uniformly bounded.

Lemma B.5.5. For any sequencef gy g 2N Of functions from S to R that is uniformly bounded, we have
JimLSH(o) L (S)() =0
for all times t2 T .

Proof. De ne Iyt as

X X
Init (S; ) Y@js)  pslisia; )on(s):

a2A s02S

fln:t (S; )Os2s :n 2n IS equicontinuous, since for any; °2M with dry (; 9! 0,

X X
sup jlni(s; ) Ini(si 9i Mg sup N@js)  (p(Pjs;a; ) p(sljs;a; 9)
s2S ;N 2N s2S ;N 2N a2A 5025

Qi 00 - a- 0icrn- O
MgjSjmaxmaxmaxip(s’j s;a; ) p(s’jsia; Jj! 0

sincejgnj < M 4 is uniformly bounded and p is continuous by assumption. Furthermore, Iy (s; ) is always
uniformly bounded by My. Now the result can be shown by induction.

Fort =0, L(S,) = L(S}) fullls the hypothesis. Assume this holds for t, then

L(Sta)(on) L (St d(on) = L(SHGE)(Inx) L (S5 oOnx) ! O
asN!1 bylLemmaB.5.4.
Thus, for any sequence of policie§ Ngyan with N 2 forall N 2 N, the achieved return of the N -agent game

converges to the return of the mean eld game under the mean eld generated by the other agent's policy as
N1

Lemma B.5.6. Letf Ngyon with N 2 for all N 2 N be an arbitrary sequence of policies and 2
an arbitrary policy. Further, let the mean eld = () be generated by . Then, under the joint policy
(N:iiiip ),wehaveasN !'1 that

Proof. Deneforany t2T,N 2 N

X
ro(s ) rs;a; ) (ajs)
a2A
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such that the family fr N (S; )0s2s N 2N IS equicontinuous, since for any; °2M asdy (; 9! O,

maxmax r S; r S; 10
naxmax 1y (s ) T y(s )

by continuity of r. The function r N is uniformly bounded for all N 2 N by assumption of uniformly boundedr.
By Lemma B.5.4 and Lemma B.5.5,

lim E r(SHALGY)  E[N(S;A; O
N 11 h i h i

= lim B ry(SiGs) Ern(S;) =0:
such that we have

X
JimoaN N ) 3 (Y Jim B r(SHARGE)  ENN(S A 1] =0
t2T

which is the desired result.

From Lemma B.5.6, it follows that for any sequence of optimal exploiting policiesf Ngy.n with N 2 for all
N 2 N and

N2argmaxJM(; ;i)
2

for all N 2 N, it holds that for any MFE ( ; )2 M,

Jmo I N ) maxd ()
=J ()
= Jm 9N )

and by instantiating for arbitrary > 0, for su ciently large N we obtain

INCN; ) :m?x\]{\‘(; i)
mzaxJ () >
=J _
() 5

=a0C s )
which is the desired approximate Nash property that applies to all agents by symmetry. O
B.6 Proof of Theorem 2
Proof. If or is constant, or if the restriction of to is constant, then = is constant.

Assume that this is not the case.

Then there exist distinct ; ©2 such that () & (9. By de nition of there also exist distinct
: 92M suchthat ( )= and ( 9= © Notethatforany ; °2M with ( )6 ( 9,

du (( )i () min o d (C )i (%)

02

where the right-hand side is greater zero by niteness of . This holds for ; °©
To show that cannot be Lipschitz continuous, assume that has a Lipschitz constantC > 0. We can nd an
integer N such that

A ( i+1):dM(§ O)<mi”; o ;e odu(( ) ( 9

N 1 C




foralli2f0;:::;N 1g by de ning

N N
foralli2f0;:::;Ng,and ' 2M holds. By the triangle inequality
dv (C ) C Y dw (C 05 D+ rvdu (C N D (M)

there exists a pair( '; ") with ( )6 ( *1). For this pair, we have

dv (C D C ) dm (C ) () i () ( NE

o

On the other hand, since is Lipschitz with constant C, we have

du (C (™) Coaw(' ™)< min o d (C )Y

02
which is a contradiction. Thus, cannot be Lipschitz continuous and by extension cannot be contractive. [

B.7 Proof of Theorem 3

Proof. Forall > 0; 2M ;t2T;s2S;a2A, the soft action-value function of the MDP induced by 2 M is
given by
|

X X . . 0 ’
Q (;ts;a)=r(s;a 1)+ p(sljs;a; ) log g+ (%] sYexp Q (it +1;s%2)
s028 a02A

and terminal condition @ (;T  1;s;a) r(s;a; 1t 1). Analogously, the action-value function of the MDP
induced by 2 M s given by

X
Q (sts;a)=r(sia )+  p(s°js;a; maxQ (it +1;s%a)
R a02A
and the similarly de ned policy action-value function for 2 is given by
X X
Q (itsia)=r(s;a; )+ p’isa 1) 1 (@%189Q (5t +1;8%29);
s02S af2A
with terminal conditions Q (;T 1;s;a) Q (;T 1;s;a) r(s;a 1 1).
We will show that we can nd a Lipschitz constant K, of Q that is independent of if is not arbitrarily

small. To show this, we will explicitly compute such a Lipschitz constant. Note rstthat Q , Q and Q are all
uniformly bounded by Mg jTj M, by assumption, whereM, is the uniform bound of r.

Lemma B.7.1. The functions Q (;t;s;a ), Q (;t;s;a) and Q (;t;s;a ) are uniformly bounded for all >
0 2M;t2T;s2S;a2A by

Q(:ts;a) (T )My TM; = Mg
where M, is the uniform bound ofjr(s;a; {)j M;,and T = |Tj.
Proof. Make the induction hypothesis for allt 2 T that
Q(Gtsa) (T HM,
forall > 0; 2M ;s2S;a2A and note that this holds fort = T 1, as by assumption

QT 1;s;a) =jr(s;a; )] M;:
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The induction step from t +1 to t holds by

X
Q (ts;a) = r(s;a; )+ p(s’j s;

s02S

i r(sia; i+ max log

af%A
M, + log exp
=M +(T t )M, =(T

|
Q (;t +1;s%a9

X
1) log (&% Hexp

a02A I
Q (;t +1;s%a9

q+1(a%j sY)exp

T t M.

M,

)M, :

By maximizing over all t 2 T , we obtain the uniform bound. The other cases are analogous.

Now we can nd a Lipschitz constant of @ ( ;t;s;a ) that is independent of .

Lemma B.7.2.
Further, let nin > 0. Then, for all

Let C; be a Lipschitz constant of !
>

r(s;a; () andCp a Lipschitz constantof ! p(s°j s;a; ).

mn;t2T,themap 7! Q (;t;s;a) is Lipschitz forall s2S;a2A

maxtr KL, we have one single

with a Lipschitz constant Ké
Lipschitz constant for all >

independent of . Therefore, by picking K
mn:t2T;s2S;a2A.

Proof. We show by induction that for all t 2 T;s 2 S;a 2 A, we can nd Lipschitz constants such that
with a Lipschitz constant that does not depend on .

Q (;t;s;a) is Lipschitz in

To see this, note that this is true fort = T l1andanys2S;a2A, as for any ; °we have
QGT Ls;a Q(OT Lsia =r(sa11) rssa$ ) Cdu(; 9
The induction step fromt+1 to t is
Q(;ts;a) Q(its;a) |
s 0 rsa Dt pisa 0 g gu@dep LULTLSD
s02S a%A

X
p(s’j s;a; 9 log

!
Q(%t+1;s%a9

a1 (a%j sY)exp

a%2A |

X
Cidw (; 9+ jSjmax1l log
s02S3

Q(;t +1;s%a9

g+ (%] sHexp

af2A I

X . 0t+1;s%a9
log  q+1(a% s9)exp QI )
af%2A
Qi MqQ . 0: ca O0i oo q- Oy;
+ iSimax—= jp(s”j s;a; ) p(s°] sia; D)
X 104 (%) Yexp 22
Cedw (; 9+ jSjmax o . -
S25 a2 aopa Ge1 (390 S exp =2
+iSiMq Cpdu (5 9
JA] Omax Mo t+1 .
Cidu (; + ———exp 2 — K “du (; + jSiMgCpdwm (;
dv (59 A} Gin p o m ( 0)JJQpM( 9
< Ci+ Gnax exp 2M7Q Kgl +jSjMoCp dw (; 9

in min

Q(;t+1;s%a) Q( %t+1;s%aY



where we use the mean value theorem to obtain somg 2 [ Mqg;Mg] for all a2 A bounded by Lemma B.7.1,
Lemma B.2.1 for the second inequality, and de nedgmax = MaXi2t :s2s:a2a G (2] S), Gnin = MiN2T 525 :a2a G (@]
s). Sinces 2 S;a2 A were arbitrary, this holds for all s2S;a2A.

Thus, as long as > in, we have the Lipschitz constantKé C, + dmax oyp Mo

Qmin min K tQ+1 + JSJ M Q Cp

independent of , since by induction assumptionKé?+l is independent of .

The optimal action-value function and the policy action-value function for any xed policy are Lipschitz in

Lemma B.7.3. The functions 7! Q (;t;s;a)and 7! Q (;t;s;a) forany xed 2 ;t2T;s2S;a2A
are Lipschitz continuous. Therefore, for any xed 2 we can choose a Lipschitz constaniK o for all
t2T;s2S;a2A by taking the maximum over all Lipschitz constants.

Proof. The action-value function is given by the recursion

X
Q(itsia)=r(sia; )+ p(s”jsia )maxQ (;t +1;8%a)
a
s02s

with terminal condition Q (;T 1;s;a) r(s;a; 1 1). The functionsr(s;a; ) and p(s’j s;a; ) are Lipschitz
continuous by Assumption 2. Note that forany ; °2M andanyt2T,drv( +; 9 du(; 9. Therefore,
the terminal condition and all terms in the above recursion are Lipschitz. Further, Q (;t;s;a ) is uniformly
bounded, sincer is assumed uniformly bounded.

Since a nite maximum, product and sum of Lipschitz and bounded functions is again Lipschitz and bounded by
Lemma B.2.1, we obtain Lipschitz constantsK q.ts;a of themaps ! Q (;t;s;a)foranyt2T;s2S;a2A
and dene Kg  maxqr s25:a2a Koisia - The case forQ with xed 2 is analogous.

The same holds for () mapping from policy to its induced mean eld.

Lemma B.7.4. The function ( ) is Lipschitz with some Lipschitz constantK
Proof. Recall that ( ) maps to the mean eld starting with ¢ and obtained by the recursion

X x .
41 () = p(s’j s;a; 1) t(ajs) «(s):
s2S a2A

We proceed analogously to Lemma B.7.3. is uniformly bounded by normalization. The constant function
7! o(s) is Lipschitz and bounded for anys 2 S. The functions r(s;a; ;) and p(s®j s;a; ) are Lipschitz
continuous by Assumption 2. Since a nite sum, product and composition of Lipschitz and bounded functions is
again Lipschitz and bounded by Lemma B.2.1, we obtain Lipschitz constantX . of the maps ! ((s) for

anyt2T;s2S and dene K maxi2t :s2s K s, Which is the desired Lipschitz constant of

Finally, the map from an energy function to its associated Boltzmann distribution is Lipschitz for any > 0 with

a Lipschitz constant explicitly depending on

Lemma B.7.5. Let > Oarbitrary and f, : M! R be a Lipschitz continuous function with Lipschitz constant

Kt forany a2 A. Further, let g: A! R be bounded bygnax > g(a@) > gmin > 0 for any a2 A. The function
g@exp =

fao()

202 9(29 EXP

is Lipschitz with Lipschitz constant K = M%géax forany a2 A.

min

Proof. Let ; °2M be arbitrary and de ne

afao( ) fao( ) fa()
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for any a®2 A, which is Lipschitz with constant 2K . Then, we have

g(a)exp ) g@exp =2
P fo() P f20( 9
a2a 9(a%) exp anza 9(@%)exp 25—
_ 1 1
- P o of P 0 of 0
1+ g4 %((Z)) exp a0( ) 1+ g4 %((Z)) exp a0( 9
0
X 9@) 1gxn o
g(a)
2 ( afao( ) af ao( O))

P
a%a 1+ o, Lg(?:;) exp =%

X g lexp

2 l afao( ) afaO( O)J

0 + Omin _al

1)Kf gr?nax
2 g %in

gmax 2Kf dM ( : % - (JAJ dM ( : O)

4 g r2nin a% a
where we applied the mean value theorem to obtain somezo 2 R for all a8°2 A and used the maximum4—1C of the

function F(x) = reeoc2yz at x =0.

For RelEnt MFE, by Lemma B.7.2 we obtain a Lipschitz constant K, of ! Q (;t;s;a) aslongas > min

for some min > 0. Furthermore, note that for ~- ~ (), we have
. @js) o.( i9) a(ajs)exp Q (tsa ) a(ajs)exp Q ( Stsa)
R P
aoon G(20] s)exp U829 oo (0] s)exp T2

We obtain the Lipschitz constant of = by applying Lemma B.7.5 to each of the maps given by

a(ajs)exp L)

aooa G (a%] s)exp

Q (tsa 9

forall t 2T ;s2S;a2A, resulting in the Lipschitz property

X .
d (T (kT (N=maxmax ~ (@j9) ~" (@js)

a2A
X (A DKg Ghax e O)_J'AJ' (Al DKg Ghax i (: 9:
M\ - M\, )
a2A 2qrznin 2Qr?nin

where we de Ne gnax = Maxi2t s2s :a2a G(a]j s) and analogouslyGmin = Min 1271 :s2s :a2a G(aj s).

By Lemma B.7.4, ( ) is Lipschitz with some Lipschitz constant K . Therefore, the resulting Lipschitz constant
AL GA DK K Ghay

of the composition = = T s 742 and leads to a contraction for any
min '
> max A (A DK K Gha
v zq%ﬂn
Analogously for Boltzmann MFE, by Lemma B.7.3 the mapping ! Q (;t;s;a ) is Lipschitz with some Lipschitz
constant Ko forallt2T;s2S;a2A. For (), we have
- - a(ajsjexp LLisa) a(ajsjexp L -tsa)
t (aJ S) t (a'J S)) = P Q (itsa 9 P Q ( %tsa 9

a02n @ (%] s)exp ao2n @ (%] s)exp



We obtain the Lipschitz constant of by applying Lemma B.7.5 to each of the maps given by

G(ajs)yexp LLhsa)

a02A Ot(aoj S) exp

Q (tsia 9
forallt2T;s2S;a2A, resulting in the Lipschitz property

X o
d( () (9 =max max ¢ (@js) (' (aj9)

s2S t2T

a2A
X (JAJ 1)KQ cﬁmx dw ( 0): JAJ (]AJ 1)KQ cfnax dm ( 0):
a2A 2 q r2nin 2 q r2nin

By Lemma B.7.4, () is Lipschitz with some Lipschitz constant K . The resulting Lipschitz constant of the

. - JA (A DKg K @ .
composition = is WUA DKo K Gna gnq Jeads to a contraction for any

2 q rznin
J JALGAL DK K Gy
2q?nin
where for the uniform prior policy, gnax = min - If required, the Lipschitz constants can be computed recursively
according to Lemma B.2.1. O

B.8 Proof of Theorem 4

Proof. Consider any sequencé ,; ,)n2n Of n-Boltzmann or ,-RelEnt MFE with ,! 0" asn!1l . Note
that a pair ( ,; ,) is completely specied by ,, since , = () or ,= ~_.(,) uniquely. Therefore,
it su ces to show that the associated functions ( 7! Q ~()(;t;s;a))pan and (7! Q «()(;t;s;a ) n2n
converge uniformly to 7! Q (;t;s;a ), from which the desired result will follow. For de nitions of the di erent
action-value functions, see Appendix B.7.

Note that pointwise convergence is insu cient, since there is no guarantee that , itself will converge asn!1
However, we can obtain uniform convergence by pointwise convergence and equicontinuity. For RelEnt MFE, we
will additionally require uniform convergence of the sequencé 7! Q (;t;s;a ))n2n With ! 0". We begin
with pointwise convergence of( 7! Q ~()(:t;s;a ))n2n to the optimal action-value function 7! Q (;t;s;a).

Lemma B.8.1. Any sequence of functions( 7! Q »()(;t;s;a))n2n With , ! Of converges pointwise to
7"Q (;ts;a)forallt2T;s2S;a2A.

Proof. Fix 2 M . We make the induction hypothesis for arbitrary t 2 T that for all s2S;a2 A ;"> 0, there
exists n®2 N such that for any n > n %we have

Q U(its;a) Q (Gtsia) <™
The induction hypothesis is fullled for t = T 1, as by de nition
Q U)(:ts;a) Q(;ts;a) =jr(s;a; 1) r(s;a; {)j=0:
Assume that the induction hypothesis is ful lled for t + 1, then at timeot lets2S;a2A;" > 0 arbitrary.
Furthermore, let s°2 S arbitrary. Collect all optimal actions into a set Aot A e for a2 ASpt We have
4 O — 4 O .
Q (s Lagpt) =max Q (;ts a):

We de ne the minimal action gap

Qi min L (QGts%am) Q(5ts%awm) >0

sO . s
Aopt 2A G @sub 2ANA T
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such that for arbitrary suboptimal actions agyy 2 An A g‘,’)t and optimal actions agpe 2 A g:,t ,
0.

Q (its%am) Q (;ts%aww)  Quin:

This is well de ned if there are suboptimal actions, since there is always at least one optimal action. If all actions
are optimal, we can skip bounding the probability of taking suboptimal actions and the result will hold trivially.
Thus, we assume henceforth that there exists a suboptimal action.

It follows that the probability of taking suboptimal actions agyp 2 AnA g‘;t disappears, since

. asub | S
( o (Ni(aswis)=p (@ s) 4 Zu(l.t.s-)a 9 Q (tsid sw)

a2n (@] s)exp S

1

1js)
1+ 3:825;13 exp Q (tsia opt) Q (Gtisid su)

1js) 1o
o] (ao t JS) Q;m
1+ qt(assbjs) Exp
as ! 0" for some arbitrary optimal action agy 2 Ag‘;t. Sinces®2 S was arbitrary, this holds for all s°2 S.

Therefore, by niteness of S and A we can choosen; 2 N such that for all n>n; and for all asy, 2 AnA g;t we
have | su ciently small such that

(G- ))t(asubjso)< m

where Mg is the uniform bound of Q ().

Further, by induction assumption, we can choosensoo for any s°2 S;a%2 A such that for all n > n so.50 we have

Q Ot +1;s%a) Q (;t +1;s%a) < 3
Therefore, as long asn >n % max(ny; Maxsoss -a02a Nso-40), We have

Q "U)(ts;a) Q(sts;a)

X X
= p(s’j s;a; 1) ( L (Ne@jsHQ It +1;8%a9 max Q (it +1;s%a%
s02S a02A

|
X
max  (,()@)s)Q (it +1:s%a) maxQ (it +1;s%a%
X
max (L (N@)IQ (it +1:s%a)  maxQ (;t +1;s%a%
X
+max ( (N@)sHQ It +1;8%0)

X X
o (L ON@THQ (Gt +155%80) C (@) maxQ (it +1;8%2%)

0 0
0 S o S
a2A 3, a%A 3



0 . . 0. 50 . . 0. 50
+ max ( (D@ maxQ (it +1;8%a%  maxQ (;t +1;s%a"%

0
0 s
a%A 5o

X
TR (L (N@$HQ (5t +1;8%a)
a%AnA S

max max Q ()(;t +1;s%a%) maxQ (;t +1;s%a"%
s02S zoop 331 a%R2A

X X
+max Mo (. ()i s) +max Mg (O )

s02s o o
af%AnA 3, afAnA 5

<+ —— JAiMg+ =—— JA|Mqg =
37 3aMg VT gajmg Ve
Sinces2 S;a2A;" > 0 were arbitrary, the desired result follows immediately by induction.

As we have no control over ,, and the sequenced ,; ,)n2n May not even converge, pointwise convergence is
insu cient. To obtain uniform convergence, we shall use compactness oM and equicontinuity.

Lemma B.8.2. The family of functions F f 7'Q ()(:t;s;a)gs 0:t2T :s2S :a2A IS equicontinuous, i.e. for
any"> 0and any 2M , we can choose a> 0 such that forall °2M withdy (; 9 < andanyf 2F
we have

ife) fC <

Proof. Fix an arbitrary 2 M . We make the (backwards in time) induction hypothesis for allt 2 T that for any
$2S;a2A;"sa > 0, there exists sa > Osuch that forany °2M with dy (; 9 < (sa andanyf 2F
we have

Q U(itsia) Q (V(%tsia) <"isa:
The induction hypothesis is ful lled for t =T 1, as by assumption, ! r(s;a; ) is Lipschitz with constant

C: > 0. Therefore, for alls2 S;a2 A we can chooset 15a = -2 such that for any ; Owith dy (; 9< ©
we have

Q OGtsa) Q (I(C%tsia) =jr(s;a; ) r(s;a 9 Codu(; 9<"isa:

Assume that the induction hypothesis holds fort + 1, then at time t let "4 > 0,52 S;a2 A arbitrary. By
de nition, we have

Q O(tsia) Q (I( %tsa)

X X
= r(sa )+ pEisia ) ( (Dm@s)Q (Gt +1;s%a)

s02s a%2A

X 0; X 0; (%97 o 0.
r(s;a; ) p’isia ) (N (@isIQ I St+1:s7a)

s02s afA

ir(sia; 1) r(s;a Di

X X
+ 0 (eEisia ) pisia ) ( (D @sIQ (Gt +1;5%a)

s02s af2A

X X
+  pElisa ) ( (D@ VGt +1;8%a9)  ( ( PN (@)s9Q I %t+1;5%a)

s02S a02A
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ir(sia; 1) r(s;a Di

X X
+ Plisia ) pisia D) ( (N @sHQ (5t +1;s%a0

s02s a02A
X
X ( (N @is9Q Ot +1;5%2)  ( ( Newr (@2 HQ € I( %t+1;5%a9
a%2A 5o
X o
T meX ( (N @isIQ Gt +1;8%8) ( ( N @HQ (I( Ct+1;5%a9
a%AnA s°

opt
where we de neAggt A for any s°2 S to include all optimal actions agpt 2 A?,;)Jt such that
e O - e O .
Q (itis Lagp) =max Q (;ts a):
We bound each of the four terms separately.

For the rst term, we choose tl;s;a = ;T by Lipschitz continuity such that

t;s;a

4

irs;a; ) r(sia; dj<

forall Cwith dy (; 9< i

ts;a -

For the second term, we chooseZ,, = m such that forany °2M with dy (; 9 < Z. we have

X
Pisia ) psisiar D) (0 () (@89Q (it +1;s%a9

s02s af2A

ISi Cothu (1 IMg < 5°

where Mg denotes the uniform bound ofQ and C, is the Lipschitz constant of 7! p(s®] s;a; ).

For the third and fourth term, we rst x s°2 S and de ne the minimal action gap as

0. ]
ani'n , min 0 Q (s % apt) Q (s % asub))
aopt 2A gp, ;asub 2ANA gp!

This is well de ned if there are suboptimal actions, since there is always at least one optimal action. If all actions
are optimal, we can skip bounding the probability of taking suboptimal actions and the result will still hold.
Henceforth, we assume that there exists a suboptimal action.

By Lipschitz continuity of 7! Q (;t;s;a ) from Lemma B.7.3 implying uniform continuity, there exists some
<0
o, > 0such that

s%
iQ(%s%a) Q (;ts%a)j< %
forall °2M ;a2 A wheredy (; 9 < fSS: , and thus
st ° i o 0 0 0 Qi:i;n
Qmin = min (Q ( %ts%am) Q ( %ts%agy)) > —<min .
aopt 2A g; ‘@b 2ANA 30 2

opt

Under this condition, we can now show that the probability of any suboptimal action can be controlled. De ne
. 0; 0;
RIM  MiNtor s25 a2n avza L3 > 0and RT™  maxior 25 a2a avea 231 > 0. Let agy 2ANA Sy, then

, a (ajs)
we either have

J( ( ))t+1 (asub J 50) ( ( 0))t+1 (asub J SO)J



1

e woay, CI0 exp QLts %20 Q (s %a)
1
1+ P 208 2 q:qéé:u???o) exp ! %ts%a% Q ( %ts %asu)
1
1+ MaXao6 a,,, REM exp Q (its %% Q (its %asu )
N 1
1+ Maxaog a,, RIM exp Q ((%s%a% Q ( %ts%asu)
< 1 — + = -
1+ R exp s 1+ RN exp %
2 "t;s;a
1+ Rg‘i” exp insm?n 8MqjAj

if "ts.a > 16MgjAj trivially, or otherwise if < st with

min
0.
s® Q;i’n .
min 16M o jAj 1 !
2|Og "tsa ?Qawin Rg]in
)
in which case we arbitrarily de ne f;"ss;a =1, or if neither apply, then ﬁfm and thus
JC (D1 (@sw s Nest (@sub § 89
_ 1
= P " — —
o (2%s°) Q (its %% Q (itis %asu)
1+ a% asup qtéasubjso) exp :
1
a: (a%s9) Q ((%ts%a% Q ( %ts%asw)
1+ a08aus o (aew 59 EXP }
P

q (a%s)

Q (%s% % Q ( °ts%asw) Q (s %% Q (its %asw)
a% aun G (a9 CAP exp

a+ ) @+ )

X 0 4. <O 0 4. <0 cte o O i O
rr X e QLOUSI) Q(taw) 0 QS0 Q (it Caw)
a% asup
X 1
RO Zexp 2 jQ(%s%a) Q ( %ts%awn) (Q (ts%a) Q (its ®aw))i
aoeasub
max ;A 1 2MQ H 0. 4. 0. . 0. H H e 0. 0. +. 0. H
RI™A ——exp —= (Q ( %ts%a) Q (5ts%alj+jQ (its%aw) Q ( %ts%aswb)i)
min min
1 2M
RMXAj  —— ex Q 2Kody (; < _tsa
VI e o odw (5 9 BV oA

by the mean value theorem with some 402 [ 2Mq;2Mg] for all 8°2 A, where we abbreviated the denominator
1+ ) (+ ) 1, aslong as we choose

" g0

4% _ tsia_ min
T aMgjAj 2R Mo 2K
QA “Rg™" eXp == Q

min
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anddy (; 9< t"':ao , Wwhere K g is the Lipschitz constant of 7! Q (;t;s;a ) given by Lemma B.7.3.
Sinces® 2 S was arbitrary, we now dene 2, MiNgops f’SS: tsa MiNgops t“sss and letdy (; 9 <
min( Ss;a ; {}s;a ). Under these assumptions, for the third term we have approximate optimality for all optimal

actions in Ag(:)t, since by induction assumption we can choose.; :so50 for all s°2 S;a%2 A such that for all
02 M with dy (; 9 < t+1:5040 it holds that

()t +1-&° 9 Ot 410 < “tsa .
Q UGt +1;8%a%) Q (( %t+1;s%a) 6A 78

and therefore for all °2M , as long asdy (; 9 < Mingops :a0oa  t+1 :50:00, WE have

X X
e ( (N @sHQ It +1;5%a9 ( (P @sHQ I %t+1;5%a0

0 0
a%A 3 af%A 3,

X X
max  ( (Dwm@jsHQ Ot +1;8%a) C (D @jHQ I Gt+1;5%a)

0 0
02A S 02A S
a%2 opt a%2 opt

X ; 0 X . 0
B (N @)sHQ 1 t+1;s5a) ( (Nua@jsIQ I( %t+1;%a)
a%2A 5 a%A 3
()t +1-g% (9 04410
maxmax Q ()(;t +1;8%2) Q (I( %Gt+1;stad)

X
+max C (Ne1@is) (N @)Y Q (I %t+1;5%) Q (it +1;5%)

s02s 0
af%A 3

X
T max C (N @iy (P @jsNQ (5t +1;8%a)

05
° a%A 5
()t +1-g° (9 04 4q-g0
maxmax Q )(;t +1;s%a) Q (I( %t+1;s%al)
+max max 2jAj (9 %t+1:s%a Ot +1;s%4
nax maxzAl @ (O Stelite) Q Ot +1s%a

X

+max max Q ()(;t +1;5%a% C (PNe2(@jsY) (N2 (%Y
s02S a%A 0

a%AnA 3,

"t;s;a - "t;s;a "t;s;a

16A +8 N guoAr < T4

< (1+2jA))

where we use that for anya®2 A g‘,’,t we have

Q Ot +1:;s%a%=max Q ()(;t +1;s%a%:
a02A
Analogously, for the fourth term we have
max (N2 @9 Gt +1;8%8)  ( ( Nea (2°19Q € I( Gt+1;5%a9)

X
max ( (N @90 Ot +1:5%a) ( ( ) (@) HQ (I %t+1:8%a9



X 0 0
+max ( (N @jsHQ I %t+1;8%8) ( ( N (@HQ (I %t+1;8%9
SO
a%2AnA 5

maxmax Q ()(:;t +1:s%a%) Q (I( %t+1;s%a9

s02S af%A
+max Mo iC (Ve @is) (P (%)Y
a%2AnA ggt
< "t;s;a + M -A- "t;s;a - IIt;s;a
8 A VISTY 4

under the previous conditions, since as long as we haway (; 9 < (41 -s0-90 for all s92S:a%2 A from bhefore,
we have

()(t +1:s% (9 0t41-6040) <« _ tsa _ 'tsa .
Q DGtrLisia) Q LA Ntrlisha) < gpg < g

Finally, by choosing ts.a such that all conditions are ful lled, i.e.

1 2 3

; . . .4 .
ts;a  MIN - toq) tsas tsar tsad t+1;5020 > 0]

min
s02S ;a02A

the induction hypothesis is ful lled, since then for any °with dy (; 9 < (sa We have
Q O(Gtsa) Q (I(%tsia) <"ysa:

Since > O0is arbitrary, the desired result follows immediately, as we can set s, = " foreacht2T;s2S;a2A
and obtain MaxoT -s2s a2a  tsa » (Ul lling the required equicontinuity property at

From equicontinuity, we get the desired uniform convergence via compactness.

Lemma B.8.3. If (fy)nan With f, : M! R is an equicontinuous sequence of functions and for all 2 M we
havef,( )! f( ) pointwise, thenf,( )! f( ) uniformly.

Proof. Let " > O arbitrary, then there exists by equicontinuity for any point 2 M a ( ) such that for all
02M with duy (; 9 < () we have foralln 2 N

() (90 < 5

which via pointwise convergence implies

jf f i =
O 9 5
SinceM is compact, it is separable, i.e. there exists a countable dense subsgt;);on Of M. Let ( ) be as
de ned above and coverM by the open balls(B ( ;)( j))j2n. By the compactness ofM , nitely many of these

integer n; such that for all n > n; we have

ifaCn) TCni< 3e

Taken together, we nd that for n > maxi=; ...k n; and arbitrary 2 M , we have

.....

n() TON<If() Taladi+tnCa) TCR)I+IEC0) TO)< g+ g+ <"

for some center point ,, of a ball containing from the nite cover.

Therefore, a sequence of Boltzmann MFE with vanishing is approximately optimal in the MFG.
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Lemma B.8.4. For any sequence( ,; p)n2n Of ,-Boltzmann MFE with , ! 0" and for any " > O there
exists integerN 2 N such that for all integersn >N we have

Jr(,) maxd () ":

Proof. By Lemma B.8.2,F ( 7' Q ()(;ts;a)) > ot2r :s2s:a2a IS €quicontinuous. Therefore, any sequence
( 77Q ~U)(;t;s;a))nan With ! O is also equicontinuous for anyt 2 T ;s2S;a2A.

Furthermore, by Lemma B.8.1, the sequencd 7! Q »()(;t;s;a ))n2n CONverges pointwiseto ! Q (;t;s;a)
foranyt2T;s2S;a2A.

By Lemma B.8.3, we thus have Q ~()(;t;s;a) Q (;t;s;a) ! 0 uniformly. Therefore, for any "> 0, there
exists an integerN by uniform convergence such that for all integersn > N we have

Qr(nitisia) Q(nitsia) "=maxQ ( n;tsia) ™
and since by Lemma B.3.1 we have
X X X X
Jr(a)= o) Qr(nitsia) o(s) max  Q ( nitsia) “=maxJ ()
s2S a2A s2S a2A

the desired result follows immediately.

Finally, we show approximate optimality in the actual N-agent game as long as a pai{ ; ) 2 M
with = () has vanishing exploitability in the MFG. By Lemma B.8.4, for any sequence( ,; ,)n2n Of

n-Boltzmann MFE with , ! 0" and for any " > 0 there exists an integern®2 N such that for all integers
n>n%we have

Jrn(,) maxJd n() ":

Let "°> 0 be arbitrary and choose a sequence of optimal policies N gy, n such that for all N 2 N we have

By Lemma B.5.6 there existsN°2 N such that for all N >N %and all n > n % we have

nQ
N R R n IIO n n
mzaxJ1 Gy omriis n) mzaxJ () >

NS

which is the desired approximate Nash equilibrium property since";" © are arbitrary. This applies by symmetry to
all agents.

For RelEnt MFE, the same can be done by rst showing the uniform convergence of the soft action-value function
to the usual action-value function. For this, note that the smooth maximum Bellman recursion converges to the
hard maximum Bellman recursion for any xed

Lemma B.8.5. Foranyf :A! Randanyg:A! R with g(a)> 0forall a2 A, we have

X f
lim log g(a) exp @ =max f (a):
I o* a2A
a2A
Proof. Let = 11 +1 . Then, by L'Hospital's rule we have

P P
im log 404 9(@)exp(f () - im A g(@exp(f (a)) f(a)
L1 D+l aza 9(@)exXp(f ()



P
pa O@EXp( (F(a) maxaen () (a)

A aza 9(@)exp( (f(a) maxaza f(a)))
JA max ] Maxaza f(a)

= - : =max f (a
JA max ] az2A ()

where jA max ] is the number of elements inA that maximize f .

Using this result, we can show pointwise convergence of the soft action-value function to the action-value function.

Lemma B.8.6. Any sequence of functions( 7! Q  (;t;s;a))nan With , ! 0" converges pointwise to
7"Q (;ts;a)forallt2T;s2S;a2A.

Proof. Fix 2 M . We show by induction that for any " > 0, there exists ; > 0 such that forall < ; we have
Q((;tts;a) Q(;ts;a) <" forallt2T;s2S;a2A. Thisholdsfort=T 1and arbitrary s2S;a2A

by Lemma B.8.5, sincer(s;a; 1 1) is independent of . Assume this holds fort + 1 and considert. Then, by the
induction assumption we can choose+; > 0such thatfor < ,;,as ! 0" we have
I

Q(;t +1;s%a9)

X X

Q (sts;a)=r(sia; )+  ps’jsia 1) log  gu (@) s)exp
s028 a02A

Q (it +1;s%a9+

NI =

X X
rs;a; o)+ pslisia; 1) log g (8% SDexp
S(;%S a0%2A
Lor(s;a; )+ p(s®j s;a; ()maxQ (;t +1;s%a%)+ —
<025 a%A 2

by Lemma B.8.5 and monotonicity of log and exp. Analogously,

Q (;t +1;s%a9

N =

X X
Q(:ts;a) r(sia; )+ p(sis;a; 1) log g (d°)sYexp

sg%S a02A

Lor(sia; )+ ps?is;a; gmaxQ (5t +1;8%a) o
a02A 2
s02S
Therefore, we can choose; < +1 such that for all <  we have
|

X !
Q(its;a) Q(its;a) = Q (sts;a)  r(sja; )+ p(s%j s;a; dmaxQ (;t +1;8%) <"
s02S é

which is the desired result.

We can now show that the soft action-value function converges uniformly to the action-value function as ! 0*.
Lemma B.8.7. Any sequence of functions( 7! Q  (;ts;a))n2n With , I 0" converges uniformly to
7"Q (;ts;a)forallt2T;s2S;a2A.

Proof. First, we show that Q (;t;s;a ) is monotonically decreasing in for > 0, i.e. @@Q (;t;s;a) Oforall

t2T;s2S;a2A. Thisis the case fort = T 1 and arbitrary s2S;a2 A, sinceQ (;T 1;s;a) is constant.
Assume this holds fort + 1, then for t and arbitrary s2 S;a2 A we have

|
Q (;t +1;s%a9

@ X X .
gl (tsa)=  p’isia )log  au (%) s exp
s02s a%2A
. . .g0.50 . .50.50
2 psar ) A Ge1 (% Qexp TLLHsa)  QlieR) 108G (5t +1;s%a)
1Ayt B

|nd . ‘t +1:50:30
s028 a02A Op+1 (aOJ S% exp M
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0 Q (t +1;5% % q (it +1;5%9 1

A

! P )
Q (;t +1;s%a)% azn G+1 (a%) 89 exp

X
max @log 41 (a%) sY) exp p —
s02S 202 202 Gk+1 (an SO) exp M

by induction hypothesis. Let o Q (t+1%) 5 R and s°2 S arbitrary, then by Jensen's inequality applied to

the convex function (x) = xlogx we have
!

X
G+1(a%) D) (exp a0) g1 (%] SHexp a0

a02A af2A I I

X X X

0 G+1 (%] D) aoexp a0 a1 (8% sHexp 0 log g1 (@%] SHexp a0
a%2A I a02A a02A

o2a G+l (@% 89 aoexp a0

X
0 log g1 (%) sHexp ao .

. 0;
af%2A a%2a G+1 (aOJ SO} EXP a0

such that @ (;t;s;a ) is monotonically decreasing for allt 2 T ;s2 S;a2 A by induction.

Furthermore, M is compact and both@Q and Q are compositions, sums, products and nite maxima of continuous
functions in  and therefore continuous in by the standing assumptions. Sincg 7! Q  (;t;s;a ))n2n With

n ! 0" converges pointwiseto 7! Q (;t;s;a)forallt2T;s2S;a2A by Lemma B.8.6, by Dini's theorem
the convergence is uniform.

Now that @ converges uniformly againstQ, we can show that RelEnt MFE have vanishing exploitability by
replicating the proof for Boltzmann MFE.

Lemma B.8.8. Any sequence of functions( 7! Q «()(;t;s;a))non With , ! O converges pointwise to
7"Q (;ts;a)forallt2T;s2S;a2A.

Proof. The proof is the same as in Lemma B.8.1. The only di erence is that we additionally choos@&;, 2 N in
each induction step such that for alln > n , we have
o
Q(its;a) Q(itsia)  — 0%

forall t 2T ;s2S;a2A, which is possible, since by Lemma B.8.7Q0 converges uniformly againstQ. As long
as we choos@® max(ny; Ny; MaXxsos :a0ea Nsoa0), the rest of the proof will apply.

Lemma B.8.9. Any sequence of functions{ 7! Q ~()(;t;s;a))n2n With ! 0" fullls equicontinuity for
large enoughn: For any "> 0and any 2 M , we can choose a > 0 and an integern®2 N such that for all
02M withdy (; 9 < and for all n>n°we have

Q "O(tsia) Q »(I( %tsia) <

Proof. To obtain the desired property, we replicate the proof of Lemma B.8.2 by settingF = (7!
Q ~0)(;t;s;a))n2n. Any bounds for @ can be instantiated by the corresponding bound forQ and then
bounding the distance between both by uniform convergence. The only di erences lie in bounding the terms

(TN asw sy (T, YNasuw jsY

where the action-value function has been replaced with the soft action-value function. Sinc€ , uniformly
converges toQ, we instantiate additional requirements Nt?;a ;I\Tt?;a tolet n>N t?;a yn > I\Tt?;a large enough
such that is su ciently small enough.

The rst di erence is to obtain

Q.(%sa) Q, (:tsia) < %



for all 4/ e M,t € T,s € S,a € A with dp(u, ') sufficiently small. We choose 83, , slightly stronger than in

t,s,a

the original proof, such that if d(u, p') < 53 we have

t,s,a?

’
S
AC2min

|Q*</”//7ta S,CL) —Q*(,u,t,s,a)| < 12

We must then additionally choose Nts,; o € N for each induction step via uniform convergence from Lemma B.8.7

such that as long as n > N ,, we have

s,a?

an(/’%tvsva’) - Q (/J/ata S,Cl) < T .

This implies the required inequality

Qﬁn(ul7t757a) - an(u,t,s,a) S an(ul7t757a) - Q*(Ulvtasaa) + ‘Q*(/J//)tvsva') - Q*(Uata57a)|

7
SH1
AQmin

+ Q*(uﬂt757a)7an(uﬂt757a) < 4

and we can proceed as in the original proof.

The second difference lies in choosing 555" Note that an is still bounded by Mg, see Lemma However,

t,s,a*

since an might no longer be Lipschitz with the same constant as Q*, we choose an additional integer Nts;a eN

for each induction step by Lemma such that as long as n > Nts,/s’a, we have
€t,s,a
~ . . T6Mo)A]
an(,u,t,s,a)—Q (p,t,s,a) SAZ?: 1Q oM.
4R§1nax"'4| ! ns’ exp S/Q

for any ' € M,t € T,s € S,a € A. The required bound then follows immediately from

(@4, (1) (asub | s') — (P, (1) (asup | )

L L
< R;nax > exp QTln (Mlv t? Sla al) B Qﬂn (MI7 t? SI7 asub) — exp an (:u’7 t7 8/7 a/) B an (/1'7 t> 3/7 asub)
a’#asub g N
x 3 , _ B ~ ~
S R;nax — exXp ga (Q??n (,Ul,t,S/,a/) - an (/J’/7t75/7asub)) - (Q'fln (,u,t,s’,a’) - an (H7t78,7a'sub))
a/?éasub n
max 1 2MQ A / o A ro A / A / /
S‘Rq |A|~Texp s/ an(uﬂf,s7a)—an(u,t,s,a) + Qﬂn(ﬂatvs7asub)_an(N7t787asub)
min Mmin
1 2M, /
<RPNAl ——exp =2 - 2Kqdm(p, i) + 405
min Mmin
1 2M, Et,s,a €t,s,a
< RPA| ——exp ——2 - (2Kgda(p, ) + —20 < b
! rénin n;lin 16MQ|A‘ SMQ‘A|

as in the original proof by letting da(p, ') < 55 and choosing

t,s,a

64,5' o Etyﬁaanr‘?nin
o= .
16Mq| A R - exp 2o 9K,

s/
min

/

n> N¢

The rest of the proof is analogous. We obtain the additional requirement n > Ny ., fs.a

for some integers
Nf’lsya, Nts,/s,a andeacht € T,s € S,s' € S,a € A. By choosing n’ = maxier scs.s'cS,acA max(Ntf;’a, Nts,ls’a)7 the
desired result holds as long as n > n'.

From this property, we again obtain the desired uniform convergence via compactness of M.
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