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Supplementary Materials

A Experimental Details

A.1 Algorithms

Algorithm 1 Exact fixed point iteration
1: Initialize µ0 = Ψ(q) as the mean field induced by the uniformly random policy q.
2: for k = 0, 1, · · · do
3: Compute the Q-function Q∗(µk, t, s, a) for fixed µk.
4: Choose πk ∈ Π such that πkt (a | s) =⇒ a ∈ arg maxa∈AQ

k(µk, t, s, a) for all t ∈ T , s ∈ S, a ∈ A by
putting all probability mass on the first optimal action, or evenly on all optimal actions.

5: Optionally: Overwrite πk ← 1
k+1π

k + k
k+1π

k−1. (FP averaged policy)
6: Compute the mean field µk+1 = Ψ(πk) induced by πk.
7: Optionally: Overwrite µk+1 ← 1

k+1µ
k+1 + k

k+1µ
k. (FP averaged mean field)

8: end for

Algorithm 2 Boltzmann / RelEnt iteration
1: Input: Temperature η > 0, prior policy q ∈ Π.
2: Initialize µ0 = Ψ(q) as the mean field induced by q.
3: for k = 0, 1, · · · do
4: Compute the Q-function (Boltzmann) or soft Q-function (RelEnt) Q(µk, t, s, a) for fixed µk.

5: Define πk by πkt (a | s) =
qt(a|s) exp

(
Q(µk,t,s,a)

η

)
∑
a′∈A qt(a

′|s) exp
(
Q(µk,t,s,a′)

η

) for all t ∈ T , s ∈ S, a ∈ A.

6: Optionally: Overwrite πk ← 1
k+1π

k + k
k+1π

k−1. (FP averaged policy)
7: Compute the mean field µk+1 = Ψ(πk) induced by πk.
8: Optionally: Overwrite µk+1 ← 1

k+1µ
k+1 + k

k+1µ
k. (FP averaged mean field)

9: end for

Algorithm 3 Boltzmann DQN iteration
1: Input: Temperature η > 0, prior policy q ∈ Π.
2: Input: Simulation parameters, DQN hyperparameters.
3: Initialize µ0 ≈ Ψ(q) as the mean field induced by q using Algorithm 5.
4: for k = 0, 1, · · · do
5: Approximate the Q-function Q∗(µk, t, s, a) using Algorithm 4 on the MDP induced by µk.

6: Define πk by πkt (a | s) =
qt(a|s) exp

(
Q∗(µk,t,s,a)

η

)
∑
a′∈A qt(a

′|s) exp
(
Q∗(µk,t,s,a′)

η

) for all t ∈ T , s ∈ S, a ∈ A.

7: Approximately simulate mean field µk+1 ≈ Ψ(πk) induced by πk using Algorithm 5.
8: end for
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Algorithm 4 DQN
1: Input: Number of epochs L, mini-batch size N , target update frequency M , replay buffer size D.
2: Input: Probability of random action ε, Discount factor γ, ADAM and gradient clipping parameters.
3: Initialize network Qθ, target network Qθ′ ← Qθ and replay buffer D of size D.
4: for L epochs do
5: for t = 1, . . . , T do
6: One environment step
7: Let new action at ← arg maxa∈AQθ(t, s, a), or with probability ε sample uniformly random instead.
8: Sample new state st+1 ∼ p(· | st, at).
9: Add transition tuple (st, at, r(st, at), st+1) to replay buffer D.

10: One mini-batch descent step
11: Sample from the replay buffer: {(sit, ait, rit, sit+1)}i=1,...,N ∼ D.
12: Compute loss JQ =

∑N
i=1

(
rit + γmaxa′∈AQ(t+ 1, sit+1, a

′)−Q(t, sit, a
i
t)
)2.

13: Update θ according to ∇θJQ using ADAM with gradient norm clipping.
14: if number of steps modM = 0 then
15: Update target network θ′ ← θ.
16: end if
17: end for
18: end for

Algorithm 5 Stochastic mean field simulation
1: Input: Number of mean fields K, number of particles M , policy π.
2: for k = 1, . . . ,K do
3: Initialize particles x0

m ∼ µ0 for all m = 1, . . . ,M .
4: for t ∈ T do
5: Define empirical measure Gkt ←

∑M
m=1 δxtm .

6: for m = 1, . . . ,M do
7: Sample action a ∼ πt(· | xtm).
8: Sample new particle state xt+1

m ∼ p(· | xtm, a,Gkt ).
9: end for

10: end for
11: end for
12: return average empirical mean field ( 1

K

∑K
k=1 Gkt )t∈T

A.2 Implementation details

For all the DQN experiments, we use the configurations given in Table 1 and hyperparameters given in Table 2.
Note that we add epsilon scheduling and a discount factor to DQN for stability reasons, i.e. the loss term
has an additional factor smaller than one before the maximum operation, cf. Mnih et al. (2013). For the
action-value network, we use a fully connected dueling architecture (Wang et al. (2016)) with one shared hidden
layer of 256 neurons, and one separate hidden layer of 256 neurons for value and advantage stream each. As the
activation function, we use ReLU. Further, we use gradient norm clipping and the ADAM optimizer. To allow for
time-dependent policies, we append the current time to the observations.

We transform all discrete-valued observations except time to corresponding one-hot vectors, except in the
intractably large Taxi environment where we simply observe one value in {0, 1} for each tile’s passenger status.
For evaluation of exploitability, we compare the values of the optimal policy and the evaluated policy in the MDP
induced by the mean field generated by the evaluated policy. In intractable cases, we use DQN to approximately
obtain the optimal policy. In this case, we obtain the values by averaging over many episodes in the MDP induced
by the mean field generated by the evaluated policy via Algorithm 5.

A.3 Problems

Summarizing properties of the considered problems are given in Table 3.



Algorithm 6 Prior descent
1: Input: Number of outer iterations I.
2: Input: Initial prior policy q ∈ Π.
3: for outer iteration i = 1, . . . , I do
4: Find η heuristically or minimally such that Algorithm 2 with temperature η and prior q converges.
5: if no such η exists then
6: return q
7: end if
8: q ← solution of Algorithm 2 with temperature η and prior q.
9: end for

Table 1: Boltzmann DQN Iteration Parameters

Parameter RPS SIS Taxi

Fixed point iteration count 1000 50 15
Number of particles for mean field 1000 1000 200
Number of mean fields 5 5 5
Number of episodes for evaluation 2000 2000 500

LR. Similar to the example mentioned in the main text, we let a large number of agents choose simultaneously
between going left (L) or right (R). Afterwards, each agent shall be punished proportional to the number of
agents that chose the same action, but more-so for choosing right than left.

More formally, let S = {C,L,R}, A = S \ {C}, µ0(C) = 1, r(s, a, µt) = −1{L}(s) · µt(L) − 2 · 1{R}(s) · µt(R)
and T = {0, 1}. Note the difference to the toy example in the main text: right is punished more than left. The
transition function allows picking the next state directly, i.e. for all s, s′ ∈ S, a ∈ A,

P(St+1 = s′ | St = s,At = a) = 1{s′}(a) .

For this example, we have KQ = 1 since the return Q of the initial state changes linearly with µ1 and lies between
0 and −2, while the distance between two mean fields is also bounded by 2. Analogously, KΨ = 1 since (Ψ(π))1

similarly changes linearly with π0, and both can change at most by 2. Thus, we obtain guaranteed convergence
via Boltzmann iteration if η > 1. In numerical evaluations, we see convergence already for η ≥ 0.7.

RPS. This game is inspired by Shapley (1964) and their generalized non-zero-sum version of Rock-Paper-Scissors,
for which classical fictitious play would not converge. Each of the agents can choose between rock, paper and
scissors, and obtains a reward proportional to double the number of beaten agents minus the number of agents
beating the agent. We modify the proportionality factors such that a uniformly random prior policy does not
constitute a mean field equilibrium.

Let S = {0, R, P, S}, A = S \ {0}, µ0(0) = 1, T = {0, 1}, and for any a ∈ A, µt ∈ P(S),

r(R, a, µt) = 2 · µt(S)− 1 · µt(P ),

r(P, a, µt) = 4 · µt(R)− 2 · µt(S),

r(S, a, µt) = 6 · µt(P )− 3 · µt(R) .

The transition function allows picking the next state directly, i.e. for all s, s′ ∈ S, a ∈ A,

P(St+1 = s′ | St = s,At = a) = 1{s′}(a) .

SIS. In this problem, a large number of agents can choose between social distancing (D) or going out (U). If
a susceptible (S) agent chooses social distancing, they may not become infected (I). Otherwise, an agent may
become infected with a probability proportional to the number of agents being infected. If infected, an agent will
recover with a fixed chance every time step. Both social distancing and being infected have an associated cost.
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Table 2: DQN Hyperparameters

Hyperparameter Value

Replay buffer size 10000
ADAM Learning rate 0.0005
Discount factor 0.99
Target update frequency 500
Gradient clipping norm 40
Mini-batch size 128
Epsilon schedule 1 linearly down to 0.02 at 0.8 times maximum steps
Total epochs 1000

Table 3: Problem Properties

Problem |T | |S| |A|
LR 2 3 2
RPS 2 4 3
SIS 50 2 2
Taxi 100 ∼227 5

Let S = {S, I}, A = {U,D}, µ0(I) = 0.6, r(s, a, µt) = −1{I}(s)− 0.5 · 1{D}(s) and T = {0, . . . , 50}. We find that
similar parameters produce similar results, and set the transition probability mass functions as

P(St+1 = S | St = I) = 0.3

P(St+1 = I | St = S,At = U) = 0.92 · µt(I)

P(St+1 = I | St = S,At = D) = 0 .

Taxi. In this problem, we consider a K ×L grid. The state is described by a tuple (x, y, x′, y′, p, B) where (x, y)
is the agent’s position, (x′, y′) indicates the current desired destination of the passenger or is (0, 0) otherwise, and
p ∈ {0, 1} indicates whether a passenger is in the taxi or not. Finally, B is a K × L matrix indicating whether a
new passenger is available for the taxi on the corresponding tile. All taxis start on the same tile and have no
passengers in the queue or on the map at the beginning. The problem runs for 100 time steps.

The taxi can choose between five actions W,U,D,L,R, where W (Wait) allows the taxi to pick up / deliver
passengers, and U,D,L,R (Up, Down, Left, Right) allows it to move in all four directions. As there are many
taxis, there is a chance of a jam on tile s given by min(0.7, 10 · µt(s)), i.e. the taxi will not move with this
probability. The taxi also cannot move into walls or back into the starting tile, in which case it will stay on its
current tile. With a probability of 0.8, a new passenger spawns on one randomly chosen free tile of each region.
On picking up a passenger, the destination is generated by randomly picking any free tile of the same region.
Delivering passengers to a destination and picking them up gives a reward of 1 in region 1 and 1.2 in region 2.

For our experiments, we use the following small map, where S denotes the starting tile, 1 denotes a free tile from
region 1, 2 denotes a free tile from region 2 and H denotes an impassable wall:

1 1 1
1 1 1
1 1 1
H S H
2 2 2
2 2 2
2 2 2


This produces a similar situation as in LR, where a fraction of taxis should choose each region so the values balance
out, while also requiring solution of a problem that is intractable to solve exactly via dynamic programming.



A.4 Further experiments

Figure 1: Mean exploitability (straight lines), maximum and minimum (dashed lines) over the final 10 iterations
of the last outer iteration. 50 outer iterations and 100 inner iterations each; (a, d) LR; (b, e) RPS; (c, f) SIS.
Maximum entropy (MaxEnt) results begin at higher temperatures due to limited floating point accuracy. The
exploitability of the initial uniform prior policy is indicated by the dashed horizontal line.

Figure 2: Mean exploitability over the final 10 iterations. Dashed lines represent maximum and minimum over the
final 10 iterations. (a) LR, 10000 iterations; (b) RPS, 10000 iterations; (c) SIS, 1000 iterations. The exploitability
of the uniform prior policy is indicated by the dashed horizontal line.

In Figure 1, we observe that prior descent for both Boltzmann and RelEnt MFE with the same uniform prior
policy performs qualitatively similarly, and coincide in LR and SIS except for numerical inaccuracies. It can be
seen that using a temperature sufficiently low to converge in LR and RPS allows prior descent to descend to
the exact MFE iteratively. In SIS on the other hand, picking a fixed temperature that converges for the initial
uniform prior policy does not guarantee monotonic improvement of exploitability afterwards. Instead, by applying
the heuristic

ηi+1 = ηi · c

for each outer iteration i, where c ≥ 1 adjusts the temperature after each outer iteration, we avoid scanning
over all temperatures in each step and reach convergence to a good approximate mean field equilibrium for both
Boltzmann and MaxEnt iteration.
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Figure 3: (a) Difference between current and final minimum exploitability over the last 10 iterations; (b) Distance
between current and final mean field, cut off at 500 iterations for readability. Plotted for the η-RelEnt iterations
in SIS for the indicated temperature settings and uniform prior policy.

Figure 4: Difference between current and final estimated minimum exploitability over the last 5 iterations. (a) SIS,
50 iterations; (b) Taxi, 15 iterations. Plotted for the η-Boltzmann DQN iteration for the indicated temperature
settings and uniform prior policy.

In Figure 2 empirical results are shown for fictitious play variants averaging only policy or mean field. In the
simple one-step toy problems LR and RPS, averaging the policies appears to converge to the exact solution
without regularization and to the regularized solution with regularization. Averaging the mean fields on the other
hand fails, since this method can only produce deterministic policies. By applying any amount of regularization,
averaging the mean fields is led to success in LR and SIS. Nonetheless, both methods fail to converge to the MFE
in SIS and produce worse results than obtained by prior descent in Figure 1.

In Figure 3 we depict the convergence of exploitability and mean field of MaxEnt iteration in SIS. The results are
qualitatively similar with Boltzmann iteration and, as in the main text, show the convergence behaviour near the
critical temperature leading to convergence.

In Figure 4 we depict the convergence of exploitability for Boltzmann DQN iteration in SIS and Taxi during one
of the runs. All 4 other runs show similar qualitative behaviour. As can be seen, the highest temperature of
0.2 shows less oscillatory behaviour, stabilizing Boltzmann DQN iteration. In Taxi, it can be seen that the used
temperatures are insufficient to allow Boltzmann DQN iteration to converge. We believe that using prior descent
could allow for better results. We could not verify this due to the high computational cost, as this includes
repeatedly and sequentially solving an expensive reinforcement learning problem.

Finally, in Figure 5 we depict the resulting behavior in the SIS case. In the Boltzmann iteration result, at the
beginning the number of infected is high enough to make social distancing the optimal action to take. As the
number of infected falls, it reaches an equilibrium point where both social distancing or potentially getting
infected are of equal value. Finally, as the game ends at time t = T = 50, there is no point in social distancing
any more. Our approach yields intuitive results here, while exact fixed point iteration and FP fail to converge.



Figure 5: Fraction of infected agents and fraction of susceptible agents picking social distancing over time. (a, d):
Boltzmann iteration (η = 0.07); (b, e): exact fixed point iteration; (c, f): fictitious play (averaging both policy
and mean field) results in SIS after 500 iterations. More iterations and averaging only policy or mean field show
same qualitative results.

B Proofs

B.1 Completeness of mean field and policy space

Lemma B.1.1. The metric spaces (Π, dΠ) and (M, dM) are complete metric spaces.

Proof. The metric space (M, dM) is a complete metric space. Let (µn)n∈N ∈MN be a Cauchy sequence of mean
fields. Then by definition, for any ε > 0 there exists integer N > 0 such that for any m,n > N we have

dM(µn, µm) < 0.5ε

=⇒ ∀t ∈ T : dTV (µnt , µ
m
t ) =

1

2

∑
s∈S
|µnt (s)− µmt (s)| < 0.5ε

=⇒ ∀t ∈ T , s ∈ S : |µnt (s)− µmt (s)| < ε .

By completeness of R there exists the limit of (µnt (s))n∈N for all t ∈ T , s ∈ S, suggestively denoted by µt(s). The
mean field µ = {µt}t∈T with the probabilities defined by the aforementioned limits fulfills µn → µ and is inM,
showing completeness ofM.

We do this analogously for (Π, dΠ). Thus, (Π, dΠ) and (M, dM) are complete metric spaces.

B.2 Lipschitz continuity

Lemma B.2.1. Assume bounded and Lipschitz functions f : X → R and g : X → R mapping from a metric
space (X, dX) into R with Lipschitz constants Cf , Cg and bounds |f(x)| ≤ Mf , |g(x)| ≤ Mg. The sum of both
functions f + g, the product of both functions f · g and the maximum of both functions max(f, g) are all Lipschitz
and bounded with Lipschitz constants Cf + Cg, (MfCg + MgCf ), max(Cf , Cg) and bounds Mf + Mg, MfMg,
max(Mf ,Mg).

Proof. Let x, y ∈ X be arbitrary. By the triangle inequality, we obtain

|f(x) + g(x)− (f(y) + g(y))| ≤ |f(x)− f(y)|+ |g(x)− g(y)| ≤ (Cf + Cg)dX(x, y) .

Analogously, we obtain

|f(x)g(x)− f(y)g(y)| ≤ |f(x)g(x)− f(x)g(y)|+ |f(x)g(y)− f(y)g(y)| ≤ (MfCg +MgCf )dX(x, y) .
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For the maximum of both functions, consider case by case. If f(x) ≥ g(x) and f(y) ≥ g(y) we obtain

|max(f(x), g(x))−max(f(y), g(y))| = |f(x)− f(y)| ≤ CfdX(x, y)

and analogously for g(x) ≥ f(x) and g(y) ≥ f(y)

|max(f(x), g(x))−max(f(y), g(y))| = |g(x)− g(y)| ≤ CgdX(x, y) .

On the other hand, if g(x) < f(x) and g(y) ≥ f(y) , we have either g(y) ≥ f(x) and thus

|max(f(x), g(x))−max(f(y), g(y))| = |f(x)− g(y)| = g(y)− f(x) < g(y)− g(x) ≤ CgdX(x, y)

or g(y) < f(x) and thus

|max(f(x), g(x))−max(f(y), g(y))| = |f(x)− g(y)| = f(x)− g(y) ≤ f(x)− f(y) ≤ CfdX(x, y) .

The case for f(x) < g(x) and f(y) ≥ g(y) as well as boundedness is analogous.

B.3 Proof of Proposition 1

Proof. Since we work with finite T ,S,A, we identify the space of mean fieldsM with the |T |(|S|−1)-dimensional
simplex S|T |(|S|−1) ⊆ R|T |(|S|−1) via the values of the probability mass functions at all times and states. Analo-
gously the space of policies Π is identified with S|T ||S|(|A|−1) ⊆ R|T ||S|(|A|−1).

Define the set-valued map Γ̂ : S|T ||S|(|A|−1) → 2S|T ||S|(|A|−1) mapping from a policy π represented by the input
vector, to the set of vector representations of optimal policies in the MDP induced by Ψ(π).

A policy π is optimal in the MDP induced by µ ∈M if and only if its value function defined by

V π(µ, t, s) =
∑
a∈A

πt(a | s)

(
r(s, a, µt) +

∑
s′∈S

p(s′ | s, a, µt)V π(µ, t+ 1, s′)

)
,

is equal to the optimal action-value function defined by

V ∗(µ, t, s) = max
a∈A

(
r(s, a, µt) +

∑
s′∈S

p(s′ | s, a, µt)V ∗(µ, t+ 1, s′)

)

for every t ∈ T , s ∈ S, with terminal conditions V ∗(µ, T, s) ≡ V π(µ, T, s) ≡ 0. Moreover, an optimal policy
always exists. For more details, see e.g. Puterman (2014). Define the optimal action-value function for every
t ∈ T , s ∈ S, a ∈ A via

Q∗(µ, t, s, a) = r(s, a, µt) +
∑
s′∈S

p(s′ | s, a, µt)V ∗(µ, t+ 1, s′)

with terminal condition Q∗(µ, T, s, a) ≡ 0. Then, the following lemma characterizes optimality of policies.

Lemma B.3.1. A policy π fulfills π ∈ Γ̂(π̂) if and only if

πt(a | s) > 0 =⇒ a ∈ arg max
a′∈A

Q∗(Ψ(π̂), t, s, a′)

for all t ∈ T , s ∈ S, a ∈ A.

Proof. To see the implication, consider π ∈ Γ̂(π̂). Then, if the right-hand side was false, there exists a maximal
t ∈ T and s ∈ S, a ∈ A such that πt(a | s) > 0 but a 6∈ arg maxa′∈AQ

∗(Ψ(π̂), t, s, a′). Since for any t′ > t we have
optimality, V π(µ, t+ 1, s′) = V ∗(µ, t+ 1, s′) by induction. However, V π(µ, t, s) < V ∗(µ, t, s) since the suboptimal
action is assigned positive probability, contradicting optimality of π. On the other hand, if the right-hand side is
true, then V π(µ, t, s) = V ∗(µ, t, s) by induction, which implies that π is optimal. �



We will now check that the requirements of Kakutani’s fixed point theorem hold for Γ̂. The finite-dimensional
simplices are convex, closed and bounded, hence compact. Γ̂ maps to a non-empty set, as the induced mean field
is uniquely defined and any finite MDP (induced by this mean field) has an optimal policy.

For any π, Γ̂(π) is convex, since the set of optimal policies is convex as shown in the following. Consider a convex
combination π̃ = λπ + (1− λ)π′ of optimal policies π, π′ for λ ∈ [0, 1]. Then, the resulting policy will be optimal,
since we have

π̃t(a | s) > 0 =⇒ πt(a | s) > 0 ∨ π′t(a | s) > 0 =⇒ a ∈ arg max
a∈A

Q∗(Ψ(π̂), t, s, a)

for any t ∈ T , s ∈ S, a ∈ A and thus optimality by Lemma B.3.1.

Finally, we show that Γ̂ has a closed graph. Consider arbitrary sequences (πn, π
′
n)→ (π, π′) with π′n ∈ Γ̂(πn). It is

then sufficient to show that π′ ∈ Γ̂(π). By the standing assumption, we have continuity of Ψ and µ→ Q∗(µ, t, s, a)
for any t ∈ T , s ∈ S, a ∈ A, as sums, products and compositions of continuous functions remain continuous.
Therefore, the composition π → Q∗(Ψ(π), t, s, a) is continuous. To show that π′ ∈ Γ̂(π), assume that π′ 6∈ Γ̂(π).
By Lemma B.3.1 there exists t ∈ T , s ∈ S, a ∈ A such that π′t(a | s) > 0 and further there exists a′ ∈ A such that
Q∗(Ψ(π), t, s, a′) > Q∗(Ψ(π), t, s, a). Fix such an a′ ∈ A. Let δ ≡ Q∗(Ψ(π), t, s, a′) − Q∗(Ψ(π), t, s, a), then by
continuity there exists ε > 0 such that for all π̂ ∈ Π we have

dΠ(π̂, π) < ε =⇒ |Q∗(Ψ(π̂), t, s, a)−Q∗(Ψ(π), t, s, a)| < δ

2
.

By convergence, there is an integer N ∈ N such that for all n > N we have dΠ(πn, π) < ε and therefore

Q∗(Ψ(πn), t, s, a′) > Q∗(Ψ(π), t, s, a′)− δ

2
= Q∗(Ψ(π), t, s, a) +

δ

2
> Q∗(Ψ(πn), t, s, a) .

Since (π′n)t(a | s)→ π′t(a | s) > 0, there also exists M ∈ N such that for all m > M ,

|(π′m)t(a | s)− π′t(a | s)| < π′t(a | s) .

Let n > max(N,M), then it follows that (π′n)t(a | s) > 0 but a 6∈ arg maxa′∈AQ
∗(Ψ(π), t, s, a′) since we have

Q∗(Ψ(πn), t, s, a′) > Q∗(Ψ(πn), t, s, a), contradicting π′n ∈ Γ̂(πn) by Lemma B.3.1. Hence, Γ̂ must have a closed
graph.

By Kakutani’s fixed point theorem, there exists a fixed point π∗ that generates some mean field Ψ(π∗). The
associated pair (π∗,Ψ(π∗)) is an MFE by definition.

B.4 Proof of Proposition 3

Proof. The space of mean fields (M, dM) is equivalent to convex and compact finite-dimensional simplices. In
this representation, each coordinate of the operators Γ̃η(µ) and Γη(µ) consists of compositions, sums and products
of continuous functions, since the functions r(s, a, µt) and p(s′ | s, a, µt) are assumed to be continuous. Existence
of a fixed point follows immediately by Brouwer’s fixed point theorem.

B.5 Proof of Theorem 1

Proof. The proof is a slightly simplified version of the one found in Saldi et al. (2018). Note that we require the
results later, so for convenience we give the full details.

The empirical measure GNSt is a random variable on P(S), i.e. its law L(GNSt) ∈ P(P(S)) is a distribution over
probability measures. Since we want to show convergence of the empirical measure to the mean field, let us pick
a metric on P(P(S)). Remember that we metrized P(S) with the total variation distance. We metrize P(P(S))
with the 1-Wasserstein metric defined for any Φ,Ψ ∈ P(P(S)) by the infimum over couplings

W1(Φ,Ψ) ≡ inf
L(X1)=Φ,L(X2)=Ψ

E [dTV (X1, X2)] .

Lemma B.5.1. Let {Φn}n∈N be a sequence of measures with Φn ∈ P(P(S)) for all n ∈ N. Further, let µ ∈ P(S)
arbitrary. Then, the following are equivalent.
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(a) W1(Φn, δµ)→ 0 as n→∞

(b) E [|F (Xn)− F (X)|]→ 0 as n→∞ for any continuous, bounded F : P(S)→ R, any sequence {Xn}n∈N of
P(S)-valued random variables and any P(S)-valued random variable X with L(Xn) = Φn and L(X) = δµ.

(c) E [|Xn(f)−X(f)|] → 0 as n → ∞ for any f : S → R, any sequence {Xn}n∈N of P(S)-valued random
variables and any P(S)-valued random variable X with L(Xn) = Φn and L(X) = δµ.

Proof. Define the only possible coupling ∆n ≡ Φn × δµ.

(b), (c) =⇒ (a):

Define Fs(x) ≡ x(s) and fs(s′) ≡ 1{s}(s
′) for all s ∈ S, where Fs is continuous. By assumption,

W1(Φn, δµ) = inf
L(Xn)=Φn,L(X)=δµ

E [dTV (Xn, X)]

=
1

2

∫
P(S)×P(S)

∑
s∈S
|Xn(s)−X(s)| d∆n

=
1

2

∑
s∈S

E [|Xn(s)−X(s)|]→ 0

since for any s ∈ S, we have

E [|Xn(s)−X(s)|] = E [|Fs(Xn)− Fs(X)|] = E [|Xn(fs)−X(fs)|] .

(a) =⇒ (b), (c):

We have

E [|F (Xn)− F (X)|] =

∫
P(S)×P(S)

|F (ν)− F (ν′)|∆n(dν, dν′)

=

∫
P(S)

|F (ν)− F (µ)|Φn(dν)

→
∫
P(S)

|F (ν)− F (µ)| δµ(dν) = 0

by continuity and boundedness of |F (ν)−F (µ)|, and convergence in W1 implying weak convergence. Analogously,

E [|Xn(f)−X(f)|] =

∫
P(S)

|ν(f)− µ(f)|Φn(dν)→
∫
P(S)

|ν(f)− µ(f)| δµ(dν) = 0

since f and thus |ν(f) − µ(f)| is automatically bounded from finiteness of S, and ν(f) =
∑
s∈S ν(s)f(s) →∑

s∈S µ(s)f(s) as ν → µ in total variation distance implies continuity of |ν(f)− µ(f)|. �

First, it is shown that when all other agents follow the same policy π, then the empirical distribution is essentially
the deterministic mean field as N →∞, i.e. L(GNSt)→ L(µt) ≡ δµt with µ = Ψ(π)

Lemma B.5.2. Consider a set of policies (π̃, π, . . . , π) ∈ ΠN for all agents. Under this set of policies, the law of
the empirical distribution L(GNSt) ∈ P(M) converges to δµt where µ = Ψ(π) as N →∞ in 1-Wasserstein distance.

Proof. Define the Markov kernel Pπt,ν such that its probability mass function fulfills

Pπt,ν(s′ | s) ≡
∑
a∈A

πt(a | s)p(s′ | s, a, ν)

for any t ∈ T , s ∈ S, ν ∈ P(S), π ∈ Π and analogously

ν̃Pπt,ν(s′) ≡
∑
s∈S

ν̃(s)
∑
a∈A

πt(a | s)p(s′ | s, a, ν)



for any ν̃ ∈ P(S). Note that µt+1 = µtP
π
t,µt(g) for mean fields µ = Ψ(π) induced by π.

We show that E
[∣∣GNSt(f)− µt(f)

∣∣]→ 0 as N →∞ for any function f : S → R and any time t ∈ T . From this,
the desired result follows by Lemma B.5.1. Since GNSt(·) ≡

1
N

∑N
i=1 δSit (·) and Si0 ∼ µ0 we have at time t = 0 that

lim
N→∞

E
[∣∣GNS0

(f)− µ0(f)
∣∣] = lim

N→∞
E

[∣∣∣∣∣ 1

N

N∑
i=1

f(Si0)− E
[
f(Si0)

]∣∣∣∣∣
]

= 0

by the strong law of large numbers and the dominated convergence theorem.

Assuming this holds for t, then for t+ 1 we have

E
[∣∣∣GNSt+1

(f)− µt+1(f)
∣∣∣] ≤ E

[∣∣∣GNSt+1
(f)−GN−1

St+1
(f)
∣∣∣]

+ E
[∣∣∣GN−1

St+1
(f)−GN−1

St
Pπt,GNSt

(f)
∣∣∣]

+ E
[∣∣∣GN−1

St
Pπt,GNSt

(f)−GNStP
π
t,GNSt

(f)
∣∣∣]

+ E
[∣∣∣GNStPπt,GNSt (f)− µtPπt,µt(f)

∣∣∣]
where we defined GN−1

St
(·) ≡ 1

N−1

∑N
i=2 δSit (·).

For the first term, we have as N →∞

E
[∣∣∣GNSt+1

(f)−GN−1
St+1

(f)
∣∣∣] = E

[∣∣∣∣∣ 1

N

N∑
i=1

f(Sit+1)− 1

N − 1

N∑
i=2

f(Sit+1)

∣∣∣∣∣
]

≤ 1

N
E
[∣∣f(S1

t+1)
∣∣]+

∣∣∣∣ 1

N
− 1

N − 1

∣∣∣∣ N∑
i=2

E
[∣∣f(Sit+1)

∣∣]
≤
(

1

N
+

N − 1

N(N − 1)

)
max
s∈S
|f(s)| → 0 .

For the second term, as N →∞ we have by Jensen’s inequality and bounds |f | ≤Mf (by finiteness of S)

E
[∣∣∣∣GN−1

St+1
(f)−GN−1

St
Pπ
t,GN−1

St

(f)

∣∣∣∣]2

= E
[
E
[∣∣∣∣GN−1

St+1
(f)−GN−1

St
Pπ
t,GN−1

St

(f)

∣∣∣∣ | St]]2

= E

[
E

[∣∣∣∣∣ 1

N − 1

N∑
i=2

(
f(Sit+1)− E

[
f(Sit+1)

])∣∣∣∣∣ | St
]]2

≤ 1

(N − 1)2

N∑
i=2

E
[
E
[(
f(Sit+1)− E

[
f(Sit+1)

])2 | St]]
≤ 1

N − 1
· 4M2

f → 0 .

For the third term, we again have as N →∞

E
[∣∣∣GN−1

St
Pπt,GNSt

(f)−GNStP
π
t,GNSt

(f)
∣∣∣] = E

[∣∣∣∣∣∑
s∈S

(
GN−1
St

(s)−GNSt(s)
)∑
a∈A

πt(a | s)
∑
s′∈S

p(s′ | s, a,GNSt)f(s′)

∣∣∣∣∣
]

≤ E

[∣∣∣∣∣
(

1

N − 1
− 1

N

) N∑
i=2

∑
a∈A

πt(a | Sit)
∑
s′∈S

p(s′ | Sit , a,GNSt)f(s′)

∣∣∣∣∣
]

+ E

[∣∣∣∣∣ 1

N

∑
a∈A

πt(a | S1
t )
∑
s′∈S

p(s′ | S1
t , a,GNSt)f(s′)

∣∣∣∣∣
]
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≤
(

N − 1

N(N − 1)
+

1

N

)
max
s∈S
|f(s)| → 0 .

For the fourth term, define F : P(S)→ R, F (ν) = νPπt,ν(f) and observe that F is continuous, since ν → ν′ if and
only if ν(s)→ ν′(s) for all s ∈ S, and therefore (as p is assumed continuous by Assumption 1)

F (ν) = νPπt,ν(f) =
∑
s∈S

ν(s)
∑
a∈A

πt(a | s)
∑
s′∈S

p(s′ | s, a, ν)f(s′)

is continuous for any s′ ∈ S. By Lemma B.5.1, we have from the induction hypothesis GNSt → µt that

E
[∣∣∣GNStPπt,GNSt (f)− µtPπt,µt(f)

∣∣∣]→ 0 .

Therefore, E
[∣∣∣GNSt+1

(f)− µt+1(f)
∣∣∣]→ 0 which implies the desired result by induction. �

Consider the case where all agents follow a set of policies (πN , π, . . . , π) ∈ ΠN for each N ∈ N. Define new
single-agent random variables Sµt and Aµt with Sµ0 ∼ µ0 and

P(Aµt = a | Sµt = s) = πNt (a | s),
P(Sµt+1 = s′ | Sµt = s,Aµt = a) = p(s′ | s, a, µt) ,

where the deterministic mean field µ is used instead of the empirical distribution.

Lemma B.5.3. Consider an equicontinuous, uniformly bounded family of functions F on P(S) and define

Ft(ν) ≡ sup
f∈F
|f(ν)− f(µt)|

for any t ∈ T . Then, Ft is continuous and bounded and by Lemma B.5.1 we have

lim
N→∞

E

[
sup
f∈F

∣∣f(GNSt)− f(µ)
∣∣] = 0

Proof. Ft is continuous, since for νn → ν

|Ft(νn)− Ft(ν)| =

∣∣∣∣∣sup
f∈F
|f(ν)− f(µt)| − sup

f∈F
|f(ν′)− f(µt)|

∣∣∣∣∣ ≤ sup
f∈F
|f(ν)− f(ν′)| → 0

by equicontinuity. Further, Ft is bounded since |Ft(ν)| ≤ supf∈F |f(ν)| + |f(µt)| is uniformly bounded. By
Lemma B.5.2, we have W1(GNSt , δµt)→ 0 as N →∞, therefore Lemma B.5.1 applies. �

Lemma B.5.4. Suppose that at some time t ∈ T , it holds that

lim
N→∞

∣∣L(S1
t )(gN )− L(Sµt )(gN )

∣∣ = 0

for any sequence of functions {gN}N∈N from S to R that is uniformly bounded. Then, we have

lim
N→∞

∣∣L(S1
t ,GNSt)(TN )− L(Sµt , µt)(TN )

∣∣ = 0

for any sequence of functions {TN}N∈N from S × P(S) to R that is equicontinuous and uniformly bounded.

Proof. We have∣∣L(S1
t ,GNSt)(TN )− L(Sµt , µt)(TN )

∣∣ ≤ ∣∣L(S1
t ,GNSt)(TN )− L(S1

t , µt)(TN )
∣∣+
∣∣L(S1

t , µt)(TN )− L(Sµt , µt)(TN )
∣∣



The first term becomes∣∣L(S1
t ,GNSt)(TN )− L(S1

t , µt)(TN )
∣∣ =

∣∣∣∣∫ TN (x, ν)L(S1
t ,GNSt)(dx, dν)−

∫
TN (x, ν)L(S1

t , µt)(dx, dν)

∣∣∣∣
≤ E

[
E
[∣∣TN (x,GNSt)− TN (x, µt)

∣∣S1
t

]]
≤ E

[
sup

f∈{TN (·,ν)}ν∈P(S),N∈N

∣∣f(GNSt)− f(µt)
∣∣]→ 0

by Lemma B.5.3, since {TN}N∈N is equicontinuous and uniformly bounded. Similarly for the second term,

∣∣L(S1
t , µt)(TN )− L(Sµt , µt)(TN )

∣∣ =

∣∣∣∣∫ TN (x, ν)L(S1
t , µt)(dx, dν)−

∫
TN (x, ν)L(Sµt , µt)(dx, dν)

∣∣∣∣
≤ E

[∣∣TN (S1
t , µt)− TN (Sµt , µt)

∣∣]→ 0

by the assumption, since TN fulfills the condition of being uniformly bounded. �

Lemma B.5.5. For any sequence {gN}N∈N of functions from S to R that is uniformly bounded, we have

lim
N→∞

∣∣L(S1
t )(gN )− L(Sµt )(gN )

∣∣ = 0

for all times t ∈ T .

Proof. Define lN,t as

lN,t(s, ν) ≡
∑
a∈A

πNt (a | s)
∑
s′∈S

p(s′ | s, a, ν)gN (s′) .

{lN,t(s, ·)}s∈S,N∈N is equicontinuous, since for any ν, ν′ ∈M with dTV (ν, ν′)→ 0,

sup
s∈S,N∈N

|lN,t(s, ν)− lN,t(s, ν′)| ≤Mg sup
s∈S,N∈N

∣∣∣∣∣∑
a∈A

πNt (a | s)
∑
s′∈S

(p(s′ | s, a, ν)− p(s′ | s, a, ν′))

∣∣∣∣∣
≤Mg|S|max

s∈S
max
a∈A

max
s′∈S
|p(s′ | s, a, ν)− p(s′ | s, a, ν′)| → 0

since |gN | < Mg is uniformly bounded and p is continuous by assumption. Furthermore, lN,t(s, ν) is always
uniformly bounded by Mg. Now the result can be shown by induction.

For t = 0, L(Sµ0 ) = L(S1
0) fulfills the hypothesis. Assume this holds for t, then∣∣L(S1
t+1)(gN )− L(Sµt+1)(gN )

∣∣ =
∣∣L(S1

t ,GNSt)(lN,t)− L(Sµt , µt)(lN,t)
∣∣→ 0

as N →∞ by Lemma B.5.4. �

Thus, for any sequence of policies {πN}N∈N with πN ∈ Π for all N ∈ N, the achieved return of the N -agent game
converges to the return of the mean field game under the mean field generated by the other agent’s policy π as
N →∞.

Lemma B.5.6. Let {πN}N∈N with πN ∈ Π for all N ∈ N be an arbitrary sequence of policies and π ∈ Π
an arbitrary policy. Further, let the mean field µ = Ψ(π) be generated by π. Then, under the joint policy
(πN , π, . . . , π), we have as N →∞ that∣∣JN1 (πN , π, . . . , π)− Jµ(πN )

∣∣→ 0 .

Proof. Define for any t ∈ T , N ∈ N

rπNt (s, ν) ≡
∑
a∈A

r(s, a, ν)πNt (a | s)
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such that the family {rπNt (s, ·)}s∈S,N∈N is equicontinuous, since for any ν, ν′ ∈M as dM(ν, ν′)→ 0,

max
s∈S

max
N∈N

∣∣∣rπNt (s, ν)− rπNt (s, ν′)
∣∣∣→ 0

by continuity of r. The function rπNt is uniformly bounded for all N ∈ N by assumption of uniformly bounded r.
By Lemma B.5.4 and Lemma B.5.5,

lim
N→∞

∣∣E [r(S1
t , A

1
t ,GNSt)

]
− E [r(Sµt , A

µ
t , µt)]

∣∣ |
= lim
N→∞

∣∣∣E [rπNt (S1
t ,GNSt)

]
− E

[
rπNt (Sµt , µt)

]∣∣∣ = 0 .

such that we have

lim
N→∞

∣∣JN1 (πN , π, . . . , π)− Jµ(πN )
∣∣ | ≤∑

t∈T
lim
N→∞

∣∣E [r(S1
t , A

1
t ,GNSt)

]
− E [r(Sµt , A

µ
t , µt)]

∣∣ = 0 .

which is the desired result. �

From Lemma B.5.6, it follows that for any sequence of optimal exploiting policies {πN}N∈N with πN ∈ Π for all
N ∈ N and

πN ∈ arg max
π∈Π

JN1 (π, π∗, . . . , π∗)

for all N ∈ N, it holds that for any MFE (π∗, µ∗) ∈ Π×M,

lim
N→∞

JN1 (πN , π∗, . . . , π∗) ≤ max
π∈Π

Jµ
∗
(π)

= Jµ
∗
(π∗)

= lim
N→∞

JN1 (π∗, . . . , π∗)

and by instantiating for arbitrary ε > 0, for sufficiently large N we obtain

JN1 (πN , π∗, . . . , π∗)− ε = max
π∈Π

JN1 (π, π∗, . . . , π∗)− ε

≤ max
π∈Π

Jµ
∗
(π)− ε

2

= Jµ
∗
(π∗)− ε

2

= JN1 (π∗, π∗, . . . , π∗)

which is the desired approximate Nash property that applies to all agents by symmetry.

B.6 Proof of Theorem 2

Proof. If Φ or Ψ is constant, or if the restriction Ψ �ΠΦ
of Ψ to ΠΦ is constant, then Γ = Ψ ◦ Φ is constant.

Assume that this is not the case.

Then there exist distinct π, π′ ∈ ΠΦ such that Ψ(π) 6= Ψ(π′). By definition of ΠΦ there also exist distinct
µ, µ′ ∈M such that Φ(µ) = π and Φ(µ′) = π′. Note that for any ν, ν′ ∈M with Γ(ν) 6= Γ(ν′),

dM(Γ(ν),Γ(ν′)) ≥ min
π,π′∈ΠΦ,π 6=π′

dM(Ψ(π),Ψ(π′))

where the right-hand side is greater zero by finiteness of ΠΦ. This holds for µ, µ′.

To show that Γ cannot be Lipschitz continuous, assume that Γ has a Lipschitz constant C > 0. We can find an
integer N such that

dM(µi, µi+1) =
dM(µ, µ′)

N − 1
<

minπ,π′∈ΠΦ,π 6=π′ dM(Ψ(π),Ψ(π′))

C



for all i ∈ {0, . . . , N − 1} by defining

µi =
i

N
µ+

N − i
N

µ′

for all i ∈ {0, . . . , N}, and µi ∈M holds. By the triangle inequality

dM(Γ(µ),Γ(µ′)) ≤ dM(Γ(µ0),Γ(µ1)) + . . .+ dM(Γ(µN−1),Γ(µN ))

there exists a pair (µi, µi+1) with Γ(µi) 6= Γ(µi+1). For this pair, we have

dM(Γ(µi),Γ(µi+1)) ≥ dM(Γ(µ),Γ(µ′)) ≥ min
π,π′∈ΠΦ,π 6=π′

dM(Ψ(π),Ψ(π′)) .

On the other hand, since Γ is Lipschitz with constant C, we have

dM(Γ(µi),Γ(µi+1)) ≤ C · dM(µi, µi+1) < min
π,π′∈ΠΦ,π 6=π′

dM(Ψ(π),Ψ(π′))

which is a contradiction. Thus, Γ cannot be Lipschitz continuous and by extension cannot be contractive.

B.7 Proof of Theorem 3

Proof. For all η > 0, µ ∈M, t ∈ T , s ∈ S, a ∈ A, the soft action-value function of the MDP induced by µ ∈M is
given by

Q̃η(µ, t, s, a) = r(s, a, µt) +
∑
s′∈S

p(s′ | s, a, µt)η log
∑
a′∈A

qt+1(a′ | s′) exp

(
Q̃η(µ, t+ 1, s′, a′)

η

)

and terminal condition Q̃η(µ, T − 1, s, a) ≡ r(s, a, µT−1). Analogously, the action-value function of the MDP
induced by µ ∈M is given by

Q∗(µ, t, s, a) = r(s, a, µt) +
∑
s′∈S

p(s′ | s, a, µt) max
a′∈A

Q∗(µ, t+ 1, s′, a′)

and the similarly defined policy action-value function for π ∈ Π is given by

Qπ(µ, t, s, a) = r(s, a, µt) +
∑
s′∈S

p(s′ | s, a, µt)
∑
a′∈A

πt+1(a′ | s′)Qπ(µ, t+ 1, s′, a′) ,

with terminal conditions Q∗(µ, T − 1, s, a) ≡ Qπ(µ, T − 1, s, a) ≡ r(s, a, µT−1).

We will show that we can find a Lipschitz constant KQ̃η
of Q̃η that is independent of η if η is not arbitrarily

small. To show this, we will explicitly compute such a Lipschitz constant. Note first that Q̃η, Q∗ and Qπ are all
uniformly bounded by MQ ≡ |T |Mr by assumption, where Mr is the uniform bound of r.

Lemma B.7.1. The functions Q̃η(µ, t, s, a), Q∗(µ, t, s, a) and Qπ(µ, t, s, a) are uniformly bounded for all η >
0, µ ∈M, t ∈ T , s ∈ S, a ∈ A by ∣∣∣Q̃η(µ, t, s, a)

∣∣∣ ≤ (T − t)Mr ≤ TMr =: MQ

where Mr is the uniform bound of |r(s, a, µt)| ≤Mr, and T = |T |.

Proof. Make the induction hypothesis for all t ∈ T that∣∣∣Q̃η(µ, t, s, a)
∣∣∣ ≤ (T − t)Mr

for all η > 0, µ ∈M, s ∈ S, a ∈ A and note that this holds for t = T − 1, as by assumption∣∣∣Q̃η(µ, T − 1, s, a)
∣∣∣ = |r(s, a, µt)| ≤Mr .
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The induction step from t+ 1 to t holds by

∣∣∣Q̃η(µ, t, s, a)
∣∣∣ =

∣∣∣∣∣r(s, a, µt) +
∑
s′∈S

p(s′ | s, a, µt)η log
∑
a′∈A

qt+1(a′ | s′) exp

(
Q̃η(µ, t+ 1, s′, a′)

η

)∣∣∣∣∣
≤ |r(s, a, µt)|+ ηmax

s′∈S

∣∣∣∣∣log
∑
a′∈A

qt+1(a′ | s′) exp

(
Q̃η(µ, t+ 1, s′, a′)

η

)∣∣∣∣∣
≤Mr + η

∣∣∣∣log

(
exp

(
(T − t− 1)Mr

η

))∣∣∣∣
= Mr + (T − t− 1)Mr = (T − t)Mr .

By maximizing over all t ∈ T , we obtain the uniform bound. The other cases are analogous. �

Now we can find a Lipschitz constant of Q̃η(µ, t, s, a) that is independent of η.

Lemma B.7.2. Let Cr be a Lipschitz constant of µ→ r(s, a, µt) and Cp a Lipschitz constant of µ→ p(s′ | s, a, µt).
Further, let ηmin > 0. Then, for all η > ηmin, t ∈ T , the map µ 7→ Q̃η(µ, t, s, a) is Lipschitz for all s ∈ S, a ∈ A
with a Lipschitz constant Kt

Q̃η
independent of η. Therefore, by picking KQ̃η

≡ maxt∈T K
t
Q̃η

, we have one single
Lipschitz constant for all η > ηmin, t ∈ T , s ∈ S, a ∈ A.

Proof. We show by induction that for all t ∈ T , s ∈ S, a ∈ A, we can find Lipschitz constants such that
Q̃η(µ, t, s, a) is Lipschitz in µ with a Lipschitz constant that does not depend on η.

To see this, note that this is true for t = T − 1 and any s ∈ S, a ∈ A, as for any µ, µ′ we have∣∣∣Q̃η(µ, T − 1, s, a)− Q̃η(µ′, T − 1, s, a)
∣∣∣ =

∣∣r(s, a, µT−1)− r(s, a, µ′T−1)
∣∣ ≤ CrdM(µ, µ′) .

The induction step from t+ 1 to t is∣∣∣Q̃η(µ, t, s, a)− Q̃η(µ, t, s, a)
∣∣∣

≤ |r(s, a, µt)− r(s, a, µ′t)|+
∑
s′∈S

∣∣∣∣∣p(s′ | s, a, µt)η log
∑
a′∈A

qt+1(a′ | s′) exp

(
Q̃η(µ, t+ 1, s′, a′)

η

)

−p(s′ | s, a, µ′t)η log
∑
a′∈A

qt+1(a′ | s′) exp

(
Q̃η(µ′, t+ 1, s′, a′)

η

)∣∣∣∣∣
≤ CrdM(µ, µ′) + η|S|max

s′∈S
1 ·

∣∣∣∣∣log
∑
a′∈A

qt+1(a′ | s′) exp

(
Q̃η(µ, t+ 1, s′, a′)

η

)

− log
∑
a′∈A

qt+1(a′ | s′) exp

(
Q̃η(µ′, t+ 1, s′, a′)

η

)∣∣∣∣∣
+ η|S|max

s′∈S

MQ

η
· |p(s′ | s, a, µt)− p(s′ | s, a, µ′t)|

≤ CrdM(µ, µ′) + η|S|max
s′∈S

∑
a′∈A

∣∣∣∣∣∣
1
η qt+1(a′ | s′) exp

(
ξa′
η

)
∑
a′′∈A qt+1(a′′ | s′) exp

(
ξa′′
η

)
∣∣∣∣∣∣
∣∣∣Q̃η(µ, t+ 1, s′, a′)− Q̃η(µ′, t+ 1, s′, a′)

∣∣∣
+ |S|MQ · CpdM(µ, µ′)

≤ CrdM(µ, µ′) +
|A|qmax

|A|qmin
exp

(
2 · MQ

η

)
Kt+1

Q̃η
dM(µ, µ′) + |S|MQCpdM(µ, µ′)

<

(
Cr +

qmax

qmin
exp

(
2MQ

ηmin

)
Kt+1

Q̃η
+ |S|MQCp

)
dM(µ, µ′)



where we use the mean value theorem to obtain some ξa ∈ [−MQ,MQ] for all a ∈ A bounded by Lemma B.7.1,
Lemma B.2.1 for the second inequality, and defined qmax = maxt∈T ,s∈S,a∈A qt(a | s), qmin = mint∈T ,s∈S,a∈A qt(a |
s). Since s ∈ S, a ∈ A were arbitrary, this holds for all s ∈ S, a ∈ A.

Thus, as long as η > ηmin, we have the Lipschitz constant Kt
Q̃η
≡
(
Cr + qmax

qmin
exp

(
2MQ

ηmin

)
Kt+1

Q̃η
+ |S|MQCp

)
independent of η, since by induction assumption Kt+1

Q̃η
is independent of η. �

The optimal action-value function and the policy action-value function for any fixed policy are Lipschitz in µ.

Lemma B.7.3. The functions µ 7→ Q∗(µ, t, s, a) and µ 7→ Qπ(µ, t, s, a) for any fixed π ∈ Π, t ∈ T , s ∈ S, a ∈ A
are Lipschitz continuous. Therefore, for any fixed π ∈ Π we can choose a Lipschitz constant KQ for all
t ∈ T , s ∈ S, a ∈ A by taking the maximum over all Lipschitz constants.

Proof. The action-value function is given by the recursion

Q∗(µ, t, s, a) = r(s, a, µt) +
∑
s′∈S

p(s′ | s, a, µt) max
a′∈A

Q∗(µ, t+ 1, s′, a′)

with terminal condition Q∗(µ, T −1, s, a) ≡ r(s, a, µT−1). The functions r(s, a, µt) and p(s′ | s, a, µt) are Lipschitz
continuous by Assumption 2. Note that for any µ, µ′ ∈ M and any t ∈ T , dTV (µt, µ

′
t) ≤ dM (µ, µ′). Therefore,

the terminal condition and all terms in the above recursion are Lipschitz. Further, Q∗(µ, t, s, a) is uniformly
bounded, since r is assumed uniformly bounded.

Since a finite maximum, product and sum of Lipschitz and bounded functions is again Lipschitz and bounded by
Lemma B.2.1, we obtain Lipschitz constants KQ,t,s,a of the maps µ→ Q∗(µ, t, s, a) for any t ∈ T , s ∈ S, a ∈ A
and define KQ ≡ maxt∈T ,s∈S,a∈AKQ,t,s,a. The case for Qπ with fixed π ∈ Π is analogous. �

The same holds for Ψ(π) mapping from policy π to its induced mean field.

Lemma B.7.4. The function Ψ(π) is Lipschitz with some Lipschitz constant KΨ.

Proof. Recall that Ψ(π) maps to the mean field µ starting with µ0 and obtained by the recursion

µt+1(s′) =
∑
s∈S

∑
a∈A

p(s′ | s, a, µt)πt(a | s)µt(s) .

We proceed analogously to Lemma B.7.3. µ is uniformly bounded by normalization. The constant function
π 7→ µ0(s) is Lipschitz and bounded for any s ∈ S. The functions r(s, a, µt) and p(s′ | s, a, µt) are Lipschitz
continuous by Assumption 2. Since a finite sum, product and composition of Lipschitz and bounded functions is
again Lipschitz and bounded by Lemma B.2.1, we obtain Lipschitz constants KΨ,t,s of the maps π → µt(s) for
any t ∈ T , s ∈ S and define KΨ ≡ maxt∈T ,s∈S KΨ,t,s, which is the desired Lipschitz constant of Ψ. �

Finally, the map from an energy function to its associated Boltzmann distribution is Lipschitz for any η > 0 with
a Lipschitz constant explicitly depending on η.

Lemma B.7.5. Let η > 0 arbitrary and fa :M→ R be a Lipschitz continuous function with Lipschitz constant
Kf for any a ∈ A. Further, let g : A → R be bounded by gmax > g(a) > gmin > 0 for any a ∈ A. The function

µ 7→
g(a) exp

(
fa(µ)
η

)
∑
a′∈A g(a′) exp

(
fa′ (µ)
η

)
is Lipschitz with Lipschitz constant K =

(|A|−1)Kfg
2
max

2ηg2
min

for any a ∈ A.

Proof. Let µ, µ′ ∈M be arbitrary and define

∆afa′(µ) ≡ fa′(µ)− fa(µ)
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for any a′ ∈ A, which is Lipschitz with constant 2Kf . Then, we have∣∣∣∣∣∣
g(a) exp

(
fa(µ)
η

)
∑
a′∈A g(a′) exp

(
fa′ (µ)
η

) − g(a) exp
(
fa(µ′)
η

)
∑
a′∈A g(a′) exp

(
fa′ (µ

′)
η

)
∣∣∣∣∣∣

=

∣∣∣∣∣∣ 1

1 +
∑
a′ 6=a

g(a′)
g(a) exp

(
∆afa′ (µ)

η

) − 1

1 +
∑
a′ 6=a

g(a′)
g(a) exp

(
∆afa′ (µ

′)
η

)
∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣
∑
a′ 6=a

g(a′)
g(a) ·

1
η exp

(
ξa′
η

)
(

1 +
∑
a′′ 6=a

g(a′′)
g(a) exp

(
ξa′′
η

))2 · (∆afa′(µ)−∆afa′(µ
′))

∣∣∣∣∣∣∣
≤
∑
a′ 6=a

∣∣∣∣∣∣∣
gmax

gmin
· 1
η exp

(
ξa′
η

)
(

1 + gmin

gmax
exp

(
ξa′
η

))2

∣∣∣∣∣∣∣ · |∆afa′(µ)−∆afa′(µ
′)|

≤ g2
max

4ηg2
min

·
∑
a′ 6=a

2KfdM(µ, µ′) =
(|A| − 1)Kfg

2
max

2ηg2
min

· dM(µ, µ′)

where we applied the mean value theorem to obtain some ξa′ ∈ R for all a′ ∈ A and used the maximum 1
4c of the

function f̃(x) = exp(x/η)
(1+c·exp(x/η))2 at x = 0. �

For RelEnt MFE, by Lemma B.7.2 we obtain a Lipschitz constant KQ̃η
of µ→ Q̃η(µ, t, s, a) as long as η > ηmin

for some ηmin > 0. Furthermore, note that for π̃µ,η ≡ Φ̃η(µ), we have

∣∣∣π̃µ,ηt (a | s)− π̃µ
′,η
t (a | s))

∣∣∣ =

∣∣∣∣∣∣
qt(a | s) exp

(
Q̃η(µ,t,s,a)

η

)
∑
a′∈A qt(a

′ | s) exp
(
Q̃η(µ,t,s,a′)

η

) − qt(a | s) exp
(
Q̃η(µ′,t,s,a)

η

)
∑
a′∈A qt(a

′ | s) exp
(
Q̃η(µ′,t,s,a′)

η

)
∣∣∣∣∣∣ .

We obtain the Lipschitz constant of Φ̃η by applying Lemma B.7.5 to each of the maps given by

µ 7→
qt(a | s) exp

(
Q̃η(µ,t,s,a)

η

)
∑
a′∈A qt(a

′ | s) exp
(
Q̃η(µ,t,s,a′)

η

)
for all t ∈ T , s ∈ S, a ∈ A, resulting in the Lipschitz property

dΠ(Φ̃η(µ), Φ̃η(µ′)) = max
s∈S

max
t∈T

∑
a∈A

∣∣∣π̃µ,ηt (a | s)− π̃µ
′,η
t (a | s))

∣∣∣
≤
∑
a∈A

(|A| − 1)KQ̃η
q2
max

2ηq2
min

· dM(µ, µ′) =
|A| (|A| − 1)KQ̃η

q2
max

2ηq2
min

· dM(µ, µ′) ,

where we define qmax = maxt∈T ,s∈S,a∈A qt(a | s) and analogously qmin = mint∈T ,s∈S,a∈A qt(a | s).

By Lemma B.7.4, Ψ(π) is Lipschitz with some Lipschitz constant KΨ. Therefore, the resulting Lipschitz constant

of the composition Γ̃η = Ψ ◦ Φ̃η is
|A|(|A|−1)KQ̃ηKΨq

2
max

2ηq2
min

and leads to a contraction for any

η > max

(
ηmin,

|A| (|A| − 1)KQ̃η
KΨq

2
max

2q2
min

)
.

Analogously for Boltzmann MFE, by Lemma B.7.3 the mapping µ→ Q∗(µ, t, s, a) is Lipschitz with some Lipschitz
constant KQ∗ for all t ∈ T , s ∈ S, a ∈ A. For πµ,η ≡ Φη(µ), we have

∣∣∣πµ,ηt (a | s)− πµ
′,η
t (a | s))

∣∣∣ =

∣∣∣∣∣∣
qt(a | s) exp

(
Q∗(µ,t,s,a)

η

)
∑
a′∈A qt(a

′ | s) exp
(
Q∗(µ,t,s,a′)

η

) − qt(a | s) exp
(
Q∗(µ′,t,s,a)

η

)
∑
a′∈A qt(a

′ | s) exp
(
Q∗(µ′,t,s,a′)

η

)
∣∣∣∣∣∣ .



We obtain the Lipschitz constant of Φη by applying Lemma B.7.5 to each of the maps given by

µ 7→
qt(a | s) exp

(
Q∗(µ,t,s,a)

η

)
∑
a′∈A qt(a

′ | s) exp
(
Q∗(µ,t,s,a′)

η

)
for all t ∈ T , s ∈ S, a ∈ A, resulting in the Lipschitz property

dΠ(Φη(µ),Φη(µ′)) = max
s∈S

max
t∈T

∑
a∈A

∣∣∣πµ,ηt (a | s)− πµ
′,η
t (a | s))

∣∣∣
≤
∑
a∈A

(|A| − 1)KQ∗q
2
max

2ηq2
min

· dM(µ, µ′) =
|A| (|A| − 1)KQ∗q

2
max

2ηq2
min

· dM(µ, µ′) .

By Lemma B.7.4, Ψ(π) is Lipschitz with some Lipschitz constant KΨ. The resulting Lipschitz constant of the
composition Γη = Ψ ◦ Φη is |A|(|A|−1)KQ∗KΨq

2
max

2ηq2
min

and leads to a contraction for any

η >
|A| (|A| − 1)KQ∗KΨq

2
max

2q2
min

where for the uniform prior policy, qmax = qmin. If required, the Lipschitz constants can be computed recursively
according to Lemma B.2.1.

B.8 Proof of Theorem 4

Proof. Consider any sequence (π∗n, µ
∗
n)n∈N of ηn-Boltzmann or ηn-RelEnt MFE with ηn → 0+ as n→∞. Note

that a pair (π∗n, µ
∗
n) is completely specified by µ∗n, since π∗n = Φηn(µ∗n) or π∗n = Φ̃ηn(µ∗n) uniquely. Therefore,

it suffices to show that the associated functions (µ 7→ QΦηn (µ)(µ, t, s, a))n∈N and (µ 7→ QΦ̃ηn (µ)(µ, t, s, a))n∈N
converge uniformly to µ 7→ Q∗(µ, t, s, a), from which the desired result will follow. For definitions of the different
action-value functions, see Appendix B.7.

Note that pointwise convergence is insufficient, since there is no guarantee that µ∗n itself will converge as n→∞.
However, we can obtain uniform convergence by pointwise convergence and equicontinuity. For RelEnt MFE, we
will additionally require uniform convergence of the sequence (µ 7→ Q̃ηn(µ, t, s, a))n∈N with ηn → 0+. We begin
with pointwise convergence of (µ 7→ QΦηn (µ)(µ, t, s, a))n∈N to the optimal action-value function µ 7→ Q∗(µ, t, s, a).

Lemma B.8.1. Any sequence of functions (µ 7→ QΦηn (µ)(µ, t, s, a))n∈N with ηn → 0+ converges pointwise to
µ 7→ Q∗(µ, t, s, a) for all t ∈ T , s ∈ S, a ∈ A.

Proof. Fix µ ∈M. We make the induction hypothesis for arbitrary t ∈ T that for all s ∈ S, a ∈ A, ε > 0, there
exists n′ ∈ N such that for any n > n′ we have∣∣∣QΦηn (µ)(µ, t, s, a)−Q∗(µ, t, s, a)

∣∣∣ < ε .

The induction hypothesis is fulfilled for t = T − 1, as by definition∣∣∣QΦηn (µ)(µ, t, s, a)−Q∗(µ, t, s, a)
∣∣∣ = |r(s, a, µt)− r(s, a, µt)| = 0 .

Assume that the induction hypothesis is fulfilled for t + 1, then at time t let s ∈ S, a ∈ A, ε > 0 arbitrary.
Furthermore, let s′ ∈ S arbitrary. Collect all optimal actions into a set As′opt ⊆ A, i.e. for a′ ∈ As

′

opt we have

Q∗(µ, t, s′, aopt) = max
a∈A

Q∗(µ, t, s′, a) .

We define the minimal action gap

∆Qs
′,µ

min ≡ min
aopt∈As

′
opt,asub∈A\As

′
opt

(Q∗(µ, t, s′, aopt)−Q∗(µ, t, s′, asub)) > 0
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such that for arbitrary suboptimal actions asub ∈ A \ As
′

opt and optimal actions aopt ∈ As
′

opt,

Q∗(µ, t, s′, aopt)−Q∗(µ, t, s′, asub) ≥ ∆Qs
′,µ

min .

This is well defined if there are suboptimal actions, since there is always at least one optimal action. If all actions
are optimal, we can skip bounding the probability of taking suboptimal actions and the result will hold trivially.
Thus, we assume henceforth that there exists a suboptimal action.

It follows that the probability of taking suboptimal actions asub ∈ A \ As
′

opt disappears, since

(Φηn(µ))t(asub | s′) =
qt(asub | s)∑

a′∈A qt(a
′ | s) exp

(
Q∗(µ,t,s,a′)−Q∗(µ,t,s,asub)

η

)
≤ 1

1 +
∑
a′∈A

qt(a′|s)
qt(asub|s) exp

(
Q∗(µ,t,s,a′)−Q∗(µ,t,s,asub)

η

)
≤ 1 | s)

1 +
qt(aopt|s)
qt(asub|s) exp

(
Q∗(µ,t,s,aopt)−Q∗(µ,t,s,asub)

η

)
≤ 1 | s)

1 +
qt(aopt|s)
qt(asub|s) exp

(
∆Qs

′,µ
min

η

) → 0

as η → 0+ for some arbitrary optimal action aopt ∈ As
′

opt. Since s′ ∈ S was arbitrary, this holds for all s′ ∈ S.
Therefore, by finiteness of S and A we can choose n1 ∈ N such that for all n > n1 and for all asub ∈ A \ As

′

opt we
have ηn sufficiently small such that

(Φηn(µ))t(asub | s′) <
ε

2|A|MQ

where MQ is the uniform bound of QΦηn (µ).

Further, by induction assumption, we can choose ns′,a′ for any s′ ∈ S, a′ ∈ A such that for all n > ns′,a′ we have∣∣∣QΦηn (µ)(µ, t+ 1, s′, a′)−Q∗(µ, t+ 1, s′, a′)
∣∣∣ < ε

3

Therefore, as long as n > n′ ≡ max(n1,maxs′∈S,a′∈A ns′,a′), we have∣∣∣QΦηn (µ)(µ, t, s, a)−Q∗(µ, t, s, a)
∣∣∣

=

∣∣∣∣∣∑
s′∈S

p(s′ | s, a, µt)

(∑
a′∈A

(Φηn(µ))t(a
′ | s′)QΦηn (µ)(µ, t+ 1, s′, a′)− max

a′′∈A
Q∗(µ, t+ 1, s′, a′′)

)∣∣∣∣∣
≤ max

s′∈S

∣∣∣∣∣∑
a′∈A

(Φηn(µ))t(a
′ | s′)QΦηn (µ)(µ, t+ 1, s′, a′)− max

a′′∈A
Q∗(µ, t+ 1, s′, a′′)

∣∣∣∣∣
≤ max

s′∈S

∣∣∣∣∣∣∣
∑

a′∈As′opt

(Φηn(µ))t(a
′ | s′)QΦηn (µ)(µ, t+ 1, s′, a′)− max

a′′∈A
Q∗(µ, t+ 1, s′, a′′)

∣∣∣∣∣∣∣
+ max

s′∈S

∣∣∣∣∣∣∣
∑

a′∈A\As′opt

(Φηn(µ))t(a
′ | s′)QΦηn (µ)(µ, t+ 1, s′, a′)

∣∣∣∣∣∣∣
≤ max

s′∈S

∣∣∣∣∣∣∣
∑

a′∈As′opt

(Φηn(µ))t(a
′ | s′)QΦηn (µ)(µ, t+ 1, s′, a′)−

∑
a′∈As′opt

(Φηn(µ))t(a
′ | s′) max

a′′∈A
Q∗(µ, t+ 1, s′, a′′)

∣∣∣∣∣∣∣



+ max
s′∈S

∣∣∣∣∣∣∣
∑

a′∈As′opt

(Φηn(µ))t(a
′ | s′) max

a′′∈A
Q∗(µ, t+ 1, s′, a′′)− max

a′′∈A
Q∗(µ, t+ 1, s′, a′′)

∣∣∣∣∣∣∣
+ max

s′∈S

∣∣∣∣∣∣∣
∑

a′∈A\As′opt

(Φηn(µ))t(a
′ | s′)QΦηn (µ)(µ, t+ 1, s′, a′)

∣∣∣∣∣∣∣
≤ max

s′∈S
max

a′∈As′opt

∣∣∣∣QΦηn (µ)(µ, t+ 1, s′, a′)− max
a′′∈A

Q∗(µ, t+ 1, s′, a′′)

∣∣∣∣
+ max

s′∈S
MQ

∣∣∣∣∣∣∣−
∑

a′∈A\As′opt

(Φηn(µ))t(a
′ | s′)

∣∣∣∣∣∣∣+ max
s′∈S

MQ

∣∣∣∣∣∣∣
∑

a′∈A\As′opt

(Φηn(µ))t(a
′ | s′)

∣∣∣∣∣∣∣
<
ε

3
+

ε

3|A|MQ
· |A|MQ +

ε

3|A|MQ
· |A|MQ = ε .

Since s ∈ S, a ∈ A, ε > 0 were arbitrary, the desired result follows immediately by induction. �

As we have no control over µ∗n and the sequence (π∗n, µ
∗
n)n∈N may not even converge, pointwise convergence is

insufficient. To obtain uniform convergence, we shall use compactness ofM and equicontinuity.

Lemma B.8.2. The family of functions F ≡ {µ 7→ QΦη(µ)(µ, t, s, a)}η>0,t∈T ,s∈S,a∈A is equicontinuous, i.e. for
any ε > 0 and any µ ∈ M, we can choose a δ > 0 such that for all µ′ ∈ M with dM(µ, µ′) < δ and any f ∈ F
we have

|f(µ)− f(µ′)| < ε .

Proof. Fix an arbitrary µ ∈M. We make the (backwards in time) induction hypothesis for all t ∈ T that for any
s ∈ S, a ∈ A, εt,s,a > 0, there exists δt,s,a > 0 such that for any µ′ ∈ M with dM(µ, µ′) < δt,s,a and any f ∈ F
we have ∣∣∣QΦη(µ)(µ, t, s, a)−QΦη(µ′)(µ′, t, s, a)

∣∣∣ < εt,s,a .

The induction hypothesis is fulfilled for t = T − 1, as by assumption, ν → r(s, a, νt) is Lipschitz with constant
Cr > 0. Therefore, for all s ∈ S, a ∈ A we can choose δT−1,s,a =

εt,s,a
Cr

such that for any µ, µ′ with dM(µ, µ′) < δ′

we have ∣∣∣QΦη(µ)(µ, t, s, a)−QΦη(µ′)(µ′, t, s, a)
∣∣∣ = |r(s, a, µt)− r(s, a, µ′t)| ≤ CrdM(µ, µ′) < εt,s,a .

Assume that the induction hypothesis holds for t + 1, then at time t let εt,s,a > 0, s ∈ S, a ∈ A arbitrary. By
definition, we have∣∣∣QΦη(µ)(µ, t, s, a)−QΦη(µ′)(µ′, t, s, a)

∣∣∣
=

∣∣∣∣∣r(s, a, µt) +
∑
s′∈S

p(s′ | s, a, µt)
∑
a′∈A

(Φη(µ))t+1(a′ | s′)QΦη(µ)(µ, t+ 1, s′, a′)

−r(s, a, µ′t)−
∑
s′∈S

p(s′ | s, a, µ′t)
∑
a′∈A

(Φη(µ′))t+1(a′ | s′)QΦη(µ′)(µ′, t+ 1, s′, a′)

∣∣∣∣∣
≤ |r(s, a, µt)− r(s, a, µ′t)|

+
∑
s′∈S

∣∣∣∣∣(p(s′ | s, a, µt)− p(s′ | s, a, µ′t)) ∑
a′∈A

(Φη(µ))t+1(a′ | s′)QΦη(µ)(µ, t+ 1, s′, a′)

∣∣∣∣∣
+
∑
s′∈S

∣∣∣∣∣p(s′ | s, a, µ′t) ∑
a′∈A

(
(Φη(µ))t+1(a′ | s′)QΦη(µ)(µ, t+ 1, s′, a′)− (Φη(µ′))t+1(a′ | s′)QΦη(µ′)(µ′, t+ 1, s′, a′)

)∣∣∣∣∣
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≤ |r(s, a, µt)− r(s, a, µ′t)|

+
∑
s′∈S

∣∣∣∣∣(p(s′ | s, a, µt)− p(s′ | s, a, µ′t)) ∑
a′∈A

(Φη(µ))t+1(a′ | s′)QΦη(µ)(µ, t+ 1, s′, a′)

∣∣∣∣∣
+ max

s′∈S

∣∣∣∣∣∣∣
∑

a′∈As′opt

(
(Φη(µ))t+1(a′ | s′)QΦη(µ)(µ, t+ 1, s′, a′)− (Φη(µ′))t+1(a′ | s′)QΦη(µ′)(µ′, t+ 1, s′, a′)

)∣∣∣∣∣∣∣
+ max

s′∈S

∣∣∣∣∣∣∣
∑

a′∈A\As′opt

(
(Φη(µ))t+1(a′ | s′)QΦη(µ)(µ, t+ 1, s′, a′)− (Φη(µ′))t+1(a′ | s′)QΦη(µ′)(µ′, t+ 1, s′, a′)

)∣∣∣∣∣∣∣
where we define As′opt ⊆ A for any s′ ∈ S to include all optimal actions aopt ∈ As

′

opt such that

Q∗(µ, t, s′, aopt) = max
a∈A

Q∗(µ, t, s′, a) .

We bound each of the four terms separately.

For the first term, we choose δ1
t,s,a =

εt,s,a
4Cr

by Lipschitz continuity such that

|r(s, a, µt)− r(s, a, µ′t)| <
εt,s,a

4

for all µ′ with dM(µ, µ′) < δ1
t,s,a.

For the second term, we choose δ2
t,s,a = 1

4|S|MQCp
such that for any µ′ ∈M with dM(µ, µ′) < δ2

t,s,a we have

∑
s′∈S

∣∣∣∣∣(p(s′ | s, a, µt)− p(s′ | s, a, µ′t)) ∑
a′∈A

(Φη(µ))t+1(a′ | s′)QΦη(µ)(µ, t+ 1, s′, a′)

∣∣∣∣∣
≤ |S|CpdM(µ, µ′)MQ <

εt,s,a
4

where MQ denotes the uniform bound of Q and Cp is the Lipschitz constant of ν 7→ p(s′ | s, a, νt).

For the third and fourth term, we first fix s′ ∈ S and define the minimal action gap as

∆Qs
′,µ

min ≡ min
aopt∈As

′
opt,asub∈A\As

′
opt

(Q∗(µ, t, s′, aopt)−Q∗(µ, t, s′, asub)) .

This is well defined if there are suboptimal actions, since there is always at least one optimal action. If all actions
are optimal, we can skip bounding the probability of taking suboptimal actions and the result will still hold.
Henceforth, we assume that there exists a suboptimal action.

By Lipschitz continuity of µ 7→ Q∗(µ, t, s, a) from Lemma B.7.3 implying uniform continuity, there exists some
δ3,s′

t,s,a > 0 such that

|Q∗(µ′, t, s′, a)−Q∗(µ, t, s′, a)| < ∆Qs
′,µ

min

4

for all µ′ ∈M, a ∈ A where dM(µ, µ′) < δ3,s′

t,s,a, and thus

∆Qs
′,µ′

min = min
aopt∈As

′
opt,asub∈A\As

′
opt

(Q∗(µ′, t, s′, aopt)−Q∗(µ′, t, s′, asub)) >
∆Qs

′,µ
min

2
.

Under this condition, we can now show that the probability of any suboptimal action can be controlled. Define
Rmin
q ≡ mint∈T ,s∈S,a∈A,a′∈A

qt(a
′|s)

qt(a|s) > 0 and Rmax
q ≡ maxt∈T ,s∈S,a∈A,a′∈A

qt(a
′|s)

qt(a|s) > 0. Let asub ∈ A \ As
′

opt, then
we either have

|(Φη(µ))t+1(asub | s′)− (Φη(µ′))t+1(asub | s′)|



=

∣∣∣∣∣∣ 1

1 +
∑
a′ 6=asub

qt(a′|s′)
qt(asub|s′) exp

(
Q∗(µ,t,s′,a′)−Q∗(µ,t,s′,asub)

η

)
− 1

1 +
∑
a′ 6=asub

qt(a′|s′)
qt(asub|s′) exp

(
Q∗(µ′,t,s′,a′)−Q∗(µ′,t,s′,asub)

η

)
∣∣∣∣∣∣

≤ 1

1 + maxa′ 6=asub
Rmin
q exp

(
Q∗(µ,t,s′,a′)−Q∗(µ,t,s′,asub)

η

)
+

1

1 + maxa′ 6=asub
Rmin
q exp

(
Q∗(µ′,t,s′,a′)−Q∗(µ′,t,s′,asub)

η

)
<

1

1 +Rmin
q exp

(
∆Qs

′,µ
min

η

) +
1

1 +Rmin
q exp

(
∆Qs

′,µ
min

2η

)
≤ 2

1 +Rmin
q exp

(
∆Qs

′,µ
min

2η

) <
εt,s,a

8MQ|A|

if εt,s,a > 16MQ|A| trivially, or otherwise if η < ηs
′

min with

ηs
′

min ≡
∆Qs

′,µ
min

2 log
(

16MQ|A|
εt,s,aRmin

q
− 1

Rmin
q

) ,
in which case we arbitrarily define δ4,s′

t,s,a = 1, or if neither apply, then η ≥ ηs′min and thus

|(Φη(µ))t+1(asub | s′)− (Φη(µ′))t+1(asub | s′)|

=

∣∣∣∣∣∣ 1

1 +
∑
a′ 6=asub

qt(a′|s′)
qt(asub|s′) exp

(
Q∗(µ,t,s′,a′)−Q∗(µ,t,s′,asub)

η

)
− 1

1 +
∑
a′ 6=asub

qt(a′|s′)
qt(asub|s′) exp

(
Q∗(µ′,t,s′,a′)−Q∗(µ′,t,s′,asub)

η

)
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑
a′ 6=asub

qt(a
′|s)

qt(asub|s′)

(
exp

(
Q∗(µ′,t,s′,a′)−Q∗(µ′,t,s′,asub)

η

)
− exp

(
Q∗(µ,t,s′,a′)−Q∗(µ,t,s′,asub)

η

))
(1 + · · · ) · (1 + · · · )

∣∣∣∣∣∣
≤ Rmax

q

∑
a′ 6=asub

∣∣∣∣exp

(
Q∗(µ′, t, s′, a′)−Q∗(µ′, t, s′, asub)

η

)
− exp

(
Q∗(µ, t, s′, a′)−Q∗(µ, t, s′, asub)

η

)∣∣∣∣
≤ Rmax

q

∑
a′ 6=asub

∣∣∣∣1η exp

(
ξa′

η

)∣∣∣∣ |(Q∗(µ′, t, s′, a′)−Q∗(µ′, t, s′, asub))− (Q∗(µ, t, s′, a′)−Q∗(µ, t, s′, asub))|

≤ Rmax
q |A| · 1

ηs
′

min

exp

(
2MQ

ηs
′

min

)
(|Q∗(µ′, t, s′, a′)−Q∗(µ, t, s′, a′)|+ |Q∗(µ, t, s′, asub)−Q∗(µ′, t, s′, asub)|)

≤ Rmax
q |A| · 1

ηs
′

min

exp

(
2MQ

ηs
′

min

)
· 2KQdM(µ, µ′) <

εt,s,a
8MQ|A|

by the mean value theorem with some ξa′ ∈ [−2MQ, 2MQ] for all a′ ∈ A, where we abbreviated the denominator
(1 + · · · ) · (1 + · · · ) ≥ 1, as long as we choose

δ4,s′

t,s,a =
εt,s,aη

s′

min

8MQ|A|2Rmax
q · exp

(
2MQ

ηs
′

min

)
· 2KQ



Approximately Solving Mean Field Games via Entropy-Regularized Deep Reinforcement Learning

and dM(µ, µ′) < δ4,s′

t,s,a, where KQ is the Lipschitz constant of µ 7→ Q∗(µ, t, s, a) given by Lemma B.7.3.

Since s′ ∈ S was arbitrary, we now define δ3
t,s,a ≡ mins′∈S δ

3,s′

t,s,a, δ4
t,s,a ≡ mins′∈S δ

4,s′

t,s,a and let dM(µ, µ′) <
min(δ3

t,s,a, δ
4
t,s,a). Under these assumptions, for the third term we have approximate optimality for all optimal

actions in As′opt, since by induction assumption we can choose δt+1,s′,a′ for all s′ ∈ S, a′ ∈ A such that for all
µ′ ∈M with dM(µ, µ′) < δt+1,s′,a′ it holds that∣∣∣QΦη(µ)(µ, t+ 1, s′, a′)−QΦη(µ′)(µ′, t+ 1, s′, a′)

∣∣∣ < εt,s,a
16|A|+ 8

.

and therefore for all µ′ ∈M, as long as dM(µ, µ′) < mins′∈S,a′∈A δt+1,s′,a′ , we have

max
s′∈S

∣∣∣∣∣∣∣
∑

a′∈As′opt

(Φη(µ))t+1(a′ | s′)QΦη(µ)(µ, t+ 1, s′, a′)−
∑

a′∈As′opt

(Φη(µ′))t+1(a′ | s′)QΦη(µ′)(µ′, t+ 1, s′, a′)

∣∣∣∣∣∣∣
≤ max

s′∈S

∣∣∣∣∣∣∣
∑

a′∈As′opt

(Φη(µ))t+1(a′ | s′)QΦη(µ)(µ, t+ 1, s′, a′)−
∑

a′∈As′opt

(Φη(µ))t+1(a′ | s′)QΦη(µ′)(µ′, t+ 1, s′, a′)

∣∣∣∣∣∣∣
+ max

s′∈S

∣∣∣∣∣∣∣
∑

a′∈As′opt

(Φη(µ))t+1(a′ | s′)QΦη(µ′)(µ′, t+ 1, s′, a′)−
∑

a′∈As′opt

(Φη(µ′))t+1(a′ | s′)QΦη(µ′)(µ′, t+ 1, s′, a′)

∣∣∣∣∣∣∣
≤ max

s′∈S
max
a′∈A

∣∣∣QΦη(µ)(µ, t+ 1, s′, a′)−QΦη(µ′)(µ′, t+ 1, s′, a′)
∣∣∣

+ max
s′∈S

∣∣∣∣∣∣∣
∑

a′∈As′opt

((Φη(µ))t+1(a′ | s′)− (Φη(µ′))t+1(a′ | s′))
(
QΦη(µ′)(µ′, t+ 1, s′, a′)−QΦη(µ)(µ, t+ 1, s′, a′)

)∣∣∣∣∣∣∣
+ max

s′∈S

∣∣∣∣∣∣∣
∑

a′∈As′opt

((Φη(µ))t+1(a′ | s′)− (Φη(µ′))t+1(a′ | s′))QΦη(µ)(µ, t+ 1, s′, a′)

∣∣∣∣∣∣∣
≤ max

s′∈S
max
a′∈A

∣∣∣QΦη(µ)(µ, t+ 1, s′, a′)−QΦη(µ′)(µ′, t+ 1, s′, a′)
∣∣∣

+ max
s′∈S

max
a′∈A

2|A|
∣∣∣QΦη(µ′)(µ′, t+ 1, s′, a′)−QΦη(µ)(µ, t+ 1, s′, a′)

∣∣∣
+ max

s′∈S
max
a′′∈A

∣∣∣QΦη(µ)(µ, t+ 1, s′, a′′)
∣∣∣ ·
∣∣∣∣∣∣∣

∑
a′∈A\As′opt

((Φη(µ′))t+1(a′ | s′)− (Φη(µ))t+1(a′ | s′))

∣∣∣∣∣∣∣
< (1 + 2|A|) · εt,s,a

16|A|+ 8
+MQ|A| ·

εt,s,a
8MQ|A|

<
εt,s,a

4

where we use that for any a′ ∈ As′opt we have

QΦη(µ)(µ, t+ 1, s′, a′) = max
a′′∈A

QΦη(µ)(µ, t+ 1, s′, a′′) .

Analogously, for the fourth term we have

max
s′∈S

∣∣∣∣∣∣∣
∑

a′∈A\As′opt

((Φη(µ))t+1(a′ | s′)QΦη(µ)(µ, t+ 1, s′, a′)− (Φη(µ′))t+1(a′ | s′)QΦη(µ′)(µ′, t+ 1, s′, a′))

∣∣∣∣∣∣∣
≤ max

s′∈S

∑
a′∈A\As′opt

∣∣∣(Φη(µ))t+1(a′ | s′)QΦη(µ)(µ, t+ 1, s′, a′)− (Φη(µ))t+1(a′ | s′)QΦη(µ′)(µ′, t+ 1, s′, a′)
∣∣∣



+ max
s′∈S

∑
a′∈A\As′opt

∣∣∣(Φη(µ))t+1(a′ | s′)QΦη(µ′)(µ′, t+ 1, s′, a′)− (Φη(µ′))t+1(a′ | s′)QΦη(µ′)(µ′, t+ 1, s′, a′)
∣∣∣

≤ max
s′∈S

max
a′∈A

∣∣∣QΦη(µ)(µ, t+ 1, s′, a′)−QΦη(µ′)(µ′, t+ 1, s′, a′)
∣∣∣

+ max
s′∈S

MQ

∑
a′∈A\As′opt

|(Φη(µ))t+1(a′ | s′)− (Φη(µ′))t+1(a′ | s′)|

<
εt,s,a

8
+MQ|A| ·

εt,s,a
8MQ|A|

=
εt,s,a

4

under the previous conditions, since as long as we have dM(µ, µ′) < δt+1,s′,a′ for all s′ ∈ S, a′ ∈ A from before,
we have ∣∣∣QΦη(µ)(µ, t+ 1, s′, a′)−QΦη(µ′)(µ′, t+ 1, s′, a′)

∣∣∣ < εt,s,a
16|A|+ 8

<
εt,s,a

8
.

Finally, by choosing δt,s,a such that all conditions are fulfilled, i.e.

δt,s,a ≡ min

(
δ1
t,s,a, δ

2
t,s,a, δ

3
t,s,a, δ

4
t,s,a, min

s′∈S,a′∈A
δt+1,s′,a′

)
> 0 ,

the induction hypothesis is fulfilled, since then for any µ′ with dM(µ, µ′) < δt,s,a we have∣∣∣QΦη(µ)(µ, t, s, a)−QΦη(µ′)(µ′, t, s, a)
∣∣∣ < εt,s,a .

Since η > 0 is arbitrary, the desired result follows immediately, as we can set εt,s,a = ε for each t ∈ T , s ∈ S, a ∈ A
and obtain δ ≡ maxt∈T ,s∈S,a∈A δt,s,a, fulfilling the required equicontinuity property at µ. �

From equicontinuity, we get the desired uniform convergence via compactness.

Lemma B.8.3. If (fn)n∈N with fn :M→ R is an equicontinuous sequence of functions and for all µ ∈M we
have fn(µ)→ f(µ) pointwise, then fn(µ)→ f(µ) uniformly.

Proof. Let ε > 0 arbitrary, then there exists by equicontinuity for any point µ ∈ M a δ(µ) such that for all
µ′ ∈M with dM(µ, µ′) < δ(µ) we have for all n ∈ N

|fn(µ)− fn(µ′)| < ε

3

which via pointwise convergence implies

|f(µ)− f(µ′)| ≤ ε

3
.

Since M is compact, it is separable, i.e. there exists a countable dense subset (µj)j∈N of M. Let δ(µ) be as
defined above and coverM by the open balls (Bδ(µj)(µj))j∈N. By the compactness ofM, finitely many of these
balls Bδ(µn1

)(µn1
), . . . , Bδ(µnk )(µnk) cover M. By pointwise convergence, for any i = 1, . . . , k we can find an

integer ni such that for all n > ni we have

|fn(µni)− f(µni)| <
ε

3
.

Taken together, we find that for n > maxi=1,...,k ni and arbitrary µ ∈M, we have

|fn(µ)− f(µ)| < |fn(µ)− fn(µni)|+ |fn(µni)− f(µni)|+ |f(µni)− f(µ)| < ε

3
+
ε

3
+
ε

3
< ε

for some center point µni of a ball containing µ from the finite cover. �

Therefore, a sequence of Boltzmann MFE with vanishing η is approximately optimal in the MFG.
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Lemma B.8.4. For any sequence (π∗n, µ
∗
n)n∈N of ηn-Boltzmann MFE with ηn → 0+ and for any ε > 0 there

exists integer N ∈ N such that for all integers n > N we have

Jµ
∗
n(π∗n) ≥ max

π
Jµ
∗
n(π)− ε .

Proof. By Lemma B.8.2, F ≡ (µ 7→ QΦη(µ)(µ, t, s, a))η>0,t∈T ,s∈S,a∈A is equicontinuous. Therefore, any sequence
(µ 7→ QΦηn (µ)(µ, t, s, a))n∈N with ηn → 0+ is also equicontinuous for any t ∈ T , s ∈ S, a ∈ A.

Furthermore, by Lemma B.8.1, the sequence (µ 7→ QΦηn (µ)(µ, t, s, a))n∈N converges pointwise to µ→ Q∗(µ, t, s, a)
for any t ∈ T , s ∈ S, a ∈ A.

By Lemma B.8.3, we thus have
∣∣QΦηn (µ)(µ, t, s, a)−Q∗(µ, t, s, a)

∣∣→ 0 uniformly. Therefore, for any ε > 0, there
exists an integer N by uniform convergence such that for all integers n > N we have

Qπ
∗
n(µ∗n, t, s, a) ≥ Q∗(µ∗n, t, s, a)− ε = max

π∈Π
Qπ(µ∗n, t, s, a)− ε ,

and since by Lemma B.3.1 we have

Jµ
∗
n(π∗n) =

∑
s∈S

µ0(s) ·
∑
a∈A

Qπ
∗
n(µ∗n, t, s, a) ≥

∑
s∈S

µ0(s) ·max
π∈Π

∑
a∈A

Qπ(µ∗n, t, s, a)− ε = max
π∈Π

Jµ
∗
n(π)− ε ,

the desired result follows immediately. �

Finally, we show approximate optimality in the actual N -agent game as long as a pair (π∗, µ∗) ∈ Π × M
with µ∗ = Ψ(π∗) has vanishing exploitability in the MFG. By Lemma B.8.4, for any sequence (π∗n, µ

∗
n)n∈N of

ηn-Boltzmann MFE with ηn → 0+ and for any ε > 0 there exists an integer n′ ∈ N such that for all integers
n > n′ we have

Jµ
∗
n(π∗n) ≥ max

π
Jµ
∗
n(π)− ε .

Let ε′ > 0 be arbitrary and choose a sequence of optimal policies {πN}N∈N such that for all N ∈ N we have

πN ∈ arg max
π∈Π

JN1 (π, π∗n, . . . , π
∗
n) .

By Lemma B.5.6 there exists N ′ ∈ N such that for all N > N ′ and all n > n′, we have

max
π∈Π

JN1 (π, π∗n, . . . , π
∗
n)− ε− ε′ ≤ max

π∈Π
Jµ
∗
n(π)− ε− ε′

2

≤ Jµ
∗
n(π∗n)− ε′

2

≤ JN1 (π∗n, π
∗
n, . . . , π

∗
n)

which is the desired approximate Nash equilibrium property since ε, ε′ are arbitrary. This applies by symmetry to
all agents.

For RelEnt MFE, the same can be done by first showing the uniform convergence of the soft action-value function
to the usual action-value function. For this, note that the smooth maximum Bellman recursion converges to the
hard maximum Bellman recursion for any fixed µ.

Lemma B.8.5. For any f : A → R and any g : A → R with g(a) > 0 for all a ∈ A, we have

lim
η→0+

η log
∑
a∈A

g(a) exp
f(a)

η
= max

a∈A
f(a) .

Proof. Let δ = 1
η → +∞. Then, by L’Hospital’s rule we have

lim
δ→+∞

log
∑
a∈A g(a) exp (δf(a))

δ
= lim
δ→+∞

∑
a∈A g(a) exp (δf(a)) f(a)∑
a∈A g(a) exp (δf(a))



= lim
δ→+∞

∑
a∈A g(a) exp (δ(f(a)−maxa∈A f(a))) f(a)∑
a∈A g(a) exp (δ(f(a)−maxa∈A f(a)))

=
|Amax|maxa∈A f(a)

|Amax|
= max

a∈A
f(a)

where |Amax| is the number of elements in A that maximize f . �

Using this result, we can show pointwise convergence of the soft action-value function to the action-value function.

Lemma B.8.6. Any sequence of functions (µ 7→ Q̃ηn(µ, t, s, a))n∈N with ηn → 0+ converges pointwise to
µ 7→ Q∗(µ, t, s, a) for all t ∈ T , s ∈ S, a ∈ A.

Proof. Fix µ ∈M. We show by induction that for any ε > 0, there exists ηt > 0 such that for all η < ηt we have∣∣∣Q̃η(µ, t, s, a)−Q∗(µ, t, s, a)
∣∣∣ < ε for all t ∈ T , s ∈ S, a ∈ A. This holds for t = T − 1 and arbitrary s ∈ S, a ∈ A

by Lemma B.8.5, since r(s, a, µT−1) is independent of η. Assume this holds for t+ 1 and consider t. Then, by the
induction assumption we can choose ηt+1 > 0 such that for η < ηt+1, as η → 0+ we have

Q̃η(µ, t, s, a) = r(s, a, µt) +
∑
s′∈S

p(s′ | s, a, µt)η log
∑
a′∈A

qt+1(a′ | s′) exp

(
Q̃η(µ, t+ 1, s′, a′)

η

)

≤ r(s, a, µt) +
∑
s′∈S

p(s′ | s, a, µt)η log
∑
a′∈A

qt+1(a′ | s′) exp

(
Q∗(µ, t+ 1, s′, a′) + ε

2

η

)
→ r(s, a, µt) +

∑
s′∈S

p(s′ | s, a, µt) max
a′∈A

Q∗(µ, t+ 1, s′, a′) +
ε

2

by Lemma B.8.5 and monotonicity of log and exp. Analogously,

Q̃η(µ, t, s, a) ≥ r(s, a, µt) +
∑
s′∈S

p(s′ | s, a, µt)η log
∑
a′∈A

qt+1(a′ | s′) exp

(
Q∗(µ, t+ 1, s′, a′)− ε

2

η

)
→ r(s, a, µt) +

∑
s′∈S

p(s′ | s, a, µt) max
a′∈A

Q∗(µ, t+ 1, s′, a′)− ε

2
.

Therefore, we can choose ηt < ηt+1 such that for all η < ηt we have

∣∣∣Q̃η(µ, t, s, a)−Q∗(µ, t, s, a)
∣∣∣ =

∣∣∣∣∣Q̃η(µ, t, s, a)−

(
r(s, a, µt) +

∑
s′∈S

p(s′ | s, a, µt) max
a′∈A

Q∗(µ, t+ 1, s′, a′)

)∣∣∣∣∣ < ε

which is the desired result. �

We can now show that the soft action-value function converges uniformly to the action-value function as η → 0+.

Lemma B.8.7. Any sequence of functions (µ 7→ Q̃ηn(µ, t, s, a))n∈N with ηn → 0+ converges uniformly to
µ 7→ Q∗(µ, t, s, a) for all t ∈ T , s ∈ S, a ∈ A.

Proof. First, we show that Q̃η(µ, t, s, a) is monotonically decreasing in η for η > 0, i.e. ∂
∂η Q̃η(µ, t, s, a) ≤ 0 for all

t ∈ T , s ∈ S, a ∈ A. This is the case for t = T − 1 and arbitrary s ∈ S, a ∈ A, since Q̃η(µ, T − 1, s, a) is constant.
Assume this holds for t+ 1, then for t and arbitrary s ∈ S, a ∈ A we have

∂

∂η
Q̃η(µ, t, s, a) =

∑
s′∈S

p(s′ | s, a, µt) log
∑
a′∈A

qt+1(a′ | s′) exp

(
Q̃η(µ, t+ 1, s′, a′)

η

)

+
∑
s′∈S

p(s′ | s, a, µt)η

∑
a′∈A qt+1(a′ | s′) exp

(
Q̃η(µ,t+1,s′,a′)

η

)(
− Q̃η(µ,t+1,s′,a′)

η2 + 1
η
∂
∂η Q̃η(µ, t+ 1, s′, a′)

)
∑
a′∈A qt+1(a′ | s′) exp

(
Q̃η(µ,t+1,s′,a′)

η

)
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≤ max
s′∈S

log
∑
a′∈A

qt+1(a′ | s′) exp

(
Q̃η(µ, t+ 1, s′, a′)

η

)
−

∑
a′∈A qt+1(a′ | s′) exp

(
Q̃η(µ,t+1,s′,a′)

η

)
Q̃η(µ,t+1,s′,a′)

η∑
a′∈A qt+1(a′ | s′) exp

(
Q̃η(µ,t+1,s′,a′)

η

)


by induction hypothesis. Let ξa′ ≡ Q̃η(µ,t+1,s′,a′)
η ∈ R and s′ ∈ S arbitrary, then by Jensen’s inequality applied to

the convex function φ(x) = x log x we have

∑
a′∈A

qt+1(a′ | s′)φ(exp ξa′) ≥ φ

(∑
a′∈A

qt+1(a′ | s′) exp ξa′

)

⇐⇒
∑
a′∈A

qt+1(a′ | s′)ξa′ exp ξa′ ≥

(∑
a′∈A

qt+1(a′ | s′) exp ξa′

)
log

(∑
a′∈A

qt+1(a′ | s′) exp ξa′

)

⇐⇒ log

(∑
a′∈A

qt+1(a′ | s′) exp ξa′

)
−
∑
a′∈A qt+1(a′ | s′)ξa′ exp ξa′(∑
a′∈A qt+1(a′ | s′) exp ξa′

) ≤ 0 ,

such that Q̃η(µ, t, s, a) is monotonically decreasing for all t ∈ T , s ∈ S, a ∈ A by induction.

Furthermore,M is compact and both Q̃η and Q are compositions, sums, products and finite maxima of continuous
functions in µ and therefore continuous in µ by the standing assumptions. Since (µ 7→ Q̃ηn(µ, t, s, a))n∈N with
ηn → 0+ converges pointwise to µ 7→ Q∗(µ, t, s, a) for all t ∈ T , s ∈ S, a ∈ A by Lemma B.8.6, by Dini’s theorem
the convergence is uniform. �

Now that Q̃η converges uniformly against Q, we can show that RelEnt MFE have vanishing exploitability by
replicating the proof for Boltzmann MFE.

Lemma B.8.8. Any sequence of functions (µ 7→ QΦ̃ηn (µ)(µ, t, s, a))n∈N with ηn → 0+ converges pointwise to
µ 7→ Q∗(µ, t, s, a) for all t ∈ T , s ∈ S, a ∈ A.

Proof. The proof is the same as in Lemma B.8.1. The only difference is that we additionally choose n2 ∈ N in
each induction step such that for all n > n2 we have∣∣∣Q̃η(µ, t, s, a)−Q∗(µ, t, s, a)

∣∣∣ ≤ ∆Qs
′,µ

min

4

for all t ∈ T , s ∈ S, a ∈ A, which is possible, since by Lemma B.8.7, Q̃η converges uniformly against Q. As long
as we choose n′ ≡ max(n1, n2,maxs′∈S,a′∈A ns′,a′), the rest of the proof will apply. �

Lemma B.8.9. Any sequence of functions (µ 7→ QΦ̃ηn (µ)(µ, t, s, a))n∈N with ηn → 0+ fulfills equicontinuity for
large enough n: For any ε > 0 and any µ ∈ M, we can choose a δ > 0 and an integer n′ ∈ N such that for all
µ′ ∈M with dM(µ, µ′) < δ and for all n > n′ we have∣∣∣QΦ̃ηn (µ)(µ, t, s, a)−QΦ̃ηn (µ′)(µ′, t, s, a)

∣∣∣ < ε .

Proof. To obtain the desired property, we replicate the proof of Lemma B.8.2 by setting F = (µ 7→
QΦ̃ηn (µ)(µ, t, s, a))n∈N. Any bounds for Q̃η can be instantiated by the corresponding bound for Q and then
bounding the distance between both by uniform convergence. The only differences lie in bounding the terms∣∣∣(Φ̃ηn(µ)(asub | s′)− (Φ̃ηn(µ′)(asub | s′)

∣∣∣
where the action-value function has been replaced with the soft action-value function. Since Q̃ηn uniformly
converges to Q, we instantiate additional requirements Ns′

t,s,a, Ñ
s′

t,s,a to let n > Ns′

t,s,a, n > Ñs′

t,s,a large enough
such that η is sufficiently small enough.

The first difference is to obtain ∣∣∣Q̃ηn(µ′, t, s, a)− Q̃ηn(µ, t, s, a)
∣∣∣ < ∆Qs

′,µ
min

4



for all µ′ ∈ M, t ∈ T , s ∈ S, a ∈ A with dM(µ, µ′) sufficiently small. We choose δ̂3
t,s,a slightly stronger than in

the original proof, such that if dM(µ, µ′) < δ̂3
t,s,a, we have

|Q∗(µ′, t, s, a)−Q∗(µ, t, s, a)| < ∆Qs
′,µ

min

12
.

We must then additionally choose Ns′

t,s,a ∈ N for each induction step via uniform convergence from Lemma B.8.7
such that as long as n > Ns′

t,s,a, we have

∣∣∣Q̃ηn(µ, t, s, a)−Q∗(µ, t, s, a)
∣∣∣ < ∆Qs

′,µ
min

12
.

This implies the required inequality∣∣∣Q̃ηn(µ′, t, s, a)− Q̃ηn(µ, t, s, a)
∣∣∣ ≤ ∣∣∣Q̃ηn(µ′, t, s, a)−Q∗(µ′, t, s, a)

∣∣∣+ |Q∗(µ′, t, s, a)−Q∗(µ, t, s, a)|

+
∣∣∣Q∗(µ, t, s, a)− Q̃ηn(µ, t, s, a)

∣∣∣ < ∆Qs
′,µ

min

4

and we can proceed as in the original proof.

The second difference lies in choosing δ4,s′

t,s,a. Note that Q̃ηn is still bounded by MQ, see Lemma B.7.1. However,
since Q̃ηn might no longer be Lipschitz with the same constant as Q∗, we choose an additional integer Ñs′

t,s,a ∈ N
for each induction step by Lemma B.8.7, such that as long as n > Ñs′

t,s,a, we have

∣∣∣Q̃ηn(µ, t, s, a)−Q∗(µ, t, s, a)
∣∣∣ ≤ ∆s′

Q ≡
εt,s,a

16MQ|A|

4Rmax
q |A| · 1

ηs
′

min

exp
(

2MQ

ηs
′

min

)
for any µ′ ∈M, t ∈ T , s ∈ S, a ∈ A. The required bound then follows immediately from

|(Φηn(µ)(asub | s′)− (Φηn(µ′)(asub | s′)|

≤ Rmax
q

∑
a′ 6=asub

∣∣∣∣∣exp

(
Q̃ηn(µ′, t, s′, a′)− Q̃ηn(µ′, t, s′, asub)

η

)
− exp

(
Q̃ηn(µ, t, s′, a′)− Q̃ηn(µ, t, s′, asub)

η

)∣∣∣∣∣
≤ Rmax

q

∑
a′ 6=asub

∣∣∣∣1η exp

(
ξa′

η

)∣∣∣∣ ∣∣∣(Q̃ηn(µ′, t, s′, a′)− Q̃ηn(µ′, t, s′, asub))− (Q̃ηn(µ, t, s′, a′)− Q̃ηn(µ, t, s′, asub))
∣∣∣

≤ Rmax
q |A| · 1

ηs
′

min

exp

(
2MQ

ηs
′

min

)(∣∣∣Q̃ηn(µ′, t, s′, a′)− Q̃ηn(µ, t, s′, a′)
∣∣∣+
∣∣∣Q̃ηn(µ, t, s′, asub)− Q̃ηn(µ′, t, s′, asub)

∣∣∣)
≤ Rmax

q |A| · 1

ηs
′

min

exp

(
2MQ

ηs
′

min

)
·
(

2KQdM(µ, µ′) + 4∆s′

Q

)
≤ Rmax

q |A| · 1

ηs
′

min

exp

(
2MQ

ηs
′

min

)
· (2KQdM(µ, µ′)) +

εt,s,a
16MQ|A|

<
εt,s,a

8MQ|A|

as in the original proof by letting dM(µ, µ′) < δ4,s′

t,s,a and choosing

δ4,s′

t,s,a =
εt,s,aη

s′

min

16MQ|A|2Rmax
q · exp

(
2MQ

ηs
′

min

)
· 2KQ

.

The rest of the proof is analogous. We obtain the additional requirement n > Ns′

t,s,a, n > Ñs′

t,s,a for some integers
Ns′

t,s,a, Ñ
s′

t,s,a and each t ∈ T , s ∈ S, s′ ∈ S, a ∈ A. By choosing n′ ≡ maxt∈T ,s∈S,s′∈S,a∈Amax(Ns′

t,s,a, Ñ
s′

t,s,a), the
desired result holds as long as n > n′. �

From this property, we again obtain the desired uniform convergence via compactness ofM.



Approximately Solving Mean Field Games via Entropy-Regularized Deep Reinforcement Learning

Lemma B.8.10. Any sequence of functions (µ 7→ QΦ̃ηn (µ)(µ, t, s, a))n∈N with ηn → 0+ converges uniformly to
µ 7→ Q∗(µ, t, s, a) for all t ∈ T , s ∈ S, a ∈ A.

Proof. Fix ε > 0, t ∈ T , s ∈ S, a ∈ A. Then, there exists by Lemma B.8.9 for any point µ ∈M both δ(µ) and n′
such that for all µ′ ∈M with dM(µ, µ′) < δ(µ) for all n > n′ we have∣∣∣QΦ̃ηn (µ)(µ, t, s, a)−QΦ̃ηn (µ′)(µ′, t, s, a)

∣∣∣ < ε

3

which via pointwise convergence from Lemma B.8.8 implies

|Q∗(µ, t, s, a)−Q∗(µ′, t, s, a)| ≤ ε

3
.

Since M is compact, it is separable, i.e. there exists a countable dense subset (µj)j∈N of M. Let δ(µ) be as
defined above and coverM by the open balls (Bδ(µj)(µj))j∈N. By the compactness ofM, finitely many of these
balls Bδ(µn1

)(µn1
), . . . , Bδ(µnk )(µnk) coverM. By pointwise convergence from Lemma B.8.8, for any i = 1, . . . , k

we can find integers mi such that for all n > mi we have∣∣∣QΦ̃ηn (µni )(µni , t, s, a)−Q∗(µni , t, s, a)
∣∣∣ < ε

3
.

Taken together, we find that for n > max(n′,maxi=1,...,kmi) and arbitrary µ ∈M, we have∣∣∣QΦ̃ηn (µ)(µ, t, s, a)−Q∗(µ, t, s, a)
∣∣∣ < ∣∣∣QΦ̃ηn (µ)(µ, t, s, a)−QΦ̃ηn (µni )(µni , t, s, a)

∣∣∣
+
∣∣∣QΦ̃ηn (µni )(µni , t, s, a)−Q∗(µni , t, s, a)

∣∣∣
+ |Q∗(µni , t, s, a)−Q∗(µ, t, s, a)|

<
ε

3
+
ε

3
+
ε

3
< ε

for some center point µni of a ball containing µ from the finite cover. �

As a result, a sequence of RelEnt MFE with η → 0+ is approximately optimal in the MFG.

Lemma B.8.11. For any sequence (π∗n, µ
∗
n)n∈N of ηn-RelEnt MFE with ηn → 0+ and for any ε > 0 there exists

integer n′ ∈ N such that for all integers n > n′ we have

Jµ
∗
n(π∗n) ≥ max

π
Jµ
∗
n(π)− ε .

Proof. By Lemma B.8.10, we have
∣∣∣QΦ̃ηn (µ)(µ, t, s, a)−Q∗(µ, t, s, a)

∣∣∣→ 0 uniformly. Therefore, for any ε > 0,
there exists by uniform convergence an integer n′ such that for all integers n > n′ we have

Qπ
∗
n(µ∗n, t, s, a) ≥ Q∗(µ∗n, t, s, a)− ε = max

π∈Π
Qπ(µ∗n, t, s, a)− ε ,

and since by Lemma B.3.1, we have

Jµ
∗
n(π∗n) =

∑
s∈S

µ0(s) ·
∑
a∈A

Qπ
∗
n(µ∗n, t, s, a) ≥

∑
s∈S

µ0(s) ·max
π∈Π

∑
a∈A

Qπ(µ∗n, t, s, a)− ε = max
π∈Π

Jµ
∗
n(π)− ε ,

the desired result follows immediately. �

By repeating the previous argumentation for Boltzmann MFE with Lemma B.5.6 and replacing Lemma B.8.4
with Lemma B.8.11, we obtain the desired result for RelEnt MFE.



C Relative entropy mean field games

We show that the necessary conditions for optimality hold for the candidate solution. (For further insight, see
also Neu et al. (2017), Haarnoja et al. (2017) and references therein.) Fix a mean field µ ∈M and formulate the
induced problem as an optimization problem, with ρt(s) as the probability of our representative agent visiting
state s ∈ S at time t ∈ T , to obtain

max
ρ,π

T−1∑
t=0

∑
s∈S

ρt(s)
∑
a∈A

πt(a | s)r(s, a, µt)

subject to ρt+1(s′) =
∑
s∈S

ρt(s)
∑
a∈A

πt(a | s)p(s′ | s, a, µt) ∀s′ ∈ S, t ∈ {0, . . . , T − 2},

1 =
∑
s∈S

ρt(s) ∀t ∈ {0, . . . , T − 1},

1 =
∑
a∈A

πt(a | s) ∀s ∈ S, t ∈ {0, . . . , T − 1},

0 ≤ ρt(s), 0 ≤ πt(a | s) ∀s ∈ S, a ∈ A, t ∈ {0, . . . , T − 1},
µ0(s) = ρ0(s) ∀s ∈ S.

Note that if the agent follows the mean field policy of the other agents, we have ρt = µt. The optimized objective
is just the expectation E

[∑T−1
t=0 r(St, At)

]
. As in Belousov and Peters (2019), we change this objective to include

a KL-divergence penalty weighted by the state-visitation distribution ρt(·) by introducing the temperature η > 0
and prior policy q ∈ Π to obtain

max
ρt,πt

T−1∑
t=0

∑
s∈S

ρt(s)
∑
a∈A

πt(a | s)r(s, a, µt)− η
T−1∑
t=0

∑
s∈S

ρt(s)DKL(πt(· | s) ‖ qt(· | s))

subject to ρt+1(s′) =
∑
s∈S

ρt(s)
∑
a∈A

πt(a | s)p(s′ | s, a, µt) ∀s′ ∈ S, t ∈ {0, . . . , T − 2},

1 =
∑
s∈S

ρt(s) ∀t ∈ {0, . . . , T − 1},

1 =
∑
a∈A

πt(a | s) ∀s ∈ S, t ∈ {0, . . . , T − 1},

0 ≤ ρt(s), 0 ≤ πt(a | s) ∀s ∈ S, a ∈ A, t ∈ {0, . . . , T − 1},
µ0(s) = ρ0(s) ∀s ∈ S.

We ignore the constraints 0 ≤ πt(a | s) and 0 ≤ ρt(s) and see later that they will hold automatically. This results
in the simplified optimization problem

max
ρt,πt

T−1∑
t=0

∑
s∈S

ρt(s)
∑
a∈A

πt(a | s)r(s, a, µt)− η
T−1∑
t=0

∑
s∈S

ρt(s)DKL(πt(· | s) ‖ qt(· | s))

subject to ρt+1(s′) =
∑
s∈S

ρt(s)
∑
a∈A

πt(a | s)p(s′ | s, a, µt) ∀s′ ∈ S, t ∈ {0, . . . , T − 2},

1 =
∑
s∈S

ρt(s) ∀t ∈ {0, . . . , T − 1},

1 =
∑
a∈A

πt(a | s) ∀s ∈ S, t ∈ {0, . . . , T − 1},

µ0(s) = ρ0(s) ∀s ∈ S,

for which we introduce Lagrange multipliers λ1(t, s), λ2(t), λ3(t, s), λ4(s) and the Lagrangian

L(ρ, π, λ1, λ2, λ3, λ4) =

T−1∑
t=0

∑
s∈S

ρt(s)
∑
a∈A

πt(a | s)
(
r(s, a, µt)− η log

πt(a | s)
qt(a | s)

)



Approximately Solving Mean Field Games via Entropy-Regularized Deep Reinforcement Learning

−
T−1∑
t=0

∑
s′∈S

λ1(t, s′)

(
ρt+1(s′)−

∑
s∈S

ρt(s)
∑
a∈A

πt(a | s)p(s′ | s, a, µt)

)

−
T−1∑
t=0

λ2(t)

(
1−

∑
s∈S

ρt(s)

)

−
T−1∑
t=0

∑
s∈S

λ3(t, s)

(∑
a∈A

πt(a | s)− 1

)
−
∑
s∈S

λ4(s) (µ0(s)− ρ0(s))

with the artificial constraint λ1(T − 1, s) ≡ 0, which allows us to formulate the following necessary conditions for
optimality. For ∇πt(a|s)L and all s ∈ S, a ∈ A, t ∈ {0, . . . , T − 1}, we obtain

∇πt(a|s)L = ρt(s)

(
r(s, a, µt)− η log

πt(a | s)
qt(a | s)

− η +
∑
s′∈S

λ1(t, s′)p(s′ | s, a, µt)

)
− λ3(t, s)

!
= 0

=⇒ π∗t (a | s) = qt(a | s) exp

r(s, a, µt)− η +
∑
s′∈S λ1(t, s′)p(s′ | s, a, µt)− λ3(t,s)

ρt(s)

η

 .

For ∇λ3L and all s ∈ S, t ∈ {0, . . . , T − 1}, by inserting π∗t we obtain

∇λ3(t,s)L = 1−
∑
a∈A

πt(a | s)
!
= 0

⇐⇒ 1 =
∑
a∈A

qt(a | s) exp

r(s, a, µt)− η +
∑
s′∈S λ1(t, s′)p(s′ | s, a, µt)− λ3(t,s)

ρt(s)

η


which is fulfilled by choosing

λ∗3(t, s) = ηρt(s) log
∑
a∈A

qt(a | s) exp

(
r(s, a, µt)− η +

∑
s′∈S λ1(t, s′)p(s′ | s, a, µt)
η

)
since it fulfills the required equation

∑
a∈A

qt(a | s) exp

r(s, a, µt)− η +
∑
s′∈S λ1(t, s′)p(s′ | s, a, µt)− λ∗3(t,s)

ρt(s)

η


=
∑
a∈A

qt(a | s) exp

(
r(s, a, µt)− η +

∑
s′∈S λ1(t, s′)p(s′ | s, a, µt)
η

)

·

(∑
a∈A

qt(a | s) exp

(
r(s, a, µt)− η +

∑
s′∈S λ1(t, s′)p(s′ | s, a, µt)
η

))−1

= 1 .

Finally, inserting λ∗3 and π∗, for ∇ρt(s)L we obtain

∇ρt(s)L =
∑
a∈A

πt(a | s)

(
r(s, a, µt)− η log

πt(a | s)
qt(a | s)

+
∑
s′∈S

λ1(t, s′)p(s′ | s, a, µt) + λ2(t)

)
− λ1(t− 1, s)

=
∑
a∈A

πt(a | s)
(
η + λ2(t) +

λ3(t, s)

ρt(s)

)
− λ1(t− 1, s)

!
= 0

which implies

λ∗1(t− 1, s) = η + λ2(t) + η log
∑
a∈A

qt(a | s) exp

(
r(s, a, µt)− η +

∑
s′∈S λ1(t, s′)p(s′ | s, a, µt)
η

)
.



We can subtract λ2(t) and shift the time index to obtain the soft value function Ṽη(µ, t, s) defined via terminal
condition Ṽη(µ, T, s) ≡ 0 and the recursion

Ṽη(µ, t, s) = η log
∑
a∈A

qt(a | s) exp

(
r(s, a, µt) +

∑
s′∈S Ṽη(µ, t+ 1, s′)p(s′ | s, a, µt)

η

)

since then, by normalization the optimal policy for all s ∈ S, a ∈ A, t ∈ {0, . . . , T − 1} is equivalent to

π∗t (a | s) =
qt(a | s) exp

(
r(s,a,µt)+

∑
s′∈S λ1(t,s′)p(s′|s,a,µt)

η

)
∑
a′∈A qt(a

′ | s) exp
(
r(s,a′,µt)+

∑
s′∈S λ1(t,s′)p(s′|s,a′,µt)

η

)
=

qt(a | s) exp
(
r(s,a,µt)+

∑
s′∈S Ṽη(µ,t+1,s′)p(s′|s,a,µt)

η

)
∑
a′∈A qt(a

′ | s) exp
(
r(s,a′,µt)+

∑
s′∈S Ṽη(µ,t+1,s′)p(s′|s,a′,µt)

η

) .
To obtain a recursion in Q̃η, define

Q̃η(µ, t, s, a) ≡ r(s, a, µt) +
∑
s′∈S

p(s′ | s, a, µt)η log
∑
a′∈A

qt+1(a′ | s′) exp

(
Q̃η(µ, t+ 1, s′, a′)

η

)

with terminal condition Q̃η(µ, T, s, a) ≡ 0 to obtain

π∗t (a | s) =
qt(a | s) exp

(
Q̃η(µ,t,s,a)

η

)
∑
a′∈A qt(a

′ | s) exp
(
Q̃η(µ,t,s,a′)

η

)
which is the desired result as π∗ fulfills all constraints and determines ρ uniquely. For the uniform prior
qt(a | s) = 1/|A|, we obtain the maximum entropy solution.
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