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Supplementary Materials

A Experimental Details

A.1 Algorithms

Algorithm 1 Exact fixed point iteration
1: Initialize µ0 = Ψ(q) as the mean field induced by the uniformly random policy q.
2: for k = 0, 1, · · · do
3: Compute the Q-function Q∗(µk, t, s, a) for fixed µk.
4: Choose πk ∈ Π such that πkt (a | s) =⇒ a ∈ arg maxa∈AQ

k(µk, t, s, a) for all t ∈ T , s ∈ S, a ∈ A by
putting all probability mass on the first optimal action, or evenly on all optimal actions.

5: Optionally: Overwrite πk ← 1
k+1π

k + k
k+1π

k−1. (FP averaged policy)
6: Compute the mean field µk+1 = Ψ(πk) induced by πk.
7: Optionally: Overwrite µk+1 ← 1

k+1µ
k+1 + k

k+1µ
k. (FP averaged mean field)

8: end for

Algorithm 2 Boltzmann / RelEnt iteration
1: Input: Temperature η > 0, prior policy q ∈ Π.
2: Initialize µ0 = Ψ(q) as the mean field induced by q.
3: for k = 0, 1, · · · do
4: Compute the Q-function (Boltzmann) or soft Q-function (RelEnt) Q(µk, t, s, a) for fixed µk.

5: Define πk by πkt (a | s) =
qt(a|s) exp

(
Q(µk,t,s,a)

η

)
∑
a′∈A qt(a

′|s) exp
(
Q(µk,t,s,a′)

η

) for all t ∈ T , s ∈ S, a ∈ A.

6: Optionally: Overwrite πk ← 1
k+1π

k + k
k+1π

k−1. (FP averaged policy)
7: Compute the mean field µk+1 = Ψ(πk) induced by πk.
8: Optionally: Overwrite µk+1 ← 1

k+1µ
k+1 + k

k+1µ
k. (FP averaged mean field)

9: end for

Algorithm 3 Boltzmann DQN iteration
1: Input: Temperature η > 0, prior policy q ∈ Π.
2: Input: Simulation parameters, DQN hyperparameters.
3: Initialize µ0 ≈ Ψ(q) as the mean field induced by q using Algorithm 5.
4: for k = 0, 1, · · · do
5: Approximate the Q-function Q∗(µk, t, s, a) using Algorithm 4 on the MDP induced by µk.

6: Define πk by πkt (a | s) =
qt(a|s) exp

(
Q∗(µk,t,s,a)

η

)
∑
a′∈A qt(a

′|s) exp
(
Q∗(µk,t,s,a′)

η

) for all t ∈ T , s ∈ S, a ∈ A.

7: Approximately simulate mean field µk+1 ≈ Ψ(πk) induced by πk using Algorithm 5.
8: end for
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Algorithm 4 DQN
1: Input : Number of epochsL , mini-batch size N , target update frequencyM , replay bu�er size D .
2: Input : Probability of random action � , Discount factor 
 , ADAM and gradient clipping parameters.
3: Initialize network Q� , target network Q� 0  Q� and replay bu�er D of sizeD .
4: for L epochsdo
5: for t = 1 ; : : : ; T do
6: One environment step
7: Let new action at  arg maxa2A Q� (t; s; a), or with probability � sample uniformly random instead.
8: Sample new statest +1 � p(� j st ; at ).
9: Add transition tuple (st ; at ; r (st ; at ); st +1 ) to replay bu�er D.

10: One mini-batch descent step
11: Sample from the replay bu�er: f (si

t ; ai
t ; r i

t ; si
t +1 )gi =1 ;:::;N � D .

12: Compute lossJQ =
P N

i =1

�
r i

t + 
 maxa02A Q(t + 1 ; si
t +1 ; a0) � Q(t; s i

t ; ai
t )

� 2
.

13: Update � according to r � JQ using ADAM with gradient norm clipping.
14: if number of stepsmodM = 0 then
15: Update target network � 0  � .
16: end if
17: end for
18: end for

Algorithm 5 Stochastic mean �eld simulation
1: Input : Number of mean �elds K , number of particles M , policy � .
2: for k = 1 ; : : : ; K do
3: Initialize particles x0

m � � 0 for all m = 1 ; : : : ; M .
4: for t 2 T do
5: De�ne empirical measureGk

t  
P M

m =1 � x t
m

.
6: for m = 1 ; : : : ; M do
7: Sample actiona � � t (� j x t

m ).
8: Sample new particle statex t +1

m � p(� j x t
m ; a;Gk

t ).
9: end for

10: end for
11: end for
12: return average empirical mean �eld( 1

K

P K
k=1 Gk

t )t 2T

A.2 Implementation details

For all the DQN experiments, we use the con�gurations given in Table 1 and hyperparameters given in Table 2.
Note that we add epsilon scheduling and a discount factor to DQN for stability reasons, i.e. the loss term
has an additional factor smaller than one before the maximum operation, cf. Mnih et al. (2013). For the
action-value network, we use a fully connected dueling architecture (Wang et al. (2016)) with one shared hidden
layer of 256 neurons, and one separate hidden layer of 256 neurons for value and advantage stream each. As the
activation function, we use ReLU. Further, we use gradient norm clipping and the ADAM optimizer. To allow for
time-dependent policies, we append the current time to the observations.

We transform all discrete-valued observations except time to corresponding one-hot vectors, except in the
intractably large Taxi environment where we simply observe one value inf 0; 1g for each tile's passenger status.
For evaluation of exploitability, we compare the values of the optimal policy and the evaluated policy in the MDP
induced by the mean �eld generated by the evaluated policy. In intractable cases, we use DQN to approximately
obtain the optimal policy. In this case, we obtain the values by averaging over many episodes in the MDP induced
by the mean �eld generated by the evaluated policy via Algorithm 5.

A.3 Problems

Summarizing properties of the considered problems are given in Table 3.



Algorithm 6 Prior descent
1: Input : Number of outer iterations I .
2: Input : Initial prior policy q 2 � .
3: for outer iteration i = 1 ; : : : ; I do
4: Find � heuristically or minimally such that Algorithm 2 with temperature � and prior q converges.
5: if no such� exists then
6: return q
7: end if
8: q  solution of Algorithm 2 with temperature � and prior q.
9: end for

Table 1: Boltzmann DQN Iteration Parameters

Parameter RPS SIS Taxi

Fixed point iteration count 1000 50 15
Number of particles for mean �eld 1000 1000 200
Number of mean �elds 5 5 5
Number of episodes for evaluation 2000 2000 500

LR. Similar to the example mentioned in the main text, we let a large number of agents choose simultaneously
between going left (L ) or right ( R). Afterwards, each agent shall be punished proportional to the number of
agents that chose the same action, but more-so for choosing right than left.

More formally, let S = f C; L; R g, A = S n fCg, � 0(C) = 1 , r (s; a; � t ) = � 1f L g(s) � � t (L ) � 2 � 1f R g(s) � � t (R)
and T = f 0; 1g. Note the di�erence to the toy example in the main text: right is punished more than left. The
transition function allows picking the next state directly, i.e. for all s; s0 2 S; a 2 A ,

P(St +1 = s0 j St = s; At = a) = 1f s0g(a) :

For this example, we haveK Q = 1 since the return Q of the initial state changes linearly with � 1 and lies between
0 and � 2, while the distance between two mean �elds is also bounded by2. Analogously, K 	 = 1 since(	( � ))1

similarly changes linearly with � 0, and both can change at most by2. Thus, we obtain guaranteed convergence
via Boltzmann iteration if � > 1. In numerical evaluations, we see convergence already for� � 0:7.

RPS. This game is inspired by Shapley (1964) and their generalized non-zero-sum version of Rock-Paper-Scissors,
for which classical �ctitious play would not converge. Each of the agents can choose between rock, paper and
scissors, and obtains a reward proportional to double the number of beaten agents minus the number of agents
beating the agent. We modify the proportionality factors such that a uniformly random prior policy does not
constitute a mean �eld equilibrium.

Let S = f 0; R; P; Sg, A = S n f0g, � 0(0) = 1 , T = f 0; 1g, and for any a 2 A ; � t 2 P (S),

r (R; a; � t ) = 2 � � t (S) � 1 � � t (P);

r (P; a; � t ) = 4 � � t (R) � 2 � � t (S);

r (S; a; � t ) = 6 � � t (P) � 3 � � t (R) :

The transition function allows picking the next state directly, i.e. for all s; s0 2 S; a 2 A ,

P(St +1 = s0 j St = s; At = a) = 1f s0g(a) :

SIS. In this problem, a large number of agents can choose between social distancing (D) or going out (U). If
a susceptible (S) agent chooses social distancing, they may not become infected (I). Otherwise, an agent may
become infected with a probability proportional to the number of agents being infected. If infected, an agent will
recover with a �xed chance every time step. Both social distancing and being infected have an associated cost.
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Table 2: DQN Hyperparameters

Hyperparameter Value

Replay bu�er size 10000
ADAM Learning rate 0:0005
Discount factor 0:99
Target update frequency 500
Gradient clipping norm 40
Mini-batch size 128
Epsilon schedule 1 linearly down to 0:02 at 0:8 times maximum steps
Total epochs 1000

Table 3: Problem Properties

Problem jT j jSj jAj

LR 2 3 2
RPS 2 4 3
SIS 50 2 2
Taxi 100 � 227 5

Let S = f S; I g, A = f U; Dg, � 0(I ) = 0 :6, r (s; a; � t ) = � 1f I g(s) � 0:5 � 1f D g(s) and T = f 0; : : : ; 50g. We �nd that
similar parameters produce similar results, and set the transition probability mass functions as

P(St +1 = S j St = I ) = 0 :3

P(St +1 = I j St = S; At = U) = 0 :92 � � t (I )

P(St +1 = I j St = S; At = D) = 0 :

Taxi. In this problem, we consider aK � L grid. The state is described by a tuple(x; y; x 0; y0; p; B) where (x; y)
is the agent's position, (x0; y0) indicates the current desired destination of the passenger or is(0; 0) otherwise, and
p 2 f 0; 1g indicates whether a passenger is in the taxi or not. Finally,B is a K � L matrix indicating whether a
new passenger is available for the taxi on the corresponding tile. All taxis start on the same tile and have no
passengers in the queue or on the map at the beginning. The problem runs for 100 time steps.

The taxi can choose between �ve actionsW; U; D; L; R , where W (Wait) allows the taxi to pick up / deliver
passengers, andU; D; L; R (Up, Down, Left, Right) allows it to move in all four directions. As there are many
taxis, there is a chance of a jam on tiles given by min(0:7; 10 � � t (s)) , i.e. the taxi will not move with this
probability. The taxi also cannot move into walls or back into the starting tile, in which case it will stay on its
current tile. With a probability of 0:8, a new passenger spawns on one randomly chosen free tile of each region.
On picking up a passenger, the destination is generated by randomly picking any free tile of the same region.
Delivering passengers to a destination and picking them up gives a reward of1 in region 1 and 1:2 in region 2.

For our experiments, we use the following small map, whereS denotes the starting tile, 1 denotes a free tile from
region 1, 2 denotes a free tile from region 2 andH denotes an impassable wall:

0

B
B
B
B
B
B
B
B
@

1 1 1
1 1 1
1 1 1
H S H
2 2 2
2 2 2
2 2 2

1

C
C
C
C
C
C
C
C
A

This produces a similar situation as in LR, where a fraction of taxis should choose each region so the values balance
out, while also requiring solution of a problem that is intractable to solve exactly via dynamic programming.



A.4 Further experiments

Figure 1: Mean exploitability (straight lines), maximum and minimum (dashed lines) over the �nal 10 iterations
of the last outer iteration. 50 outer iterations and 100 inner iterations each; (a, d) LR; (b, e) RPS; (c, f) SIS.
Maximum entropy (MaxEnt) results begin at higher temperatures due to limited �oating point accuracy. The
exploitability of the initial uniform prior policy is indicated by the dashed horizontal line.

Figure 2: Mean exploitability over the �nal 10 iterations. Dashed lines represent maximum and minimum over the
�nal 10 iterations. (a) LR, 10000 iterations; (b) RPS, 10000 iterations; (c) SIS, 1000 iterations. The exploitability
of the uniform prior policy is indicated by the dashed horizontal line.

In Figure 1, we observe that prior descent for both Boltzmann and RelEnt MFE with the same uniform prior
policy performs qualitatively similarly, and coincide in LR and SIS except for numerical inaccuracies. It can be
seen that using a temperature su�ciently low to converge in LR and RPS allows prior descent to descend to
the exact MFE iteratively. In SIS on the other hand, picking a �xed temperature that converges for the initial
uniform prior policy does not guarantee monotonic improvement of exploitability afterwards. Instead, by applying
the heuristic

� i +1 = � i � c

for each outer iteration i , where c � 1 adjusts the temperature after each outer iteration, we avoid scanning
over all temperatures in each step and reach convergence to a good approximate mean �eld equilibrium for both
Boltzmann and MaxEnt iteration.
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Figure 3: (a) Di�erence between current and �nal minimum exploitability over the last 10 iterations; (b) Distance
between current and �nal mean �eld, cut o� at 500 iterations for readability. Plotted for the � -RelEnt iterations
in SIS for the indicated temperature settings and uniform prior policy.

Figure 4: Di�erence between current and �nal estimated minimum exploitability over the last 5 iterations. (a) SIS,
50 iterations; (b) Taxi, 15 iterations. Plotted for the � -Boltzmann DQN iteration for the indicated temperature
settings and uniform prior policy.

In Figure 2 empirical results are shown for �ctitious play variants averaging only policy or mean �eld. In the
simple one-step toy problems LR and RPS, averaging the policies appears to converge to the exact solution
without regularization and to the regularized solution with regularization. Averaging the mean �elds on the other
hand fails, since this method can only produce deterministic policies. By applying any amount of regularization,
averaging the mean �elds is led to success in LR and SIS. Nonetheless, both methods fail to converge to the MFE
in SIS and produce worse results than obtained by prior descent in Figure 1.

In Figure 3 we depict the convergence of exploitability and mean �eld of MaxEnt iteration in SIS. The results are
qualitatively similar with Boltzmann iteration and, as in the main text, show the convergence behaviour near the
critical temperature leading to convergence.

In Figure 4 we depict the convergence of exploitability for Boltzmann DQN iteration in SIS and Taxi during one
of the runs. All 4 other runs show similar qualitative behaviour. As can be seen, the highest temperature of
0:2 shows less oscillatory behaviour, stabilizing Boltzmann DQN iteration. In Taxi, it can be seen that the used
temperatures are insu�cient to allow Boltzmann DQN iteration to converge. We believe that using prior descent
could allow for better results. We could not verify this due to the high computational cost, as this includes
repeatedly and sequentially solving an expensive reinforcement learning problem.

Finally, in Figure 5 we depict the resulting behavior in the SIS case. In the Boltzmann iteration result, at the
beginning the number of infected is high enough to make social distancing the optimal action to take. As the
number of infected falls, it reaches an equilibrium point where both social distancing or potentially getting
infected are of equal value. Finally, as the game ends at timet = T = 50, there is no point in social distancing
any more. Our approach yields intuitive results here, while exact �xed point iteration and FP fail to converge.



Figure 5: Fraction of infected agents and fraction of susceptible agents picking social distancing over time. (a, d):
Boltzmann iteration ( � = 0 :07); (b, e): exact �xed point iteration; (c, f): �ctitious play (averaging both policy
and mean �eld) results in SIS after 500 iterations. More iterations and averaging only policy or mean �eld show
same qualitative results.

B Proofs

B.1 Completeness of mean �eld and policy space

Lemma B.1.1. The metric spaces(� ; d� ) and (M ; dM ) are complete metric spaces.

Proof. The metric space(M ; dM ) is a complete metric space. Let(� n )n 2 N 2 M N be a Cauchy sequence of mean
�elds. Then by de�nition, for any " > 0 there exists integerN > 0 such that for any m; n > N we have

dM (� n ; � m ) < 0:5"

=) 8 t 2 T : dT V (� n
t ; � m

t ) =
1
2

X

s2S

j� n
t (s) � � m

t (s)j < 0:5"

=) 8 t 2 T ; s 2 S : j� n
t (s) � � m

t (s)j < " :

By completeness ofR there exists the limit of (� n
t (s))n 2 N for all t 2 T ; s 2 S, suggestively denoted by� t (s). The

mean �eld � = f � t gt 2T with the probabilities de�ned by the aforementioned limits ful�lls � n ! � and is in M ,
showing completeness ofM .

We do this analogously for(� ; d� ). Thus, (� ; d� ) and (M ; dM ) are complete metric spaces.

B.2 Lipschitz continuity

Lemma B.2.1. Assume bounded and Lipschitz functionsf : X ! R and g : X ! R mapping from a metric
space(X; d X ) into R with Lipschitz constants Cf ; Cg and boundsjf (x)j � M f , jg(x)j � M g. The sum of both
functions f + g, the product of both functionsf � g and the maximum of both functionsmax(f; g ) are all Lipschitz
and bounded with Lipschitz constantsCf + Cg, (M f Cg + M gCf ), max(Cf ; Cg) and boundsM f + M g, M f M g,
max(M f ; M g).

Proof. Let x; y 2 X be arbitrary. By the triangle inequality, we obtain

jf (x) + g(x) � (f (y) + g(y)) j � j f (x) � f (y)j + jg(x) � g(y)j � (Cf + Cg)dX (x; y) :

Analogously, we obtain

jf (x)g(x) � f (y)g(y)j � j f (x)g(x) � f (x)g(y)j + jf (x)g(y) � f (y)g(y)j � (M f Cg + M gCf )dX (x; y) :
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For the maximum of both functions, consider case by case. Iff (x) � g(x) and f (y) � g(y) we obtain

jmax(f (x); g(x)) � max(f (y); g(y)) j = jf (x) � f (y)j � Cf dX (x; y)

and analogously forg(x) � f (x) and g(y) � f (y)

jmax(f (x); g(x)) � max(f (y); g(y)) j = jg(x) � g(y)j � CgdX (x; y) :

On the other hand, if g(x) < f (x) and g(y) � f (y) , we have eitherg(y) � f (x) and thus

jmax(f (x); g(x)) � max(f (y); g(y)) j = jf (x) � g(y)j = g(y) � f (x) < g (y) � g(x) � CgdX (x; y)

or g(y) < f (x) and thus

jmax(f (x); g(x)) � max(f (y); g(y)) j = jf (x) � g(y)j = f (x) � g(y) � f (x) � f (y) � Cf dX (x; y) :

The case forf (x) < g (x) and f (y) � g(y) as well as boundedness is analogous.

B.3 Proof of Proposition 1

Proof. Since we work with �nite T ; S; A , we identify the space of mean �eldsM with the jT j(jSj � 1)-dimensional
simplex SjT j ( jSj� 1) � RjT j ( jSj� 1) via the values of the probability mass functions at all times and states. Analo-
gously the space of policies� is identi�ed with SjT jjSj ( jAj� 1) � RjT jjSj ( jAj� 1) .

De�ne the set-valued map �̂ : SjT jjSj ( jAj� 1) ! 2SjT jjSj ( jAj� 1) mapping from a policy � represented by the input
vector, to the set of vector representations of optimal policies in the MDP induced by	( � ).

A policy � is optimal in the MDP induced by � 2 M if and only if its value function de�ned by

V � (�; t; s ) =
X

a2A

� t (a j s)

 

r (s; a; � t ) +
X

s02S

p(s0 j s; a; � t )V � (�; t + 1 ; s0)

!

;

is equal to the optimal action-value function de�ned by

V � (�; t; s ) = max
a2A

 

r (s; a; � t ) +
X

s02S

p(s0 j s; a; � t )V � (�; t + 1 ; s0)

!

for every t 2 T ; s 2 S, with terminal conditions V � (�; T; s ) � V � (�; T; s ) � 0. Moreover, an optimal policy
always exists. For more details, see e.g. Puterman (2014). De�ne the optimal action-value function for every
t 2 T ; s 2 S; a 2 A via

Q� (�; t; s; a ) = r (s; a; � t ) +
X

s02S

p(s0 j s; a; � t )V � (�; t + 1 ; s0)

with terminal condition Q� (�; T; s; a ) � 0. Then, the following lemma characterizes optimality of policies.

Lemma B.3.1. A policy � ful�lls � 2 �̂( �̂ ) if and only if

� t (a j s) > 0 =) a 2 arg max
a02A

Q� (	(^ � ); t; s; a0)

for all t 2 T ; s 2 S; a 2 A .

Proof. To see the implication, consider� 2 �̂ (�̂ ). Then, if the right-hand side was false, there exists a maximal
t 2 T and s 2 S; a 2 A such that � t (a j s) > 0 but a 62arg maxa02A Q� (	( �̂ ); t; s; a0). Since for anyt0 > t we have
optimality, V � (�; t + 1 ; s0) = V � (�; t + 1 ; s0) by induction. However, V � (�; t; s ) < V � (�; t; s ) since the suboptimal
action is assigned positive probability, contradicting optimality of � . On the other hand, if the right-hand side is
true, then V � (�; t; s ) = V � (�; t; s ) by induction, which implies that � is optimal. �



We will now check that the requirements of Kakutani's �xed point theorem hold for �̂ . The �nite-dimensional
simplices are convex, closed and bounded, hence compact.�̂ maps to a non-empty set, as the induced mean �eld
is uniquely de�ned and any �nite MDP (induced by this mean �eld) has an optimal policy.

For any � , �̂ (� ) is convex, since the set of optimal policies is convex as shown in the following. Consider a convex
combination ~� = �� + (1 � � )� 0 of optimal policies �; � 0 for � 2 [0; 1]. Then, the resulting policy will be optimal,
since we have

~� t (a j s) > 0 =) � t (a j s) > 0 _ � 0
t (a j s) > 0 =) a 2 arg max

a2A
Q� (	(^ � ); t; s; a)

for any t 2 T ; s 2 S; a 2 A and thus optimality by Lemma B.3.1.

Finally, we show that �̂ has a closed graph. Consider arbitrary sequences(� n ; � 0
n ) ! (�; � 0) with � 0

n 2 �̂ (� n ). It is
then su�cient to show that � 0 2 �̂ (� ). By the standing assumption, we have continuity of 	 and � ! Q� (�; t; s; a )
for any t 2 T ; s 2 S; a 2 A , as sums, products and compositions of continuous functions remain continuous.
Therefore, the composition� ! Q� (	( � ); t; s; a) is continuous. To show that � 0 2 �̂ (� ), assume that � 062̂� (� ).
By Lemma B.3.1 there existst 2 T ; s 2 S; a 2 A such that � 0

t (a j s) > 0 and further there exists a0 2 A such that
Q� (	( � ); t; s; a0) > Q � (	( � ); t; s; a). Fix such an a0 2 A . Let � � Q� (	( � ); t; s; a0) � Q� (	( � ); t; s; a), then by
continuity there exists " > 0 such that for all �̂ 2 � we have

d� (�̂; � ) < " =) j Q� (	(^ � ); t; s; a) � Q� (	( � ); t; s; a)j <
�
2

:

By convergence, there is an integerN 2 N such that for all n > N we haved� (� n ; � ) < " and therefore

Q� (	( � n ); t; s; a0) > Q � (	( � ); t; s; a0) �
�
2

= Q� (	( � ); t; s; a) +
�
2

> Q � (	( � n ); t; s; a) :

Since(� 0
n )t (a j s) ! � 0

t (a j s) > 0, there also existsM 2 N such that for all m > M ,

j(� 0
m )t (a j s) � � 0

t (a j s)j < � 0
t (a j s) :

Let n > max(N; M ), then it follows that (� 0
n )t (a j s) > 0 but a 62arg maxa02A Q� (	( � ); t; s; a0) since we have

Q� (	( � n ); t; s; a0) > Q � (	( � n ); t; s; a), contradicting � 0
n 2 �̂ (� n ) by Lemma B.3.1. Hence,�̂ must have a closed

graph.

By Kakutani's �xed point theorem, there exists a �xed point � � that generates some mean �eld	( � � ). The
associated pair(� � ; 	( � � )) is an MFE by de�nition.

B.4 Proof of Proposition 3

Proof. The space of mean �elds(M ; dM ) is equivalent to convex and compact �nite-dimensional simplices. In
this representation, each coordinate of the operators~� � (� ) and � � (� ) consists of compositions, sums and products
of continuous functions, since the functionsr (s; a; � t ) and p(s0 j s; a; � t ) are assumed to be continuous. Existence
of a �xed point follows immediately by Brouwer's �xed point theorem.

B.5 Proof of Theorem 1

Proof. The proof is a slightly simpli�ed version of the one found in Saldi et al. (2018). Note that we require the
results later, so for convenience we give the full details.

The empirical measureGN
St

is a random variable onP(S), i.e. its law L(GN
St

) 2 P (P(S)) is a distribution over
probability measures. Since we want to show convergence of the empirical measure to the mean �eld, let us pick
a metric on P(P(S)) . Remember that we metrizedP(S) with the total variation distance. We metrize P(P(S))
with the 1-Wasserstein metric de�ned for any � ; 	 2 P (P(S)) by the in�mum over couplings

W1(� ; 	) � inf
L (X 1 )=� ;L (X 2 )=	

E [dT V (X 1; X 2)] :

Lemma B.5.1. Let f � n gn 2 N be a sequence of measures with� n 2 P (P(S)) for all n 2 N. Further, let � 2 P (S)
arbitrary. Then, the following are equivalent.



Approximately Solving Mean Field Games via Entropy-Regularized Deep Reinforcement Learning

(a) W1(� n ; � � ) ! 0 as n ! 1

(b) E [jF (X n ) � F (X )j] ! 0 as n ! 1 for any continuous, boundedF : P(S) ! R, any sequencef X n gn 2 N of
P(S)-valued random variables and anyP(S)-valued random variableX with L (X n ) = � n and L (X ) = � � .

(c) E [jX n (f ) � X (f )j] ! 0 as n ! 1 for any f : S ! R, any sequencef X n gn 2 N of P(S)-valued random
variables and anyP(S)-valued random variableX with L (X n ) = � n and L (X ) = � � .

Proof. De�ne the only possible coupling � n � � n � � � .

(b), (c) =) (a):

De�ne Fs(x) � x(s) and f s(s0) � 1f sg(s0) for all s 2 S, where Fs is continuous. By assumption,

W1(� n ; � � ) = inf
L (X n )=� n ;L (X )= � �

E [dT V (X n ; X )]

=
1
2

Z

P (S) �P (S)

X

s2S

jX n (s) � X (s)j d� n

=
1
2

X

s2S

E [jX n (s) � X (s)j] ! 0

since for anys 2 S, we have

E [jX n (s) � X (s)j] = E [jFs(X n ) � Fs(X )j] = E [jX n (f s) � X (f s)j] :

(a) =) (b), (c):

We have

E [jF (X n ) � F (X )j] =
Z

P (S) �P (S)
jF (� ) � F (� 0)j � n (d�; d� 0)

=
Z

P (S)
jF (� ) � F (� )j � n (d� )

!
Z

P (S)
jF (� ) � F (� )j � � (d� ) = 0

by continuity and boundedness ofjF (� ) � F (� )j, and convergence inW1 implying weak convergence. Analogously,

E [jX n (f ) � X (f )j] =
Z

P (S)
j� (f ) � � (f )j � n (d� ) !

Z

P (S)
j� (f ) � � (f )j � � (d� ) = 0

since f and thus j� (f ) � � (f )j is automatically bounded from �niteness of S, and � (f ) =
P

s2S � (s)f (s) !P
s2S � (s)f (s) as � ! � in total variation distance implies continuity of j� (f ) � � (f )j. �

First, it is shown that when all other agents follow the same policy� , then the empirical distribution is essentially
the deterministic mean �eld as N ! 1 , i.e. L (GN

St
) ! L (� t ) � � � t with � = 	( � )

Lemma B.5.2. Consider a set of policies(~�; �; : : : ; � ) 2 � N for all agents. Under this set of policies, the law of
the empirical distribution L (GN

St
) 2 P (M ) converges to� � t where � = 	( � ) as N ! 1 in 1-Wasserstein distance.

Proof. De�ne the Markov kernel P �
t;� such that its probability mass function ful�lls

P �
t;� (s0 j s) �

X

a2A

� t (a j s)p(s0 j s; a; � )

for any t 2 T ; s 2 S; � 2 P (S); � 2 � and analogously

~�P �
t;� (s0) �

X

s2S

~� (s)
X

a2A

� t (a j s)p(s0 j s; a; � )



for any ~� 2 P (S). Note that � t +1 = � t P �
t;� t

(g) for mean �elds � = 	( � ) induced by � .

We show that E
� ��GN

St
(f ) � � t (f )

�
� � ! 0 as N ! 1 for any function f : S ! R and any time t 2 T . From this,

the desired result follows by Lemma B.5.1. SinceGN
St

(�) � 1
N

P N
i =1 � S i

t
(�) and Si

0 � � 0 we have at time t = 0 that

lim
N !1

E
� ��GN

S0
(f ) � � 0(f )

�
� � = lim

N !1
E

" �
�
�
�
�

1
N

NX

i =1

f (Si
0) � E

�
f (Si

0)
�
�
�
�
�
�

#

= 0

by the strong law of large numbers and the dominated convergence theorem.

Assuming this holds for t, then for t + 1 we have

E
h�
�
�GN

St +1
(f ) � � t +1 (f )

�
�
�
i

� E
h�
�
�GN

St +1
(f ) � GN � 1

St +1
(f )

�
�
�
i

+ E
h�
�
�GN � 1

St +1
(f ) � GN � 1

St
P �

t; GN
S t

(f )
�
�
�
i

+ E
h�
�
�GN � 1

St
P �

t; GN
S t

(f ) � GN
St

P �
t; GN

S t
(f )

�
�
�
i

+ E
h�
�
�GN

St
P �

t; GN
S t

(f ) � � t P �
t;� t

(f )
�
�
�
i

where we de�nedGN � 1
St

(�) � 1
N � 1

P N
i =2 � S i

t
(�).

For the �rst term, we have as N ! 1

E
h�
�
�GN

St +1
(f ) � GN � 1

St +1
(f )

�
�
�
i

= E

" �
�
�
�
�

1
N

NX

i =1

f (Si
t +1 ) �

1
N � 1

NX

i =2

f (Si
t +1 )

�
�
�
�
�

#

�
1
N

E
� ��f (S1

t +1 )
�
� � +

�
�
�
�

1
N

�
1

N � 1

�
�
�
�

NX

i =2

E
� ��f (Si

t +1 )
�
� �

�
�

1
N

+
N � 1

N (N � 1)

�
max
s2S

jf (s)j ! 0 :

For the second term, asN ! 1 we have by Jensen's inequality and boundsjf j � M f (by �niteness of S)

E
� �
�
�
�G

N � 1
St +1

(f ) � GN � 1
St

P �
t; GN � 1

S t

(f )

�
�
�
�

� 2

= E
�
E

� �
�
�
�G

N � 1
St +1

(f ) � GN � 1
St

P �
t; GN � 1

S t

(f )

�
�
�
� j St

�� 2

= E

"

E

" �
�
�
�
�

1
N � 1

NX

i =2

�
f (Si

t +1 ) � E
�
f (Si

t +1 )
��

�
�
�
�
�

j St

##2

�
1

(N � 1)2

NX

i =2

E
h
E

h�
f (Si

t +1 ) � E
�
f (Si

t +1 )
�� 2

j St

ii

�
1

N � 1
� 4M 2

f ! 0 :

For the third term, we again have asN ! 1

E
h�
�
�GN � 1

St
P �

t; GN
S t

(f ) � GN
St

P �
t; GN

S t
(f )

�
�
�
i

= E

" �
�
�
�
�

X

s2S

�
GN � 1

St
(s) � GN

St
(s)

� X

a2A

� t (a j s)
X

s02S

p(s0 j s; a;GN
St

)f (s0)

�
�
�
�
�

#

� E

" �
�
�
�
�

�
1

N � 1
�

1
N

� NX

i =2

X

a2A

� t (a j Si
t )

X

s02S

p(s0 j Si
t ; a;GN

St
)f (s0)

�
�
�
�
�

#

+ E

" �
�
�
�
�

1
N

X

a2A

� t (a j S1
t )

X

s02S

p(s0 j S1
t ; a;GN

St
)f (s0)

�
�
�
�
�

#
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�
�

N � 1
N (N � 1)

+
1
N

�
max
s2S

jf (s)j ! 0 :

For the fourth term, de�ne F : P(S) ! R, F (� ) = �P �
t;� (f ) and observe thatF is continuous, since� ! � 0 if and

only if � (s) ! � 0(s) for all s 2 S, and therefore (asp is assumed continuous by Assumption 1)

F (� ) = �P �
t;� (f ) =

X

s2S

� (s)
X

a2A

� t (a j s)
X

s02S

p(s0 j s; a; � )f (s0)

is continuous for any s0 2 S. By Lemma B.5.1, we have from the induction hypothesisGN
St

! � t that

E
h�
�
�GN

St
P �

t; GN
S t

(f ) � � t P �
t;� t

(f )
�
�
�
i

! 0 :

Therefore, E
h�
�
�GN

St +1
(f ) � � t +1 (f )

�
�
�
i

! 0 which implies the desired result by induction. �

Consider the case where all agents follow a set of policies(� N ; �; : : : ; � ) 2 � N for each N 2 N. De�ne new
single-agent random variablesS�

t and A �
t with S�

0 � � 0 and

P(A �
t = a j S�

t = s) = � N
t (a j s);

P(S�
t +1 = s0 j S�

t = s; A�
t = a) = p(s0 j s; a; � t ) ;

where the deterministic mean �eld � is used instead of the empirical distribution.

Lemma B.5.3. Consider an equicontinuous, uniformly bounded family of functionsF on P(S) and de�ne

Ft (� ) � sup
f 2F

jf (� ) � f (� t )j

for any t 2 T . Then, Ft is continuous and bounded and by Lemma B.5.1 we have

lim
N !1

E

"

sup
f 2F

�
� f (GN

St
) � f (� )

�
�

#

= 0

Proof. Ft is continuous, since for� n ! �

jFt (� n ) � Ft (� )j =

�
�
�
�
�
sup
f 2F

jf (� ) � f (� t )j � sup
f 2F

jf (� 0) � f (� t )j

�
�
�
�
�

� sup
f 2F

jf (� ) � f (� 0)j ! 0

by equicontinuity. Further, Ft is bounded sincejFt (� )j � supf 2F jf (� )j + jf (� t )j is uniformly bounded. By
Lemma B.5.2, we haveW1(GN

St
; � � t ) ! 0 as N ! 1 , therefore Lemma B.5.1 applies. �

Lemma B.5.4. Suppose that at some timet 2 T , it holds that

lim
N !1

�
�L (S1

t )(gN ) � L (S�
t )(gN )

�
� = 0

for any sequence of functionsf gN gN 2 N from S to R that is uniformly bounded. Then, we have

lim
N !1

�
�L (S1

t ; GN
St

)(TN ) � L (S�
t ; � t )(TN )

�
� = 0

for any sequence of functionsf TN gN 2 N from S � P (S) to R that is equicontinuous and uniformly bounded.

Proof. We have
�
�L (S1

t ; GN
St

)(TN ) � L (S�
t ; � t )(TN )

�
� �

�
�L (S1

t ; GN
St

)(TN ) � L (S1
t ; � t )(TN )

�
� +

�
�L (S1

t ; � t )(TN ) � L (S�
t ; � t )(TN )

�
�



The �rst term becomes

�
�L (S1

t ; GN
St

)(TN ) � L (S1
t ; � t )(TN )

�
� =

�
�
�
�

Z
TN (x; � )L (S1

t ; GN
St

)(dx; d� ) �
Z

TN (x; � )L (S1
t ; � t )(dx; d� )

�
�
�
�

� E
�
E

� ��TN (x; GN
St

) � TN (x; � t )
�
� S1

t

��

� E

"

sup
f 2f TN ( � ;� )g� 2P ( S ) ;N 2 N

�
� f (GN

St
) � f (� t )

�
�

#

! 0

by Lemma B.5.3, sincef TN gN 2 N is equicontinuous and uniformly bounded. Similarly for the second term,

�
�L (S1

t ; � t )(TN ) � L (S�
t ; � t )(TN )

�
� =

�
�
�
�

Z
TN (x; � )L (S1

t ; � t )(dx; d� ) �
Z

TN (x; � )L (S�
t ; � t )(dx; d� )

�
�
�
�

� E
� ��TN (S1

t ; � t ) � TN (S�
t ; � t )

�
� � ! 0

by the assumption, sinceTN ful�lls the condition of being uniformly bounded. �

Lemma B.5.5. For any sequencef gN gN 2 N of functions from S to R that is uniformly bounded, we have

lim
N !1

�
�L (S1

t )(gN ) � L (S�
t )(gN )

�
� = 0

for all times t 2 T .

Proof. De�ne lN;t as

lN;t (s; � ) �
X

a2A

� N
t (a j s)

X

s02S

p(s0 j s; a; � )gN (s0) :

f lN;t (s; �)gs2S ;N 2 N is equicontinuous, since for any�; � 0 2 M with dT V (�; � 0) ! 0,

sup
s2S ;N 2 N

jlN;t (s; � ) � lN;t (s; � 0)j � M g sup
s2S ;N 2 N

�
�
�
�
�

X

a2A

� N
t (a j s)

X

s02S

(p(s0 j s; a; � ) � p(s0 j s; a; � 0))

�
�
�
�
�

� M g jSj max
s2S

max
a2A

max
s02S

jp(s0 j s; a; � ) � p(s0 j s; a; � 0)j ! 0

since jgN j < M g is uniformly bounded and p is continuous by assumption. Furthermore, lN;t (s; � ) is always
uniformly bounded by M g. Now the result can be shown by induction.

For t = 0 , L (S�
0 ) = L (S1

0 ) ful�lls the hypothesis. Assume this holds for t, then
�
�L (S1

t +1 )(gN ) � L (S�
t +1 )(gN )

�
� =

�
�L (S1

t ; GN
St

)( lN;t ) � L (S�
t ; � t )( lN;t )

�
� ! 0

as N ! 1 by Lemma B.5.4. �

Thus, for any sequence of policiesf � N gN 2 N with � N 2 � for all N 2 N, the achieved return of the N -agent game
converges to the return of the mean �eld game under the mean �eld generated by the other agent's policy� as
N ! 1 .

Lemma B.5.6. Let f � N gN 2 N with � N 2 � for all N 2 N be an arbitrary sequence of policies and� 2 �
an arbitrary policy. Further, let the mean �eld � = 	( � ) be generated by� . Then, under the joint policy
(� N ; �; : : : ; � ), we have asN ! 1 that

�
�J N

1 (� N ; �; : : : ; � ) � J � (� N )
�
� ! 0 :

Proof. De�ne for any t 2 T , N 2 N

r � N
t

(s; � ) �
X

a2A

r (s; a; � )� N
t (a j s)
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such that the family f r � N
t

(s; �)gs2S ;N 2 N is equicontinuous, since for any�; � 0 2 M as dM (�; � 0) ! 0,

max
s2S

max
N 2 N

�
�
�r � N

t
(s; � ) � r � N

t
(s; � 0)

�
�
� ! 0

by continuity of r . The function r � N
t

is uniformly bounded for all N 2 N by assumption of uniformly bounded r .
By Lemma B.5.4 and Lemma B.5.5,

lim
N !1

�
�E

�
r (S1

t ; A1
t ; GN

St
)
�

� E [r (S�
t ; A �

t ; � t )]
�
� j

= lim
N !1

�
�
�E

h
r � N

t
(S1

t ; GN
St

)
i

� E
h
r � N

t
(S�

t ; � t )
i �
�
� = 0 :

such that we have

lim
N !1

�
�J N

1 (� N ; �; : : : ; � ) � J � (� N )
�
� j �

X

t 2T

lim
N !1

�
�E

�
r (S1

t ; A1
t ; GN

St
)
�

� E [r (S�
t ; A �

t ; � t )]
�
� = 0 :

which is the desired result. �

From Lemma B.5.6, it follows that for any sequence of optimal exploiting policiesf � N gN 2 N with � N 2 � for all
N 2 N and

� N 2 arg max
� 2 �

J N
1 (�; � � ; : : : ; � � )

for all N 2 N, it holds that for any MFE (� � ; � � ) 2 � � M ,

lim
N !1

J N
1 (� N ; � � ; : : : ; � � ) � max

� 2 �
J � �

(� )

= J � �
(� � )

= lim
N !1

J N
1 (� � ; : : : ; � � )

and by instantiating for arbitrary � > 0, for su�ciently large N we obtain

J N
1 (� N ; � � ; : : : ; � � ) � � = max

� 2 �
J N

1 (�; � � ; : : : ; � � ) � �

� max
� 2 �

J � �
(� ) �

�
2

= J � �
(� � ) �

�
2

= J N
1 (� � ; � � ; : : : ; � � )

which is the desired approximate Nash property that applies to all agents by symmetry.

B.6 Proof of Theorem 2

Proof. If � or 	 is constant, or if the restriction 	 � � � of 	 to � � is constant, then � = 	 � � is constant.
Assume that this is not the case.

Then there exist distinct �; � 0 2 � � such that 	( � ) 6= 	( � 0). By de�nition of � � there also exist distinct
�; � 0 2 M such that �( � ) = � and �( � 0) = � 0. Note that for any �; � 0 2 M with �( � ) 6= �( � 0),

dM (�( � ); �( � 0)) � min
�;� 02 � � ;� 6= � 0

dM (	( � ); 	( � 0))

where the right-hand side is greater zero by �niteness of� � . This holds for �; � 0.

To show that � cannot be Lipschitz continuous, assume that� has a Lipschitz constantC > 0. We can �nd an
integer N such that

dM (� i ; � i +1 ) =
dM (�; � 0)

N � 1
<

min �;� 02 � � ;� 6= � 0 dM (	( � ); 	( � 0))
C



for all i 2 f 0; : : : ; N � 1g by de�ning

� i =
i

N
� +

N � i
N

� 0

for all i 2 f 0; : : : ; N g, and � i 2 M holds. By the triangle inequality

dM (�( � ); �( � 0)) � dM (�( � 0); �( � 1)) + : : : + dM (�( � N � 1); �( � N ))

there exists a pair (� i ; � i +1 ) with �( � i ) 6= �( � i +1 ). For this pair, we have

dM (�( � i ); �( � i +1 )) � dM (�( � ); �( � 0)) � min
�;� 02 � � ;� 6= � 0

dM (	( � ); 	( � 0)) :

On the other hand, since� is Lipschitz with constant C, we have

dM (�( � i ); �( � i +1 )) � C � dM (� i ; � i +1 ) < min
�;� 02 � � ;� 6= � 0

dM (	( � ); 	( � 0))

which is a contradiction. Thus, � cannot be Lipschitz continuous and by extension cannot be contractive.

B.7 Proof of Theorem 3

Proof. For all � > 0; � 2 M ; t 2 T ; s 2 S; a 2 A , the soft action-value function of the MDP induced by � 2 M is
given by

~Q� (�; t; s; a ) = r (s; a; � t ) +
X

s02S

p(s0 j s; a; � t )� log
X

a02A

qt +1 (a0 j s0) exp

 
~Q� (�; t + 1 ; s0; a0)

�

!

and terminal condition ~Q� (�; T � 1; s; a) � r (s; a; � T � 1). Analogously, the action-value function of the MDP
induced by � 2 M is given by

Q� (�; t; s; a ) = r (s; a; � t ) +
X

s02S

p(s0 j s; a; � t ) max
a02A

Q� (�; t + 1 ; s0; a0)

and the similarly de�ned policy action-value function for � 2 � is given by

Q� (�; t; s; a ) = r (s; a; � t ) +
X

s02S

p(s0 j s; a; � t )
X

a02A

� t +1 (a0 j s0)Q� (�; t + 1 ; s0; a0) ;

with terminal conditions Q� (�; T � 1; s; a) � Q� (�; T � 1; s; a) � r (s; a; � T � 1).

We will show that we can �nd a Lipschitz constant K ~Q �
of ~Q� that is independent of � if � is not arbitrarily

small. To show this, we will explicitly compute such a Lipschitz constant. Note �rst that ~Q� , Q� and Q� are all
uniformly bounded by M Q � jT j M r by assumption, whereM r is the uniform bound of r .

Lemma B.7.1. The functions ~Q� (�; t; s; a ), Q� (�; t; s; a ) and Q� (�; t; s; a ) are uniformly bounded for all � >
0; � 2 M ; t 2 T ; s 2 S; a 2 A by

�
�
� ~Q� (�; t; s; a )

�
�
� � (T � t)M r � TM r =: M Q

where M r is the uniform bound of jr (s; a; � t )j � M r , and T = jT j.

Proof. Make the induction hypothesis for all t 2 T that
�
�
� ~Q� (�; t; s; a )

�
�
� � (T � t)M r

for all � > 0; � 2 M ; s 2 S; a 2 A and note that this holds for t = T � 1, as by assumption
�
�
� ~Q� (�; T � 1; s; a)

�
�
� = jr (s; a; � t )j � M r :
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The induction step from t + 1 to t holds by

�
�
� ~Q� (�; t; s; a )

�
�
� =

�
�
�
�
�
r (s; a; � t ) +

X

s02S

p(s0 j s; a; � t )� log
X

a02A

qt +1 (a0 j s0) exp

 
~Q� (�; t + 1 ; s0; a0)

�

! �
�
�
�
�

� j r (s; a; � t )j + � max
s02S

�
�
�
�
�
log

X

a02A

qt +1 (a0 j s0) exp

 
~Q� (�; t + 1 ; s0; a0)

�

! �
�
�
�
�

� M r + �

�
�
�
� log

�
exp

�
(T � t � 1)M r

�

�� �
�
�
�

= M r + ( T � t � 1)M r = ( T � t)M r :

By maximizing over all t 2 T , we obtain the uniform bound. The other cases are analogous. �

Now we can �nd a Lipschitz constant of ~Q� (�; t; s; a ) that is independent of � .

Lemma B.7.2. Let Cr be a Lipschitz constant of� ! r (s; a; � t ) and Cp a Lipschitz constant of � ! p(s0 j s; a; � t ).
Further, let � min > 0. Then, for all � > � min ; t 2 T , the map � 7! ~Q� (�; t; s; a ) is Lipschitz for all s 2 S; a 2 A
with a Lipschitz constant K t

~Q �
independent of� . Therefore, by picking K ~Q �

� maxt 2T K t
~Q �

, we have one single
Lipschitz constant for all � > � min ; t 2 T ; s 2 S; a 2 A .

Proof. We show by induction that for all t 2 T ; s 2 S; a 2 A , we can �nd Lipschitz constants such that
~Q� (�; t; s; a ) is Lipschitz in � with a Lipschitz constant that does not depend on � .

To see this, note that this is true for t = T � 1 and any s 2 S; a 2 A , as for any �; � 0 we have
�
�
� ~Q� (�; T � 1; s; a) � ~Q� (� 0; T � 1; s; a)

�
�
� =

�
�r (s; a; � T � 1) � r (s; a; � 0

T � 1)
�
� � Cr dM (�; � 0) :

The induction step from t + 1 to t is
�
�
� ~Q� (�; t; s; a ) � ~Q� (�; t; s; a )

�
�
�

� j r (s; a; � t ) � r (s; a; � 0
t )j +

X

s02S

�
�
�
�
�
p(s0 j s; a; � t )� log

X

a02A

qt +1 (a0 j s0) exp

 
~Q� (�; t + 1 ; s0; a0)

�

!

� p(s0 j s; a; � 0
t )� log

X

a02A

qt +1 (a0 j s0) exp

 
~Q� (� 0; t + 1 ; s0; a0)

�

! �
�
�
�
�

� Cr dM (�; � 0) + � jSj max
s02S

1 �

�
�
�
�
�
log

X

a02A

qt +1 (a0 j s0) exp

 
~Q� (�; t + 1 ; s0; a0)

�

!

� log
X

a02A

qt +1 (a0 j s0) exp

 
~Q� (� 0; t + 1 ; s0; a0)

�

! �
�
�
�
�

+ � jSj max
s02S

M Q

�
� jp(s0 j s; a; � t ) � p(s0 j s; a; � 0

t )j

� Cr dM (�; � 0) + � jSj max
s02S

X

a02A

�
�
�
�
�
�

1
� qt +1 (a0 j s0) exp

�
� a 0

�

�

P
a002A qt +1 (a00j s0) exp

�
� a 00

�

�

�
�
�
�
�
�

�
�
� ~Q� (�; t + 1 ; s0; a0) � ~Q� (� 0; t + 1 ; s0; a0)

�
�
�

+ jSjM Q � CpdM (�; � 0)

� Cr dM (�; � 0) +
jAj qmax

jAj qmin
exp

�
2 �

M Q

�

�
K t +1

~Q �
dM (�; � 0) + jSjM Q CpdM (�; � 0)

<
�

Cr +
qmax

qmin
exp

�
2M Q

� min

�
K t +1

~Q �
+ jSjM Q Cp

�
dM (�; � 0)



where we use the mean value theorem to obtain some� a 2 [� M Q ; M Q ] for all a 2 A bounded by Lemma B.7.1,
Lemma B.2.1 for the second inequality, and de�nedqmax = maxt 2T ;s2S ;a2A qt (a j s), qmin = mint 2T ;s2S ;a2A qt (a j
s). Sinces 2 S; a 2 A were arbitrary, this holds for all s 2 S; a 2 A .

Thus, as long as� > � min , we have the Lipschitz constant K t
~Q �

�
�

Cr + qmax
qmin

exp
�

2M Q

� min

�
K t +1

~Q �
+ jSjM Q Cp

�

independent of � , since by induction assumptionK t +1
~Q �

is independent of� . �

The optimal action-value function and the policy action-value function for any �xed policy are Lipschitz in � .

Lemma B.7.3. The functions � 7! Q� (�; t; s; a ) and � 7! Q� (�; t; s; a ) for any �xed � 2 � ; t 2 T ; s 2 S; a 2 A
are Lipschitz continuous. Therefore, for any �xed � 2 � we can choose a Lipschitz constantK Q for all
t 2 T ; s 2 S; a 2 A by taking the maximum over all Lipschitz constants.

Proof. The action-value function is given by the recursion

Q� (�; t; s; a ) = r (s; a; � t ) +
X

s02S

p(s0 j s; a; � t ) max
a02A

Q� (�; t + 1 ; s0; a0)

with terminal condition Q� (�; T � 1; s; a) � r (s; a; � T � 1). The functions r (s; a; � t ) and p(s0 j s; a; � t ) are Lipschitz
continuous by Assumption 2. Note that for any �; � 0 2 M and any t 2 T , dT V (� t ; � 0

t ) � dM (�; � 0). Therefore,
the terminal condition and all terms in the above recursion are Lipschitz. Further, Q� (�; t; s; a ) is uniformly
bounded, sincer is assumed uniformly bounded.

Since a �nite maximum, product and sum of Lipschitz and bounded functions is again Lipschitz and bounded by
Lemma B.2.1, we obtain Lipschitz constantsK Q;t;s;a of the maps � ! Q� (�; t; s; a ) for any t 2 T ; s 2 S; a 2 A
and de�ne K Q � maxt 2T ;s2S ;a2A K Q;t;s;a . The case forQ� with �xed � 2 � is analogous. �

The same holds for	( � ) mapping from policy � to its induced mean �eld.

Lemma B.7.4. The function 	( � ) is Lipschitz with some Lipschitz constantK 	 .

Proof. Recall that 	( � ) maps to the mean �eld � starting with � 0 and obtained by the recursion

� t +1 (s0) =
X

s2S

X

a2A

p(s0 j s; a; � t )� t (a j s)� t (s) :

We proceed analogously to Lemma B.7.3.� is uniformly bounded by normalization. The constant function
� 7! � 0(s) is Lipschitz and bounded for any s 2 S. The functions r (s; a; � t ) and p(s0 j s; a; � t ) are Lipschitz
continuous by Assumption 2. Since a �nite sum, product and composition of Lipschitz and bounded functions is
again Lipschitz and bounded by Lemma B.2.1, we obtain Lipschitz constantsK 	 ;t;s of the maps � ! � t (s) for
any t 2 T ; s 2 S and de�ne K 	 � maxt 2T ;s2S K 	 ;t;s , which is the desired Lipschitz constant of	 . �

Finally, the map from an energy function to its associated Boltzmann distribution is Lipschitz for any � > 0 with
a Lipschitz constant explicitly depending on � .

Lemma B.7.5. Let � > 0 arbitrary and f a : M ! R be a Lipschitz continuous function with Lipschitz constant
K f for any a 2 A . Further, let g : A ! R be bounded bygmax > g (a) > gmin > 0 for any a 2 A . The function

� 7!
g(a) exp

�
f a ( � )

�

�

P
a02A g(a0) exp

�
f a 0( � )

�

�

is Lipschitz with Lipschitz constant K = ( jAj� 1)K f g2
max

2�g 2
min

for any a 2 A .

Proof. Let �; � 0 2 M be arbitrary and de�ne

� a f a0(� ) � f a0(� ) � f a(� )
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for any a0 2 A , which is Lipschitz with constant 2K f . Then, we have
�
�
�
�
�
�

g(a) exp
�

f a ( � )
�

�

P
a02A g(a0) exp

�
f a 0( � )

�

� �
g(a) exp

�
f a ( � 0)

�

�

P
a02A g(a0) exp

�
f a 0( � 0)

�

�

�
�
�
�
�
�

=

�
�
�
�
�
�

1

1 +
P

a06= a
g(a0)
g(a) exp

�
� a f a 0( � )

�

� �
1

1 +
P

a06= a
g(a0)
g(a) exp

�
� a f a 0( � 0)

�

�

�
�
�
�
�
�

�

�
�
�
�
�
�
�

X

a06= a

g(a0)
g(a) � 1

� exp
�

� a 0

�

�

�
1 +

P
a006= a

g(a00)
g(a) exp

�
� a 00

�

�� 2 � (� a f a0(� ) � � a f a0(� 0))

�
�
�
�
�
�
�

�
X

a06= a

�
�
�
�
�
�
�

gmax
gmin

� 1
� exp

�
� a 0

�

�

�
1 + gmin

gmax
exp

�
� a 0

�

�� 2

�
�
�
�
�
�
�
� j � a f a0(� ) � � a f a0(� 0)j

�
g2

max

4�g 2
min

�
X

a06= a

2K f dM (�; � 0) =
(jAj � 1)K f g2

max

2�g 2
min

� dM (�; � 0)

where we applied the mean value theorem to obtain some� a0 2 R for all a0 2 A and used the maximum 1
4c of the

function ~f (x) = exp( x=� )
(1+ c�exp( x=� )) 2 at x = 0 . �

For RelEnt MFE, by Lemma B.7.2 we obtain a Lipschitz constant K ~Q �
of � ! ~Q� (�; t; s; a ) as long as� > � min

for some� min > 0. Furthermore, note that for ~� �;� � ~� � (� ), we have

�
�
� ~� �;�

t (a j s) � ~� � 0;�
t (a j s))

�
�
� =

�
�
�
�
�
�

qt (a j s) exp
�

~Q � ( �;t;s;a )
�

�

P
a02A qt (a0 j s) exp

�
~Q � ( �;t;s;a 0)

�

� �
qt (a j s) exp

�
~Q � ( � 0;t;s;a )

�

�

P
a02A qt (a0 j s) exp

�
~Q � ( � 0;t;s;a 0)

�

�

�
�
�
�
�
�

:

We obtain the Lipschitz constant of ~� � by applying Lemma B.7.5 to each of the maps given by

� 7!
qt (a j s) exp

�
~Q � ( �;t;s;a )

�

�

P
a02A qt (a0 j s) exp

�
~Q � ( �;t;s;a 0)

�

�

for all t 2 T ; s 2 S; a 2 A , resulting in the Lipschitz property

d� ( ~� � (� ); ~� � (� 0)) = max
s2S

max
t 2T

X

a2A

�
�
� ~� �;�

t (a j s) � ~� � 0;�
t (a j s))

�
�
�

�
X

a2A

(jAj � 1)K ~Q �
q2

max

2�q 2
min

� dM (�; � 0) =
jAj (jAj � 1)K ~Q �

q2
max

2�q 2
min

� dM (�; � 0) ;

where we de�neqmax = max t 2T ;s2S ;a2A qt (a j s) and analogouslyqmin = min t 2T ;s2S ;a2A qt (a j s).

By Lemma B.7.4, 	( � ) is Lipschitz with some Lipschitz constant K 	 . Therefore, the resulting Lipschitz constant

of the composition ~� � = 	 � ~� � is
jAj ( jAj� 1)K ~Q �

K 	 q2
max

2�q 2
min

and leads to a contraction for any

� > max

 

� min ;
jAj (jAj � 1)K ~Q �

K 	 q2
max

2q2
min

!

:

Analogously for Boltzmann MFE, by Lemma B.7.3 the mapping � ! Q� (�; t; s; a ) is Lipschitz with some Lipschitz
constant K Q � for all t 2 T ; s 2 S; a 2 A . For � �;� � � � (� ), we have

�
�
� � �;�

t (a j s) � � � 0;�
t (a j s))

�
�
� =

�
�
�
�
�
�

qt (a j s) exp
�

Q � ( �;t;s;a )
�

�

P
a02A qt (a0 j s) exp

�
Q � ( �;t;s;a 0)

�

� �
qt (a j s) exp

�
Q � ( � 0;t;s;a )

�

�

P
a02A qt (a0 j s) exp

�
Q � ( � 0;t;s;a 0)

�

�

�
�
�
�
�
�

:



We obtain the Lipschitz constant of � � by applying Lemma B.7.5 to each of the maps given by

� 7!
qt (a j s) exp

�
Q � ( �;t;s;a )

�

�

P
a02A qt (a0 j s) exp

�
Q � ( �;t;s;a 0)

�

�

for all t 2 T ; s 2 S; a 2 A , resulting in the Lipschitz property

d� (� � (� ); � � (� 0)) = max
s2S

max
t 2T

X

a2A

�
�
� � �;�

t (a j s) � � � 0;�
t (a j s))

�
�
�

�
X

a2A

(jAj � 1)K Q � q2
max

2�q 2
min

� dM (�; � 0) =
jAj (jAj � 1)K Q � q2

max

2�q 2
min

� dM (�; � 0) :

By Lemma B.7.4, 	( � ) is Lipschitz with some Lipschitz constant K 	 . The resulting Lipschitz constant of the

composition � � = 	 � � � is jAj ( jAj� 1)K Q � K 	 q2
max

2�q 2
min

and leads to a contraction for any

� >
jAj (jAj � 1)K Q � K 	 q2

max

2q2
min

where for the uniform prior policy, qmax = qmin . If required, the Lipschitz constants can be computed recursively
according to Lemma B.2.1.

B.8 Proof of Theorem 4

Proof. Consider any sequence(� �
n ; � �

n )n 2 N of � n -Boltzmann or � n -RelEnt MFE with � n ! 0+ as n ! 1 . Note
that a pair (� �

n ; � �
n ) is completely speci�ed by � �

n , since � �
n = � � n (� �

n ) or � �
n = ~� � n (� �

n ) uniquely. Therefore,
it su�ces to show that the associated functions (� 7! Q� � n ( � ) (�; t; s; a ))n 2 N and (� 7! Q~� � n ( � ) (�; t; s; a ))n 2 N

converge uniformly to � 7! Q� (�; t; s; a ), from which the desired result will follow. For de�nitions of the di�erent
action-value functions, see Appendix B.7.

Note that pointwise convergence is insu�cient, since there is no guarantee that� �
n itself will converge asn ! 1 .

However, we can obtain uniform convergence by pointwise convergence and equicontinuity. For RelEnt MFE, we
will additionally require uniform convergence of the sequence(� 7! ~Q� n (�; t; s; a ))n 2 N with � n ! 0+ . We begin
with pointwise convergence of(� 7! Q� � n ( � ) (�; t; s; a ))n 2 N to the optimal action-value function � 7! Q� (�; t; s; a ).

Lemma B.8.1. Any sequence of functions(� 7! Q� � n ( � ) (�; t; s; a ))n 2 N with � n ! 0+ converges pointwise to
� 7! Q� (�; t; s; a ) for all t 2 T ; s 2 S; a 2 A .

Proof. Fix � 2 M . We make the induction hypothesis for arbitrary t 2 T that for all s 2 S; a 2 A ; " > 0, there
exists n0 2 N such that for any n > n 0 we have

�
�
�Q� � n ( � ) (�; t; s; a ) � Q� (�; t; s; a )

�
�
� < " :

The induction hypothesis is ful�lled for t = T � 1, as by de�nition
�
�
�Q� � n ( � ) (�; t; s; a ) � Q� (�; t; s; a )

�
�
� = jr (s; a; � t ) � r (s; a; � t )j = 0 :

Assume that the induction hypothesis is ful�lled for t + 1 , then at time t let s 2 S; a 2 A ; " > 0 arbitrary.
Furthermore, let s0 2 S arbitrary. Collect all optimal actions into a set A s0

opt � A , i.e. for a0 2 A s0

opt we have

Q� (�; t; s 0; aopt ) = max
a2A

Q� (�; t; s 0; a) :

We de�ne the minimal action gap

� Qs0;�
min � min

aopt 2A s 0
opt ;a sub 2AnA s 0

opt

(Q� (�; t; s 0; aopt ) � Q� (�; t; s 0; asub )) > 0
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such that for arbitrary suboptimal actions asub 2 A n A s0

opt and optimal actions aopt 2 A s0

opt ,

Q� (�; t; s 0; aopt ) � Q� (�; t; s 0; asub ) � � Qs0;�
min :

This is well de�ned if there are suboptimal actions, since there is always at least one optimal action. If all actions
are optimal, we can skip bounding the probability of taking suboptimal actions and the result will hold trivially.
Thus, we assume henceforth that there exists a suboptimal action.

It follows that the probability of taking suboptimal actions asub 2 A n A s0

opt disappears, since

(� � n (� )) t (asub j s0) =
qt (asub j s)

P
a02A qt (a0 j s) exp

�
Q � ( �;t;s;a 0) � Q � ( �;t;s;a sub )

�

�

�
1

1 +
P

a02A
qt (a0j s)

qt (asub j s) exp
�

Q � ( �;t;s;a 0) � Q � ( �;t;s;a sub )
�

�

�
1 j s)

1 + qt (aopt j s)
qt (asub j s) exp

�
Q � ( �;t;s;a opt ) � Q � ( �;t;s;a sub )

�

�

�
1 j s)

1 + qt (aopt j s)
qt (asub j s) exp

�
� Q s 0;�

min
�

� ! 0

as � ! 0+ for some arbitrary optimal action aopt 2 A s0

opt . Sinces0 2 S was arbitrary, this holds for all s0 2 S.
Therefore, by �niteness of S and A we can choosen1 2 N such that for all n > n 1 and for all asub 2 A n A s0

opt we
have � n su�ciently small such that

(� � n (� )) t (asub j s0) <
"

2jAj M Q

where M Q is the uniform bound of Q� � n ( � ) .

Further, by induction assumption, we can choosens0;a 0 for any s0 2 S; a0 2 A such that for all n > n s0;a 0 we have
�
�
�Q� � n ( � ) (�; t + 1 ; s0; a0) � Q� (�; t + 1 ; s0; a0)

�
�
� <

"
3

Therefore, as long asn > n 0 � max(n1; maxs02S ;a 02A ns0;a 0), we have
�
�
�Q� � n ( � ) (�; t; s; a ) � Q� (�; t; s; a )

�
�
�

=

�
�
�
�
�

X

s02S

p(s0 j s; a; � t )

 
X

a02A

(� � n (� )) t (a0 j s0)Q� � n ( � ) (�; t + 1 ; s0; a0) � max
a002A

Q� (�; t + 1 ; s0; a00)

! �
�
�
�
�

� max
s02S

�
�
�
�
�

X

a02A

(� � n (� )) t (a0 j s0)Q� � n ( � ) (�; t + 1 ; s0; a0) � max
a002A

Q� (�; t + 1 ; s0; a00)

�
�
�
�
�

� max
s02S

�
�
�
�
�
�
�

X

a02A s 0
opt

(� � n (� )) t (a0 j s0)Q� � n ( � ) (�; t + 1 ; s0; a0) � max
a002A

Q� (�; t + 1 ; s0; a00)

�
�
�
�
�
�
�

+ max
s02S

�
�
�
�
�
�
�

X

a02AnA s 0
opt

(� � n (� )) t (a0 j s0)Q� � n ( � ) (�; t + 1 ; s0; a0)

�
�
�
�
�
�
�

� max
s02S

�
�
�
�
�
�
�

X

a02A s 0
opt

(� � n (� )) t (a0 j s0)Q� � n ( � ) (�; t + 1 ; s0; a0) �
X

a02A s 0
opt

(� � n (� )) t (a0 j s0) max
a002A

Q� (�; t + 1 ; s0; a00)

�
�
�
�
�
�
�



+ max
s02S

�
�
�
�
�
�
�

X

a02A s 0
opt

(� � n (� )) t (a0 j s0) max
a002A

Q� (�; t + 1 ; s0; a00) � max
a002A

Q� (�; t + 1 ; s0; a00)

�
�
�
�
�
�
�

+ max
s02S

�
�
�
�
�
�
�

X

a02AnA s 0
opt

(� � n (� )) t (a0 j s0)Q� � n ( � ) (�; t + 1 ; s0; a0)

�
�
�
�
�
�
�

� max
s02S

max
a02A s 0

opt

�
�
�
�Q

� � n ( � ) (�; t + 1 ; s0; a0) � max
a002A

Q� (�; t + 1 ; s0; a00)

�
�
�
�

+ max
s02S

M Q

�
�
�
�
�
�
�
�

X

a02AnA s 0
opt

(� � n (� )) t (a0 j s0)

�
�
�
�
�
�
�
+ max

s02S
M Q

�
�
�
�
�
�
�

X

a02AnA s 0
opt

(� � n (� )) t (a0 j s0)

�
�
�
�
�
�
�

<
"
3

+
"

3jAj M Q
� jAj M Q +

"
3jAj M Q

� jAj M Q = " :

Sinces 2 S; a 2 A ; " > 0 were arbitrary, the desired result follows immediately by induction. �

As we have no control over� �
n and the sequence(� �

n ; � �
n )n 2 N may not even converge, pointwise convergence is

insu�cient. To obtain uniform convergence, we shall use compactness ofM and equicontinuity.

Lemma B.8.2. The family of functions F � f � 7! Q� � ( � ) (�; t; s; a )g�> 0;t 2T ;s2S ;a2A is equicontinuous, i.e. for
any " > 0 and any � 2 M , we can choose a� > 0 such that for all � 0 2 M with dM (�; � 0) < � and any f 2 F
we have

jf (� ) � f (� 0)j < " :

Proof. Fix an arbitrary � 2 M . We make the (backwards in time) induction hypothesis for all t 2 T that for any
s 2 S; a 2 A ; " t;s;a > 0, there exists � t;s;a > 0 such that for any � 0 2 M with dM (�; � 0) < � t;s;a and any f 2 F
we have

�
�
�Q� � ( � ) (�; t; s; a ) � Q� � ( � 0) (� 0; t; s; a)

�
�
� < " t;s;a :

The induction hypothesis is ful�lled for t = T � 1, as by assumption,� ! r (s; a; � t ) is Lipschitz with constant
Cr > 0. Therefore, for all s 2 S; a 2 A we can choose� T � 1;s;a = " t;s;a

C r
such that for any �; � 0 with dM (�; � 0) < � 0

we have
�
�
�Q� � ( � ) (�; t; s; a ) � Q� � ( � 0) (� 0; t; s; a)

�
�
� = jr (s; a; � t ) � r (s; a; � 0

t )j � Cr dM (�; � 0) < " t;s;a :

Assume that the induction hypothesis holds for t + 1 , then at time t let " t;s;a > 0; s 2 S; a 2 A arbitrary. By
de�nition, we have
�
�
�Q� � ( � ) (�; t; s; a ) � Q� � ( � 0) (� 0; t; s; a)

�
�
�

=

�
�
�
�
�
r (s; a; � t ) +

X

s02S

p(s0 j s; a; � t )
X

a02A

(� � (� )) t +1 (a0 j s0)Q� � ( � ) (�; t + 1 ; s0; a0)

� r (s; a; � 0
t ) �

X

s02S

p(s0 j s; a; � 0
t )

X

a02A

(� � (� 0)) t +1 (a0 j s0)Q� � ( � 0) (� 0; t + 1 ; s0; a0)

�
�
�
�
�

� j r (s; a; � t ) � r (s; a; � 0
t )j

+
X

s02S

�
�
�
�
�
(p(s0 j s; a; � t ) � p(s0 j s; a; � 0

t ))
X

a02A

(� � (� )) t +1 (a0 j s0)Q� � ( � ) (�; t + 1 ; s0; a0)

�
�
�
�
�

+
X

s02S

�
�
�
�
�
p(s0 j s; a; � 0

t )
X

a02A

�
(� � (� )) t +1 (a0 j s0)Q� � ( � ) (�; t + 1 ; s0; a0) � (� � (� 0)) t +1 (a0 j s0)Q� � ( � 0) (� 0; t + 1 ; s0; a0)

�
�
�
�
�
�
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� j r (s; a; � t ) � r (s; a; � 0
t )j

+
X

s02S

�
�
�
�
�
(p(s0 j s; a; � t ) � p(s0 j s; a; � 0

t ))
X

a02A

(� � (� )) t +1 (a0 j s0)Q� � ( � ) (�; t + 1 ; s0; a0)

�
�
�
�
�

+ max
s02S

�
�
�
�
�
�
�

X

a02A s 0
opt

�
(� � (� )) t +1 (a0 j s0)Q� � ( � ) (�; t + 1 ; s0; a0) � (� � (� 0)) t +1 (a0 j s0)Q� � ( � 0) (� 0; t + 1 ; s0; a0)

�
�
�
�
�
�
�
�

+ max
s02S

�
�
�
�
�
�
�

X

a02AnA s 0
opt

�
(� � (� )) t +1 (a0 j s0)Q� � ( � ) (�; t + 1 ; s0; a0) � (� � (� 0)) t +1 (a0 j s0)Q� � ( � 0) (� 0; t + 1 ; s0; a0)

�
�
�
�
�
�
�
�

where we de�neA s0

opt � A for any s0 2 S to include all optimal actions aopt 2 A s0

opt such that

Q� (�; t; s 0; aopt ) = max
a2A

Q� (�; t; s 0; a) :

We bound each of the four terms separately.

For the �rst term, we choose � 1
t;s;a = " t;s;a

4C r
by Lipschitz continuity such that

jr (s; a; � t ) � r (s; a; � 0
t )j <

" t;s;a

4

for all � 0 with dM (�; � 0) < � 1
t;s;a .

For the second term, we choose� 2
t;s;a = 1

4jSj M Q Cp
such that for any � 0 2 M with dM (�; � 0) < � 2

t;s;a we have

X

s02S

�
�
�
�
�
(p(s0 j s; a; � t ) � p(s0 j s; a; � 0

t ))
X

a02A

(� � (� )) t +1 (a0 j s0)Q� � ( � ) (�; t + 1 ; s0; a0)

�
�
�
�
�

� jSj CpdM (�; � 0)M Q <
" t;s;a

4

where M Q denotes the uniform bound ofQ and Cp is the Lipschitz constant of � 7! p(s0 j s; a; � t ).

For the third and fourth term, we �rst �x s0 2 S and de�ne the minimal action gap as

� Qs0;�
min � min

aopt 2A s 0
opt ;a sub 2AnA s 0

opt

(Q� (�; t; s 0; aopt ) � Q� (�; t; s 0; asub )) :

This is well de�ned if there are suboptimal actions, since there is always at least one optimal action. If all actions
are optimal, we can skip bounding the probability of taking suboptimal actions and the result will still hold.
Henceforth, we assume that there exists a suboptimal action.

By Lipschitz continuity of � 7! Q� (�; t; s; a ) from Lemma B.7.3 implying uniform continuity, there exists some
� 3;s0

t;s;a > 0 such that

jQ� (� 0; t; s0; a) � Q� (�; t; s 0; a)j <
� Qs0;�

min

4

for all � 0 2 M ; a 2 A where dM (�; � 0) < � 3;s0

t;s;a , and thus

� Qs0;� 0

min = min
aopt 2A s 0

opt ;a sub 2AnA s 0
opt

(Q� (� 0; t; s0; aopt ) � Q� (� 0; t; s0; asub )) >
� Qs0;�

min

2
:

Under this condition, we can now show that the probability of any suboptimal action can be controlled. De�ne
Rmin

q � mint 2T ;s2S ;a2A ;a 02A
qt (a0j s)
qt (ajs) > 0 and Rmax

q � maxt 2T ;s2S ;a2A ;a 02A
qt (a0j s)
qt (ajs) > 0. Let asub 2 A n A s0

opt , then
we either have

j(� � (� )) t +1 (asub j s0) � (� � (� 0)) t +1 (asub j s0)j



=

�
�
�
�
�
�

1

1 +
P

a06= asub

qt (a0j s0)
qt (asub j s0) exp

�
Q � ( �;t;s 0;a 0) � Q � ( �;t;s 0;a sub )

�

�

�
1

1 +
P

a06= asub

qt (a0j s0)
qt (asub j s0) exp

�
Q � ( � 0;t;s 0;a 0) � Q � ( � 0;t;s 0;a sub )

�

�

�
�
�
�
�
�

�
1

1 + maxa06= asub Rmin
q exp

�
Q � ( �;t;s 0;a 0) � Q � ( �;t;s 0;a sub )

�

�

+
1

1 + maxa06= asub Rmin
q exp

�
Q � ( � 0;t;s 0;a 0) � Q � ( � 0;t;s 0;a sub )

�

�

<
1

1 + Rmin
q exp

�
� Q s 0;�

min
�

� +
1

1 + Rmin
q exp

�
� Q s 0;�

min
2�

�

�
2

1 + Rmin
q exp

�
� Q s 0;�

min
2�

� <
" t;s;a

8M Q jAj

if " t;s;a > 16M Q jAj trivially, or otherwise if � < � s0

min with

� s0

min �
� Qs0;�

min

2 log
�

16M Q jAj
" t;s;a R min

q
� 1

R min
q

� ;

in which case we arbitrarily de�ne � 4;s0

t;s;a = 1 , or if neither apply, then � � � s0

min and thus

j(� � (� )) t +1 (asub j s0) � (� � (� 0)) t +1 (asub j s0)j

=

�
�
�
�
�
�

1

1 +
P

a06= asub

qt (a0j s0)
qt (asub j s0) exp

�
Q � ( �;t;s 0;a 0) � Q � ( �;t;s 0;a sub )

�

�

�
1

1 +
P

a06= asub

qt (a0j s0)
qt (asub j s0) exp

�
Q � ( � 0;t;s 0;a 0) � Q � ( � 0;t;s 0;a sub )

�

�

�
�
�
�
�
�

=

�
�
�
�
�
�

P
a06= asub

qt (a0j s)
qt (asub j s0)

�
exp

�
Q � ( � 0;t;s 0;a 0) � Q � ( � 0;t;s 0;a sub )

�

�
� exp

�
Q � ( �;t;s 0;a 0) � Q � ( �;t;s 0;a sub )

�

��

(1 + � � � ) � (1 + � � � )

�
�
�
�
�
�

� Rmax
q

X

a06= asub

�
�
�
�exp

�
Q� (� 0; t; s0; a0) � Q� (� 0; t; s0; asub )

�

�
� exp

�
Q� (�; t; s 0; a0) � Q� (�; t; s 0; asub )

�

� �
�
�
�

� Rmax
q

X

a06= asub

�
�
�
�
1
�

exp
�

� a0

�

� �
�
�
� j(Q� (� 0; t; s0; a0) � Q� (� 0; t; s0; asub )) � (Q� (�; t; s 0; a0) � Q� (�; t; s 0; asub )) j

� Rmax
q jAj �

1
� s0

min
exp

�
2M Q

� s0

min

�
(jQ� (� 0; t; s0; a0) � Q� (�; t; s 0; a0)j + jQ� (�; t; s 0; asub ) � Q� (� 0; t; s0; asub )j)

� Rmax
q jAj �

1
� s0

min
exp

�
2M Q

� s0

min

�
� 2K Q dM (�; � 0) <

" t;s;a

8M Q jAj

by the mean value theorem with some� a0 2 [� 2M Q ; 2M Q ] for all a0 2 A , where we abbreviated the denominator
(1 + � � � ) � (1 + � � � ) � 1, as long as we choose

� 4;s0

t;s;a =
" t;s;a � s0

min

8M Q jAj 2Rmax
q � exp

�
2M Q

� s 0
min

�
� 2K Q
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and dM (�; � 0) < � 4;s0

t;s;a , where K Q is the Lipschitz constant of � 7! Q� (�; t; s; a ) given by Lemma B.7.3.

Since s0 2 S was arbitrary, we now de�ne � 3
t;s;a � mins02S � 3;s0

t;s;a , � 4
t;s;a � mins02S � 4;s0

t;s;a and let dM (�; � 0) <
min(� 3

t;s;a ; � 4
t;s;a ). Under these assumptions, for the third term we have approximate optimality for all optimal

actions in A s0

opt , since by induction assumption we can choose� t +1 ;s0;a 0 for all s0 2 S; a0 2 A such that for all
� 0 2 M with dM (�; � 0) < � t +1 ;s0;a 0 it holds that

�
�
�Q� � ( � ) (�; t + 1 ; s0; a0) � Q� � ( � 0) (� 0; t + 1 ; s0; a0)

�
�
� <

" t;s;a

16jAj + 8
:

and therefore for all � 0 2 M , as long asdM (�; � 0) < mins02S ;a 02A � t +1 ;s0;a 0, we have

max
s02S

�
�
�
�
�
�
�

X

a02A s 0
opt

(� � (� )) t +1 (a0 j s0)Q� � ( � ) (�; t + 1 ; s0; a0) �
X

a02A s 0
opt

(� � (� 0)) t +1 (a0 j s0)Q� � ( � 0) (� 0; t + 1 ; s0; a0)

�
�
�
�
�
�
�

� max
s02S

�
�
�
�
�
�
�

X

a02A s 0
opt

(� � (� )) t +1 (a0 j s0)Q� � ( � ) (�; t + 1 ; s0; a0) �
X

a02A s 0
opt

(� � (� )) t +1 (a0 j s0)Q� � ( � 0) (� 0; t + 1 ; s0; a0)

�
�
�
�
�
�
�

+ max
s02S

�
�
�
�
�
�
�

X

a02A s 0
opt

(� � (� )) t +1 (a0 j s0)Q� � ( � 0) (� 0; t + 1 ; s0; a0) �
X

a02A s 0
opt

(� � (� 0)) t +1 (a0 j s0)Q� � ( � 0) (� 0; t + 1 ; s0; a0)

�
�
�
�
�
�
�

� max
s02S

max
a02A

�
�
�Q� � ( � ) (�; t + 1 ; s0; a0) � Q� � ( � 0) (� 0; t + 1 ; s0; a0)

�
�
�

+ max
s02S

�
�
�
�
�
�
�

X

a02A s 0
opt

((� � (� )) t +1 (a0 j s0) � (� � (� 0)) t +1 (a0 j s0))
�

Q� � ( � 0) (� 0; t + 1 ; s0; a0) � Q� � ( � ) (�; t + 1 ; s0; a0)
�

�
�
�
�
�
�
�

+ max
s02S

�
�
�
�
�
�
�

X

a02A s 0
opt

((� � (� )) t +1 (a0 j s0) � (� � (� 0)) t +1 (a0 j s0)) Q� � ( � ) (�; t + 1 ; s0; a0)

�
�
�
�
�
�
�

� max
s02S

max
a02A

�
�
�Q� � ( � ) (�; t + 1 ; s0; a0) � Q� � ( � 0) (� 0; t + 1 ; s0; a0)

�
�
�

+ max
s02S

max
a02A

2jAj
�
�
�Q� � ( � 0) (� 0; t + 1 ; s0; a0) � Q� � ( � ) (�; t + 1 ; s0; a0)

�
�
�

+ max
s02S

max
a002A

�
�
�Q� � ( � ) (�; t + 1 ; s0; a00)

�
�
� �

�
�
�
�
�
�
�

X

a02AnA s 0
opt

((� � (� 0)) t +1 (a0 j s0) � (� � (� )) t +1 (a0 j s0))

�
�
�
�
�
�
�

< (1 + 2 jAj ) �
" t;s;a

16jAj + 8
+ M Q jAj �

" t;s;a

8M Q jAj
<

" t;s;a

4

where we use that for anya0 2 A s0

opt we have

Q� � ( � ) (�; t + 1 ; s0; a0) = max
a002A

Q� � ( � ) (�; t + 1 ; s0; a00) :

Analogously, for the fourth term we have

max
s02S

�
�
�
�
�
�
�

X

a02AnA s 0
opt

((� � (� )) t +1 (a0 j s0)Q� � ( � ) (�; t + 1 ; s0; a0) � (� � (� 0)) t +1 (a0 j s0)Q� � ( � 0) (� 0; t + 1 ; s0; a0))

�
�
�
�
�
�
�

� max
s02S

X

a02AnA s 0
opt

�
�
�(� � (� )) t +1 (a0 j s0)Q� � ( � ) (�; t + 1 ; s0; a0) � (� � (� )) t +1 (a0 j s0)Q� � ( � 0) (� 0; t + 1 ; s0; a0)

�
�
�



+ max
s02S

X

a02AnA s 0
opt

�
�
�(� � (� )) t +1 (a0 j s0)Q� � ( � 0) (� 0; t + 1 ; s0; a0) � (� � (� 0)) t +1 (a0 j s0)Q� � ( � 0) (� 0; t + 1 ; s0; a0)

�
�
�

� max
s02S

max
a02A

�
�
�Q� � ( � ) (�; t + 1 ; s0; a0) � Q� � ( � 0) (� 0; t + 1 ; s0; a0)

�
�
�

+ max
s02S

M Q

X

a02AnA s 0
opt

j(� � (� )) t +1 (a0 j s0) � (� � (� 0)) t +1 (a0 j s0)j

<
" t;s;a

8
+ M Q jAj �

" t;s;a

8M Q jAj
=

" t;s;a

4

under the previous conditions, since as long as we havedM (�; � 0) < � t +1 ;s0;a 0 for all s0 2 S; a0 2 A from before,
we have

�
�
�Q� � ( � ) (�; t + 1 ; s0; a0) � Q� � ( � 0) (� 0; t + 1 ; s0; a0)

�
�
� <

" t;s;a

16jAj + 8
<

" t;s;a

8
:

Finally, by choosing � t;s;a such that all conditions are ful�lled, i.e.

� t;s;a � min
�

� 1
t;s;a ; � 2

t;s;a ; � 3
t;s;a ; � 4

t;s;a ; min
s02S ;a 02A

� t +1 ;s0;a 0

�
> 0;

the induction hypothesis is ful�lled, since then for any � 0 with dM (�; � 0) < � t;s;a we have
�
�
�Q� � ( � ) (�; t; s; a ) � Q� � ( � 0) (� 0; t; s; a)

�
�
� < " t;s;a :

Since� > 0 is arbitrary, the desired result follows immediately, as we can set" t;s;a = " for eacht 2 T ; s 2 S; a 2 A
and obtain � � maxt 2T ;s2S ;a2A � t;s;a , ful�lling the required equicontinuity property at � . �

From equicontinuity, we get the desired uniform convergence via compactness.

Lemma B.8.3. If (f n )n 2 N with f n : M ! R is an equicontinuous sequence of functions and for all� 2 M we
have f n (� ) ! f (� ) pointwise, then f n (� ) ! f (� ) uniformly.

Proof. Let " > 0 arbitrary, then there exists by equicontinuity for any point � 2 M a � (� ) such that for all
� 0 2 M with dM (�; � 0) < � (� ) we have for all n 2 N

jf n (� ) � f n (� 0)j <
"
3

which via pointwise convergence implies

jf (� ) � f (� 0)j �
"
3

:

Since M is compact, it is separable, i.e. there exists a countable dense subset(� j ) j 2 N of M . Let � (� ) be as
de�ned above and coverM by the open balls (B � ( � j ) (� j )) j 2 N. By the compactness ofM , �nitely many of these
balls B � ( � n 1 ) (� n 1 ); : : : ; B � ( � n k ) (� n k ) cover M . By pointwise convergence, for anyi = 1 ; : : : ; k we can �nd an
integer ni such that for all n > n i we have

jf n (� n i ) � f (� n i )j <
"
3

:

Taken together, we �nd that for n > maxi =1 ;:::;k ni and arbitrary � 2 M , we have

jf n (� ) � f (� )j < jf n (� ) � f n (� n i )j + jf n (� n i ) � f (� n i )j + jf (� n i ) � f (� )j <
"
3

+
"
3

+
"
3

< "

for some center point� n i of a ball containing � from the �nite cover. �

Therefore, a sequence of Boltzmann MFE with vanishing� is approximately optimal in the MFG.
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Lemma B.8.4. For any sequence(� �
n ; � �

n )n 2 N of � n -Boltzmann MFE with � n ! 0+ and for any " > 0 there
exists integerN 2 N such that for all integersn > N we have

J � �
n (� �

n ) � max
�

J � �
n (� ) � " :

Proof. By Lemma B.8.2, F � (� 7! Q� � ( � ) (�; t; s; a )) �> 0;t 2T ;s2S ;a2A is equicontinuous. Therefore, any sequence
(� 7! Q� � n ( � ) (�; t; s; a ))n 2 N with � n ! 0+ is also equicontinuous for anyt 2 T ; s 2 S; a 2 A .

Furthermore, by Lemma B.8.1, the sequence(� 7! Q� � n ( � ) (�; t; s; a ))n 2 N converges pointwise to� ! Q� (�; t; s; a )
for any t 2 T ; s 2 S; a 2 A .

By Lemma B.8.3, we thus have
�
�Q� � n ( � ) (�; t; s; a ) � Q� (�; t; s; a )

�
� ! 0 uniformly. Therefore, for any " > 0, there

exists an integerN by uniform convergence such that for all integersn > N we have

Q� �
n (� �

n ; t; s; a) � Q� (� �
n ; t; s; a) � " = max

� 2 �
Q� (� �

n ; t; s; a) � " ;

and since by Lemma B.3.1 we have

J � �
n (� �

n ) =
X

s2S

� 0(s) �
X

a2A

Q� �
n (� �

n ; t; s; a) �
X

s2S

� 0(s) � max
� 2 �

X

a2A

Q� (� �
n ; t; s; a) � " = max

� 2 �
J � �

n (� ) � " ;

the desired result follows immediately. �

Finally, we show approximate optimality in the actual N -agent game as long as a pair(� � ; � � ) 2 � � M
with � � = 	( � � ) has vanishing exploitability in the MFG. By Lemma B.8.4, for any sequence(� �

n ; � �
n )n 2 N of

� n -Boltzmann MFE with � n ! 0+ and for any " > 0 there exists an integern0 2 N such that for all integers
n > n 0 we have

J � �
n (� �

n ) � max
�

J � �
n (� ) � " :

Let "0 > 0 be arbitrary and choose a sequence of optimal policiesf � N gN 2 N such that for all N 2 N we have

� N 2 arg max
� 2 �

J N
1 (�; � �

n ; : : : ; � �
n ) :

By Lemma B.5.6 there existsN 0 2 N such that for all N > N 0 and all n > n 0, we have

max
� 2 �

J N
1 (�; � �

n ; : : : ; � �
n ) � " � "0 � max

� 2 �
J � �

n (� ) � " �
"0

2

� J � �
n (� �

n ) �
"0

2
� J N

1 (� �
n ; � �

n ; : : : ; � �
n )

which is the desired approximate Nash equilibrium property since"; " 0 are arbitrary. This applies by symmetry to
all agents.

For RelEnt MFE, the same can be done by �rst showing the uniform convergence of the soft action-value function
to the usual action-value function. For this, note that the smooth maximum Bellman recursion converges to the
hard maximum Bellman recursion for any �xed � .

Lemma B.8.5. For any f : A ! R and any g : A ! R with g(a) > 0 for all a 2 A , we have

lim
� ! 0+

� log
X

a2A

g(a) exp
f (a)

�
= max

a2A
f (a) :

Proof. Let � = 1
� ! + 1 . Then, by L'Hospital's rule we have

lim
� ! + 1

log
P

a2A g(a) exp (�f (a))
�

= lim
� ! + 1

P
a2A g(a) exp (�f (a)) f (a)
P

a2A g(a) exp (�f (a))



= lim
� ! + 1

P
a2A g(a) exp (� (f (a) � maxa2A f (a))) f (a)
P

a2A g(a) exp (� (f (a) � maxa2A f (a)))

=
jA max j maxa2A f (a)

jA max j
= max

a2A
f (a)

where jA max j is the number of elements inA that maximize f . �

Using this result, we can show pointwise convergence of the soft action-value function to the action-value function.

Lemma B.8.6. Any sequence of functions(� 7! ~Q� n (�; t; s; a ))n 2 N with � n ! 0+ converges pointwise to
� 7! Q� (�; t; s; a ) for all t 2 T ; s 2 S; a 2 A .

Proof. Fix � 2 M . We show by induction that for any " > 0, there exists � t > 0 such that for all � < � t we have�
�
� ~Q� (�; t; s; a ) � Q� (�; t; s; a )

�
�
� < " for all t 2 T ; s 2 S; a 2 A . This holds for t = T � 1 and arbitrary s 2 S; a 2 A

by Lemma B.8.5, sincer (s; a; � T � 1) is independent of� . Assume this holds fort + 1 and considert. Then, by the
induction assumption we can choose� t +1 > 0 such that for � < � t +1 , as � ! 0+ we have

~Q� (�; t; s; a ) = r (s; a; � t ) +
X

s02S

p(s0 j s; a; � t )� log
X

a02A

qt +1 (a0 j s0) exp

 
~Q� (�; t + 1 ; s0; a0)

�

!

� r (s; a; � t ) +
X

s02S

p(s0 j s; a; � t )� log
X

a02A

qt +1 (a0 j s0) exp
�

Q� (�; t + 1 ; s0; a0) + "
2

�

�

! r (s; a; � t ) +
X

s02S

p(s0 j s; a; � t ) max
a02A

Q� (�; t + 1 ; s0; a0) +
"
2

by Lemma B.8.5 and monotonicity of log and exp. Analogously,

~Q� (�; t; s; a ) � r (s; a; � t ) +
X

s02S

p(s0 j s; a; � t )� log
X

a02A

qt +1 (a0 j s0) exp
�

Q� (�; t + 1 ; s0; a0) � "
2

�

�

! r (s; a; � t ) +
X

s02S

p(s0 j s; a; � t ) max
a02A

Q� (�; t + 1 ; s0; a0) �
"
2

:

Therefore, we can choose� t < � t +1 such that for all � < � t we have

�
�
� ~Q� (�; t; s; a ) � Q� (�; t; s; a )

�
�
� =

�
�
�
�
�

~Q� (�; t; s; a ) �

 

r (s; a; � t ) +
X

s02S

p(s0 j s; a; � t ) max
a02A

Q� (�; t + 1 ; s0; a0)

! �
�
�
�
�

< "

which is the desired result. �

We can now show that the soft action-value function converges uniformly to the action-value function as� ! 0+ .

Lemma B.8.7. Any sequence of functions(� 7! ~Q� n (�; t; s; a ))n 2 N with � n ! 0+ converges uniformly to
� 7! Q� (�; t; s; a ) for all t 2 T ; s 2 S; a 2 A .

Proof. First, we show that ~Q� (�; t; s; a ) is monotonically decreasing in� for � > 0, i.e. @
@�

~Q� (�; t; s; a ) � 0 for all

t 2 T ; s 2 S; a 2 A . This is the case fort = T � 1 and arbitrary s 2 S; a 2 A , since ~Q� (�; T � 1; s; a) is constant.
Assume this holds fort + 1 , then for t and arbitrary s 2 S; a 2 A we have

@
@�

~Q� (�; t; s; a ) =
X

s02S

p(s0 j s; a; � t ) log
X

a02A

qt +1 (a0 j s0) exp

 
~Q� (�; t + 1 ; s0; a0)

�

!

+
X

s02S

p(s0 j s; a; � t )�

P
a02A qt +1 (a0 j s0) exp

�
~Q � ( �;t +1 ;s0;a 0)

�

� �
�

~Q � ( �;t +1 ;s0;a 0)
� 2 + 1

�
@

@�
~Q� (�; t + 1 ; s0; a0)

�

P
a02A qt +1 (a0 j s0) exp

�
~Q � ( �;t +1 ;s0;a 0)

�

�
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� max
s02S

0

@log
X

a02A

qt +1 (a0 j s0) exp

 
~Q� (�; t + 1 ; s0; a0)

�

!

�

P
a02A qt +1 (a0 j s0) exp

�
~Q � ( �;t +1 ;s0;a 0)

�

�
~Q � ( �;t +1 ;s0;a 0)

�
P

a02A qt +1 (a0 j s0) exp
�

~Q � ( �;t +1 ;s0;a 0)
�

�

1

A

by induction hypothesis. Let � a0 �
~Q � ( �;t +1 ;s0;a 0)

� 2 R and s0 2 S arbitrary, then by Jensen's inequality applied to
the convex function � (x) = x logx we have

X

a02A

qt +1 (a0 j s0)� (exp � a0) � �

 
X

a02A

qt +1 (a0 j s0) exp � a0

!

()
X

a02A

qt +1 (a0 j s0)� a0 exp� a0 �

 
X

a02A

qt +1 (a0 j s0) exp � a0

!

log

 
X

a02A

qt +1 (a0 j s0) exp � a0

!

() log

 
X

a02A

qt +1 (a0 j s0) exp � a0

!

�

P
a02A qt +1 (a0 j s0)� a0 exp� a0

� P
a02A qt +1 (a0 j s0) exp � a0

� � 0 ;

such that ~Q� (�; t; s; a ) is monotonically decreasing for allt 2 T ; s 2 S; a 2 A by induction.

Furthermore, M is compact and both ~Q� and Q are compositions, sums, products and �nite maxima of continuous
functions in � and therefore continuous in� by the standing assumptions. Since(� 7! ~Q� n (�; t; s; a ))n 2 N with
� n ! 0+ converges pointwise to� 7! Q� (�; t; s; a ) for all t 2 T ; s 2 S; a 2 A by Lemma B.8.6, by Dini's theorem
the convergence is uniform. �

Now that ~Q� converges uniformly againstQ, we can show that RelEnt MFE have vanishing exploitability by
replicating the proof for Boltzmann MFE.

Lemma B.8.8. Any sequence of functions(� 7! Q~� � n ( � ) (�; t; s; a ))n 2 N with � n ! 0+ converges pointwise to
� 7! Q� (�; t; s; a ) for all t 2 T ; s 2 S; a 2 A .

Proof. The proof is the same as in Lemma B.8.1. The only di�erence is that we additionally choosen2 2 N in
each induction step such that for all n > n 2 we have

�
�
� ~Q� (�; t; s; a ) � Q� (�; t; s; a )

�
�
� �

� Qs0;�
min

4

for all t 2 T ; s 2 S; a 2 A , which is possible, since by Lemma B.8.7,~Q� converges uniformly againstQ. As long
as we choosen0 � max(n1; n2; maxs02S ;a 02A ns0;a 0), the rest of the proof will apply. �

Lemma B.8.9. Any sequence of functions(� 7! Q~� � n ( � ) (�; t; s; a ))n 2 N with � n ! 0+ ful�lls equicontinuity for
large enoughn: For any " > 0 and any � 2 M , we can choose a� > 0 and an integer n0 2 N such that for all
� 0 2 M with dM (�; � 0) < � and for all n > n 0 we have

�
�
�Q

~� � n ( � ) (�; t; s; a ) � Q
~� � n ( � 0) (� 0; t; s; a)

�
�
� < " :

Proof. To obtain the desired property, we replicate the proof of Lemma B.8.2 by setting F = ( � 7!
Q~� � n ( � ) (�; t; s; a ))n 2 N. Any bounds for ~Q� can be instantiated by the corresponding bound forQ and then
bounding the distance between both by uniform convergence. The only di�erences lie in bounding the terms

�
�
�( ~� � n (� )(asub j s0) � ( ~� � n (� 0)(asub j s0)

�
�
�

where the action-value function has been replaced with the soft action-value function. Since~Q� n uniformly
converges toQ, we instantiate additional requirements N s0

t;s;a ; ~N s0

t;s;a to let n > N s0

t;s;a ; n > ~N s0

t;s;a large enough
such that � is su�ciently small enough.

The �rst di�erence is to obtain

�
�
� ~Q� n (� 0; t; s; a) � ~Q� n (�; t; s; a )

�
�
� <

� Qs0;�
min

4



for all µ′ ∈ M, t ∈ T , s ∈ S, a ∈ A with dM(µ, µ′) sufficiently small. We choose δ̂3
t,s,a slightly stronger than in

the original proof, such that if dM(µ, µ′) < δ̂3
t,s,a, we have

|Q∗(µ′, t, s, a)−Q∗(µ, t, s, a)| < ∆Qs
′,µ

min

12
.

We must then additionally choose Ns′

t,s,a ∈ N for each induction step via uniform convergence from Lemma B.8.7
such that as long as n > Ns′

t,s,a, we have

���Q̃ηn(µ, t, s, a)−Q∗(µ, t, s, a)
��� < ∆Qs

′,µ
min

12
.

This implies the required inequality���Q̃ηn(µ′, t, s, a)− Q̃ηn(µ, t, s, a)
��� ≤ ���Q̃ηn(µ′, t, s, a)−Q∗(µ′, t, s, a)

���+ |Q∗(µ′, t, s, a)−Q∗(µ, t, s, a)|

+
���Q∗(µ, t, s, a)− Q̃ηn(µ, t, s, a)

��� < ∆Qs
′,µ

min

4

and we can proceed as in the original proof.

The second difference lies in choosing δ4,s′

t,s,a. Note that Q̃ηn is still bounded by MQ, see Lemma B.7.1. However,
since Q̃ηn might no longer be Lipschitz with the same constant as Q∗, we choose an additional integer Ñs′

t,s,a ∈ N
for each induction step by Lemma B.8.7, such that as long as n > Ñs′

t,s,a, we have

���Q̃ηn(µ, t, s, a)−Q∗(µ, t, s, a)
��� ≤ ∆s′

Q ≡
εt,s,a

16MQ|A|

4Rmax
q |A| · 1

ηs
′

min

exp
�

2MQ

ηs
′

min

�
for any µ′ ∈M, t ∈ T , s ∈ S, a ∈ A. The required bound then follows immediately from

|(Φηn(µ)(asub | s′)− (Φηn(µ′)(asub | s′)|

≤ Rmax
q

X
a′ 6=asub

�����exp

 
Q̃ηn(µ′, t, s′, a′)− Q̃ηn(µ′, t, s′, asub)

η

!
− exp

 
Q̃ηn(µ, t, s′, a′)− Q̃ηn(µ, t, s′, asub)

η

!�����
≤ Rmax

q

X
a′ 6=asub

����1η exp

�
ξa′

η

����� ���(Q̃ηn(µ′, t, s′, a′)− Q̃ηn(µ′, t, s′, asub))− (Q̃ηn(µ, t, s′, a′)− Q̃ηn(µ, t, s′, asub))
���

≤ Rmax
q |A| · 1

ηs
′

min

exp

�
2MQ

ηs
′

min

�����Q̃ηn(µ′, t, s′, a′)− Q̃ηn(µ, t, s′, a′)
���+
���Q̃ηn(µ, t, s′, asub)− Q̃ηn(µ′, t, s′, asub)

����
≤ Rmax

q |A| · 1

ηs
′

min

exp

�
2MQ

ηs
′

min

�
·
�

2KQdM(µ, µ′) + 4∆s′

Q

�
≤ Rmax

q |A| · 1

ηs
′

min

exp

�
2MQ

ηs
′

min

�
· (2KQdM(µ, µ′)) +

εt,s,a
16MQ|A|

<
εt,s,a

8MQ|A|

as in the original proof by letting dM(µ, µ′) < δ4,s′

t,s,a and choosing

δ4,s′

t,s,a =
εt,s,aη

s′

min

16MQ|A|2Rmax
q · exp

�
2MQ

ηs
′

min

�
· 2KQ

.

The rest of the proof is analogous. We obtain the additional requirement n > Ns′

t,s,a, n > Ñs′

t,s,a for some integers
Ns′

t,s,a, Ñ
s′

t,s,a and each t ∈ T , s ∈ S, s′ ∈ S, a ∈ A. By choosing n′ ≡ maxt∈T ,s∈S,s′∈S,a∈Amax(Ns′

t,s,a, Ñ
s′

t,s,a), the
desired result holds as long as n > n′. �

From this property, we again obtain the desired uniform convergence via compactness ofM.
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