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Abstract

The recent mean field game (MFG) formalism
facilitates otherwise intractable computation
of approximate Nash equilibria in many-agent
settings. In this paper, we consider discrete-
time finite MFGs subject to finite-horizon
objectives. We show that all discrete-time
finite MFGs with non-constant fixed point
operators fail to be contractive as typically as-
sumed in existing MFG literature, barring
convergence via fixed point iteration. In-
stead, we incorporate entropy-regularization
and Boltzmann policies into the fixed point
iteration. As a result, we obtain provable con-
vergence to approximate fixed points where
existing methods fail, and reach the original
goal of approximate Nash equilibria. All pro-
posed methods are evaluated with respect to
their exploitability, on both instructive exam-
ples with tractable exact solutions and high-
dimensional problems where exact methods
become intractable. In high-dimensional sce-
narios, we apply established deep reinforce-
ment learning methods and empirically com-
bine fictitious play with our approximations.

1 Introduction

The framework of mean field games (MFG) was intro-
duced independently by the seminal works of Huang
et al. (2006) and Lasry and Lions (2007) in the fully
continuous setting of stochastic differential games. In
the meantime, it has sparked great interest and inves-
tigation both in the mathematical community, where
interests lie in the theoretical properties of MFGs, and
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in the applied research communities as a framework for
solving and analyzing large-scale multi-agent problems.

At its core lies the idea of reducing the classical, in-
tractable multi-agent solution concept of Nash equilib-
ria to the interaction between a representative agent
and the ‘mass’ of infinitely many other agents – the so-
called mean field. The solution to this limiting problem
is the so-called mean field equilibrium (MFE), charac-
terized by a forward evolution equation for the agent’s
state distributions, and a backward optimality equation
of representative agent optimality. Importantly, the
MFE constitutes an approximate Nash equilibrium in
the corresponding finite agent game of sufficiently many
agents (Huang et al. (2006)), which would otherwise
be intractable to compute (Daskalakis et al. (2009)).

Nonetheless, computing an MFE remains difficult in
the general case. Standard assumptions in existing lit-
erature are MFE uniqueness and operator contractivity
(Huang et al. (2006), Anahtarcı et al. (2020), Guo et al.
(2019)) to obtain convergence via simple fixed point
iteration. While these assumptions hold true for some
games, we address the case where such restrictive as-
sumptions fail. Applications for such mean field models
are manifold and include e.g. finance (Guéant et al.
(2011)), power control (Kizilkale and Malhame (2016)),
wireless communication (Aziz and Caines (2016)) or
public health models (Laguzet and Turinici (2015)).

A motivating example. Consider the following
trivial situation informally: Let a large number of
agents choose simultaneously between going left (L) or
right (R). Afterwards, each agent shall be punished
proportional to the number of agents that chose the
same action. If we had infinitely many independent,
identically acting agents, the only stable solution would
be to have all agents pick uniformly at random.

The MFG formalism models this problem by pick-
ing one representative agent and abstracting all other
agents into their state distribution. Unfortunately,
analytically obtaining fixed points in general proves
difficult and existing computational methods can fail.
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Our contribution. We begin by formulating the
mean field analogue to finite games in game theory. In
this setting we give simplified proofs for both existence
and the approximate Nash equilibrium property of
mean field equilibria. Moreover, we show that in finite
MFGs, all non-constant fixed point operators are non-
contractive, necessitating a different approach than
naive fixed point iteration as in Anahtarcı et al. (2020).

Consequently, we approximate the fixed point opera-
tor by introducing relative entropy regularization and
Boltzmann policies. We prove guaranteed convergence
for sufficiently high temperatures, while remaining arbi-
trarily exact for sufficiently low temperatures. Further-
more, repeatedly iterating on the prior policy allows
us to perform an iterative descent on exploitability,
successively improving the equilibrium approximation.

Finally, our methods are extensively evaluated and com-
pared to other methods such as fictitious play (FP, see
Perrin et al. (2020)), which in general fail to converge
to a fixed point. We outperform existing state-of-the-
art methods in terms of exploitability in our problems,
allowing us to find approximate mean field equilibria
in the general case and paving the way to practical ap-
plication of mean field games. In otherwise intractable
problems, we apply deep reinforcement learning tech-
niques together with particle-based simulations.

2 Finite mean field games

2.1 Finite agent games

Consider a discrete-time N -agent stochastic game
with finite agent state space S and finite agent ac-
tion space A, equipped with the discrete metric. Let
T = {0, 1, . . . , T−1} denote the time index set. Denote
by P(X ) the set of all Borel probability measures on
a metric space X . Since we work with finite spaces,
we abuse notation and denote both a measure ν and
its probability mass function by ν(·). For each agent,
the dynamical behavior is described by the state tran-
sition function p : S × S ×A× P(S)→ [0, 1] and the
initial state distribution µ0 : S → [0, 1]. For agents
i = 1, . . . , N at times t ∈ T , their states Sit and actions
Ait are random variables with values in S and A respec-
tively. Let GNs ≡ 1

N

∑N
i=1 δsi denote the empirical mea-

sure of agent states s = (s1, . . . , sN ) ∈ SN , where δ is
the Dirac measure. Consider for each agent i a Markov
policy πi = (πit)t∈T ∈ Π, where πit : A×S → [0, 1] and
Π is the space of all Markov policies. The state evolu-
tion of agent i begins with Si0 ∼ µ0 and subsequently
for all applicable times t follows

P(Ait = a | Sit = si) ≡ πit(a | si) ,
P(Sit+1 = s′i | St = s,Ait = a) ≡ p(s′i | si, a,GNs ) ,

for arbitrary si, s′i ∈ S, a ∈ A, s = (s1, . . . , sN ) ∈ SN
and St = (S1

t , . . . , S
N
t ). Finally, define agent i’s finite

horizon objective function

JNi (π1, . . . , πN ) ≡ E

[
T−1∑
t=0

r(Sit , A
i
t,GNSt)

]
to be maximized, where r : S × A × P(S) → R is
the agent reward function. With this, we can give the
notion of optimality used by Saldi et al. (2018).
Definition 1. A Markov-Nash equilibrium is a 0-
Markov-Nash equilibrium. For ε ≥ 0, an ε-Markov-
Nash equilibrium (approximate Markov-Nash equilib-
rium) is defined as a tuple of policies (π1, . . . , πN ) ∈
ΠN such that for any i = 1, . . . , N , we have

JNi (π1, . . . , πN ) ≥
max
π∈Π

JNi (π1, . . . , πi−1, π, πi+1, . . . , πN )− ε .

Since analyzing policies acting on joint state informa-
tion or the state history is difficult, optimality has been
restricted to the set of Markov policies Π acting on
the agent’s own state. Although this may seem like a
significant restriction, in the N → ∞ limit, the evo-
lution of all other agents – the mean field – becomes
deterministic and therefore non-informative.

2.2 Mean field games

The N → ∞ limit of the N -agent game constitutes
its corresponding finite mean field game (i.e. with a
finite state and action space). It consists of the same
elements T ,S,A, p, r, µ0. However, instead of modeling
N separate agents, it models a single representative
agent and collapses all other agents into their common
state distribution, i.e. the mean field µ = (µt)t∈T ∈M
with µt : S → [0, 1], whereM is the space of all mean
fields and µ0 is given. The deterministic mean field
µ replaces the empirical measure of the finite game.
Consider a Markov policy π ∈ Π as before. For some
fixed mean field µ, the evolution of random states St
and actions At begins with S0 ∼ µ0 and subsequently
for all applicable times t follows

P(At = a | St = s) ≡ πt(a | s),
P(St+1 = s′ | St = s,At = a) ≡ p(s′ | s, a, µt) ,

and the objective analogously becomes

Jµ(π) ≡ E

[
T−1∑
t=0

r(St, At, µt)

]
.

The mean field µ induced by some fixed policy π begins
with the given µ0 and is defined recursively by

µt+1(s′) ≡
∑
s∈S

µt(s)
∑
a∈A

πt(a | s)p(s′ | s, a, µt) .
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By fixing a mean field µ ∈ M, we obtain an induced
Markov Decision Process (MDP) with time-dependent
transition function p(s′ | s, a, µt) and reward function
r(s, a, µt). Denote the set-valued map from mean field
to optimal policies π of the induced MDP as Φ̂ :M→
2Π (i.e. such that π is optimal at any time and state).
Analogously, define the map from a policy to its induced
mean field as Ψ : Π→M. Finally, we can define the
N →∞ analogue to Markov-Nash equilibria.
Definition 2. A mean field equilibrium (MFE) is a
pair (π, µ) ∈ Π×M such that π ∈ Φ̂(µ) and µ = Ψ(π)
holds.

By defining any single-valued map Φ :M→ Π to an
optimal policy, we obtain a composition Γ = Ψ ◦ Φ :
M→M, henceforth MFE operator. Shown by Saldi
et al. (2018) for general Polish S and A, the MFE
exists and constitutes an approximate Markov-Nash
equilibrium for sufficiently many agents under techni-
cal conditions. In the Appendix, we give simplified
proofs for finite MFGs under the following standard
assumption.
Assumption 1. The functions r(s, a, µt) and p(s′ |
s, a, µt) are continuous, therefore bounded.

Note that we metrize probability measure spaces P(X )
with the total variation distance dTV . For probability
measures ν, ν′ on finite spaces X , dTV simplifies to

dTV (ν, ν′) =
1

2

∑
x∈X
|ν(x)− ν′(x)| .

Accordingly, we equip Π,M with sup metrics, i.e. for
policies π, π′ ∈ Π and mean fields µ, µ′ ∈M we define
the metric spaces (Π, dΠ) and (M, dM) with

dΠ(π, π′) ≡ max
t∈T

max
s∈S

dTV (πt(· | s), π′t(· | s)) ,

dM(µ, µ′) ≡ max
t∈T

dTV (µt, µ
′
t) .

Proposition 1. Under Assumption 1, there exists at
least one MFE (π∗, µ∗) ∈ Π×M.

Proof. See Appendix.

Theorem 1. Under Assumption 1, if (π∗, µ∗) is an
MFE, then for any ε > 0 there exists N ′ ∈ N such that
for all N > N ′, the policy (π∗, . . . , π∗) is an ε-Markov-
Nash equilibrium in the N -agent game.

Proof. See Appendix.

Importantly, finding Nash equilibria in large-N games is
hard (Daskalakis et al. (2009)), whereas an MFE can be
significantly more tractable to compute. Accordingly,
solving the limiting MFG approximately solves the
finite-N game for large N in a tractable manner.

3 Exact fixed point iteration

Repeated application of the MFE operator constitutes
the exact fixed point iteration approach to finding
MFE. The standard assumption for convergence in the
literature is contractivity and thereby MFE uniqueness
(e.g. Caines and Huang (2019); Guo et al. (2019)).
Proposition 2. Let Φ,Ψ be Lipschitz with constants
c1, c2, fulfilling c1c2 < 1. Then, the fixed point iteration
µn+1 = Ψ(Φ(µn)) converges to the mean field of the
unique MFE for any initial µ0 ∈M.

Proof. Let µ, µ′ ∈M arbitrary, then

dM(Γ(µ),Γ(µ′)) = dM(Ψ(Φ(µ)),Ψ(Φ(µ′)))

≤ c2 · dΠ(Φ(µ),Φ(µ′))

≤ c2 · c1 · dM(µ, µ′) .

Since µ, µ′ are arbitrary, Γ is Lipschitz with constant
c1 · c2 < 1. (Π, dΠ) and (M, dM) are complete metric
spaces (see Appendix). Therefore, Banach’s fixed point
theorem implies convergence to the unique fixed point
for any starting µ0 ∈M.

Unfortunately, it remains unclear how to proceed if
multiple optimal policies of an induced MDP exist, or
if contractivity fails, e.g. when multiple MFE exist. In
the following, consider again the illuminating example
from the introduction.

3.1 Toy example

Consider S = {C,L,R}, A = S \ {C}, µ0(C) = 1,
r(s, a, µt) = −1{L}(s) · µt(L) − 1{R}(s) · µt(R) and
T = {0, 1}. The transition function allows picking the
next state directly, i.e. for all s, s′ ∈ S, a ∈ A,

P(St+1 = s′ | St = s,At = a) = 1{s′}(a) .

Clearly, any MFE (π∗, µ∗) must fulfill π∗0(L | C) =
π∗0(R | C) = 1/2, while π∗1 can be arbitrary. Even if
the operator Φ chooses suitable optimal policies, the
fixed point operator Γ remains non-contractive, as the
mean field will necessarily alternate between left and
right for any non-uniform starting µ0 ∈M.

We observe that the example has infinitely many MFE,
but no deterministic MFE, i.e. an MFE such that
for all t ∈ T , s ∈ S, a ∈ A either πt(a | s) = 0 or
πt(a | s) = 1 holds, similar to the classical game-
theoretical insight of mixed Nash equilibrium existence
(cf. Fudenberg and Tirole (1991)). Therefore, choosing
optimal, deterministic policies will typically fail.

Most existing work assumes contractivity, which is too
restrictive. In many scenarios, agents need to "coordi-
nate" with each other. For example, a herd of hunting
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animals may collectively choose one of multiple hunting
grounds, allowing for multiple MFEs. Hence, it can be
difficult to apply existing MFG methodologies in prac-
tice, as many problems automatically fail contractivity.

3.2 General non-contractivity

From the previous example, we may be led to believe
that non-contractivity is a general property of finite
MFGs. And indeed, regardless of number of MFEs, it
turns out that in any finite MFG with non-constant
MFE operator, a policy selection operator Φ with finite
image ΠΦ will lead to non-contractivity. Note that
this includes both the conventional arg max and the
arg max-e (cf. Guo et al. (2019)) choice of actions.
Theorem 2. Let the image of Φ be a finite set ΠΦ ⊆ Π.
Then, either it holds that Γ = Ψ ◦Φ is a constant, or Γ
is not Lipschitz continuous and thus not a contraction.

Proof. See Appendix.

Therefore, typical discrete-time finite MFGs have non-
contractive fixed point operators and we must change
our approach. Note that although non-contractivity
does not imply non-convergence, the trivial example
from before strongly suggests that non-convergence is
the case for many finite MFGs.

4 Approximate mean field equilibria

Exact fixed point iteration fails to solve most finite
MFGs. Therefore, a different solution approach is
necessary. In the following, we present two related
approaches that guarantee convergence while plausibly
remaining approximate Nash equilibria in the finite-N
case. For our results, we require a stronger Lipschitz
assumption that implies Assumption 1.
Assumption 2. The functions r(s, a, µt) and p(s′ |
s, a, µt) are Lipschitz continuous, therefore bounded.

4.1 Relative entropy mean field games

A straightforward idea is regularization by replacing
the objective by the well-known (see e.g. Abdolmaleki
et al. (2018)) relative entropy objective

J̃µ(π) ≡ E

[
T−1∑
t=0

r(St, At, µt)− η log
πt(At | St)
qt(At | St)

]
with temperature η > 0 and positive prior policy q ∈ Π,
i.e. qt(a | s) > 0 for all t ∈ T , s ∈ S, a ∈ A. Shown in
the Appendix, the unique optimal policy π̃µ,ηt fulfills

π̃µ,ηt (a | s) =
qt(a | s) exp

(
Q̃η(µ,t,s,a)

η

)
∑
a′∈A qt(a

′ | s) exp
(
Q̃η(µ,t,s,a′)

η

)

for the MDP induced by fixed µ ∈ M, with the soft
action-value function Q̃η(µ, t, s, a) given by the smooth-
maximum Bellman recursion

Q̃η(µ, t, s, a) = r(s, a, µt) +
∑
s′∈S

p(s′ | s, a, µt)

· η log

(∑
a′∈A

qt+1(a′ | s′) exp
Q̃η(µ, t+ 1, s′, a′)

η

)

of the MDP induced by fixed µ ∈ M, with terminal
condition Q̃η(µ, T − 1, s, a) ≡ r(s, a, µT−1). Note that
we recover optimality as η → 0, see Theorem 4. Define
the relative entropy MFE operator Γ̃η ≡ Ψ ◦ Φ̃η with
policy selection Φ̃η(µ) ≡ π̃µ,η for all µ ∈M.
Definition 3. An η-relative entropy mean field equi-
librium (η-RelEnt MFE) for some positive prior pol-
icy q ∈ Π is a pair (πE , µE) ∈ Π × M such that
πE = Φ̃η(µE) and µE = Ψ(πE) hold. An η-maximum
entropy mean field equilibrium (η-MaxEnt MFE) is an
η-RelEnt MFE with uniform prior policy q.

RelEnt MFE are guaranteed to exist for any η > 0 by
Proposition 3. Furthermore, convergence to the regu-
larized solution is guaranteed for large η by Theorem 3.

4.2 Boltzmann iteration

Since only deterministic policies fail, a derivative ap-
proach is to use softmax policies directly with the
unregularized action-value function, also called Boltz-
mann policies. Assume that the action-value function
Q∗ fulfilling the Bellman equation

Q∗(µ, t, s, a) = r(s, a, µt) +
∑
s′∈S

p(s′ | s, a, µt)

·max
a′∈A

Q∗(µ, t+ 1, s′, a′) .

of the MDP induced by fixed µ ∈ M with terminal
condition Q∗(µ, T − 1, s, a) ≡ r(s, a, µT−1) is known.
Define the map Φη(µ) ≡ πµ,η for any µ ∈M, where

πµ,ηt (a | s) ≡
qt(a | s) exp

(
Q∗(µ,t,s,a)

η

)
∑
a′∈A qt(a

′ | s) exp
(
Q∗(µ,t,s,a′)

η

)
for all t ∈ T , s ∈ S, a ∈ A and temperature η > 0.
Definition 4. An η-Boltzmann mean field equilibrium
(η-Boltzmann MFE) for some positive prior policy q ∈
Π is a pair (πB , µB) ∈ Π×M such that πB = Φη(µB)
and µB = Ψ(πB) hold.

4.3 Theoretical properties

Both η-RelEnt MFE and η-Boltzmann MFE are guar-
anteed to exist for any temperature η > 0.
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Proposition 3. Under Assumption 1, η-Boltzmann
and η-RelEnt MFE exist for any temperature η > 0.

Proof. See Appendix.

Contractivity of both η-Boltzmann MFE operator Γη ≡
Ψ ◦ Φη and η-RelEnt MFE operator Γ̃η ≡ Ψ ◦ Φ̃η is
guaranteed for sufficiently high temperatures, even if
all possible original Φ are not Lipschitz continuous.

Theorem 3. Under Assumption 2, µ 7→ Q∗(µ, t, s, a),
µ 7→ Q̃η(µ, t, s, a) and Ψ(π) are Lipschitz continuous
with constants KQ∗ , KQ̃ and KΨ for arbitrary t ∈
T , s ∈ S, a ∈ A, η > η′, η′ > 0. Furthermore, Γη and
Γ̃η are a contraction for

η > max

(
η′,
|A| (|A| − 1)KQKΨq

2
max

2q2
min

)
where KQ = KQ∗ for Γη, KQ = KQ̃ for Γ̃η,
qmax ≡ maxt∈T ,s∈S,a∈A qt(a | s) > 0 and qmin ≡
mint∈T ,s∈S,a∈A qt(a | s) > 0.

Proof. See Appendix.

Sufficiently large η hence implies convergence via fixed
point iteration. On the other hand, for sufficiently
low temperatures η, both η-Boltzmann and η-RelEnt
MFE will also constitute an approximate Markov-Nash
equilibrium of the finite-N game.

Theorem 4. Under Assumption 2, if (π∗n, µ
∗
n)n∈N is

a sequence of ηn-Boltzmann or ηn-RelEnt MFE with
ηn → 0, then for any ε > 0 there exist n′, N ′ ∈ N such
that for all n > n′, N > N ′, the policy (π∗n, . . . , π

∗
n) ∈

ΠN is an ε-Markov-Nash equilibrium of the N-agent
game, i.e.

JNi (π∗n, . . . , π
∗
n) ≥

max
πi∈Π

JNi (π∗n, . . . , π
∗
n, πi, π

∗
n, . . . , π

∗
n)− ε .

Proof. See Appendix.

If we can obtain contractivity for sufficiently low η,
we can find good approximate Markov-Nash equilibria.
As it is impossible to have both η → 0 and η → ∞,
it depends on the problem and prior whether we can
converge to a good solution. Nonetheless, we find that
it is often possible to empirically find low η that provide
convergence as well as a good approximate MFE.

4.4 Prior descent

In principle, we can insert arbitrary prior policies q ∈ Π.
Under Assumption 1, by boundedness of both Q̃η and
Q∗ (see Appendix), both η-RelEnt and η-Boltzmann

MFE policies converge to the prior policy as η → ∞.
Therefore, in principle we can show that for any ε > 0,
for sufficiently large η and N , the η-RelEnt and η-
Boltzmann MFE under q will be at most an ε-worse
approximate Nash equilibrium than the prior policy.
Furthermore, we obtain guaranteed contractivity by
Theorem 3. Thus, any prior policy gives a worst-case
bound on the performance achievable over all η > 0.
On the other hand, if we obtain better results for
sufficiently low η, we may iteratively improve our policy
and thus our equilibrium quality.

5 Related work

The original work of Huang et al. (2006) introduces
contractivity and uniqueness assumptions into the con-
tinuous MFG setting. Analogously, Guo et al. (2019)
and Caines and Huang (2019) assume contractivity
for discrete-time MFGs and dense graph limit MFGs
respectively. Further existing work on discrete-time
MFGs similarly assumes uniqueness of the MFE, which
includes Saldi et al. (2018) and Gomes et al. (2010)
for approximate optimality and existence results, and
Anahtarcı et al. (2020) for an analysis on contractiv-
ity requirements. Mguni et al. (2018) solve discrete-
time continuous state MFG problems under the clas-
sical uniqueness conditions of Lasry and Lions (2007).
Further extensions of the MFG formula include par-
tial observability (Saldi et al. (2019)) or major agents
(Nourian and Caines (2013)).

The work of Anahtarci et al. (2020) is related and
studies theoretical properties of finite-N regularized
games and their limiting MFG. In their work, the
existence and approximate Nash property of MFE in
stationary regularized games is shown, and Q-Learning
error propagation is investigated. In comparison, we
consider the original, unregularized finite-N game in
a transient setting and perform extensive empirical
evaluations. Guo et al. (2019) and Yang et al. (2018)
previously proposed to apply Boltzmann policies. The
former applies the approximation heuristically, while
the latter focuses on directly solving finite-N games.

An orthogonal approach to computing MFE is fic-
titious play. Rooted in game-theory and classical
economic works (Brown (1951)), it has since been
adapted to MFGs. In fictitious play, all past mean
fields (Cardaliaguet and Hadikhanloo (2017)) and poli-
cies (Perrin et al. (2020)) are averaged to produce a
new mean field or policy. Importantly, convergence is
guaranteed in certain special cases only (cf. Elie et al.
(2019)). Although introduced in a differentiable setting,
we evaluate fictitious play empirically in our setting
and find that both our regularization and fictitious play
may be combined successfully.
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Figure 1: Mean exploitability over the final 10 iterations. Dashed lines represent maximum and minimum over
the final 10 iterations. (a) LR, 10000 iterations; (b) RPS, 10000 iterations; (c) SIS, 10000 iterations. Maximum
entropy (MaxEnt) results begin at higher temperatures due to limited floating point accuracy. Temperature zero
depicts the exact fixed point iteration for both η-MaxEnt and η-Boltzmann MFE. In LR and RPS, η-MaxEnt
and η-Boltzmann MFE coincide both with and without fictitious play (FP), here averaging both policy and mean
field over all past iterations. The exploitability of the prior policy is indicated by the dashed horizontal line.

6 Evaluation

In practice, we find that our approaches are capable of
generating solutions of lower exploitability than oth-
erwise obtained. Unless stated otherwise, we compute
everything exactly, use the maximum entropy objec-
tive (MaxEnt) with the uniform prior policy q where
qt(a | s) = 1/|A| for all t ∈ T , s ∈ S, a ∈ A, and
initialize with µ0 = Ψ(q) generated by q. As the main
evaluation metric, we define the exploitability of a
policy π ∈ Π with induced mean field µ ≡ Ψ(π) as

∆J(π) ≡ max
π∗

Jµ(π∗)− Jµ(π) .

Clearly, the exploitability of π is zero if and only if (π, µ)
is an MFE. Indeed, for any ε > 0, any policy π ∈ Π is a
(∆J(π) + ε)-Markov Nash equilibrium if N sufficiently
large, i.e. the exploitability translates directly to the
limiting equilibrium quality in the finite-N game, see
also Theorem 4 and its proof.

We evaluate the algorithms on the LR, RPS, SIS and
Taxi problems, ordered in increasing complexity. De-
tails of the algorithms, hyperparameters, problems and
experiment configurations as well as further experimen-
tal results can be found in the Appendix.

6.1 Exploitability

In Figure 1, we plot the minimum, maximum and mean
exploitability for varying temperatures η during the
last 10 fixed point iterations, i.e. a single value when
the exploitability (and usually mean field) converges.
Observe that the lowest convergent temperature outper-
forms not only the exact fixed point iteration (drawn
at temperature zero), but also the uniform prior policy.

Although developed for a different setting, we also show
results of fictitious play similar to the version from
Perrin et al. (2020), i.e. both policies and mean fields
are averaged over all past iterations. It can be seen that
fictitious play only converges to the optimal solution in
the LR problem. In the other examples, supplementing
fictitious play with entropy regularization is effective at
producing better results. A non-existent fictitious play
variant averaging only the policies finds the exact MFE
in RPS, but nevertheless fails in SIS. See the Appendix
for further results.

Evaluating and solving finite-N games is highly in-
tractable by the curse of dimensionality, as the local
state is no longer sufficient to perform dynamic pro-
gramming in the presence of the random empirical
state measure. Since it has already been proven that
the exploitability for N →∞ will converge to the ex-
ploitability of the corresponding mean field game, we
refrain from evaluating on finite-N games.

Note that the plots are entirely deterministic and not
stochastic as it would seem at first glance, since the
depicted shaded area visualizes the non-convergence of
exploitability and is a result of the fixed point updates
running into a limit cycle (cf. Figure 2).

6.2 Convergence

In Figure 2, the difference between the exploitabil-
ity of the current policy and the minimal exploitabil-
ity reached during the final 10 iterations is shown for
η-Boltzmann MFE. As the temperature η decreases,
time to convergence increases until non-convergence is
reached in form of a limit cycle. Analogous results for
η-RelEnt MFE can be found in the Appendix.
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Figure 2: (a) Difference between current and final minimum exploitability over the last 10 iterations; (b) Distance
between current and final mean field. Plotted for the η-Boltzmann MFE iterations in SIS for different indicated
temperature settings. Note the periodicity of the lowest temperature setting, indicating a limit cycle.

Note also that in LR, we can analytically find KQ = 1
and KΨ = 1. Thus, we obtain guaranteed convergence
via η-Boltzmann MFE iteration if η > 1. In Figure 1,
we see convergence already for η ≥ 0.7. Note further
that the non-converged regime can allow for lower ex-
ploitability. However, it is unclear a priori when to stop,
and for approximate solutions where DQN is used for
evaluation, the evaluation of exploitability may become
inaccurate.

6.3 Deep reinforcement learning

For problems with intractably large state spaces, we
adopt the DQN algorithm (Mnih et al. (2013)), us-
ing the implementation of Shengyi et al. (2020) as a
base. Particle-based simulations are used for the mean
field, and stochastic performance evaluation on the
induced MDP is performed (see Appendix). Note that
the approximation introduces three sources of stochas-
ticity into the otherwise deterministic algorithms, i.e.
stochastic evaluation, mean field simulation and DQN.
To counteract the randomness, we average our results
over multiple runs. The hyperparameters and archi-
tectures used are standard and can be found in the
Appendix.

Fitting the soft action-value function directly using
a network is numerically problematic, as the log-
exponential transformation of approximated action-
values quickly fails due to limited floating point accu-
racy. Thus, we limit ourselves to the classical Bellman
equation with Boltzmann policies only.

In Figure 3, we evaluate the exploitability of Boltzmann
DQN iteration, evaluated exactly in SIS and RPS, and
stochastically in Taxi over 2000 realizations. Minimum,
maximum and mean exploitability are taken over the
final 5 iterations and averaged over 5 seeds. Note that
it is very time-consuming to solve a full reinforcement
learning problem using DQN repeatedly in every it-
eration. Nonetheless, we observe that a temperature

larger than zero appears to improve exploitability and
convergence in the SIS example. Both due to the noisy
nature of approximate solutions and the lower number
of iterations, it can be seen that a higher temperature
is required to converge than in the exact case.

In the intractable Taxi environment, the policy oscil-
lates between two modes as in exact LR, and regulariza-
tion fails to obtain better results, see also the Appendix.
An important reason is that the prior policy performs
extremely bad (exploitability of ∼ 35) as most states
require specific actions for optimality. Hence we cannot
find an η > 0 for which the algorithm both converges
and performs well. Using prior descent and iteratively
refining a better prior policy would likely increase per-
formance, but is deferred to future investigations as
the required computations grow very large.

Fictitious play is expensive in combination with approx-
imate Q-Learning and particle simulations, as policies
and particles of past iterations must be kept to per-
form exact fictitious play. For this reason, we do not
attempt approximate fictitious play with approximate
solution methods. In theory, supervised learning for
fitting summarizing policies and randomly sampling
particles may help, but is out of scope of this paper.

6.4 Prior descent

In Figure 4, we repeatedly perform outer iterations
consisting of 100 η-RelEnt MFE iterations each with the
indicated fixed temperature parameters in SIS. After
each outer iteration, the prior policy is updated to the
newest resulting policy. Note again that the results are
entirely deterministic.

Searching for a suitable η dynamically every iteration
would keep the exploitability from increasing, as for
η →∞ we obtain the original prior policy. Since it is
expensive to scan over all temperatures in each outer
iteration, we use a heuristic. Intuitively, since the prior
will become increasingly good, it will be increasingly
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Figure 3: Mean exploitability over the final 5 iterations using DQN, averaged over 5 seeds. Dashed lines represent
the averaged maximum and minimum exploitability over the last 5 iterations. (a) RPS, 1000 iterations; (b) SIS,
50 iterations; (c) Taxi, 15 iterations. Evaluation of exploitability is exact except in Taxi, which uses DQN and
averages over 1000 episodes. The point of zero temperature depicts fixed point iteration using exact DQN policies.

Figure 4: Exploitability over outer iterations in SIS,
using 100 η-RelEnt MFE iterations per outer iteration.
Note that the results are deterministic. Not shown:
Running the fixed temperature settings c = 1 for longer
does not converge for at least 1000 iterations.

difficult to obtain a better policy. Thus, increasing the
temperature will help sticking close to the prior and
converge. Consequently, we use the simple heuristic

ηi+1 = ηi · c

for each outer iteration i, where c ≥ 1 adjusts the
temperature after each outer iteration.

Importantly, even for our simple heuristic, prior descent
already achieves an exploitability of ∼ 0.068, whereas
the best results for the fixed uniform policy from Fig-
ure 1 show an optimal mean exploitability of ∼ 0.281.
Furthermore, repeated prior policy updates succeed in
computing the exact MFE in RPS and LR under a
fixed temperature (see Appendix).

Note that prior descent creates a double loop around
solving the optimal control problem, becoming highly
expensive under deep reinforcement learning. Hence,
we refrain from prior descent with DQN. Automati-
cally adjusting temperatures to monotonically improve
exploitability is left for potential future work.

7 Conclusion

In this work, we have investigated the necessity and
feasibility of approximate MFG solution approaches –
entropy regularization, Boltzmann policies and prior
descent – in the context of finite MFGs. We have
shown that the finite MFG case typically cannot be
solved by exact fixed point iteration or fictitious play
alone. Entropy regularization and Boltzmann policies
in combination with deep reinforcement learning may
enable feasible computation of approximate MFE. We
believe that lifting the restriction of inherent contrac-
tivity is an important step in ensuring applicability
of MFG models in practical problems. We hope that
entropy regularization and the insight for finite MFGs
can help transfer the MFG formalism from its so-far
mostly theory-focused context into real world applica-
tion scenarios. Nonetheless, there still remain many
restrictions to the applicability of the MFG formalism.

For future work, an efficient, automatic temperature
adjustment for prior descent could be fruitful. Fur-
thermore, it would be interesting to generalize rela-
tive entropy MFGs to infinite horizon discounted prob-
lems, continuous time, and continuous state and action
spaces. Moreover, it could be of interest to investigate
theoretical properties of fictitious play in finite MFGs
in combination with entropy regularization. For non-
Lipschitz mappings from policy to induced mean field,
the proposed approach does not provide a solution. It
could nonetheless be important to consider problems
with threshold-type dynamics and rewards, e.g. major-
ity vote problems. Most notably, the current formalism
precludes common noise entirely, i.e. any games with
common observations. In practice, many problems will
allow for some type of common observation between
agents, leading to non-independent agent distributions
and stochastic as opposed to deterministic mean fields.
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