Appendix

1 Notation

A
: The pseudo-inverse matrix of A. A = (AT A)~tAT.
[0y Ui
U :
U, :
: Short hand for U; UT. This matrix projects onto Null(AT).

: " Tall” vector in RY.

A+

AJ_
t

S

€

Y
pan

Tall matrix in RY*M N > M. We assume A has full rank.

Left singular vectors of A. This is the ”U” matrix from the SVD of A.

The M leftmost left-singular vectors of A. Its columns span the image of A.

The N — M rightmost left-singular vectors of A. Its columns span the nullspace of AT,

”Short” vector in RM, M < N.

: Noise vector in RN M
: Noise vector in RY.

: Short hand for A*+. This is the projection of v onto Null(A™).

2 List of relevant identities

Below are some of the main identities used in the derivations:

Uy = A(A"4)=

DU = AA*
U UT =1 - AA*
ar=vist 0[]
1

S| = |AT A2
JECUEEE

5(Px) = 5(x)|P| ",

[ o= fenda =1, v
5[] = 8ot

P eRVXN
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3 Derivations of main text

Here we present the derivations for the equations presented in the main text.
3.1 Tall MVP

Theorem 1. The probability density function of a tall MVP is:

t=As, s~ ps(s)
pi(t) = S(UT )y (A*H)| AT AT

Proof.
ps(8)d(t — As)d

0= [r0

=/ps {U"} (t — As))ds
/ ps(s)8(U[ (t — As))s(UT (t — As))ds
[

ps(s)0(U|[ (t — As))6(UTt — UT As)ds
0

:/pé S((AT A) AT (t — As))dso(UT?)

:/pq )S(A(t — As))ds| AT A| 2 5(UTt)
/ po(8)5(A*t — 5)ds| AT A7 6(UT )

= (U Tt)ps(Att)| AT A=

3.2 Tall MVP with additive orthogonal noise

Theorem 2. The probability density function of a tall MVP with additive orthogonal noise is:

t=As+Use, s~ps(s), €~ pclels)
pe(t) = pu(ATt)p(UTH A1) ATA| =

//ps S)pe(els)d(t — As — U e)deds

- / Pa(A*(t — UL )pe(e| AT (UL (t — U €))de| AT A

Proof.

=ps(ATt) /pe(e|A+t)5(UIt — e)de\ATA\%l

— ps(ATt)p (UTH|ATH)|ATA| =



3.3 Wide MVP

Theorem 3. The probability density function of a wide MVP is

s=ATt, t~p(t)

ps(s) = /pt(As +ULe)de|AT Al

+
Let R = {él} Then R~' =[A Uy] and |R|~! = |AT A|5:
Proof.
_ AT
RT'R=[A U.] {Uﬂ
= AAT + (I — AA™)
=1
_AT _
1 1
BRI =1
| VS’lUHT} -1
= U
= Vst 0} {UH -1
L 0 I Ui
=S|
= |AT Al

With these identities, we can proceed with the proof.

Proof.
ps(s) = /pt(t)é(s — ATt)dt

= /pt(t)é(s - A+t)/5(e —UTt)dedt
| —

1

=] [ros(Z]- )

7| t)dedt

R

/ / pe(t)8([A UL] u — t)dedt w

= /pt(AS + UJ_C)ddATA'%

R-1
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3.4 Definition of Z(z|Az,X)

Definition 4. Let x € RN 2z e RM | A € RVN*M qgnd let N(x|u,Y) denote the probability density function of a
Gaussian centered at p with covariance . We construct the function Z(x|A, %) to be equal to the following:

Z(z|A,X) /N x|Az, X)d (41)

_ N(z|0,%)

~ N(h|0,.J)

J=ATx"1A, h=ATy"!

7|7

3.4.1 Partition Function of Gaussian

1
/exp{—ngJz + 2zThYdz = N(n|0, 7))~ J|7? (42)
Proof.
/N(z|J—1h, J Hdz =1 (43)
1
/ exp{—5(z = J W)z = J7'h) = S log|J 7| - dlm( A=) | oe2m) bz = 1 (44)
1 1 d
/exp{—izTJz +2Th — ihTJflh +3 log |J| — m;( ?) log(2m)}dz =1 (45)
1 1
/exp{—izTJz + 2ThYdz = exp{ahTJ_lh — —log|J| + dm;( ?) log(2m)} (46)
Finally,
Lor dim(z)
exp{§h Jh— 10 |J| + —— 5 log(2m)} (47)
Lor dim(z) -1
= exp{ih Jh+ 3 1og ||+ 5 log(2m)} J| (48)
= N(hlo, J)~ 7]~ (49)
O
3.4.2 Regression Marginal
N(.Z‘lO,E) -1
N(x|Az, X = —F
[ ¥laz 2y = LEE= (50)
=Z(z|AX) (51)
where (52)
J=ATY"1A, h=ATS"1g (53)
Proof.
1 Tl 1 dim(z)
N(z|Az,X)dz = eXp{—i(x —Az)' Y7 (x — Az) — 5 log |X| — 5 log(27) }dz (54)
1 1 di
= exp{fixTEflx ~3 log |X| — m;(x) log(2m)} (55)
1
/exp{—§zT ATS Az + 27 AT 12} dz (56)
J h
= N ([0, 2)N (h[0, ) 71T~ (57)
N(x|0,2) -1
= —F|J 58
N (hj0.) 7] (58)



3.5 Tall RealMVP

Theorem 5. A probability density function for a tall MVP with additive orthogonal noise that scales to high

dimensions is

t=As+ ALy, s~ps(s), v~ N(Hp(s),2(s))
pe(t) = ps(AT ) Z(u(ATt) — ATt|A, B (ATH))

Proof.
pe(t) = ps(ATt)pyr, (UTHATH) AT A7

— pa(A*D) / P (ULUTE + Ujr|A* t)dr| AT A F

= ps(ATt) /py(Alt + A(ATA)= r|AT)|AT A= dr
= ps(ATt) / py (At + As|ATt)ds

= ps(ATt) / N(At 4 As|u(ATt), D(ATE))ds

= ps(ATt) /N(u(A+t) — Att|As, 2(ATt))ds

= ps(ATH)Z(u(ATt) — ALt  AY)

(59)
(60)

The step from Eq to Eq is due to the fact that puT, is the probability density function of a wide MVP, so

we can apply theorem
3.6 Lemma 6

+
Lemma 6. Let B = {jl} Then BT = Lj;ﬂ and |BTB| = |AT A|~1.

Proof.
A+
BrB=[4 44|
= AAT + AtAH
= AAT + AL
Proof.

At
Uﬂfﬂ |
— AT AT UL UT

= |ATTAT 41— AAY)|

= I+ (A%" - 4)a%|

— [T+ AT(AT" = 4)]

_ |A+A+T|

= [(ATA) "t AT A(AT A) 7Y
= |AT A

IBTB|=|[a*" v, UT] [
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3.7 Lemma 7

A+
Lemma 7. Let B = {AJ_

Then there exists an orthogonal matriz, Q, such that U, (B) = {SJ Q.

Proof.
U (B)U.(B)Y =1—-BB"
1 0] [A*

:QL*AJM”H
[T o] 1 o0 }
o 1] lo AtAt
_[roo] I 0}
o 1] o At
o 0
— o AATf
R }
— oyt

The only way this is true is if the claim is true.
3.8 Wide MVP -1
Lemma 8. An expression for the probability density function of a wide MVP is
s=ATt, t~p(t)
pu(s) = [ SO LAz + A=)y AT A
Proof.
ps(s) = /pt(t)é(s — ATt)dt

= /pt(t)é(s — A™t) /6m — At t)dy, dt

1

= [ [mws |- [4] o
——

B

B is a tall matrix, so apply the tall change of variables equation
— [sWT(B {8} B*{s} dvy,|BTB|7

Jowr@) |2 et | 575
= [5@" [0 UT] [ Pmtas + atgn)dn] ATl

N /5(U\|Tn)pt(As + Aty )dy |AT Al2

} . Consider the left singular vectors of B that are orthogonal to the image of B, U, (B).



3.9 Orthogonally projected noise

Lemma 9. Let v, = Aty, v~ N(y|u,X). Then

Py, (1) = 0(U T v1) Z (1 — 71| A, 5)|AT A2 (95)
Proof.

! Py (V1) = 6(U|\T'7J_)pUI'y(UI'VJ_) (96)
=6(Uj 1) /pV(AL'yJ_ + Uyr)dr (97)

The AL drops because A1y, = AL Aty = Aty =~
=50 1) [ b+ As)AT A s (98)
= 6(UT2) [ NG+ Aslp DydslAT A (99)
=31 [ Nlu = ulAs D) AT Al (100)
= 8(UT7L)Z(p — 714, D) AT A2 (101)
O

3.10 Wide RealMVP

Theorem 10. Let q(v1|s) be the pdf of v where vi = Aty, v~ N(y|u(s),3(s)). Then a probability density
function for a wide MVP that scales to high dimensions is

s=ATt, t~p(t) (102)
ps(s) = / g(vLls) Z(M(Z t)(ffyj’/yi;(s))dfh' (103)
Proof.
pa(s) = [ BUT L p(As + 90 A7 A} (104)
= / ZgﬂgﬂUﬁl)pt(As +1)dyL|AT A2 (105)

Let g(yL|s) be the distribution from Lemma 9

_ (U v1L)pe(As + ULUy1)

_/“”MaquHM@—MME@mmAﬁ
pe(As+71)

dy, |AT A2 (106)

= [ q(vo|s dvy, 107
J st = 1on
O
3.11 ELBO for wide MVP
Corollary 11. The ELBO of log ps(s) is
pi(As + 1)
logps(s) > E s)|log 108
(%) 2 Batoa118 7,00 =74 56 1o
T T 4%
Proof. Consider the optimal importance sampler distribution for EqM p*(vLls) = G ;é?;WL)IA AlZ If
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we let g(v,|s) take the form of Lemma 9, we have that:

. s
KLlaul9)lp(als) = [ atrals)tog 2o, (109
p*(7Lls)
(U v1)Z (1 — 71| A, 5)| AT A2 py(s)
= /q(nIS) log — L~ TR At (110)
S(UT~ 1 )pi(As + 71 )| AT A
Z(p = 1|A, )ps(s)
= s)lo d 111
[t 1s)1og ZETLEN (1)
Z(‘LL _ 7L|A7 E)
= 5)log —————————=dv. + logps(s 112
J a1 os ZEIES i, oo (112
KL[g(yL|s)|lp*(vL]8)] is a positive value, so the corollary follows directly from Eq O

4 Square MVP sanity check

Consider a square matrix that is written as the product of a wide matrix and a tall matrix C = [ B | |A].

VT
Let the singular value decomposition of A and B be A = [U” UL] ﬁﬂ VT and B=U [SB O] {VHT} We
1

can compute the change of probability density function of a matrix-vector product with C' using the change of
variables formula. If we let x = Cz for z ~ p,(2),

pa(z) = p:(C™2)|C| 7 (113)

However if we apply the methods presented in the main text to u = Az and then x = Bu, we end up with a
different expression:

o) = /pAz(B+m + VJ_C)d€‘BBT|_Tl (114)

= /5(U{3+x +UTVLe)p. (AT B2 + ATV, e)de| BBT| = |AAT| = (115)

Although this second expression seems very different, it turns out to be identical to the first expression. We
will show that the delta term in equation [II5] accounts for the different inverse and determinant terms between

equations and

First we write BA, (BA)~! and A*B* out in terms of the SVD components of A and B

BA=USg(V[U)SaV" (116)
(BA)' =vSsiviu)Ttsgtu” (117)
ATBY = Vs tuy vt SgtUT (118)
(119)
It immediately follows that
|BA| = |ATA|=|BB |3 V][ U (120)
Before we can show that Eq[IT5]is the same as Eq we need two more identities:
Lemma 12.
oVt = (viupTt = U vauivy) oy (121)

ViUl = UL va| (122)



U VH ulvy ur
Proof. Consider W = { Ur} vy Vi] = { Ur UUT } Its inverse is trivially known because {UH and
L €L

VT
[VH VJ_:I are orthogonal: W1 = {VHT} [UH UJ_}. We can immediately see that the top left block of W~}
1

VHTUH. However, we can also use the block matrix inversion lemma on W to get that the top left block of W ! is
(U\TVH — UfVL(UIVL)’lUIVH)’l. By setting the two equal to each other, we get

VIO = OV~ O VTV 0TV (123

The first identity follows almost directly from Eq and the second identity follows using Schur’s determinant
identity:

urv, urv,

Wl — { iy } 124
= |ULVLIIU[ V) = U Ve (UL VL) UL Y| (125)
= [ULVLI(VF o)~ (126)

therefore
utvi = vyl (127)
O

We are now ready to show that Eq[I15]is the same as Eq[IT3]

pa(z) = /5(UIB+x +UTV, €)p.(AT BTz + ATV, e)de| BBT| = |AAT| > (128)
- /5((UEVL)‘1UEB+9@+e)pz(A+B+m+A*VLe)de|BBT|_Tl|AAT|_Tl|UfVL|‘1 (129)
= p-(A* Btz — ATV (UTVL)TWUT B )| BBT| 7 |AAT| = VU~ (130)
=p.(ATBTz - VS 1UHVL(ULVL) UtV st U )| BAIT! (131)
= p.(AT Bz —vS N OV - (v U)hSE U ) BA ! (132)
=p.(ATB Yz — (ATBT - (BA)—l)m)\BArl (133)
= p.((BA)'a)|BAI™ (134)
=p.(C™2)C|™ (135)

4.1 The importance of the dirac delta term

In the related work section of the main text, we conjecture that the dirac delta term accounts for the difference
between the our modular method and the standard manifold change of variables formula. We point to the above
example as a piece of evidence that the dirac delta term plays a role in connecting the algorithms described in
our paper with a change of variable formula that cannot be evaluated in component-wise. To evaluate the change
of variables formula of x = BAz, one must perform computations on B and A at once instead of first on B and
then on A. Our presented method affords this component-wise property and we hope to explore a more general
relationship in the future.
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5 Pseudo-code for wide MVP Experiments

The tall MVP architectures are made of two linear layers and two non-linearities. The wide MVP used a
multi-layer perceptron with 7 layers and 256 hidden units each to create the network that learns u(s), X(s). The
logistic CDF mixture layer used a 4 layer multi-layer perceptron with 128 hidden units each as the conditioner
network.

def make_flow (factored):

if (factored):
dim_change = sequential (WideMVP(input_-dim=2,
output_dim=4,
factored=True),
AffineDense ())

else:
dim_change = RectangularDense (input_-dim=2,
output_dim=4,
factored=False)
model = sequential (dim_change
CouplingLogitsticCDFMixture (n_.components=8),
Logit (),

AffineDense (),

CouplingLogitsticCDFMixture (n_components=8),
Logit (),

UnitGaussianPrior ())

return model



6 Pseudo-code for tall MVP Experiments

Below is the pseudo-code for the tall MVP experiments. We used a similar architecture to the Flow++ paper
[Ho et al., 2019]. All of our conditioner networks for our coupling layers (logitstic cdf mixture and tall mvp) are
residual networks with 4 residual blocks. Each residual block used a sequence of a 3x3 conv with 64 channels,
relu non-linearity, a 1x1 conv with 64 channels, relu non-linearity and then a 3x3 conv to the original number of

channels. The tall MVP is implemented as a one-by-one convolution that halves the number of channels in an
input image. The multiscale architecture baseline was set by fixing the matrix in the tall MVP to be and

setting p(s), X(s) = (0,1).

1
0

def FlowPP ():
layers = []
for i in range(3):
layers .append
layers .append
layers .append
layers .append

ActNorm ())
OneByOneConv ( ))
CouplingLogitsticCDFMixture (n_components=32))

Logit ())

Py

return sequential(xlayers)

def multiscale (flow , factored)
return sequential (Squeeze (),
ActNorm () ,
TallMVP (out_channels=in_channels //2,
factored=factored),

flow)

def build_network (flow, factored):
layers = [FlowPP ()]
if factored:
layers .append (OneByOneConv () )
layers .append (multiscale (flow , factored))

return sequential(xlayers)

def make _network(factored):
flow_layers = FlowPP ()
for i in range(3):
flow_layers = build_network (flow_layers, factored)

return sequential (UniformDequantization (),
Logit (),
flow_layers ,
UnitGaussianPrior ())
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7 Samples from models used in experiments

Training Data Factored

O

Circles
Full

Swiss Roll
Factored

Grid
Baseline

(a) Samples from data, factored (b) Samples from full, factored and baseline models.
model and full model.

Figure 1: Samples from models trained for the wide and
tall MVP experiments.
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