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1 ASSUMPTIONS AND ADDITIONAL ANALYSES

In this section, we revisit the assumptions made in Section 4. First, we discuss estimation under assumed
sparsity instead of smoothness, and then we discuss the assumptions associated with Kennedy (2020)’s theorem
on pseudo-outcome regression.

1.1 Additional Analyses on Minimax Performance Using Assumptions on Sparsity

Why consider minimax error rates? In the main text, we relied on assumptions of smoothness on un-
derlying functions and below we discuss estimation under assumed sparsity. We do so to nonparametrically
quantify the hardness of the different estimation problems, allowing us to systematically compare the minimax
performance of different learners. The remainders derived in Theorem 1 allow for much more general analyses
than what we discuss here, and could be used to assess the relative performance of the different learners using
any assumption on the learning rates associated with the “difficulty” of the functions τ(x), µw(x) and π(x). We
rely on smoothness and sparsity due to their intuitive appeal, generality and usage in related work (Alaa and
van der Schaar, 2018; Kennedy, 2020).

Minimax rates for estimation under sparsity Previously, we relied on assumed smoothness of the different
regression functions, to illustrate the effect of differences in underlying complexity of the nuisance functions.
Instead of smoothness only, we now consider functions with sparsity and additive sparsity as defined in assumption
M3 in Yang et al. (2015), which is often a necessary assumption enabling estimation when data is high-dimensional
(e.g. d > n, where X ∈ Rd). A function f satisfies (additive) sparsity if it depends on d∗ � min(nγ , d) variables

for some γ ∈ (0, 1) but admits an additive structure f =
∑k
s=1 fs where each of the k component functions

fs depends on a small number of predictors (ds). As special cases of this assumption we have both the more
standard sparsity assumption, where one f depends on one small subset d∗ ≤ min(n, d) of the predictors (i.e.
k = 1), as well as the case where f is completely additive (ds = 1 for all s).

For ease of exposure, we also assume that all additive components fs have the same smoothness ps = p, dimension
ds = d∗ and magnitude. As shown by Yang et al. (2015), this leads to the minimax rate kn−2p/(2p+d∗) +

k d
∗ log(d/d∗)

n in squared error of estimation of f . The first term is Stone (1980)’s nonparametric minimax rate for
a p-smooth function as we considered in the main text, but with d∗ ≤ d known, while the second term captures
the uncertainty in variable selection.

Learner performance under sparsity We can use this minimax rate to compare the error rates attained
by the different learners similarly as we used smoothness in the main text. For example, if we assume that

each regression function f is d∗-sparse and linear in X, we have the minimax rate d∗ log(d/d∗)
n for an estimator f̂

(Raskutti et al., 2009), and the squared error of estimation using the lasso can attain the minimax rate d∗log(d)
n

(Bickel et al., 2009).
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Assumption. Assume that τ(x), µw(x) and π(x) are linear in x and dτ , dµw and dπ-sparse, respectively, and

each function f can hence be estimated with squared error rate
df log(d)

n .

Then, we immediately have the following corollary:

Corollary. Using Theorem 1, we have the following error rates on the four learners under the sparsity assump-
tions discussed above:

• For the plug-in learner:

E[(τ̂plug,η̂(x)− τ(x))2] .
(dµ0

+ dµ1
)log(d)

n
(1)

• For the RA-learner:

E[(τ̂RA,η̂(x)− τ(x))2] .
dτ log(d)

n
+

(dµ0 + dµ1)log(d)

n
(2)

• For the PW-learner:

E[(τ̂PW,η̂(x)− τ(x))2] .
dτ log(d)

n
+
dπlog(d)

n
(3)

• For the DR-learner:

E[(τ̂DR,η̂(x)− τ(x))2] .
dτ log(d)

n
+

(dµ0
+ dµ1

)dπlog
2(d)

n2
(4)

This leads to analogous conclusions on learner performance as presented in the main text, but based on sparsity
instead of smoothness. For example, two-step learners can outperform the plug-in learner if dτ < max(dµ1 , dµ0),
i.e. if the treatment effect depends on less covariates than each potential outcome function. This would not
be the case if µ1(x) and µ0(x) would depend on completely disjoint sets of covariates, as in setting (iii) in
our experiments. Further, if dτ < max(dµ1

, dµ0
), then RA-learner and plug-in learner are expected to perform

equally, and PW- outperforms RA-learner if dπ < max(dµ1
, dµ0

). Finally, the DR-learner attains the oracle rate

for CATE estimation if dτ >
(dµ0+dµ1 )dπlog(d)

n (this is shown also in Kennedy (2020)).

Using the more general formulation of Yang et al. (2015), relying not on linear but general sparse functions,
would allow to consider even more general scenarios and derive conditions under which each learner outperforms
the others based on smoothness of nonlinear functions and sparsity.

Further comparison with existing results As previously mentioned, some of the different learners have
been discussed separately in related work. In particular, asymptotic analyses for the DR-learner under smooth-
ness and sparsity assumptions were presented in Kennedy (2020), and Alaa and van der Schaar (2018) derive an
error bound for Bayesian estimation of treatment effects using plug-in learners, based on an information-theoretic
approach assuming smoothness and sparsity, which gives results for the plug-in learner analogous to ours. Yet,
by analyzing the four main strategies for nonparametric meta-learning of CATE within one coherent framework,
we contribute to existing work by building systematic understanding of the relative strengths and weaknesses
of different estimation strategies in different scenarios. In particular, theoretical comparisons between one- and
two-step learners often emphasize the favorable properties of two-step learners (e.g. for the X-learner in Künzel
et al. (2019) and the DR-learner in Kennedy (2020)) because it is typically assumed that CATE is much simpler
than the baseline outcome function µ0(x) (Künzel et al., 2019). This assumption, however, is not always reflected
in the DGPs used to evaluate performance of CATE estimators elsewhere. The IHDP benchmark used in (among
others) Shalit et al. (2017); Shi et al. (2019); Hassanpour and Greiner (2020); Wu et al. (2020), based on Hill
(2011)’s simulation setting B (discussed in detail below), does not satisfy this assumption, leading to conclusions
based on empirical performance that seemingly stand in conflict with theoretical analyses highlighting mainly
the favorable properties of two-step learners.

1.2 Assumptions on Estimators for Pseudo-outcome Regression

To be able to bound the error in pseudo-outcome regression using Kennedy (2020)’s Theorem 1 (which leads to
the additive error decomposition using the oracle rate of estimation of CATE) we need a mild assumption on
the second-stage regression model necessary to ensure stability of the second stage regression (Kennedy, 2020):
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Assumption. Regularity of regression estimators
We need two mild assumptions on the regularity of our second-stage regression estimators Ên. Ên needs to satisfy
that:

1. Ên(Y |X = x) + c = Ên(Y + c|X = x) for any constant c

2. If E[Y |X = x] = E[W |X = x] then

E
[
{Ên[W |X = x]− E[W |X = x]}2

]
� E

[
{Ên[Y |X = x]− E[Y |X = x]}2

]
The first assumption enforces that adding a constant to an outcome pre- or post-regression leads to the same
result, whereas the second assumption says that the regression method results in the same error (up to constants)
for two variables with the same conditional means, regardless of e.g. variance (Kennedy, 2020).

2 PROOFS

2.1 Proof of Theorem 1

Here, we consider the term E[(E[Ỹη̂(x)|X = x,D0]− τ(x))2] in detail for each learner. For the DR-learner, this
was proven in Kennedy (2020), but we restate the proof here for completeness. By the tower property, we have
for the term R = E[Ỹη̂(x)|X = x,D0]− τ(x) for each two-step learner:
(1) RA-Learner:

R = π(x)[µ1(x)− µ̂0(x)] + (1− π(x))[µ̂1(x)− µ0(x)]− (µ1(x)− µ0(x))

= π(x)[µ0(x)− µ̂0(x)] + (1− π(x))[µ̂1(x)− µ1(x)]

(2) PW-Learner:

R =
π(x)

π̂(x)
µ1(x)− 1− π(x)

1− π̂(x)
µ0(x)− (µ1(x)− µ0(x))

= (
π(x)

π̂(x)
− 1)µ1(x)− (

1− π(x)

1− π̂(x)
− 1)µ0(x)

=
1

π̂(x)
(π(x)− π̂(x))µ1(x)− 1

1− π̂(x)
(π̂(x)− π(x))µ0(x)

(3) DR-Learner:

R =
1

π̂(x)
(π(x)− π̂(x))(µ̂1(x)− µ1(x))− 1

1− π̂(x)
(π̂(x)− π(x))(µ̂0(x)− µ0(x))

Using the identity (a + b)2 ≤ 2(a2 + b2) and assumption 2, this yields for the square R2 = (E[Ỹη̂(x)|X =
x,D0]− τ(x))2 for the
(1) RA-learner:

R2 ≤ 2(π(x)2[µ0(x)− µ̂0(x)]2 + (1− π(x))2[µ̂1(x)− µ1(x)]2)

≤ 2(1− ω)2(
∑

w∈{0,1}

(µ̂w(x)− µw(x))2)

(2) PW-learner:

R2 ≤ 2(
µ2

1(x)

π̂2(x)
+

µ2
0(x)

(1− π̂(x))2
)(π̂(x)− π(x))2 ≤ 4C2

δ2
(π̂(x)− π(x))2

(3) DR-learner:

R2 ≤ 2(π̂(x)− π(x))2(
(µ̂1(x)− µ1(x))2

π̂2(x)
+

(µ̂0(x)− µ0(x))2

(1− π̂)2
)

≤ 2

δ2
(π̂(x)− π(x))2(

∑
w∈{0,1}

(µ̂w(x)− µw(x))2)
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The theorem follows by taking expectations over R2, and applying assumption 3.

2.2 Proof of equation 5

In the following, we denote by p(·) the pdf of P. Further, we let R1 = EX∼P(·|W=1)[(µ̂1(X) − µ1(X))2]. By
repeated application of Bayes rule and the law of total probability we can show that:

EX∼P(·)[(µ̂1(x)− µ1(x))2] =

∫
(µ̂1(x)− µ1(x))2p(x)dx

= P(W = 1)

∫
(µ̂1(x)− µ1(x))2p(x|W = 1)dx+ (1− P(W = 1))

∫
(µ̂1(x)− µ1(x))2p(x|W = 0)dx

= P(W = 1)R1 + (1− P(W = 1))

∫
(µ̂1(x)− µ1(x))2 p(x|W = 1)

p(x|W = 1)
p(x|W = 0)dx

= P(W = 1)R1 + (1− P(W = 1))

∫
(µ̂1(x)− µ1(x))2

P(W=0|x)p(x)
(1−P(W=1))

P(W=1|x)p(x)
P(W=1)

p(x|W = 1)dx

= P(W = 1)R1 + P(W = 1)

∫
(µ̂1(x)− µ1(x))2P(W = 0|x)

P(W = 1|x)
p(x|W = 1)dx

= P(W = 1)

∫ (
1 +

P(W = 0|x)

P(W = 1|x)

)
(µ̂1(x)− µ1(x))2p(x|W = 1)dx

= EX∼P(·|W=1)

[
P(W = 1)

(
1 +

1− π(X)

π(X)

)
(µ̂1(X)− µ1(X))2

]

3 LEARNING ALGORITHMS AND IMPLEMENTATION

In this section we first give pseudo code for the two-step learners, then discuss the loss functions associated with
the different SNets, and finally discuss implementation details.

3.1 Two-step learner pseudo code

Below, we present the pseudo code for the two-step learners. As discussed in Section 5, we used no form of
sample splitting (option 3 in the algorithm described below) in our experiments, yet both cross-fitting (option
1) and a single sample split (option 2) could be used to implement a two-step learner for which the theoretical
guarantees hold as analysed.

Algorithm: Two-step learner

1: Inputs: A sample D = {Yi,Wi, Xi}ni=1, a learning algorithm A, a first-stage fitting strategy and a second
stage pseudo-outcome formula Ỹη̂ = fỸ (Y,W,X; η̂)

2: First stage: nuisance model estimation
3: if fitting strategy is cross-fitting then
4: split the sample D in k non-overlapping folds
5: for k ← 1 : K do
6: Fit nuisance models η̂−k = A(D−k) on all but the kth fold
7: Predict Ỹi = fỸ (Yi,Wi, Xi; η̂−k) for i ∈ Dk using the nuisance model η̂−k
8: end for
9: else if Fitting strategy is sample splitting then

10: split the sample into D1 and D2

11: Fit nuisance model η̂ = A(D1) on D1

12: Predict Ỹi = fỸ (Yi,Wi, Xi; η̂) for i ∈ D2 using the nuisance model η̂
13: else
14: Fit nuisance model η̂ = A(D) on full sample
15: Predict Ỹi = fỸ (Yi,Wi, Xi; η̂) for i ∈ D using the nuisance model η̂
16: end if
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17: Second stage: CATE estimation
18: estimate τ(x) as a function of x by regressing {Ỹi} on {Xi} as τ̂(x) = A({Ỹi, Xi})
19: Output: τ̂(x)

3.2 Loss functions for SNets

In this section we present the loss functions we use to implement all SNet variants. For SNets 1 - 3, these are
adapted from Shalit et al. (2017), Shi et al. (2019) and Hassanpour and Greiner (2020), respectively, but not
exactly identical – we did not use re-weighting, re-balancing or TMLE-regularization schemes in estimating
nuisance parameters, as we wish to consider only direct plug-in estimators. Strictly speaking, we therefore
adapted only their model architectures. Further, it would be possible to assign different weights to different loss
components (e.g. loss on propensity score estimation) below, however, we do not do so here to avoid adding
additional hyper-parameters.

SNet-1 (TARNet, adapted from Shalit et al. (2017))

min
h0,h1,Φ

1

n

n∑
i=1

L(hWi(Φ(Xi)), Yi) + λR(h0, h1) (5)

where Φ is the shared representation, h0 and h1 are the potential outcome hypothesis functions, L(·) refers to
the squared loss if Y is continuous and cross-entropy if Y is binary, and R(·) is an L2-regularisation term.

Remark (Balanced Representations and Causal Identifiability). Inspired by ideas from domain adaptation,
Shalit et al. (2017) show that learning invertible feature maps Φ that minimize the distance between treatment
groups in feature space leads to minimization of a generalization error bound. Nonetheless, we refrain from
using balanced representations here (and hence rely on Shalit et al. (2017)’s TARNet instead of their proposed
counterfactual regression method based on balanced representations (CFR)), because minimizing Shalit et al.
(2017)’s proposed loss function associated with CFR does not necessarily result in invertible representations
(Johansson et al. (2019), Zhang et al. (2020)) – which can be detrimental in the causal inference setting. If
information is discarded by artificially balancing treatment groups in a new feature space, this can re-introduce
selection bias (which was controlled for in the original feature space!). While we do not investigate this line of
thought further here, it would be possible to add an invertibility-penalty similar to the one used in Zhang et al.
(2020) to Shalit et al. (2017)’s CFR loss function to circumvent this problem. We also note that representations
do not necessarily have to be invertible for causal identification – rather, representations have to preserve all
identifying conditional independence relationships. Formally, Φ(X) has to satisfy W |= X|Φ(X) for confounders
X which means that it should take the role of a balancing score (Rosenbaum and Rubin, 1983). Hence, it
would not be problematic to discard features without confounding effect, even though this leads to non-invertible
representations.

SNet-2 (DragonNet, adapted from Shi et al. (2019))

min
h0,h1,Φ

1

n

n∑
i=1

[L(hWi
(Φ(Xi)), Yi) + CrossEntropy(hπ(Φ(Xi)),Wi)] + λR(h0, h1, hπ) (6)

where the only difference with SNet-1 arises from the additional hypothesis function hπ for the propensity score,
which is also learnt using the representation Φ.

SNet-3 and SNet Hassanpour and Greiner (2020)’s DR-CFR (SNet-3) is built upon three instead of one
representation, where one affects outcome only (ΦO), one affects treatment only (ΦW ) and one affects both and
is hence a true confounder (ΦC). We use the following adapted loss function to implement SNet-3 and SNet
(where SNet uses the same loss function but adds two further representations Φµ0 and Φµ1 which affect only the
respective treatment group.)

min
h0,h1,ΦO,ΦC ,ΦW

1

n

n∑
i=1

[L(hWi
(ΦO(Xi),ΦC(Xi)), Yi) + CrossEntropy(hπ(ΦC(Xi),ΦW ),Wi)]+

λR(h0, h1, hπ) + γRO(ΦO,ΦC ,ΦW )

(7)
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As in Wu et al. (2020)’s adaptation of DR-CFR, we also add an orthogonalization term RO to our implemen-
tation, which ensures that each variable in X affects only one of the 3 (5) representations. This is necessary
because – as representations and outcome functions are learned jointly – the learned representations are not
identifiable otherwise. To enforce separation and hence specialisation of each representation, we add a regu-
larization term that penalizes whenever a variable enters two representations. Let W 1,Φk be the first weight
matrix in representation Φk such that XW 1,Φk is the first pre-activation in the representation layer. Whether
variable j enters representation Φk can be measured by W̄Φk,j =

∑
u |W

1,Φk
j,u |, and the orthogonalization term

RO simply consists of all cross-products W̄Φk,j × W̄Φl,j of the different representation contributions. While this
does not force hard-decomposition, it does penalize a variable entering multiple representations, leading to good
disentanglement in practice.

3.3 IMPLEMENTATION DETAILS

In our implementations, we use components similar to those used in Shalit et al. (2017) for all networks. In
particular, we use dense layers with exponential linear units (ELU) as nonlinear activation functions. We
train with Adam (Kingma and Ba, 2015), minibatches of size 100, and use early stopping based on a 30%
validation split. For SNet-1 and SNet-2, the representation Φ consists of 3 layers with 200 units, while for
SNet-3 ΦC has 150 units and ΦO and ΦW have 50. In SNet, ΦC and ΦW have 100 units, while ΦO, Φµ0

and
Φµ1

have 50 units. For hypothesis functions without shared layers (TNet, the second step regressions, and
the propensity score in SNet-1), each hypothesis function gets 3 layers of 200 units of its own. Finally, each
hypothesis function (output head) consists of 2 additional layers with 100 units and a final prediction layer (with
sigmoid-activation for the propensity score). This set-up ensures that each estimated function (µ̂w(x), π̂(x) and
τ̂(x)) has access to the same amount of layers and units in total, and each architecture can hence represent
equally complex nuisance functions. We set λ = 0.0001 throughout, and γ = 0 in the IHDP experiments and
γ = 0.01 in the simulation study. All models were implemented using jax (Bradbury et al., 2018). Sklearn-style
implementations for all models are available at https://github.com/AliciaCurth/CATENets and at https:

//github.com/vanderschaarlab/mlforhealthlabpub/tree/main/alg/CATENets.

4 EXPERIMENTS

The code used to perform all experiments is available at https://github.com/AliciaCurth/CATENets and at
https://github.com/vanderschaarlab/mlforhealthlabpub/tree/main/alg/CATENets.

4.1 Simulation set-up

We use a simulation set-up that is partially inspired by that used in Hassanpour and Greiner (2020). In par-
ticular, across all settings, we use d = 25 multivariate normal covariates X which are simulated in disjoint
subsets Xs of X, with size ds according to Xs ∼ N (0, I). For each setting and each training sample size
n ∈ {1000, 2000, 5000, 10000} we draw 10 independent training samples of size n and test samples of size 500.

For settings (i) and (ii), we use covariates XC , which are confounders affecting both outcome and treatment
assignment, and XO, affecting only outcomes. Both XC and XO are composed of 5 covariates. We model the
baseline outcome as

µ0(x) = 1>X2
CO (8)

where XCO = [XC , XO], 1 is the unit vector and XCO is squared elementwise.

Treatments are sampled as a Bernoulli random variable using the propensity score:

π(x) = expit(ξ(
1

dc
1>X2

c − ω)) (9)

where ξ determines the extent of the selection bias. In our experiments we set ξ = 3. Further, we adaptively set
ω = median( 1

dc
1>X2

c ) in each simulation run to center propensity scores (if we would not do so, the squares in
the specification would lead to a much larger treatment group than control group) .

In setting (i), where there is no treatment effect, we set µ1,(i)(x) = µ0(x). In setting (ii), we use 5 additional
covariates Xτ to model a treatment effect:

µ1,(ii)(x) = µ0(x) + 1>X2
τ (10)
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Figure 1: From left to right: Histograms of the standard deviation of CATE, in-sample RMSE of SNet-1 on the
original IHDP data-set and the rescaled data-set

For setting (iii), we simulate a setting without confounding (π(x) = 0.5) where the potential outcome functions
are determined by non-overlapping covariate sets, both of dimension 10, i.e.

µ0,(iii) = 1>X2
µ0

and µ1,(iii) = 1>X2
µ1

(11)

Finally, in all three settings we compute outcomes as

Yi = Wiµ1(Xi) + (1−Wi)µ0(Xi) + εi (12)

with εi ∼ N (0, 1)

4.2 IHDP data-set

We use an adapted version of the Infant Health and Development Program (IHDP) benchmark used in Shalit
et al. (2017) and extensions, created by Hill (2011). The underlying data-set belongs to a real randomized
experiment targeting premature infants with low birth weight with an intervention, which contains 25 covariates
(6 continuous and 19 binary) capturing aspects related to children and their mothers. The benchmark data-set
was created by excluding a non-random proportion of treated individuals, namely those with nonwhite mothers.
The final data-set consists of 747 observations (139 treated, 608 control), and overlap is not satisfied (as π(x) is
not necessarily non-zero for all observations in the control group). While the covariate data is real, the outcomes
are simulated according to setting “B” described in Hill (2011), which satisfies Y (0) ∼ N (exp((X + W )β), 1)
and Y (1) ∼ N (Xβ−ω, 1) with W an offset matrix and the coefficient β has entries in (0, 0.1, 0.2, 0.3, 0.4), where
each entry is independently sampled with probabilities (0.6, 0.1, 0.1, 0.1, 0.1). We use the 100 repetitions of the
simulation provided by Shalit et al. (2017).

Rescaled data-set Rooted in the simulation specification used to obtain the IHDP regression surfaces, we
observed that the scale of CATE varied by orders of magnitude across different runs of the simulation, making
the RMSE incomparable across runs. We found that by averaging across the data-sets, the relative performance
was dominated by runs with high variance in CATE (which are those where many variables have the larger non-
zero coefficients), distorting the per-run relative performance we observed. Therefore, we decided to rescale
the outcomes of runs where the training set had σ2

CATE > 1. For these runs, we kept the original error
terms εi = Yi(w) − µw,i (which were N (0, 1) across all runs) but rescaled the expected potential outcomes
as µ̃w,i =

µw,i
σCATE

before adding back the error-term. In Figure 4.2, we plot σCATE as well as the distribution of
RMSE in the original and the adapted version of the data-sets for SNet-1, illustrating that only after rescaling
the data-set the RMSE results in comparable (and even approximately normal) performance across runs.
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