
Regularized ERM on random subspaces

A Notation

For reader’s convenience we collect the main notation we introduced in the paper.

Notation: We denote with the “hat”, e.g. ŵ, random quantities depending on the data. Given a linear operator
A we denote by A> its adjoint (transpose for matrices). For any n ∈ N, we denote by 〈, 〉n , ‖‖n the inner product
and norm in Rn. Given two quantities a, b (depending on some parameters), the notation a . b, or a = O(b)
means that there exists constant such that a 6 Cb.

Table 3: Definition of the main quantities used in the paper

Definition

L(w)
∫
H×Y `(y, 〈w, x〉)dP (x, y)

Lλ(w) L(w) + λ‖w‖2
L̂(w) n−1

∑n
i=1 `(yi, 〈w, xi〉)

L̂λ(w) L̂(w) + λ‖w‖2
w∗ arg minw∈H L(w)
wλ arg minw∈H Lλ(w)

ŵλ arg minw∈H L̂λ(w)
βλ,B arg minβ∈B Lλ(β)

β̂λ,B arg minβ∈B L̂λ(β)
f∗(x) arg mina∈R

∫
Y `(y, a)dP (y|x)

Bm Bm = span{x̃1, . . . , x̃m}
PB proj operator onto B
Pm proj operator onto Bm

B Proof of Theorem 1

This section is devoted to the proof of Theorem 1. In the following we restrict to linear functions, i.e f(x) = 〈w, x〉
for some w ∈ H and, with slight abuse of notation we set

`(w, z) = `(y, 〈w, x〉), z = (x, y) ∈ H × Y, w ∈ H.

With this notation L(w) =
∫
H×Y `(w, z)dP (z). The Lipschitz assumption implies that `(·, (X,Y )) is almost surely

Lipschitz in its argument, with Lipschitz constant Gκ.

Specifically, we will show the following:

Theorem 6. Under Assumptions 1, 2, for λ > 0 and δ ∈ (0, 1) let

Cλ,δ = 4
{

1 +
√

log(1 + log2(3 + `0κ2/λ)) + log(2/δ)
}

= O(
√

log log(3 + `0κ2/λ) + log(1/δ)).

If Assumption 3 holds, then with probability 1− δ,

L(ŵλ) < inf
H
L+ λ‖w∗‖2 +

C2
λ,δG

2κ2

4λn
+
GCλ,δ√

n
+ (`0 +Gκ‖w∗‖)

√
2 log(2/δ)

n
. (27)

More generally, with probability 1− δ, letting A(λ) := infw∈H L(w) + λ‖w‖2 − infw∈H L(w),

L(ŵλ)− inf
H
L < 2A(λ) +

C2
λ,δG

2κ2 + 8G2κ2 log(2/δ)

4λn
+
GCλ,δ√

n
+ `0

√
2 log(2/δ)

n
(28)

6 2
(

inf
‖w‖6R

L(w)− inf
H
L
)

+ 2λR2 +
C2
λ,δG

2κ2 + 8G2κ2 log(2/δ)

4λn
+
GCλ,δ + `0

√
2 log(2/δ)√
n

for every R > 0.
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The proof starts with the following bound on the generalization gap L(w)− L̂(w) uniformly over balls. While this
result is well-known and follows from standard arguments (see, e.g., Bartlett and Mendelson (2002); Koltchinskii
(2011)), we include a short proof for completeness.

Lemma 1. Under Assumptions 1 and 2 and, for every R > 0, one has with probability at least 1− δ,

sup
‖w‖6R

[
L(w)− L̂(w)

]
<
GRκ√
n

(
2 +

√
2 log(1/δ)

)
. (29)

Proof of Lemma 1. The proof starts by a standard symmetrization step [Giné and Zinn (1984); Koltchinskii
(2011)]. Let us call D := (z1, . . . , zn) i.i.d. from P , as well as an independent D′ := (z′1, . . . , z

′
n) i.i.d. from P

and ε1, . . . , εn i.i.d. with P(εi = 1) = P(εi = −1) = 1/2. We denote L̂′(w) := n−1
∑n
i=1 `(w, z

′
i) the error on the

sample D′. Then,

ED∼Pn sup
‖w‖6R

[
L(w)− L̂(w)

]
= ED sup

‖w‖6R

[
ED′L̂

′(w)− L̂(w)
]

6 ED,D′ sup
‖w‖6R

[
L̂′(w)− L̂(w)

]
= ED,D′,ε sup

‖w‖6R

[ 1

n

n∑
i=1

εi
(
`(w, zi)− `(w, z′i)

)]
= 2ED,ε

[
sup
‖w‖6R

1

n

n∑
i=1

εi`(w, zi)

]

where we used that ED′L̂′(·) = L(·), and that (`(f, zi) − `(f, z′i))16i6n and (εi(`(f, zi) − `(f, z′i)))16i6n have
the same distribution, as well as (εi`(f, zi))i and (−εi`(f, z′i))i. The last term corresponds to the Rademacher
complexity of the class of functions {`(w, ·) : ‖w‖ 6 R} [Bartlett and Mendelson (2002); Koltchinskii (2011)].
Now, using that `(w, zi) = `(yi, 〈w, xi〉) for zi = (xi, yi), where `(yi, ·) is G-Lipschitz by Assumption 2, Ledoux-
Talagrand’s contraction inequality for Rademacher averages [Meir and Zhang (2003)] gives

ED,ε

[
sup
‖w‖6R

1

n

n∑
i=1

εi`(w, zi)

]
6 GED,ε

[
sup
‖w‖6R

1

n

n∑
i=1

εi〈w, xi〉
]

= GED,ε

[
sup
‖w‖6R

〈
w,

1

n

n∑
i=1

εixi

〉]

6 GRED,ε

[∥∥∥ 1

n

n∑
i=1

εixi

∥∥∥2]1/2
=
GRE[‖x‖2]1/2√

n

6
GRκ√
n

where we used that E[εiεj〈xi, xj〉] = 0 for i 6= j by independence, and that ‖x‖ 6 κ almost surely (Assumption 1).
Hence,

ED∼Pn sup
‖w‖6R

[
L(w)− L̂(w)

]
6

2GRκ√
n

. (30)

To write the analogous bound in high probability we apply McDiarmid’s inequality [Boucheron et al. (2013)]. We

know that given D := {z1, . . . , zi, . . . , zn}, Di = {z1, . . . , z′i, . . . , zn} and defining φ(D) := sup‖w‖6R[L(w)− L̂(w)]
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we have ∣∣∣φ(D)− φ(Di)
∣∣∣ 6 sup

‖w‖6R

∣∣∣ 1
n
`(w, zi)−

1

n
`(w, z′i)

∣∣∣
6
G

n
sup
‖w‖6R

∣∣∣〈w, xi − x′i〉∣∣∣
6

2GRκ

n
(31)

using the Assumption 1 of boundedness of the input. Hence, by McDiarmid inequality:

P
[
φ(D)− ED[φ(D)] > t

]
6 exp

( −t2n
2G2R2κ2

)
; (32)

taking δ = exp
(
−t2n

2G2R2κ2

)
so that t = GRκ

√
2 log(1/δ)

n , we obtain the desired bound (29).

Lemma 1 suffices to control the excess risk of the constrained risk minimizer ŵ := arg min‖w‖6R L(w) for R = ‖w∗‖.
On the other hand, this result cannot be readily applied to ŵλ, since its norm ‖ŵλ‖ is itself random. Observe
that, by definition and by Assumption 2,

λ‖ŵλ‖2 6 L̂λ(ŵλ) 6 L̂λ(0) = L̂(0) 6 sup
y∈Y

`(y, 0) = `0,

so that ‖ŵλ‖ 6
√
`0/λ. One could in principle apply this bound on ŵλ, but this would yield a suboptimal

dependence on λ and thus a suboptimal rate.

The next step in the proof is to make the bound of Lemma 1 valid for all norms R, so that it can be applied to
the random quantity R = ‖ŵλ‖. This is done in Lemma 2 below though a union bound.

Lemma 2. Under Assumptions 1 and 2, with probability 1− δ, one has:

∀w ∈ H, L(w)− L̂(w) 6
4G(1 + κ‖w‖)√

n

(
1 +

√
log(2 + log2(1 + κ‖w‖)) + log(1/δ)

)
.

Proof of Lemma 2. Fix δ ∈ (0, 1). For p > 1, let Rp := κ−12p and δp = δ/(p(p+ 1)). By Lemma 1, one has for
every p > 1,

P

(
sup
‖w‖6Rp

[
L(w)− L̂(w)

]
>
GκRp√

n

(
2 +

√
2 log

1

δp

))
6 δp.

Taking a union bound over p > 1 and using that
∑
p>1 δp = δ and δp > δ2/(p+ 1)2, we get:

P

(
∃p > 1, sup

‖w‖6Rp

[
L(w)− L̂(w)

]
>
GκRp√

n

(
2 + 2

√
log

p+ 1

δ

))
6 δ.

Now, for w ∈ H, let p = dlog2(1 + κ‖w‖)e; then, 1 + κ‖w‖ 6 κRp = 2p 6 2(1 + κ‖w‖), so ‖w‖ 6 Rp. Hence, with
probability 1− δ,

∀w ∈ H, L(w)− L̂(w) 6
4G(1 + κ‖w‖)√

n

(
1 +

√
log
(
2 + log2(1 + κ‖w‖)

)
+ log(1/δ)

)
.

This is precisely the desired bound.

Since the bound of Lemma 2 holds simultaneously for all w ∈ H, one can apply it to ŵλ; using the inequality
κ‖ŵλ‖ 6 κ

√
`0/λ 6 (1 + `0κ

2/λ)/2 to bound the log log term, this gives with probability 1− δ,

L(ŵλ)− L̂(ŵλ) 6
4G(1 + κ‖ŵλ‖)√

n

(
1 +

√
log
(
1 + log2(3 + `0κ2/λ)

)
+ log(1/δ)

)
. (33)
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Now, let C = Cλ,δ = 4
{

1 +
√

log(1 + log2(3 + `0κ2/λ)) + log(1/δ)
}

; (33) writes L(ŵλ) − L̂(ŵλ) 6 CG(1 +
κ‖ŵλ‖)/

√
n. Using that ab 6 λa2 + b2/(4λ) for a, b > 0, one can then write

L(ŵλ) 6 L̂(ŵλ) +
CGκ‖ŵλ‖√

n
+
CG√
n

6 L̂(ŵλ) + λ‖ŵλ‖2 +
C2G2κ2

4λn
+
CG√
n

(34)

6 L̂(wλ) + λ‖wλ‖2 +
C2G2κ2

4λn
+
CG√
n

(35)

where (35) holds by definition of ŵλ. Now, since |`(wλ, Z)| 6 |`(Y, 0)|+ |`(Y, 〈wλ, X〉)− `(Y, 0)| 6 `0 +Gκ‖wλ‖
almost surely, Hoeffding’s inequality [Boucheron et al. (2013)] implies that, with probability 1− δ,

L̂(wλ) < L(wλ) + (`0 +Gκ‖wλ‖)
√

2 log(1/δ)

n
.

Combining this inequality with (35) with a union bound, with probability 1− 2δ:

L(ŵλ) < L(wλ) + λ‖wλ‖2 +
C2G2κ2

4λn
+
GC√
n

+ (`0 +Gκ‖wλ‖)
√

2 log(1/δ)

n
. (36)

First case: w∗ exists. First, assume that w∗ = arg minw∈H L(w) exists. Then, by definition of wλ, L(wλ) +
λ‖wλ‖2 6 L(w∗) + λ‖w∗‖2. In addition, ‖wλ‖ 6 ‖w∗‖, since otherwise ‖w∗‖ < ‖wλ and L(w∗) 6 L(wλ) would
imply L(w∗) + λ‖w∗‖2 < L(wλ) + λ‖wλ‖2, contradicting the above inequality. Since L(w∗) = infH L, it follows
that, with probability 1− 2δ,

L(ŵλ) < inf
H
L+ λ‖w∗‖2 +

C2G2κ2

4λn
+
GC√
n

+ (`0 +Gκ‖w∗‖)
√

2 log(1/δ)

n

6 inf
H
L+ λ‖w∗‖2 +

8G2κ2
{

1 + log(1 + log2(3 + `0κ
2/λ)) + log(1/δ)

}
λn

+

+
4G
{

1 +
√

log(1 + log2(3 + `0κ2/λ)) + log(1/δ)
}

√
n

+ (`0 +Gκ‖w∗‖)
√

2 log(1/δ)

n

= inf
H
L+O

(
λ‖w∗‖2 +

G2κ2{log log(3 + `0κ
2/λ) + log(1/δ)}

λn
+

(G+ `0)
√

log(1/δ)√
n

)
, (37)

where the O(. . . ) hide universal constants. The bound (37) precisely corresponds to the desired bound (27) after
replacing δ by δ/2. In particular, tuning λ � (Gκ/‖w∗‖)

√
log(1/δ)/n yields

L(ŵλ)− inf
H
L .

{`0 +G(1 + κ‖w∗‖)}{log log(κ‖w∗‖n/G) +
√

log(1/δ)}√
n

.

Omitting the log log n term, this bound essentially scales as Õ(Gκ‖w∗‖
√

log(1/δ)/n).

General case. Let us now drop the assumption that w∗ = arg minw∈H L(w) exists, and let (see (24)) for λ > 0:

A(λ) = L(wλ) + λ‖wλ‖2 − inf
H
L

= inf
w∈H

[L(w) + λ‖w‖2]− inf
H
L .

Note that, again using that ab 6 λa2 + b2/(4λ),

Gκ‖wλ‖
√

2 log(1/δ)

n
6 λ‖wλ‖2 +

2G2κ2 log(1/δ)

λn

6 A(λ) +
2G2κ2 log(1/δ)

λn
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so that (36) implies, with probability 1− 2δ,

L(ŵλ)− inf
H
L < 2A(λ) +

C2G2κ2

4λn
+
GC√
n

+

`0

√
2 log(1/δ)

n
+

2G2κ2 log(1/δ)

λn
.

Finally, note that for all w ∈ H with ‖w‖ 6 R, A(λ) 6 L(w) + λ‖w‖2 − infH L 6 L(w)− infH L+ λR2, hence
A(λ) 6 inf‖w‖6R L(w)− infH L+ λR2 and

L(ŵλ)− inf
H
L < 2

(
inf
‖w‖6R

L(w)− inf
H
L
)

+ 2λR2+

C2G2κ2 + 8G2κ2 log(1/δ)

4λn
+
GC + `0

√
2 log(1/δ)√
n

.

Letting λ � 1/(R
√
n), this gives L(ŵλ)− infH L 6 2(inf‖w‖6R L(w)− infH L) +O(R/

√
n) with high probability.

C Proof of Theorem 2

The proof of Theorem 2 is given by decomposing the excess risk as in (44) where Pm is replaced by PB, (47)
bounds term A, (48) bounds term B and (49) and the Definition 14 bound term C.

D T -approximate leverage scores and proof of Proposition 1

Since in practice the leverage scores li(α) defined by (10) are onerous to compute, approximations (l̂i(α))ni=1 have
been considered [Drineas et al. (2012); Cohen et al. (2015); Alaoui and Mahoney (2015)]. In particular, in the
following we are interested in suitable approximations defined as follows.

Definition 2. (T -approximate leverage scores) Let (li(α))ni=1 be the leverage scores associated to the

training set for a given α. Let δ > 0, t0 > 0 and T > 1. We say that (l̂i(α))ni=1 are T -approximate leverage scores
with confidence δ, when with probability at least 1− δ,

1

T
li(α) 6 l̂i(α) 6 T li(α), ∀i ∈ {1, . . . , n}, α > t0 (38)

So, given T -approximate leverage score for α > t0, {x̃1, . . . , x̃m} are sampled from the training set independently

with replacement, and with probability to be selected given by Qα(i) = l̂i(α)/
∑
j l̂j(α).

First part of Proposition 1 is the content of the following two results from Rudi et al. (2015).

Lemma 3 (Uniform sampling, Lemma 6 in Rudi et al. (2015)). Under Assumption 1, let J be a partition of
{1, . . . , n} chosen uniformly at random from the partitions of cardinality m. Let α > 0, for any δ > 0, such that

m > 67 log 4κ2

αδ ∨ 5dα,∞ log 4κ2

αδ , the following holds with probability at least 1− δ∥∥∥(I − PBm)Σ1/2
∥∥∥2 6 3α (39)

Lemma 4 (ALS sampling, Lemma 7 in Rudi et al. (2015)). Let (l̂i(t))
n
i=1 be the collection of approximate leverage

scores. Let α > 0 and the sampling probability Qα be defined as Qα(i) = l̂i(α)/
∑
j∈N l̂j(α) for any i ∈ N with

N = {1, ..., n}. Let I = (i1, ..., im) be a collection of indices independently sampled with replacement from N
according to the probability distribution Pα. Let Bm = span{xj |j ∈ J} where J be the subcollection of I with all
the duplicates removed. Under Assumption 1, for any δ > 0 the following holds with probability at least 1− δ∥∥∥(I − PBm)Σ1/2

α

∥∥∥2 6 3α (40)

where the following conditions are satisfied:
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1. there exists a T > 1 and a t0 > 0 such that (li(t))
n
i=1 are T -approximate leverage scores for any t > t0,

2. n > 1655κ2 + 223κ2 log 4κ2

δ ,

3. t0 ∨ 19κ2

n log 4n
δ 6 α 6 ‖Σ‖,

4. m > 334 log 16n
δ ∨ 78T 2dα,2 log 16n

δ .

If the spectrum of Σ satisfies the decay property (15), the second part of Proposition 1 is a consequence of
Lemma 4.

E Proof of Theorem 3

Theorem 3 is a compact version of the following result.

Theorem 7. Fix α, λ, δ > 0. Under Assumption 1, 2 and 3, with probability at least 1− δ:

L(β̂λ)− L(w∗) 6
C2
λ,δG

2κ2

4λn
+
Cλ,δG√

n
+Gκ‖w∗‖

√
2 log(3/δ)

n
+ 2G

√
α‖w∗‖+ λ‖w∗‖2H (41)

Cλ,δ = 4
{

1 +
√

log(1 + log2(3 + `0κ2/λ)) + log(1/δ)
}

provided that n > 1655κ2 + 223κ2 log 4κ2

δ and

1. for uniform sampling

m > 67 log
4κ2

αδ
∨ 5dα,∞ log

4κ2

αδ
(42)

2. for ALS sampling and T -approximate leverage scores with subsampling probabilities Qα, t0 >
19κ2

n log 4n
δ and

m > 334 log
16n

δ
∨ 78T 2dα,2 log

16n

δ
(43)

where α > 19κ2

n log 4n
δ

Proof. We recall the notation.

{x̃1, . . . , x̃m} ⊆ {x1, . . . , xn}
Bm = span{x̃1, . . . , x̃m}

β̂λ = arg min
w∈Bm

L̂(w)

w∗ = arg min
w∈H

L̂λ(w).

and Pm = PBm is the orthogonal projector operator onto Bm.

In order to bound the excess risk of β̂λ, we decompose the error as follows:

L(β̂λ)− L(w∗) = L(β̂λ)− L̂(β̂λ)− λ‖β̂λ‖2H︸ ︷︷ ︸
A

+ L̂(β̂λ) + λ‖β̂λ‖2H − L̂(Pmw∗)− λ‖Pmw∗‖2H︸ ︷︷ ︸
60

+

+ L̂(Pmw∗)− L(Pmw∗)︸ ︷︷ ︸
B

+L(Pmw∗)− L(w∗)︸ ︷︷ ︸
C

+λ‖Pmw∗‖2H (44)

Bound for term A
To bound term A we apply Lemma 2 for β̂λ and we get with probability a least 1− δ

∀λ >
`0κ

2

n2K
, L(β̂λ) 6 L̂(β̂λ) +

Cλ,δG(1 + κ‖β̂λ‖)√
n

(45)
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where Cλ,δ = 4
{

1 +
√

log(1 + log2(3 + `0κ2/λ)) + log(1/δ)
}

. Now since xy 6 λx2 + y2/(4λ), we can write

Cλ,δGκ‖β̂λ‖√
n

6 λ‖β̂λ‖2 +
C2
λ,δG

2κ2

4λn
(46)

hence,

L(β̂λ) 6 L̂(β̂λ) + λ‖β̂λ‖2 +
C2
λ,δG

2κ2

4λn
+
Cλ,δG√

n
(47)

Bound for term B
As regards term B, since |`(Pmw∗, Z)− `(0, Z)| 6 Gκ‖Pmw∗‖ 6 Gκ‖w∗‖, using Hoeffding’s inequality, we have
with probability at least 1− δ

B 6
∣∣∣L̂(Pmw∗)− L(Pmw∗)

∣∣∣ 6 Gκ‖w∗‖
√

2 log(1/δ)

n
(48)

Bound for term C
Finally, term C can be rewritten as

C = L(Pmw∗)− L(w∗)

6 G‖Σ1/2(I − Pm)w∗‖H
6 G‖Σ1/2(I − Pm)‖‖w∗‖H (49)

We bound equation (49) using Lemma 3 for uniform sampling and Lemma 4 for ALS selection.
Putting the pieces together and noticing that λ‖Pmw∗‖2H 6 λ‖w∗‖2H we finally get the result in Theorem 7.

The following corollary shows that there is choice of the parameters λ = λn, α = αn such that the excess risk of
the βλn converges to zero with the optimal rate (up to a logarithmic factor) O(log(n/δ)/

√
n).

Corollary 1. Fix δ > 0. Under the assumption of Theorem (7), let

λ � 1

‖w∗‖
n−1/2 α � log(n/δ)

n

with probability at least 1− δ:

L(β̂λ)− L(w∗) .
‖w∗‖

√
log(n/δ)√
n

(50)

Despite of the fact that the rate is optimal (up to the logarithmic term), the required number of subsampled
points is m & n log n, so that the procedure is not effective. However, the following proposition shows that under
a fast decay for the spectrum of the covariance operator Σ, the ALS method becomes computationally efficient.
We denote by (σi(Σ))I the sequence of strictly positive eigenvalues of Σ where the eigenvalues are counted with
respect to their multiplicity and ordered in a non-increasing way.

Proposition 2. Fix δ > 0. Under the assumptions of Theorem (7) and using ALS sampling

1. for polynomial decay, i.e. σi(Σ) 6 γi−
1
p , γ ∈ R+, p ∈ (0, 1), for δ > 0, with probability at least 1− δ:

L(β̂λ)− L(w∗) 6
C2
λ,δG

2κ2

4λn
+
Cλ,δG√

n
+Gκ‖w∗‖

√
2 log(3/δ)

n
+ 2G‖w∗‖

√
α+ λ‖w∗‖2H (51)

where O(
√

log(n/δ)
n ) rate can be achieved optimizing the choice of the parameters, i.e. λ � 1

‖w∗‖n
−1/2,

α � log(n/δ)
n , m & np(log n)1−p.



Andrea Della Vecchia, Jaouad Mourtada, Ernesto De Vito, Lorenzo Rosasco

2. for exponential decay, i.e. σi(Σ) 6 γe−βi, γ, β ∈ R+, for δ > 0, with probability at least 1− δ:

L(β̂λ)− L(w∗) 6
C2
λ,δG

2κ2

4λn
+
Cλ,δG√

n
+Gκ‖w∗‖

√
2 log(3/δ)

n
+ 2G‖w∗‖

√
α+ λ‖w∗‖2H (52)

where O(
√

log(n/δ)
n ) rate can be achieved optimizing the choice of the parameter, i.e. λ � 1

‖w∗‖n
−1/2,

α � log(n/δ)
n , m & log2 n.

Proof. The claim is a consequence of Appendix H where the link with m is obtained using Leverage Score sampling
so that in Lemma 4 using proposition 4 we have that

m & dα,2 log n, dα,2 . α−p, m � np(log n)1−p (53)

while using Proposition 5 we have that

m & dα,2 log n, dα,2 . log(1/α), m � log2 n (54)

From proposition above we have the following asymptotic rate.

Corollary 2. Fix δ > 0. Under the assumptions of Theorem (7) and using ALS sampling, with probability at
least 1− δ

1. assuming polynomial decay of the spectrum of Σ and choosing λ � 1
‖w∗‖n

−1/2, m & np(log n)1−p then:

L(β̂λ)− L(w∗) .
‖w∗‖

√
log(n/δ)√
n

(55)

2. assuming exponential decay of the spectrum of Σ and choosing λ � 1
‖w∗‖n

−1/2, m & log2 n then:

L(β̂λ)− L(w∗) .
‖w∗‖

√
log(n/δ)√
n

(56)

F Proof of Theorem 4

Before proving Theorem 4 we introduce a modification of the above Lemma 4 in the case of sub-gaussian random
variables

Lemma 5. (ALS sampling for sub-gaussian variables). Let (l̂i(t))
n
i=1 be the collection of approximate leverage

scores. Let α > 0 and the sampling probability Qα be defined as Qα(i) = l̂i(α)/
∑
j∈N l̂j(α) for any i ∈ N with

N = {1, ..., n}. Let I = (i1, ..., im) be a collection of indices independently sampled with replacement from N
according to the probability distribution Pα. Let Bm = span{xj |j ∈ J} where J be the subcollection of I with all
the duplicates removed. Under Assumption 4, for any δ > 0 the following holds with probability at least 1− 5δ∥∥∥(I − PBm)Σ1/2

α

∥∥∥2 . α (57)

when the following conditions are satisfied:

1. there exists a T > 1 and a t0 > 0 such that (li(t))
n
i=1 are T -approximate leverage scores for any t > t0,

2.
n & dα,2(Σ) ∨ log(1/δ) (58)

3.

m & dα,2(Σ) log(
2n

δ
) (59)
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Proof. The proof follows the structure of the one in Lemma 4 (see Rudi et al. (2015)). Exploiting sub-gaussianity
anyway the various terms are bounded differently. In particular, to bound β1 we refer to Theorem 9 in Koltchinskii
and Lounici (2014), obtaining with probability at least 1− δ

β1(α) . max

{√
dα,2(Σ)

n
,

√
log(1/δ)

n

}
. (60)

As regards β3 term we apply Proposition 3 below to get with probability greater than 1− 3δ

β3(α) 6
2 log 2n

δ

3m
+

√
32T 2dα,2(Σ) log 2n

δ

m

for n > 2C2 log(1/δ).
Finally, taking a union bound we have with probability at least 1− 5δ

β(α) .max


√
dα,2(Σ)

n
,

√
log( 1

δ )

n

+

+

1 + max


√
dα,2(Σ)

n
,

√
log( 1

δ )

n


2 log 2n

δ

3m
+

√
32T 2dα,2(Σ) log 2n

δ

m

 . 1

when n & dα,2(Σ) ∨ log(1/δ) and m & dα,2(Σ) log 2n
δ . See Rudi et al. (2015) to conclude the proof.

Corollary 3. Given the assumptions in Theorem 5 if we further assume a polynomial decay of the spectrum of Σ
with rate 1/p ∈ (0,∞), for any δ > 0 the following holds with probability 1− δ∥∥∥(I − PBm) Σ1/2

α

∥∥∥2 . α

when the following conditions are satisfied:

1. there exists a T > 1 and a t0 > 0 such that (li(t))
n
i=1 are T -approximate leverage scores for any t > t0,

2.
n & log(5/δ) (61)

3.
α & n−1/p (62)

4.

m & α−p log(
10n

δ
) (63)

Proof. Using Proposition 4 dα,2(Σ) . α−p, the result simply follows from the substitution in Lemma 5.

Proposition 3. Let X,X1, . . . , Xn be iid C-sub-gaussian random variables in H. Let dα,2(Σ̂) = Tr(Σ̂−1α Σ̂) the
empirical effective dimension and dα,2(Σ) = Tr(Σ−1α Σ) the correspondent population quantity. For any δ > 0 and
n > 2C2 log(1/δ), then the following hold with probability 1− δ

dα,2(Σ̂) 6 16dα,2(Σ) (64)

Proof. Let Vα be the space spanned by eigenvectors of Σ with corresponding eigenvalues αj > α, and call Dα

its dimension. Notice that Dα 6 2dα,2(Σ) since dα,2(Σ) = Tr(Σ−1α Σ) =
∑ αi

αi+α
, where in the sum we have Dα

terms greater or equal than 1/2.
Let X = X1 +X2, where X1 is the orthogonal projection of X on the space Vα, we have

Σ̂ = Σ̂1 + Σ̂2 + n−1
n∑
i=1

(X1,iX
>
2,i +X2,iX

>
1,i) 4 2(Σ̂1 + Σ̂2) (65)
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Now, since the function g : t 7→ t
t+α is sub-additive (meaning that g(t+ t′) 6 g(t) + g(t′)), denoting dα,2(Σ) =

Tr g(Σ) = Tr(Σ−1α Σ),

dα,2(Σ̂) 6 2(dα,2(Σ̂1) + dα,2(Σ̂2)) (66)

and, since (Σ̂1 + α)−1Σ̂1 4 IVα ,

Tr(Σ̂−1α Σ̂) 6 2Dα +
2Tr(Σ̂2)

α
= 4dα,2(Σ) +

2Tr(Σ̂2)

α
(67)

Now,

Tr(Σ̂2) =
1

n

n∑
i=1

‖X2,i‖2

It thus suffices establish concentration for averages of the random variable ‖X2‖2.
Since X is sub-gaussian then ‖X2‖2 is sub-exponential. In fact, since X is C-sub-gaussian then

‖〈v,X〉‖ψ2
6 C‖〈v,X〉‖L2

∀v ∈ H (68)

and given that 〈v,PX〉 = 〈Pv,X〉 with P an orthogonal projection, then also X2 is C-sub-gaussian. Now take ei
the orthonormal basis of V composed by the eigenvectors of Σ2 = E[X2X

T
2 ], then∥∥‖X2‖2

∥∥
ψ1

=
∥∥∥∑

i

〈X2, ei〉2
∥∥∥
ψ1

6
∑
i

∥∥〈X2, ei〉2
∥∥
ψ1

(69)

=
∑
i

‖〈X2, ei〉‖2ψ2
6 C2 ‖〈X2, ei〉‖2L2

(70)

= C2
∑
i

αi = C2Tr [Σ2] = C2E
[
‖X2‖2

]
(71)

so ‖X2‖2 is C2E
[
‖X2‖2

]
-sub-exponential. Note that E‖X2‖2 = E[Tr(X2X

>
2 )] = Tr(Σ2) 6 2αdα,2(Σ), in fact

dα,2(Σ) =

∞∑
i=1

αi
αi + α

>
∑
i:αi<α

αi
αi + α

>
∑
i:αi<α

αi
2α

=
Tr(Σ2)

2α
(72)

Hence, we can apply then Bernstein inequality for sub-exponential scalar variables (see Theorem 2.10 in Boucheron
et al. (2013)), with parameters ν and c given by

nE
[
‖X2‖4

]
6 4nC2α2d2α,2(Σ)︸ ︷︷ ︸

ν

(73)

c = Cαdα,2(Σ) (74)

where we used the bound on the moments of a sub-exponential variable (see Vershynin (2010)).
With high probability (67) becomes

dα,2(Σ̂) 6 8dα,2(Σ) +
4Cdα,2(Σ)

√
2 log(1/δ)√
n

+
2Cdα,2(Σ) log(1/δ)

n
6 16dα,2(Σ) (75)

for n > 2C2 log(1/δ)

In the following we will exploit the adaptation of Theorem 7.23 in Steinwart and Christmann (2008) for X
sub-gaussian, before presenting it we introduce some of the required quantities as defined in Steinwart and
Christmann (2008):

r∗ := inf
f∈H

Υ(f) + L(f cl)− L(f∗)

Hr :=
{
f ∈ H : Υ(f) + L(f cl)− L(f∗) 6 r

}
r > r∗

Fr :=
{
` ◦ f cl − ` ◦ f∗ : f ∈ Hr

}
r > r∗

hf0(X) := `(Y, f0(X))− `(Y, f∗(X)).
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Theorem 8 (Adaptation Theorem 7.20 in Steinwart and Christmann (2008) to sub-gaussian framework). Let
` : Y × R→ [0,∞) be a continuous loss that can be clipped at M > 0 and that satisfies (25) for a constant B > 0.
Moreover, let H ⊂ L0(X) be a subset that is equipped with a complete, separable metric dominating the pointwise
convergence, and let Υ : H → [0,∞) be a continuous function. Given a distribution P on H× Y that satisfies the
variance bound (26). Assume that for fixed n > 1 there exists a ϕn : [0,∞)→ [0,∞) such that ϕn(4r) 6 2ϕn(r)
and the expectation with respect to the empirical distribution of the empirical Rademacher averages of Fr can be
upper bounded by

EP̂ R̂ad (Fr, n) 6 ϕn(r)

for all r > r∗. Finally, fix an f0 ∈ H such that hf0(X)− hfcl0 (X) is a real c-sub-gaussian random variable and

E(hf0(X) − hfcl0 (X))2 6 DE
(
hf0(X)− hfcl0 (X)

)
for some D > 0. Then, for all fixed ε > 0, τ > 0, and r > 0

satisfying

r > max

{
30ϕn(r),

(
72V τ

n

) 1
2−ϑ

,
Dτ

2n
+
cτ

n
+

4Bτ

3n
, r∗

}

every measurable ε-CR-ERM (ε-approximate clipped regularized empirical risk minimization) f̂ satisfies

Υ(f̂) + L(f̂ cl)− L(f∗) 6 6 (Υ (f0) + L (f0)− L(f∗)) + 3r + 3ε

with probability not less than 1− 3e−τ .

Proof. The proof mimics the one in Steinwart and Christmann (2008). Clearly Bernstein inequality for bounded
variables must be replaced with its sub-gaussian version. Let η := hf0(X)− hfcl0 (X), which is a c-sub-gaussian

scalar variable by hypothesis, and define ξ = η − E[η]. We can apply then Bernstein inequality for sub-gaussian
i.i.d variables ξ, ξ1, ..., ξn (see Theorem 2.10 in Boucheron et al. (2013)):

P

(
1

n

n∑
i=1

ξi 6

√
2ντ

n
+
cτ

n

)
> 1− e−τ (76)

with
∑n
i=1 E[ξ2i ] 6

∑n
i=1 E[η2i ] 6 DnE[η] = ν for hypothesis, so that with probability at least 1− e−τ

1

n

n∑
i=1

ξi 6

√
2DE[η]τ

n
+
cτ

n
6 E[η] +

Dτ

2n
+
cτ

n
(77)

which replaces eq. (7.41) in Steinwart and Christmann (2008). Following the proof in Steinwart and Christmann
(2008) while taking into account the above modification leads to the assertion.

Theorem 9 (Adaptation Theorem 7.23 in Steinwart and Christmann (2008) to sub-gaussian framework). Let
` : Y × R→ [0,∞), be a locally Lipschitz continuous loss that can be clipped at M > 0 and satisfies the supremum
bound (25) for a B > 0. Moreover, let P be a distribution on H× Y such that the variance bound (26) is satisfied
for constants ϑ ∈ [0, 1], V > B2−ϑ, and all f ∈ H. Assume that for fixed n > 1 there exist constants p ∈ (0, 1)
and a > B such that

EP̂ei

(
id : H → L2(P̂H)

)
6 ai−

1
2p , i > 1 (78)

Finally, fix an f0 ∈ H such that hf0(X) − hfcl0 (X) is a real c-sub-gaussian random variable and E(hf0(X) −

hfcl0 (X))2 6 DE
(
hf0(X)− hfcl0 (X)

)
. Then, for all fixed τ > 0, λ > 0, and f̂λ ε-approximate clipped regularized

empirical risk minimization (ε-CR-ERM):

λ‖f̂λ‖2H + L(f̂ clλ )− L(f∗) 6 9
(
λ ‖f0‖2H + L(f0)− L(f∗)

)
+K

(
a2p

λpn

) 1
2−p−ϑ+ϑp

+

+ 3

(
72V τ

n

) 1
2−ϑ

+
(3D + 6c+ 8B)τ

2n
(79)

with probability not less than 1− 3e−τ , where K > 1 is a constant only depending on p,M,B, ϑ, and V .
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Proof. The proof mimics the one in Steinwart and Christmann (2008), but here we exploit Theorem 8, i.e. the
adaptation of Theorem 7.20 in Steinwart and Christmann (2008) in the sub-gaussian framework.

We can now proceed with the proof of Theorem 4 that is the content of Theorem 10 and Corollary 4.

Theorem 10. Fix λ > 0, α & n−1/p and 0 < δ < 1. Under Assumptions 2, 4, 5, 6, and a polynomial
decay of the spectrum of Σ with rate 1/p ∈ (1,∞), as in (15), including also the additional hypothesis

E(`(Y, 〈Pmw∗, X〉)− `(Y, 〈Pmw∗, X〉cl)2 6 DE(`(Y, 〈Pmw∗, X〉)− `(Y, 〈Pmw∗, X〉cl)), with D > 0, then, with
probability at least 1− 2δ

λ‖β̂λ,m‖2 + L(β̂clλ,m)− L(w∗) 6 9λ‖w∗‖2 + 9C0G
√
α‖w∗‖+K

a2p

λpn
+ 216V

log(3/δ)

n
+

+
(3D + 8B) log(3/δ)

2n
+

6CG
√

2 Tr(Σ)‖w∗‖ log(3/δ)

n
(80)

provided that n satisfies (58) and m satisfies (42) (uniform sampling) or (59) (ALS sampling), and where ` can
be clipped at M > 0, B > 0 and V > 0 come from the supremum bound(19) and variance bound (20) respectively,
a > B and K > 1 is a constant only depending on p, M , B and V .

Proof. The proof mimics the proof of Theorem 11 where in (79), following the same reasoning as in (95), we
choose

f0 = 〈PBmw∗, ·〉 C̃ := 2B + 2CG
√

2 Tr(Σ) ‖w∗‖ .
Hence (79) with θ = 1 reads

λ‖β̂λ,m‖2 + L(β̂clλ,m)− L(w∗) 6 9(λ‖PBmw∗‖2 + L(PBmw∗)− L(w∗)) +K
a2p

λpn
+ 216V

log(3/δ)

n
+

+
(3D + 8B) log(3/δ)

2n
+

6CG
√

2 Tr(Σ)‖w∗‖ log(3/δ)

n

6 9λ‖w∗‖2 + 9(L(PBmw∗)− L(w∗)) +K
a2p

λpn
+ 216V

log(3/δ)

n
+

+
(3D + 8B) log(3/δ)

2n
+

6CG
√

2 Tr(Σ)‖w∗‖ log(3/δ)

n
(81)

We can deal with the term L(PBmw∗)− L(w∗) as in (49) (but where we use Lemma 5 instead of Lemma 4), so
that for α & n−1/p with probability greater than 1− δ

L(PBmw∗)− L(w∗) 6 C0G
√
α ‖w∗‖

for some C0 > 0. Hence, with probability at least 1− 2δ

λ‖β̂λ,m‖2 + L(β̂clλ,m)− L(w∗) 6 9λ‖w∗‖2 + 9C0G
√
α‖w∗‖+K

a2p

λpn
+ 216V

log(3/δ)

n
+

+
(3D + 8B) log(3/δ)

2n
+

6CG
√

2 Tr(Σ)‖w∗‖ log(3/δ)

n
(82)

which proves the claim.

The following corollary provides the optimal rates, whose proof is the same as for Corollary 5

Corollary 4. Fix δ > 0. Under the Theorem 10 set

λ � n−
1

1+p (83)

α � n−
2

1+p (84)

m & n
2p

1+p log n (85)

then, for ALS sampling, with probability at least 1− 2δ

λ‖β̂λ,m‖2H + L(β̂clλ,m)− L(w∗) . ‖w∗‖
( 1

n

) 1
1+p

(86)
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Notice that α � n−
2

1+p is compatible with condition α & dα,2(Σ) � n−1/p in Lemma 5.

G Proof of Theorem 5

Theorem 5 is the content of Theorem 11 and Corollary 5

Theorem 11. Fix λ > 0, α & n−1/p and 0 < δ < 1. Under Assumptions 2, 4, 7, and a polynomial
decay of the spectrum of Σ with rate 1/p ∈ (1,∞), as in (15), including also the additional hypothesis

E(`(Y, 〈Pmwλ, X〉)− `(Y, 〈Pmwλ, X〉cl)2 6 DE(`(Y, 〈Pmwλ, X〉)− `(Y, 〈Pmwλ, X〉cl)), with D > 0, then with
probability at least 1− 2δ

λ‖β̂λ,m‖2H + L(β̂clλ,m)− L(f∗) 6 9A(λ) + 9C0G

√
αA(λ)

λ
+K

( a2p
λpn

) 1
2−p−θ+θp

+ 3
(72V log(3/δ)

n

) 1
2−θ

+

+
(3D + 8B) log(3/δ)

2n
+

6CG
√

2 Tr(Σ) log(3/δ)

n

√
A(λ)

λ
(87)

provided that n satisfies (58) and m satisfies (42) (uniform sampling) or (59) (ALS sampling), and where `
can be clipped at M > 0, B > 0 and θ ∈ [0, 1] come from the supremum bound(25) and variance bound (26)
respectively, a > B and K > 1 is a constant only depending on p, M , B, θ and V .

Proof. We adapt the proof of Theorem 7.23 in Steinwart and Christmann (2008) to β̂λ,m. Set

r∗H = inf
w∈H

λ‖w‖2 + L(wcl)− L(f∗) (88)

r∗Bm = inf
w∈Bm

λ‖w‖2 + L(wcl)− L(f∗) (89)

Hr = {w ∈ H : λ‖w‖2 + L(wcl)− L(f∗) 6 r} r > r∗H (90)

(Bm)r = {w ∈ Bm : λ‖w‖2 + L(wcl)− L(f∗) 6 r} r > r∗Bm (91)

(see Eq. (7.32)-(7.33) in Steinwart and Christmann (2008)). Let’s notice that r∗Bm > r∗H, which means that
(Bm)r ⊆ Hr. As a consequence, using also Theorem 15 in Steinwart et al. (2009) stating that the decay
condition (15) of the spectrum of the covariance operator Σ is equivalent to the polynomial decay of the (dyadic)
entropy numbers ej (see Lemma 6), we have that, analogously to the proof of Theorem 7.23 in Steinwart and
Christmann (2008) (see Lemma 7.17 and eq. (A.36) in Steinwart and Christmann (2008) for details):

EP̂ [ej(id : (Bm)r → L2(P̂H))] 6 EP̂ [ej(id : Hr → L2(P̂H))] 6 2
( r
λ

)1/2
aj−

1
2p

for some a > B, where the first inequality is a consequence of (Bm)r ⊆ Hr and P̂H = 1
n

∑n
i=1 δxi is the empirical

(marginal) measure.

Furthermore β̂λ,m is a clipped regularized empirical risk minimizer over Bm (see Definition 7.18 in Steinwart and
Christmann (2008)) since

λ‖β̂λ,m‖2 + L̂(β̂clλ,m) 6 λ‖β̂λ,m‖2 + L̂(β̂λ,m) = inf
β∈Bm

[λ‖w‖2 + L̂(w)].

Then, applying Theorem 9 (sub-gaussian adaptation of Theorem 7.23 in Steinwart and Christmann (2008)) with
probability at least 1− δ

λ‖β̂λ,m‖2H + L(β̂clλ,m)− L(f∗) 6 9
(
λ ‖f0‖2H + L(f0)− L(f∗)

)
+K

(
a2p

λpn

) 1
2−p−ϑ+ϑp

+

+ 3

(
72V log(3/δ)

n

) 1
2−ϑ

+
3D + 6c+ 8B log(3/δ)

2n
. (92)

We define wλ := arg minw∈H L(w) + λ‖w‖2. Now, since

‖〈PBmwλ, X〉‖ψ2
6 ‖‖PBmwλ‖ · ‖X‖‖ψ2

6 ‖‖wλ‖ · ‖X‖‖ψ2

= ‖wλ‖ · ‖‖X‖‖ψ2
6
√

2C ‖wλ‖ · ‖‖X‖‖L2

= C
√

2 Tr(Σ) ‖wλ‖
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where we used the fact that ‖X‖ is sub-gaussian since, given an orthonormal basis ei,∥∥ ‖X‖ ∥∥2
ψ2

6
∥∥ ‖X‖2 ∥∥

ψ1
=
∥∥∥∑

i

〈X, ei〉2
∥∥∥
ψ1

6
∑
i

∥∥∥〈X, ei〉2∥∥∥
ψ1

6 2
∑
i

‖〈X, ei〉‖2ψ2
6 2C2 ‖〈X, ei〉‖2L2

= 2C2 Tr [Σ]

Then 〈PBmwλ, X〉 is a real C
√

2 Tr(Σ) ‖wλ‖-sub-gaussian random variable. Moreover we have

‖`(y, 〈PBmwλ, X〉)‖ψ2
6 B + CG

√
2 Tr(Σ) ‖wλ‖ . (93)

Recalling the definition of clipping, we have `(y, 〈PBmwλ, X〉
cl

) 6 ` (y, 〈PBmwλ, X〉) which implies

‖`(y, 〈PBmwλ, X〉
cl

)‖ψ2
= sup

p>2

‖`(y, 〈PBmwλ, X〉
cl

)‖Lp√
p

6 sup
p>2

‖`(y, 〈PBmwλ, X〉)‖Lp√
p

= ‖`(y, 〈PBmwλ, X〉)‖ψ2

(94)
for the monotonicity of the Lp-norm. Putting everything together we get

‖hPBmwλ(X)−hPBmwclλ (X)‖ψ2 = ‖` (y, 〈PBmwλ, X〉)−`
(
y, 〈PBmwλ, X〉

cl
)
‖ψ2 6 2B+2CG

√
2 Tr(Σ) ‖wλ‖ = C̃.

(95)
We can finally conclude that hPBmwλ(X) − hPBmwclλ (X) is a C̃-sub-gaussian random variable. Assumption

E(`(Y, 〈PBmwλ, X〉) − `(Y, 〈PBmwλ, X〉
cl

)2 6 DE(`(Y, 〈PBmwλ, X〉) − `(Y, 〈PBmwλ, X〉
cl

)) allows us to apply
Theorem 9 for f0 := 〈PBmwλ, ·〉 with c = C̃. We rewrite (79) as:

λ‖β̂λ,m‖2 + L(β̂clλ,m)−L(f∗) 6 9(λ‖PBmwλ‖2 + L(PBmwλ)− L(f∗)) +K
( a2p
λpn

) 1
2−p−θ+θp

+ 3
(72V log(3/δ)

n

) 1
2−θ

+

+
(3D + 8B) log(3/δ)

2n
+

6CG
√

2 Tr(Σ) ‖wλ‖ log(3/δ)

n

= 9(λ‖PBmwλ‖2 + L(PBmwλ)− L(wλ) + L(wλ)− L(f∗)) +K
( a2p
λpn

) 1
2−p−θ+θp

+

+ 3
(72V log(3/δ)

n

) 1
2−θ

+
(3D + 8B) log(3/δ)

2n
+

6CG
√

2 Tr(Σ) log(3/δ)

n

√
A(λ)

λ

6 9(L(PBmwλ)− L(wλ) + λ‖wλ‖2 + L(wλ)− L(f∗)) +K
( a2p
λpn

) 1
2−p−θ+θp

+

+ 3
(72V log(3/δ)

n

) 1
2−θ

+
(3D + 8B) log(3/δ)

2n
+

6CG
√

2 Tr(Σ) log(3/δ)

n

√
A(λ)

λ

= 9A(λ) + 9(L(PBmwλ)− L(wλ)) +K
( a2p
λpn

) 1
2−p−θ+θp

+ 3
(72V log(3/δ)

n

) 1
2−θ

+

+
(3D + 8B) log(3/δ)

2n
+

6CG
√

2 Tr(Σ) log(3/δ)

n

√
A(λ)

λ
(96)

where we used the fact that ‖wλ‖ 6
√
A(λ)/λ.

We can deal with the term L(PBmwλ)− L(wλ) as in (49) (but where we use Lemma 5 instead of Lemma 4 to
exploit sub-gaussianity), so that for α & n−1/p with probability greater than 1− δ

L(PBmwλ)− L(wλ) 6 C0G
√
α ‖wλ‖ 6 C0G

√
α

√
A(λ)

λ

for some C0 > 0. We finally obtain with probability greater than 1− 2δ

λ‖β̂λ,m‖2H + L(β̂clλ,m)− L(f∗) 6 9A(λ) + 9C0G

√
αA(λ)

λ
+K

( a2p
λpn

) 1
2−p−θ+θp

+ 3
(72V log(3/δ)

n

) 1
2−θ

+

+
(3D + 8B) log(3/δ)

2n
+

6CG
√

2 Tr(Σ) log(3/δ)

n

√
A(λ)

λ
(97)

which proves the first claim.
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The following corollary provides the optimal rates.

Corollary 5. Fix δ > 0. Under the Theorem 11 and the source condition

A(λ) 6 A0λ
r

for some r ∈ (0, 1], set

λ � n−min{ 2
r+1 ,

1
r(2−p−θ+θp)+p} (98)

α � n−min{2, r+1
r(2−p−θ+θp)+p} (99)

m & nmin{2p, p(r+1)
r(2−p−θ+θp)+p} (100)

for ALS sampling, with probability at least 1− 2δ

λ‖β̂λ,m‖2H + L(β̂clλ,m)− L(f∗) . n−min{ 2r
r+1 ,

r
r(2−p−θ+θp)+p} (101)

Proof. Lemma 4 with Proposition 4 gives

m & dα,2 log(n/δ), dα,2 . α−p α � log1/p(n/δ)

m1/p
(102)

Lemma A.1.7 in Steinwart and Christmann (2008) with r = 2, 1/γ = (2− p− θ + θp), α = p, β = r shows that
the choice of λ, α and m given by (98)–(100) provides the optimal rate.

Notice that α � n−min{2, r+1
r(2−p−θ+θp)+p} is compatible with condition α & dα,2(Σ) � n−1/p in Lemma 5.

H Effective Dimension and Eigenvalues Decay

In this section, we derive tight bounds for dα,2 defined by (13) when assuming respectively polynomial and
exponential decay of the eigenvalues σj(Σ) of Σ.

Proposition 4 (Polynomial eigenvalues decay, Proposition 3 in Caponnetto and De Vito (2007)).
If for some γ ∈ R+ and 1 < β < +∞

σi 6 γi−β

then

dα,2 6 γ
β

β − 1
α−1/β (103)

Proof. Since the function σ/(σ + α) is increasing in σ and using the spectral theorem Σ = UDU∗ combined with
the fact that Tr(UDU∗) = Tr(U(U∗D)) = TrD

dα,2 = Tr(Σ(Σ + αI)−1) =

∞∑
i=1

σi
σi + α

6
∞∑
i=1

γ

γ + iβα
(104)

The function γ/(γ + xβα) is positive and decreasing, so

dα,2 6
∫ ∞
0

γ

γ + xβα
dx

= α−1/β
∫ ∞
0

γ

γ + τβ
dτ

6 γ
β

β − 1
α−1/β (105)

since
∫∞
0

(γ + τβ)−1 6 β/(β − 1).
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Proposition 5 (Exponential eigenvalues decay).
If for some γ, β ∈ R+σi 6 γe−βi then

dα,2 6
log(1 + γ/α)

β
(106)

Proof.

dα,2 =

∞∑
i=1

σi
σi + α

=

∞∑
i=1

1

1 + α/σi
6
∞∑
i=1

1

1 + α′eβi
6
∫ +∞

0

1

1 + α′eβx
dx (107)

where α′ = α/γ. Using the change of variables t = eβx we get

(107) =
1

β

∫ +∞

1

1

1 + α′t

1

t
dt =

1

β

∫ +∞

1

[1

t
− α′

1 + α′t

]
dt =

1

β

[
log t− log(1 + α′t)

]+∞
1

=
1

β

[
log
( t

1 + α′t

)]+∞
1

=
1

β

[
log(1/α′) + log(1 + α′)

]
(108)

So we finally obtain

dα,2 6
1

β

[
log(γ/α) + log(1 + α/γ)

]
=

log(1 + γ/α)

β
(109)

The following result is the content of Theorem 15 in Steinwart et al. (2009). Given a bounded operator A between

two Hilbert spaces H1 and H2, denote by ej(A) the entropy numbers of A and by P̂H = 1
n

∑n
i=1 δxi the empirical

(marginal) measure associated with the input data xi, . . . , xn. Regard the data matrix X̂ as the inclusion operator

id : H → L2(P̂ )

(idw)(xi) = 〈w, xi〉 i = 1, . . . , n

Lemma 6. Let p ∈ (0, 1). Then

EP̂ [ej(id : H → L2(P̂ ))] ∼ j−
1
2p (110)

if and only if

σj(Σ) ∼ j−
1
p (111)

I Constrained problem

In this section we investigate the so called constrained problem. As (9) the hypothesis space is still the subspace
Bm ⊆ H spanned by {x̃1, · · · , x̃m} with {x̃1, · · · , x̃m} being the sampled input points and the empirical estimator
is the minimizer of ERM on the ball of radius R belonging to the subspace Bm. More precisely, for any R > 0 we
set

β̂R,m = arg min
w∈Bm,‖w‖6R

L̂(w) (112)

For sake of simplicity we assume the best in model to exist. We start presenting the finite sample error bounds
for uniform and approximate leverage scores subsampling of the m points.

Theorem 12. Fix R > 0, α > 0, 0 < δ < 1. Under Assumptions 1, 2, 3, with probability at least 1− δ

L(β̂R,m)− L(fH) 6
2GRκ√

n

(
2 +

√
2 log(1/δ)

)
+ 2GR

√
α (113)

provided that R > ‖w∗‖, n > 1655κ2 + 223κ2 log 4κ2

δ and m satisfies

1. for uniform sampling

m > 67 log
4κ2

αδ
∨ 5dα,∞ log

4κ2

αδ
(114)
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2. for ALS sampling and T -approximate leverage scores with subsampling probabilities Qα, t0 >
19κ2

n log 4n
δ ,

m > 334 log
16n

δ
∨ 78T 2dα,2 log

16n

δ
(115)

where α > 19κ2

n log 4n
δ .

Under the above condition, with the choice α � 1/n, the estimator achieves the optimal bound

L(β̂R,m)− L(fH) 6
2GRκ√

n

(
2 +

√
2 log(1/δ)

)
+ 2GR

1√
n

= R
√

log(1/δ) O
( 1√

n

)
(116)

Proof. We decompose the excess risk of β̂R,m with respect to the target w∗

L(β̂R,m)− L(w∗) = L(β̂R,m)− L̂(β̂R,m) + L̂(β̂R,m)− L̂(Pmw∗)︸ ︷︷ ︸
60

+ (117)

+ L̂(Pmw∗)− L(Pmw∗) + L(Pmw∗)− L(w∗)

6 2 sup
w∈Bm,‖w‖6R

(
L(w)− L̂(w)

)
︸ ︷︷ ︸

A

+L(Pmw∗)− L(w∗)︸ ︷︷ ︸
B

where ‖Pmw∗‖ 6 R since R > ‖w∗‖.

Bound for the term A:
Term A is bounded by Lemma 1, so that with probability at least 1− δ

A 6
GRκ√
n

(
2 +

√
2 log(1/δ)

)
. (118)

Bound for term B:
Term B is bounded as Term C in the proof of Theorem 7, see (49)

B 6 G‖Σ1/2(I − Pm)‖‖w∗‖ 6 GR‖Σ1/2(I − Pm)‖ (119)

and we estimate ‖Σ1/2(I − Pm)‖ using Lemma 3 for uniform sampling and Lemma 4 for ALS selection.

Again, bound 116 provides a convergence rate, which is optimal from a statistical point of view, but that requires
at least m ∼ n log n subsampled points since, without further assumptions the effective dimension dα,2, as well
as dα,∞, can in general be bounded only by κ2/α. Clearly, this makes the approach completely useless. As for
the regularized estimator, to overcome this issue we are forced to assume fast decay of the eigenvalues of the
covariance operator Σ, as in Bach (2017). Under this condition the following results – whose proof is identical to
the proof of Proposition 2, shows that the optimal rate can be achieved with an efficient computational cost at
least for ALS.

Corollary 6. Under the condition of Theorem 12,

1. if Σ has a polynomial decay, i.e. for some γ ∈ R+, p ∈ (0, 1),

σj(Σ) 6 γj−
1
p ,

then, with probability at least 1− δ

L(β̂R,m)− L(w∗) . R

√
log(1/δ)

n
+R

√
log1/p n

m1/p
= R

√
log(1/δ) O

( log1/p n√
n

)
(120)

with m & np log n subsampled points according to ALS method.
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2. if Σ has an exponential decay, i.e. for some γ, β ∈ R+,

σj(Σ) 6 γe−βj

with probability at least 1− δ:

L(β̂R,m)− L(w∗) . R

√
log(1/δ)

n
+Re−

m
2 logn = R

√
log(1/δ) O

( 1√
n

)
(121)

with m & log2 n subsampled points according to ALS method.

J Experiments: datasets and tuning

Here we report further information on the used data sets and the set up used for parameter tuning.
For Nyström SVM with Pegaos we tuned the kernel parameter σ and λ regularizer with a simple grid search
(σ ∈ [0.1, 20], λ ∈ [10−8, 10−1], initially with a coarse grid and then more refined around the best candidates). An
analogous procedure has been used for K-SVM with its parameters C and γ. The details of the considered data
sets and the chosen parameters for our algorithm in Table 2 and 4 are the following:
SUSY (Table 2 and 4, n = 5 × 106, d = 18): we used a Gaussian kernel with σ = 4, λ = 3 × 10−6 and
mALS = 2500, muniform = 2500.
Mnist binary (Table 2 and 4, n = 7× 104, d = 784): we used a Gaussian kernel with σ = 10, λ = 3× 10−6

and mALS = 15000, muniform = 20000.
Usps (Table 2 and 4, n = 9298, d = 256): we used a Gaussian kernel with σ = 10, λ = 5 × 10−6 and
mALS = 2500, muniform = 4000.
Webspam (Table 2 and 4, n = 3.5× 105, d = 254): we used a Gaussian kernel with σ = 0.25, λ = 8× 10−7

and mALS = 11500, muniform = 20000.
a9a (Table 2 and 4, n = 48842, d = 123): we used a Gaussian kernel with σ = 10, λ = 1×10−5 and mALS = 800,
muniform = 1500.
CIFAR (Table 2 and 4, n = 6 × 104, d = 400): we used a Gaussian kernel with σ = 10, λ = 2 × 10−6 and
mALS = 20500, muniform = 20000.

Table 4: Comparison between ALS and uniform sampling. To achieve similar accuracy, uniform sampling
usually requires larger m than ALS sampling. Therefore, even if it does not need leverage scores computations,
Nyström-Pegasos with uniform sampling can be more expensive both in terms of memory and time (in seconds).

Nyström-Pegasos (ALS) Nyström-Pegasos (Uniform)

Datasets c-err t train t pred c-err t train t pred

SUSY 20.0%± 0.2% 608± 2 134± 4 20.1%± 0.2% 592± 2 129± 1
Mnist bin 2.2%± 0.1% 1342± 5 491± 32 2.3%± 0.1% 1814± 8 954± 21
Usps 3.0%± 0.1% 19.8± 0.1 7.3± 0.3 3.0%± 0.2% 66.1± 0.1 48± 8
Webspam 1.3%± 0.1% 2440± 5 376± 18 1.3%± 0.1% 4198± 40 1455± 180
a9a 15.1%± 0.2% 29.3± 0.2 1.5± 0.1 15.1%± 0.2% 30.9± 0.2 3.2± 0.1
CIFAR 19.2%± 0.1% 2408± 14 820± 47 19.0%± 0.1% 2168± 19 709± 13


