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A.1 PROOFS OF LEMMAS

A.1.1 Preliminaries

Let us remember the definitions of the events,

Hi(t) := {i ∈ S̃(t), Ni(t) ≤ (1− ρ)piMi(t)}
H(t) := {∃i ∈ [m] : Hi(t)}

G := {|µ̂N(t)(xi)− µi| ≤
√
βN(t)σ̂N(t)(xi),

∀i ∈ [m],∀t ∈ [T ]}

J :=
{ m∑
i=1

T∑
t=1

I{Hi(t)} < α
}
,

where α ∈ [mT ] is fixed, Mi(t) :=
∑t−1
τ=1 I{i ∈ S̃(τ)} denotes the number of times base arm i was in the triggering

set, and Ni(t) :=
∑t−1
τ=1 I{i ∈ S′(τ)} denotes the number of observations made at base arm i, up to round t. Also,

let τ iw denote the round number where ith base arm is in the triggering set of the selected super arm for the wth
time, and τ i0 = 0.

Also, let us remind the definition of the exploration coefficient, βn = 2 log(mTπnδ ), where
∑∞
n=0

1
πn

= 1 (e.g.,
πn = π2n2/6). Note that βn is strictly increasing in n.
Fact 1. (Multiplicative Chernoff bound (Chen et al., 2016)) Let X1, . . . , Xn be Bernoulli random variables taking
values in {0, 1} such that E[Xt|X1, . . . , Xt−1] ≥ µ for all t ≤ n, and Y = X1 + · · ·+Xn. Then, for all δ ∈ (0, 1),

P
{
Y ≤ (1− δ)µn

}
≤ e−

δ2µn
2 .

A.1.2 Proof of Lemma 1

Lemma 1. The information gain by the end of round T in a CMAB problem (no probabilistic triggering) where
the super-arm S is constructed with a greedy approach can be expressed as,

I(yT ;fT ) =
1

2

T∑
t=1

∑
i∈S′(t)

log(1 + σ−2σ̂2
N(t,i)(xi)), (1)

where N(t,i) denotes the number of observations up to (not including) ith observation in round t, and σ̂2
N(t,i)(xi)

denotes the conditional variance at xi, conditioned on all the selected base-arms before ith arm at round t.

Proof. The main goal of this lemma is to provide an analogy between the standard information gain, and the
pseudo-information gain term that appears in our regret analysis. For the proof of this lemma, we consider a
scenario the where base arms are selected with a greedy approach, that is, after a base arm is chosen, the statistics
of the learner’s policy are updated before choosing the next base arm in the same round. As aforementioned, this
lemma serves to provide an analogy for our pseudo-information gain term. Even though this assumption may
not hold in general, there are several cases it holds. For instance, in the disjunctive form of cascading bandit
problem, where a search engine recommends webpages to its users, we can recommend webpages to a user one
at a time and update the GP statistics before our next recommendation. The proof this lemma is inspired by
the proof of Lemma 5.3 in Srinivas et al. (2010). Let xkt denote the kth arm in round t for which the learner
observes a feedback, and ykt denote the observation at xkt . Furthermore, let ykt be the vector of observations up
to (not including) kth observation in round t, and nt denote the total number of observations in round t. Also,
let N denote the total number of observations by the end of round T . Conditioned on ykt , x1

1,x
2
1, . . . ,x

k
t are

deterministic, and the conditional variance σ̂2
N(t,k)(x

k
t ) does not depend on ykt . Then, we have,

I(yT ;fT ) = H(yT )− 1

2
log |2πeσ2I| (2)

= H(yT )− N

2
log(2πeσ2)
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where yT denotes the vector of observations by the end of round T . We can rewrite H(yT ) as,

H(yT ) = H(ynTT ) +H(ynTT |y
nT
T )

= H(ynT−1T ) +H(ynT−1T |ynT−1T ) +H(ynTT |y
nT
T )

= H(y2
1) +H(y21 |y2

1) + . . .+H(ynT−1T |ynT−1T ) +H(ynTT |y
nT
T )

=
1

2

T∑
t=1

∑
i∈S′(t)

log(2πeσ2(1 + σ−2σ̂2
N(t,i)(xi))

=
N

2
log(2πeσ2) +

1

2

T∑
t=1

∑
i∈S′(t)

log(1 + σ−2σ̂2
N(t,i)(xi)) (3)

Finally, by the end of round T , given a set of base-arm observations yT , the information gain expression in (1)
follows from combining (2) and (3).

A.1.3 Proof of Lemma 2

Lemma 2. Given δ ∈ (0, 1), the event G holds with at least 1− δ probability.

Proof.

Fact 2. Given r ∼ N (0, 1), P{|r| > c} ≤ e−c2/2, by tail inequality.

Recall that the information available to the learner to guide its actions in round t+1 is Ft := {(S(τ), Q(τ)) : τ ∈ [t]}.
After making a set of observations, we can update the posterior mean and variance at x ∈ X as follows,

kN(t)(x,x
′) = k(x, x′)

− kN(t)(x)T (KN(t) + σ2I)−1kN(t)(x
′)

(4)

σ̂2
N(t)(x) = kN(t)(x, x) (5)

µ̂N(t)(x) = kN(t)(x)T (KN(t) + σ2I)−1Yt, (6)

where Yt := [Y T (1), . . . ,Y T (t − 1)]T denotes the vector of observations made until round t, and N(t) := |Yt|
denotes the total number of observations made until round t. Moreover, kN(t)(x, x

′) denotes the posterior
covariance between x and x′, and µ̂N(t)(x) and σ̂2

N(t)(x) denote the posterior mean and variance at x ∈ X at
round t, respectively. kN(t)(x) := [k(x1, x), . . . , k(xN(t), x)]T denotes the vector of covariances between x ∈ X ,
and past observations [x1, . . . ,xN(t)], where xi is the ith base arm picked from the beginning. KN(t) is the gram
matrix, I is the N(t)×N(t) identity matrix, and σ2 is the noise variance that we include in our calculations.

At round t, we have µi | Ft ∼ N (µ̂N(t)(xi), σ̂
2
N(t)(xi)). By using Fact 2, we can write,

P
{
|µ̂N(t)(xi)− µi| >

√
βnσ̂N(t)(xi) | Ft

}
= P

{ |µ̂N(t)(xi)− µi|
σ̂N(t)(xi)

>
√
βn | Ft

}
≤ e−βn/2

for a fixed i ∈ [m] and n. Calculating the union bound over all m base arms, time horizon T , and number of
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arms that can be chosen up to round t, N(t), we observe⋃
i,t,n

P
{
|µ̂N(t)(xi)− µi| >

√
βN(t)σ̂N(t)(xi) ∩N(t) = n | Ft

}
≤

m∑
i=1

T∑
t=1

m(t−1)∑
n=0

e−βn/2P{N(t) = n | Ft}

≤
m∑
i=1

T∑
t=1

∞∑
n=0

δ

mTπn
(7)

≤ δ

mT

m∑
i=1

T∑
t=1

∞∑
n=0

1

πn

≤ δ
∞∑
n=0

1

πn

≤ δ (8)

where (7) follows from the definition of βn, and (8) follows from fact that
∑∞
n=0 1/πn = 1. Finally, by definition

of the event G, and (8), we can observe that P
{
G
}
≥ 1− δ.

A.1.4 Proof of Lemma 3

Lemma 3. Given α ∈ [mT ], the event J holds with at least 1− m
α −

2m
ρ2αEµ[ 1

p∗ ] probability.

Proof.

E

[
T∑
t=1

I{i ∈ S̃(t), Ni(t) ≤ (1− ρ)piMi(t)}

∣∣∣∣∣µ
]

≤ E

 T∑
w=0

τ iw+1∑
t=τ iw+1

I{i ∈ S̃(t), Ni(t) ≤ (1− ρ)piMi(t)}

∣∣∣∣∣µ
]

≤ E

[
T∑
w=0

I{Ni(τ iw+1) ≤ (1− ρ)piMi(τ
i
w+1)}

∣∣∣∣∣µ
]

≤ 1 +

T∑
w=1

P{Ni(τ iw+1) ≤ (1− ρ)piMi(τ
i
w+1)|µ}

≤ 1 +

T∑
w=1

e−
ρ2p∗w

2 (9)

≤ 1 +
2

ρ2p∗

where (9) is due to Fact 1. We can then write,

E
[ T∑
t=1

I{Hi(t)} | µ
]
≤ 1 +

2

ρ2p∗
.

Then, we have

E
[ m∑
i=1

T∑
t=1

I{Hi(t)} | µ
]
≤ m+

2m

ρ2p∗
. (10)

We can now use (10) and tower rule to observe

Eµ

[
E[

m∑
i=1

T∑
t=1

I{Hi(t)} | µ]
]
≤ m+

2m

ρ2
Eµ[

1

p∗
]
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which yields,

E
[ m∑
i=1

T∑
t=1

I{Hi(t)}
]
≤ m+

2m

ρ2
Eµ[

1

p∗
] . (11)

Since
∑m
i=1

∑T
t=1 I{Hi(t)} is non-negative, we can use Markov’s inequality for a fixed α ∈ [mT ] and write

P
{ m∑
i=1

T∑
t=1

I{Hi(t)} ≥ α
}
≤

E
[∑m

i=1

∑T
t=1 I{Hi(t)}

]
α

. (12)

Finally, we combine the definition of event J , (11), and (12) to observe

P
{
J
}

= P
{ m∑
i=1

T∑
t=1

I{Hi(t)} < α
}

≥ 1−
E
[∑m

i=1

∑T
t=1 I{Hi(t)}

]
α

≥ 1−
m+ 2m

ρ2 Eµ[ 1
p∗ ]

α

≥ 1− m

α
− 2m

ρ2α
Eµ[

1

p∗
] .

A.1.5 Proof of Lemma 4

Lemma 4. Instantaneous variance of the Gaussian process at xi ∈ X can be upper bounded by the noise variance
and the number of times base arm i was triggered as, σ2/Ni(t) ≥ σ̂2

N(t)(xi).

Proof. Given A ⊆ B, H(µ|A) ≥ H(µ|B), since conditioning on more observations will reduce entropy. Let Y i
t

denote the observations made at base arm i up to round t. Remember that Yt denotes all the observations up to
round t. Then, we have Y i

t ⊆ Yt, which impliesH(µ|Y i
t ) ≥ H(µ|Yt). The entropy of a Gaussian random variable is

H(N (µ, σ2)) = 1
2 log(2πeσ2). We haveH(µ|Yt) = 1

2 log(2πeσ̂2
N(t)), andH(µ|Y i

t ) = 1
2 log(2πe(Ni(t)/σ

2+σ−2i )−1)).
Then we can write,

1

2
log(

2πe

Ni(t)/σ2 + σ−2i
) ≥ 1

2
log(2πeσ̂2

N(t)(xi)) (13)

where σ2
i = k(xi,xi) is the prior variance of GP at xi. Since k(xi,xi) ≥ 0, the following is immediate from (13),

σ2

Ni(t)
≥ σ̂2

N(t)(xi) .

A.2 ADDITIONAL NUMERICAL RESULTS

A.2.1 Disjunctive Form of Cascading Bandit Problem

This section provides additional numerical results on the disjunctive form of cascading bandit problem, where a
search engine tries to maximize the number of clicks on recommended webpages to its users.

In Figure 1, we have a slightly different setting in which there are multiple users (8) being served simultaneously.
Each user-page pair is treated as a base-arm, and each base arm has a two-dimensional context vector. One
dimension of the context vector represents the webpage, and the other represents the user. We assume that the
expected base-arm outcomes are obtained by passing the output of a GP through sigmoid. We see that when
there is a high correlation between base-arms (length-scale = 0.8), ComGP-UCB significantly outperforms other
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Figure 1: Regrets for the disjunctive cascading bandit problem, when there is high correlation between expected
base-arm outcomes. (L=32, R=8, K=4. Variance parameter is set to 1, and length-scale parameter is set to 0.8
for Squared-Exponential Kernel. Likelihood variance is set to 0.01).
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Figure 2: Pseudo-information gain when ComGP-UCB is run (same experiment with Figure 1).

algorithms. In Figure 2, the pseudo-information gain related to ComGP-UCB algorithm in this setting can be
observed, which increases sublinearly in time.

Figure 3 shows the regrets of algorithms when the expected base-arm outcomes are sampled randomly. We
have two things to note here. First, we observe that the performance ComGP-UCB algorithm is not as good
before compared to other algorithms. That is because there is no underlying dependence between different
base-arms, which would give ComGP-UCB an advantage over other algorithms. Second, notice two different
ComGP-UCB algorithms in Figure 3. The only difference between the two algorithms is that they use a different
length-scale (ls) parameter for the squared-exponential kernel. ComGP-UCB1 uses ls = 0.8, and ComGP-UCB2
uses ls = 0.2. Since a bigger length-scale parameter implies a stronger dependence, ComGP-UCB1 assumes
that similar base-arms are highly correlated, whereas ComGP-UCB2 assumes a weaker dependence. Since the
expected base-arm outcomes are sampled randomly, ComGP-UCB2 performs better compared to ComGP-UCB1.
This observation reveals the importance of working with the correct type of kernel and kernel hyper-parameters
for better performance.
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Figure 3: Regrets for the disjunctive cascading bandit problem, when the expected base-arm outcomes are
sampled randomly. (L=40, R=5, K=5).

Table 1: Mean value and standard deviations of ComGP-UCB’s regret after T = 200 rounds with different
length-scale parameters. The expected base-arm outcomes are sampled from a GP with squared exponential
kernel with variance set to 1 and length-scale set to 0.8. Note that this a separate experiment from the ones whose
results plotted before, only to compare the effect of length-scale parameter on the performance of ComGP-UCB.
The kernel is same for all four setups, which is the squared-exponential kernel (L= 200, R=1, K=10).

Algorithm Length-scale Regret (T = 200)

ComGP-UCB 0.8 131.73± 0.47
ComGP-UCB 0.6 164.52± 0.37
ComGP-UCB 0.4 204.44± 0.43
ComGP-UCB 0.2 283.98± 0.62

A.2.2 A Synthetic Problem

We consider a synthetic problem where the reward of a super-arm S is simply the sum of its base arms’ individual
rewards. Formally, R(S(t),Y (t)) =

∑
i∈S(t) r̄

t
i , where r̄ti denotes the outcome of base arm i ∈ [m] at round t.

In Figure 4, we have the regrets of the algorithms when the expected base-arm outcomes are sampled from
a GP with squared-exponential kernel 1. We see that in this case, ComGP-UCB significantly outperforms
the other state-of-the-art algorithms. In Figure 5, we investigate the setting where multiple users a served
simultaneously. Again, we see that ComGP-UCB outperforms the other algorithms. Similar to before, in Figure
6, we observe that the ComGP-UCB does not significantly improve other algorithms results when the expected
base-arm outcomes are sampled randomly. Also, we again note that the ComGP-UCB with a lower length-scale
parameter (ComGP-UCB2) works better. Please see Table 1 to observe the effect of the length-scale parameter
on the performance of ComGP-UCB. In that setup, the expected base-arm outcomes are sampled from a GP
with a squared exponential kernel with ls = 0.8. We can observe that the best performance is obtained when
the learner’s (GP) length-scale parameter is matching the actual length-scale parameter used for sampling the
expected base-arm outcomes. As expected, the performance degrades as the learner’s length-scale parameter
decreases (as the learner starts assuming weaker dependence between similar base-arms).

1Variance set to 1 and length-scale set to 0.8
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Figure 4: Regrets for the synthetics linear bandit problem, when there is high correlation between expected
base-arm outcomes (L=300, R=1, K=10. Variance parameter is set to 1, and length-scale parameter is set to 0.8
for Squared-Exponential Kernel. Likelihood variance is set to 0.0001).
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Figure 5: Regrets for the synthetic linear bandit problem, when there is high correlation between expected
base-arm outcomes (L=40, R=5, K=5. Variance parameter is set to 1, and length-scale parameter is set to 0.8
for Squared-Exponential Kernel. Likelihood variance is set to 0.0001).
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Figure 6: Regrets for the synthetic linear bandit problem, when the expected base-arm outcomes are sampled
randomly (L=30, R=5, K=5).
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