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Appendix

Here we present the omitted proofs of convergence rates. In Section A we give the proof of convergence in
strongly-convex-strongly-concave setting. Section B includes the proof for nonconvex-strongly-concave functions,
and in Section C we present proof of local SGDA+ for nonconvex-PL objectives. Finally, in Section D we provide
the proof of local SGDA+ on nonconvex-one-point-concave setting.

A Strongly-Convex-Strongly-Concave Setting

A.1 Overview of proof techniques

Before we dive into the proof we first sketch the proof of convergence of local SGDA under strongly-convex-
strongly-concave setting. We define the following notions to denote the (virtual) average primal and dual solution
at tth iteration:
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and the deviation between local primal and dual solutions and their corresponding averages:
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Homogeneous setting In homogeneous setting, we first study the behavior of local SGDA for one iteration.
With the help of strong convexity, concavity and smoothness we can show that:
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Then, to bound δ(t)
x + δ

(t)
y , with the help of strong convexity and smoothness, we can indeed show that it decreases

in the order of O(τ(1 + (L− µ)η)2τη2σ2). By properly choosing τ and η, we recover the rate O(τη2σ2) as desired.

Heterogeneous setting Similarly to homogeneous setting, we first do the one iteration analysis
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Next we need to bound deviation δ(t)
x + δ

(t)
y , which is also our main technical contribution in this section. We

consider the interval of τ steps, if we choose step size to be small enough and properly choose quadratic weights
wt = (t+ a)2, to make sure the deviation changes slowly, we can finally prove the following statement:
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where we related the deviation to the gap between current iterates and saddle points, and heterogeneity at global
optimum.
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A.2 Proof in homogeneous setting

In this section we are going to present the proof in homogeneous case. Let us introduce some technical lemmas
first which will help our proof.

A.2.1 Proof of technical lemmas

The following lemma performs one iteration analysis of local SGDA, on strongly convex function.
Lemma A.1. For local-SGDA, under Theorem 4.1’s assumptions, the following relation holds true:
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Proof. According to updating rule and strong convexity we have:
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We now proceed to bound terms
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where in the second equality we used the fact that ∇xF (x∗,y∗) = 0.

Putting these pieces together yields:
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Similarly, we can get:
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Adding above two inequalities up yields:
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Since η ≤
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4 , then we can conclude:
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The next lemma characterizes the local model deviation during the dynamics of local SGDA.

Lemma A.2. For local-SGDA, under Theorem 4.1’s assumptions, the following relation holds true for any
i, j ∈ [n]:
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where we used the µ-strong-convexity and L-smoothness assumptions, that imply µI 4 H1 4 LI and µI 4 H2 4 LI.
We similarly continue to bound y(t+1)

i − y(t+1)
j :

y
(t+1)
i − y(t+1)

j = y
(t)
i + η∇yF (x

(t)
i ,y

(t)
i ; ξ

(t)
i )− y(t)

j − η∇yF (x
(t)
j ,y

(t)
j ; ξ

(t)
j )

= y
(t)
i − y

(t)
j + η

(
∇yF (x

(t)
i ,y

(t)
i )−∇yF (x

(t)
j ,y

(t)
j )
)

− η
(
∇yF (x

(t)
i ,y

(t)
i )−∇yF (x

(t)
i ,y

(t)
i ; ξ

(t)
i )
)
− η

(
∇yF (x

(t)
j ,y

(t)
j ; ξ

(t)
j )−∇yF (x

(t)
j ,y

(t)
j )
)

= y
(t)
i − y

(t)
j + η

(
∇yF (x

(t)
i ,y

(t)
i )−∇yF (x

(t)
i ,y

(t)
j )
)

+ η
(
∇yF (x

(t)
i ,y

(t)
j )−∇yF (x

(t)
j ,y

(t)
j )
)

− ηεiσ,y + ηεjσ,y

= (1− ηH3)
(
y

(t)
i − y

(t)
j

)
− ηH4

(
x

(t)
i − x

(t)
j

)
− ηεiσ,y + ηεjσ,y,

where µI 4 H3 4 LI and µI 4 H4 4 LI.

Let εtx = x
(t)
i − x

(t)
j , εty = y

(t)
i − y

(t)
j . Writing the above inequalities into compact matrix form, we have:[
εt+1
x

εt+1
y

]
= At

[
εtx
εty

]
+

[
ηI, 0
0, ηI

] [
εiσ,x − εjσ,x
εjσ,y − εiσ,y

]
, (4)

where:

At =

[
(1− ηH1), −ηH2

−ηH4, (1− ηH3)

]
. (5)



Deng, Mahdavi

Taking squared norm and expectation over (4) yields:

E
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Now let us examine the upper bound of ‖At‖2. According to [54] (Lemma G.1), we have:
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A.2.2 Proof of Theorem 4.1

Now we can proceed to the proof of Theorem 4.1.

Proof. According to Lemma A.1 we have:
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Notice that F (x(t),y∗)− F (x∗,y(t)) = F (x(t),y∗)− F (x∗,y∗) + F (x∗,y∗)− F (x∗,y(t)) ≥ 0, we can omit this
term. We plug Lemma A.2 into (7) to get:
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Unrolling the recursion yields:

E
[∥∥∥x(T ) − x∗

∥∥∥2

+
∥∥∥y(T ) − y∗

∥∥∥2
]
≤
(

1− 1

2
µη

)T (
E
[∥∥∥x(0) − x∗

∥∥∥2

+
∥∥∥y(0) − y∗

∥∥∥2
])

+
2ησ2

µn
+

(
32L2

µ2
+

16ηL2

µ

)(
τ(1 + (L− µ)η)2τ8η2σ2

)
.



Local Stochastic Gradient Descent Ascent

Plugging in τ = T
n log T and η = 4 log T

µT , we have:
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µ2T
L2)

)(
T

n log T

(
1 + (L− µ)

4 log T

µT

)2 T
n log T 128 log2 T

µ2T 2
σ2

)

≤ exp(− log T 2)

(
E
[∥∥∥x(0) − x∗

∥∥∥2

+
∥∥∥y(0) − y∗

∥∥∥2
])

+
8 log Tσ2

µ2nT
+

(
32L2

µ2
+ 16

4 log T

µ2T
L2

)(
T

n log T

(
1 + (L− µ)

4 log T

µT

)2 T
n log T 128 log2 T

µ2T 2
σ2

)
.

Notice that:(
1 + (L− µ)

4 log T

µT

) 2T
n log T

=

(
1 + (L− µ)

4 log T

µT

) µT
4(L−µ) log T

2T
n log T

4(L−µ) log T
µT

≤ exp

(
8(L− µ)

µn

)
.

So we can conclude the proof:

E
[∥∥∥x(T ) − x∗

∥∥∥2

+
∥∥∥y(T ) − y∗

∥∥∥2
]

≤
E
[∥∥x(0) − x∗

∥∥2
+
∥∥y(0) − y∗

∥∥2
]

T 2

+
8 log Tσ2

µ2nT
+

(
32L2

µ2
+ 16

4 log T

µ2T
L2

)(
T

n log T
exp

(
8(L− µ)

µn

)
128 log2 T

µ2T 2
σ2

)
≤ Õ

(
1

T 2
+

σ2

µ2nT
+
κ2σ2

µ2nT
+

κ2σ2

µ2nT 2

)
.

as stated where we used Õ(·) in last inequality to keep key parameters.

A.3 Proof in heterogeneous setting

In this section we are going to present the proof in heterogeneous case. Let us introduce some technical lemmas
first which will help our proof.

A.3.1 Proof of technical lemmas

The following lemma performs one iteration analysis:

Lemma A.3. For local-SGDA, under Theorem 4.2’s assumptions, the following relation holds true:

E
[∥∥∥x(t+1) − x∗

∥∥∥2
]

+ E
[∥∥∥y(t+1) − y∗

∥∥∥2
]
≤
(

1− 1

2
µηt

)(
E
[∥∥∥x(t) − x∗

∥∥∥2
]

+ E
[∥∥∥y(t) − y∗

∥∥∥2
])

− 2ηt

(
F (x(t),y∗)− F (x∗,y(t))

)
+

16

µ
ηtL

2(δ(t)
x + δ(t)

y ) +
2η2
t σ

2

n

+ 8η2
tL

2
(
δ(t)
x + δ(t)

y

)
.

Proof. According to updating rule and strong convexity:

E
[∥∥∥x(t+1) − x∗

∥∥∥2
]

= E

∥∥∥∥∥x(t) − ηt
1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i ; ξ

(t)
i )− x∗

∥∥∥∥∥
2

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≤ E
[∥∥∥x(t) − x∗

∥∥∥2
]
− 2ηt

〈
1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i ),x(t) − x∗

〉

+
η2
t σ

2

n
+ η2

tE

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

∥∥∥∥∥
2


≤ E
[∥∥∥x(t) − x∗

∥∥∥2
]
− 2ηt

〈
∇xF (x(t),y(t)),x(t) − x∗

〉
− 2ηt

〈
1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )−∇xF (x(t),y(t)),x(t) − x∗

〉

+
η2
t σ

2

n
+ η2

tE

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

∥∥∥∥∥
2


≤ (1− µηt)E
[∥∥∥x(t) − x∗

∥∥∥2
]
− 2ηt

(
F (x(t),y(t))− F (x∗,y(t))

)
+ ηtE

 4

µ

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )−∇xF (x(t),y(t))

∥∥∥∥∥
2

+
µ

4

∥∥∥x(t) − x∗
∥∥∥2


+
η2
t σ

2

n
+ η2

tE

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

∥∥∥∥∥
2
 .

Now we are going to bound terms
∥∥∥ 1
n

∑n
i=1∇xfi(x

(t)
i ,y

(t)
i )−∇xF (x(t),y(t))

∥∥∥2

and
∥∥∥ 1
n

∑n
i=1∇xfi(x

(t)
i ,y

(t)
i )
∥∥∥2

.

By applying Jensen’s inequality on
∥∥∥ 1
n

∑n
i=1∇xfi(x

(t)
i ,y

(t)
i )−∇xF (x(t),y(t))

∥∥∥2

we have:∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )−∇xF (x(t),y(t))

∥∥∥∥∥
2

=
1

n

n∑
i=1

∥∥∥∇xfi(x(t)
i ,y

(t)
i )−∇xfi(x(t),y(t))

∥∥∥2

≤ 1

n

n∑
i=1

(
2
∥∥∥∇xfi(x(t)

i ,y
(t)
i )−∇xfi(x(t),y

(t)
i )
∥∥∥2

+ 2
∥∥∥∇xfi(x(t),y

(t)
i )−∇xfi(x(t),y(t))

∥∥∥2
)

≤ 1

n

n∑
i=1

(
2L2

∥∥∥x(t)
i − x

(t)
∥∥∥2

+ 2L2
∥∥∥y(t)

i − y
(t)
∥∥∥2
)

≤ 2L2(δ(t)
x + δ(t)

y ),

where we use the smoothness in the second last inequality.

Then we switch to bound
∥∥∥ 1
n

∑n
i=1∇xfi(x

(t)
i ,y

(t)
i )
∥∥∥2

:∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

∥∥∥∥∥
2

=
1

n

n∑
i=1

∥∥∥∇xfi(x(t)
i ,y

(t)
i )
∥∥∥2

= 2

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )−∇xF (x(t),y(t))

∥∥∥∥∥
2

+ 2
∥∥∥∇xF (x(t),y(t))−∇xF (x∗,y∗)

∥∥∥2

≤ L2 1

n

n∑
i=1

4

(∥∥∥x(t)
i − x

(t)
∥∥∥2

+
∥∥∥x(t) − x∗

∥∥∥2

+
∥∥∥y(t)

i − y
(t)
∥∥∥2

+
∥∥∥y(t) − y∗

∥∥∥2
)
.

Putting these pieces together yields:

E
[∥∥∥x(t+1) − x∗

∥∥∥2
]
≤
(

1− 3

4
µηt

)
E
[∥∥∥x(t) − x∗

∥∥∥2
]
− 2ηt

(
E
[
F (x(t),y(t))− F (x∗,y(t))

])
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+
8

µ
ηtL

2E(δ(t)
x + δ(t)

y ) +
η2
t σ

2

n

+ 4η2
tL

2E
(
δ(t)
x +

∥∥∥x(t) − x∗
∥∥∥2

+
∥∥∥y∗ − y(t)

∥∥∥2

+ δ(t)
y

)
.

Similarly, we can get:

E
[∥∥∥y(t+1) − y∗

∥∥∥2
]
≤
(

1− 3

4
µηt

)
E
[∥∥∥y(t) − y∗

∥∥∥2
]
− 2ηtE

(
F (x(t),y∗)− F (x(t),y(t))

)
+

8

µ
ηtL

2E(δ(t)
x + δ(t)

y ) +
η2
t σ

2

n

+ 4η2
tL

2E
(
δ(t)
y +

∥∥∥y(t) − y∗
∥∥∥2

+
∥∥∥x∗ − x(t)

∥∥∥2

+ δ(t)
x

)
.

Combining the above two inequalities yields:

E
[∥∥∥x(t+1) − x∗

∥∥∥2
]

+ E
[∥∥∥y(t+1) − y∗

∥∥∥2
]

≤
(

1− 3

4
µηt

)(
E
[∥∥∥x(t) − x∗

∥∥∥2
]

+ E
[∥∥∥y(t) − y∗

∥∥∥2
])

− 2ηtE
(
F (x(t),y∗)− F (x∗,y(t))

)
+

16

µ
ηtL

2(δ(t)
x + δ(t)

y ) +
2η2
t σ

2

n

+ 8η2
tL

2

(
E
[
δ(t)
x + δ(t)

y

]
+

(
E
[∥∥∥x(t) − x∗

∥∥∥2
]

+ E
[∥∥∥y(t) − y∗

∥∥∥2
]))

.

Since ηt = 8
µ(t+a) and a = max{2048κ2τ, 1024

√
2τκ2, 256κ2}, so we have 8η2

tL
2 ≤ µηt

4 , then we can conclude:

E
[∥∥∥x(t+1) − x∗

∥∥∥2
]

+ E
[∥∥∥y(t+1) − y∗

∥∥∥2
]
≤
(

1− 1

2
µηt

)(
E
[∥∥∥x(t) − x∗

∥∥∥2
]

+ E
[∥∥∥y(t) − y∗

∥∥∥2
])

− 2ηt

(
E
[
F (x(t),y∗)− F (x∗,y(t))

])
+

16

µ
ηtL

2(E
[
δ(t)
x + δ(t)

y

]
) +

2η2
t σ

2

n

+ 8η2
tL

2
(
E
[
δ(t)
x + δ(t)

y

])
.

The next lemma upper bounds the weighted accumulative local model deviations between two communication
rounds in strongly convex setting under heterogeneous data assumption.

Lemma A.4. For local-SGDA, under Theorem 4.2’s assumption, by letting wt = (t+a)2, the following inequality
holds:

(s+1)τ∑
t=sτ

wt(E
[
δ(t)
x + δ(t)

y

]
) ≤ µ

64L2

(s+1)τ∑
j=sτ

µηj
wj
ηj

(
E
[∥∥∥x(j) − x∗

∥∥∥2

+
∥∥∥y(j) − y∗

∥∥∥2
])

+ 64τ2

(s+1)τ∑
j=sτ

wjη
2
j (∆x + ∆y) + 32τ2

(s+1)τ∑
j=sτ

wjη
2
jσ

2.

where δ(t)
x = 1

n

∑n
i=1

∥∥∥x(t)
i − x(t)

∥∥∥2

, δ
(t)
y = 1

n

∑n
i=1

∥∥∥y(t)
i − y(t)

∥∥∥2

.



Deng, Mahdavi

Proof. Assume that sτ ≤ t ≤ (s+ 1)τ . According to the updating rule, we have:

δ(t)
x =

1

n

n∑
i=1

∥∥∥x(t)
i − x

(t)
∥∥∥2

=
1

n

n∑
i=1

∥∥∥∥∥∥x(sτ) −
t∑

j=sτ

ηj∇xfi
(
x

(j)
i ,y

(j)
i ; ξ

(j)
i

)
−

x(sτ) − 1

n

n∑
k=1

t∑
j=sτ

ηj∇xfk
(
x

(k)
i ,y

(k)
i ; ξ

(k)
i

)∥∥∥∥∥∥
2

=
1

n

n∑
i=1

∥∥∥∥∥∥
t−1∑
j=sτ

ηj∇xfi
(
x

(j)
i ,y

(j)
i ; ξ

(j)
i

)
− 1

n

n∑
k=1

t−1∑
j=sτ

ηj∇xfk
(
x

(k)
i ,y

(k)
i ; ξ

(k)
i

)∥∥∥∥∥∥
2

≤ 1

n

n∑
i=1

∥∥∥∥∥∥
t−1∑
j=sτ

ηj∇xfi
(
x

(j)
i ,y

(j)
i ; ξ

(j)
i

)∥∥∥∥∥∥
2

≤ 1

n

n∑
i=1

τ

(s+1)τ∑
j=sτ

η2
j

(
2
∥∥∥∇xfi (x(j)

i ,y
(j)
i

)∥∥∥2

+ 2σ2

)
.

By applying Jensen’s inequality to
∥∥∥∇xfi (x(j)

i ,y
(j)
i

)∥∥∥2

:

∥∥∥∇xfi (x(j)
i ,y

(j)
i

)∥∥∥2

≤ 4
∥∥∥∇xfi (x(j)

i ,y
(j)
i

)
−∇xfi

(
x(j),y(j)

)∥∥∥2

+ 4
∥∥∥∇xfi (x(j),y(j)

)
−∇xfi

(
x∗,y(j)

)∥∥∥2

+ 4
∥∥∥∇xfi (x∗,y(j)

)
−∇xfi (x∗,y∗)

∥∥∥2

+ 4 ‖∇xfi (x∗,y∗)‖2

≤ 8L2

(∥∥∥x(j)
i − x

(j)
∥∥∥2

+
∥∥∥y(j)

i − y
(j)
∥∥∥2
)

+ 4L2
∥∥∥x(j) − x∗

∥∥∥2

+ 4L2
∥∥∥y(j) − y∗

∥∥∥2

+ 4 ‖∇xfi (x∗,y∗)‖2 .

Plugging back and taking expectation yields:

E
[
δ(t)
x

]
≤ 1

n

n∑
i=1

τ

(s+1)τ∑
j=sτ

× η2
j

(
16L2

(
E
[∥∥∥x(j)

i − x
(j)
∥∥∥2

+
∥∥∥y(j)

i − y
(j)
∥∥∥2
])

+ E
[
8L2

∥∥∥x(j) − x∗
∥∥∥2

+ 8L2
∥∥∥y(j) − y∗

∥∥∥2
])

+
1

n

n∑
i=1

τ

(s+1)τ∑
j=sτ

(
η2
j 8 ‖∇xfi (x∗,y∗)‖2 + 2σ2

)

≤ τ
(s+1)τ∑
j=sτ

η2
j

(
16L2

(
δ(j)
x + δ(j)

y

)
+ 8L2

(
E
[∥∥∥x(j) − x∗

∥∥∥2

+
∥∥∥y(j) − y∗

∥∥∥2
]))

+ 8τ

(s+1)τ∑
j=sτ

η2
j∆x + 2τ

(s+1)τ∑
j=sτ

η2
jσ

2.

Then multiplying wt on both sides and summing from t = sτ to (s+ 1)τ yields:

(s+1)τ∑
t=sτ

wtE
[
δ(t)
x

]
≤

(s+1)τ∑
j=sτ

wtτ

(s+1)τ∑
j=sτ

η2
j

(
16L2

(
E
[
δ(j)
x + δ(j)

y

])
+ 8L2

(
E
[∥∥∥x(j) − x∗

∥∥∥2

+
∥∥∥y(j) − y∗

∥∥∥2
]))

+ 8

(s+1)τ∑
t=sτ

wtτ

(s+1)τ∑
j=sτ

η2
j∆x + 2

(s+1)τ∑
t=sτ

wtτ

(s+1)τ∑
j=sτ

η2
jσ

2.
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Notice that wt = (t+ a)2 and a ≥ τ , so wt < w(s+1)τ ≤ 4wj , ∀t, j such that sτ ≤ t, j ≤ (s+ 1)τ . So we have:

(s+1)τ∑
t=sτ

wtE
[
δ(t)
x

]
≤ τ2

(s+1)τ∑
j=sτ

4wjη
2
j

(
16L2

(
E
[
δ(j)
x + δ(j)

y

])
+ 8L2

(
E
[∥∥∥x(j) − x∗

∥∥∥2

+
∥∥∥y(j) − y∗

∥∥∥2
]))

+ 32τ2

(s+1)τ∑
j=sτ

wjη
2
j∆x + 8τ2

(s+1)τ∑
j=sτ

wjη
2
jσ

2.

Since ηt = 8
µ(t+a) and a = max{2048κ2τ, 1024

√
2τκ2, 256κ2}, we have the following facts:

ηt < ηsτ ≤ 2ηj , ∀t, j such that sτ ≤ t, j ≤ (s+ 1)τ,

256η2
t τ

2L2 ≤ 1

4
,

128η2
t τ

2L2 ≤ µ2

256L2
.

Hence:
(s+1)τ∑
t=sτ

wtE
[
δ(t)
x

]
≤ 4η2

t τ
2

(s+1)τ∑
j=sτ

4wj

(
16L2

(
E
[
δ(j)
x + δ(j)

y

])
+ 8L2

(
E
[∥∥∥x(j) − x∗

∥∥∥2

+
∥∥∥y(j) − y∗

∥∥∥2
]))

+ 32τ2

(s+1)τ∑
j=sτ

wjη
2
j∆x + 8τ2

(s+1)τ∑
j=sτ

wjη
2
jσ

2.

≤ 1

4

(s+1)τ∑
j=sτ

wj

(
E
[
δ(j)
x + δ(j)

y

])
+ 128η2

t τ
2L2

(s+1)τ∑
j=sτ

wj

(
E
[∥∥∥x(j) − x∗

∥∥∥2

+
∥∥∥y(j) − y∗

∥∥∥2
])

+ 32τ2

(s+1)τ∑
j=sτ

wjη
2
j∆x + 8τ2

(s+1)τ∑
j=sτ

wjη
2
jσ

2

≤ 1

4

(s+1)τ∑
j=sτ

wj

(
E
[
δ(j)
x + δ(j)

y

])
+

µ2

256L2

(s+1)τ∑
j=sτ

wj

(
E
[∥∥∥x(j) − x∗

∥∥∥2

+
∥∥∥y(j) − y∗

∥∥∥2
])

+ 32τ2

(s+1)τ∑
j=sτ

wjη
2
j∆x + 8τ2

(s+1)τ∑
j=sτ

wjη
2
jσ

2

≤ 1

4

(s+1)τ∑
j=sτ

wj

(
E
[
δ(j)
x + δ(j)

y

])
+

µ

256L2

(s+1)τ∑
j=sτ

µηj
wj
ηj

(
E
[∥∥∥x(j) − x∗

∥∥∥2

+
∥∥∥y(j) − y∗

∥∥∥2
])

+ 32τ2

(s+1)τ∑
j=sτ

wjη
2
j∆x + 8τ2

(s+1)τ∑
j=sτ

wjη
2
jσ

2.

Similarly, we get:

(s+1)τ∑
t=sτ

wtE[δ(t)
y ] ≤ 1

4

(s+1)τ∑
j=sτ

wj

(
E
[
δ(j)
x + δ(j)

y

])
+

µ

256L2

(s+1)τ∑
j=sτ

µηj
wj
ηj

(
E
[∥∥∥x(j) − x∗

∥∥∥2

+
∥∥∥y(j) − y∗

∥∥∥2
])

+ 32τ2

(s+1)τ∑
j=sτ

wjη
2
j∆y + 8τ2

(s+1)τ∑
j=sτ

wjη
2
jσ

2.

Adding the two inequalities up gives:

(s+1)τ∑
t=sτ

wt

(
E
[
δ(t)
x + δ(t)

y

])
≤ 1

2

(s+1)τ∑
j=sτ

wj

(
E
[
δ(j)
x + δ(j)

y

])
+

µ

128L2

(s+1)τ∑
j=sτ

µηj
wj
ηj

(
E
[∥∥∥x(j) − x∗

∥∥∥2

+
∥∥∥y(j) − y∗

∥∥∥2
])
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+ 32τ2

(s+1)τ∑
j=sτ

wjη
2
j (∆x + ∆y) + 16τ2

(s+1)τ∑
j=sτ

wjη
2
jσ

2

⇐⇒ 1

2

(s+1)τ∑
t=sτ

wt

(
E
[
δ(t)
x + δ(t)

y

])
≤ µ

128L2

(s+1)τ∑
j=sτ

µηj
wj
ηj

(
E
[∥∥∥x(j) − x∗

∥∥∥2

+
∥∥∥y(j) − y∗

∥∥∥2
])

+ 32τ2

(s+1)τ∑
j=sτ

wjη
2
j (∆x + ∆y) + 16τ2

(s+1)τ∑
j=sτ

wjη
2
jσ

2

⇐⇒
(s+1)τ∑
t=sτ

wt

(
E
[
δ(t)
x + δ(t)

y

])
≤ µ

64L2

(s+1)τ∑
j=sτ

µηj
wj
ηj

(
E
[∥∥∥x(j) − x∗

∥∥∥2

+
∥∥∥y(j) − y∗

∥∥∥2
])

+ 64τ2

(s+1)τ∑
j=sτ

wjη
2
j (∆x + ∆y) + 32τ2

(s+1)τ∑
j=sτ

wjη
2
jσ

2.

The following lemma also gives the upper bound for weighted local model deviations, but the weights multiplied
in front of E

[
δ

(t)
x + δ

(t)
y

]
is different from Lemma A.4.

Lemma A.5. For local-SGDA, under Theorem 4.2’s assumption, by letting wt = (t+ a)2, the following holds:

(s+1)τ∑
t=sτ

wtηt

(
E
[
δ(t)
x + δ(t)

y

])
≤ 1

64L2

(s+1)τ∑
j=sτ

µηj
wj
ηj

(
E
[∥∥∥x(j) − x∗

∥∥∥2

+
∥∥∥y(j) − y∗

∥∥∥2
])

+ 128τ2

(s+1)τ∑
j=sτ

wjη
3
j (∆x + ∆y) + 64τ2

(s+1)τ∑
j=sτ

wjη
3
jσ

2.

Proof. According to Lemma A.4, we have:

(s+1)τ∑
t=sτ

wtηtE
[
δ(t)
x

]
≤

(s+1)τ∑
t=sτ

wtτηt

(s+1)τ∑
j=sτ

η2
j

(
16L2

(
E
[
δ(j)
x + δ(j)

y

])
+ 8L2

(
E
[∥∥∥x(j) − x∗

∥∥∥2

+
∥∥∥y(j) − y∗

∥∥∥2
]))

+ 8

(s+1)τ∑
t=sτ

wtτ

(s+1)τ∑
j=sτ

η2
j∆x + 2

(s+1)τ∑
t=sτ

wtτ

(s+1)τ∑
j=sτ

η2
jσ

2.

(8)

Notice that wt = (t+ a)2 and a ≥ τ , so wt < w(s+1)τ ≤ 4wj , ∀t, j such that sτ ≤ t, j ≤ (s+ 1)τ . So we have:

(s+1)τ∑
t=sτ

wtηtE
[
δ(t)
x

]
≤ τ2ηt

(s+1)τ∑
j=sτ

4wjη
2
j

(
16L2

(
E
[
δ(j)
x + δ(j)

y

])
+ 8L2

(
E
[∥∥∥x(j) − x∗

∥∥∥2

+
∥∥∥y(j) − y∗

∥∥∥2
]))

+ 32τ2ηt

(s+1)τ∑
j=sτ

wjη
2
j∆x + 8τ2ηt

(s+1)τ∑
j=sτ

wjη
2
jσ

2.

≤ τ2

(s+1)τ∑
j=sτ

4wjη
2
j

(
16L2

(
E
[
δ(j)
x + δ(j)

y

])
+ 8L2

(
E
[∥∥∥x(j) − x∗

∥∥∥2

+
∥∥∥y(j) − y∗

∥∥∥2
]))

(9)

+ 32τ2ηt

(s+1)τ∑
j=sτ

wjη
2
j∆x + 8τ2ηt

(s+1)τ∑
j=sτ

wjη
2
jσ

2,

where we omit a ηt in (9) since ηt ≤ 1.
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Since ηt = 8
µ(t+a) and a = max{2048κ2τ, 1024

√
2τκ2, 256κ2}, we have the following facts:

ηt < ηsτ ≤ 2ηj , ∀t, j such that sτ ≤ t, j ≤ (s+ 1)τ,

256η2
t τ

2 ≤ 1

4
,

128η2
t τ

2L2 ≤ µ

256L2
.

Hence:
(s+1)τ∑
t=sτ

wtηtE
[
δ(t)
x

]
≤ 4η2

t τ
2

(s+1)τ∑
j=sτ

4wj

(
16L2

(
E
[
δ(j)
x + δ(j)

y

])
+ 8L2

(
E
[∥∥∥x(j) − x∗

∥∥∥2

+
∥∥∥y(j) − y∗

∥∥∥2
]))

+ 64τ2

(s+1)τ∑
j=sτ

wjη
3
j∆x + 16τ2

(s+1)τ∑
j=sτ

wjη
3
jσ

2.

≤ 1

4

(s+1)τ∑
j=sτ

wj

(
E
[
δ(j)
x + δ(j)

y

])
+ 128η2

t τ
2L2

(s+1)τ∑
j=sτ

wj

(
E
[∥∥∥x(j) − x∗

∥∥∥2

+
∥∥∥y(j) − y∗

∥∥∥2
])

+ 64τ2

(s+1)τ∑
j=sτ

wjη
3
j∆x + 16τ2

(s+1)τ∑
j=sτ

wjη
2
jσ

2

≤ 1

4

(s+1)τ∑
j=sτ

wj

(
E
[
δ(j)
x + δ(j)

y

])
+

µ

256L2

(s+1)τ∑
j=sτ

wj

(
E
[∥∥∥x(j) − x∗

∥∥∥2

+
∥∥∥y(j) − y∗

∥∥∥2
])

+ 64τ2

(s+1)τ∑
j=sτ

wjη
3
j∆x + 16τ2

(s+1)τ∑
j=sτ

wjη
3
jσ

2

≤ 1

4

(s+1)τ∑
j=sτ

wj

(
E
[
δ(j)
x + δ(j)

y

])
+

1

256L2

(s+1)τ∑
j=sτ

µηj
wj
ηj

(
E
[∥∥∥x(j) − x∗

∥∥∥2

+
∥∥∥y(j) − y∗

∥∥∥2
])

+ 64τ2

(s+1)τ∑
j=sτ

wjη
3
j∆x + 16τ2

(s+1)τ∑
j=sτ

wjη
3
jσ

2.

Similarly, we get:

(s+1)τ∑
t=sτ

wtηtE
[
δ(t)
y

]
≤ 1

4

(s+1)τ∑
j=sτ

wj

(
E
[
δ(j)
x + δ(j)

y

])
+

1

256L2

(s+1)τ∑
j=sτ

µηj
wj
ηj

(
E
[∥∥∥x(j) − x∗

∥∥∥2

+
∥∥∥y(j) − y∗

∥∥∥2
])

+ 64τ2

(s+1)τ∑
j=sτ

wjη
3
j∆y + 16τ2

(s+1)τ∑
j=sτ

wjη
3
jσ

2.

Combining the two inequalities yields:

(s+1)τ∑
t=sτ

wtηt(E
[
δ(t)
x + δ(t)

y

]
) ≤ 1

2

(s+1)τ∑
j=sτ

wj

(
E
[
δ(j)
x + δ(j)

y

])
+

1

128L2

(s+1)τ∑
j=sτ

µηj
wj
ηj

(
E
[∥∥∥x(j) − x∗

∥∥∥2

+
∥∥∥y(j) − y∗

∥∥∥2
])

+ 64τ2

(s+1)τ∑
j=sτ

wjη
3
j (∆x + ∆y) + 32τ2

(s+1)τ∑
j=sτ

wjη
3
jσ

2

⇐⇒ 1

2

(s+1)τ∑
t=sτ

wtηt(E
[
δ(t)
x + δ(t)

y

]
) ≤ 1

128L2

(s+1)τ∑
j=sτ

µηj
wj
ηj

(
E
[∥∥∥x(j) − x∗

∥∥∥2

+
∥∥∥y(j) − y∗

∥∥∥2
])

+ 64τ2

(s+1)τ∑
j=sτ

wjη
3
j (∆x + ∆y) + 32τ2

(s+1)τ∑
j=sτ

wjη
3
jσ

2
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⇐⇒
(s+1)τ∑
t=sτ

wtηt(E
[
δ(t)
x + δ(t)

y

]
) ≤ 1

64L2

(s+1)τ∑
j=sτ

µηj
wj
ηj

(
E
[∥∥∥x(j) − x∗

∥∥∥2

+
∥∥∥y(j) − y∗

∥∥∥2
])

+ 128τ2

(s+1)τ∑
j=sτ

wjη
3
j (∆x + ∆y) + 64τ2

(s+1)τ∑
j=sτ

wjη
3
jσ

2.

A.3.2 Proof of Theorem 4.2

Now we are going to proof Theorem 4.2.

Proof. According to Lemma A.3 we have:

E
[∥∥∥x(t+1) − x∗

∥∥∥2
]

+ E
[∥∥∥y(t+1) − y∗

∥∥∥2
]
≤
(

1− 1

2
µηt

)(
E
[∥∥∥x(t) − x∗

∥∥∥2
]

+ E
[∥∥∥y(t) − y∗

∥∥∥2
])

− 2ηtE
(
F (x(t),y∗)− F (x∗,y(t))

)
+

16

µ
ηtL

2E(δ(t)
x + δ(t)

y ) +
2η2
t σ

2

n

+ 8η2
tL

2E
(
δ(t)
x + δ(t)

y

)
.

Then, letting wt = (t+ a)2 and multiplying wt
ηt

on both sides, and summing up from t = 1 to T :

S−1∑
s=0

(s+1)τ∑
t=sτ

wt
ηt

E
(∥∥∥x(t+1) − x∗

∥∥∥2

+
∥∥∥y(t+1) − y∗

∥∥∥2
)

≤
S−1∑
s=0

(s+1)τ∑
t=sτ

(
1− 1

2
µηt

)
wt
ηt

E
(∥∥∥x(t) − x∗

∥∥∥2

+
∥∥∥y(t) − y∗

∥∥∥2
)

− 2

S−1∑
s=0

(s+1)τ∑
t=sτ

wtE
(
F (x(t),y∗)− F (x∗,y(t))

)
+

S−1∑
s=0

(s+1)τ∑
t=sτ

2wtηtσ
2

n

+
16L2

µ

S−1∑
s=0

(s+1)τ∑
t=sτ

wtE
(
δ(t)
x + δ(t)

y

)
︸ ︷︷ ︸

T1

+ 8L2
S−1∑
s=0

(s+1)τ∑
t=sτ

wtηtE
(
δ(t)
x + δ(t)

y

)
︸ ︷︷ ︸

T2

. (10)

Then we use Lemmas A.4 and A.5 in T1 and T2 to get:

T1 =

S−1∑
s=0

(s+1)τ∑
t=sτ

1

8
µηt

wt
ηt

E
(∥∥∥x(t) − x∗

∥∥∥2

+
∥∥∥y(t) − y∗

∥∥∥2
)

+
1024τ2L2

µ

S−1∑
s=0

(s+1)τ∑
t=sτ

wtη
2
t (∆x + ∆y) +

512τ2L2

µ

S−1∑
s=0

(s+1)τ∑
t=sτ

wtη
2
t σ

2

T2 =

S−1∑
s=0

(s+1)τ∑
t=sτ

1

8
µηt

wt
ηt

E
(∥∥∥x(t) − x∗

∥∥∥2

+
∥∥∥y(t) − y∗

∥∥∥2
)

+ 1024L2τ2
S−1∑
s=0

(s+1)τ∑
t=sτ

wtη
3
t (∆x + ∆y) + 512L2τ2

S−1∑
s=0

(s+1)τ∑
t=sτ

wtη
3
t σ

2.

Plugging T1 and T2 back into (10) yields:

S−1∑
s=0

(s+1)τ∑
t=sτ

wt
ηt

E
(∥∥∥x(t+1) − x∗

∥∥∥2

+
∥∥∥y(t+1) − y∗

∥∥∥2
)
≤
S−1∑
s=0

(s+1)τ∑
t=sτ

(
1− 1

4
µηt

)
wt
ηt

E
(∥∥∥x(t) − x∗

∥∥∥2

+
∥∥∥y(t) − y∗

∥∥∥2
)
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− 2

S−1∑
s=0

(s+1)τ∑
t=sτ

wtE
(
F (x(t),y∗)− F (x∗,y(t))

)
+

S−1∑
s=0

(s+1)τ∑
t=sτ

2wtηtσ
2

n

+

(
1024τ2L2

µ
+ 1024L2τ2

)
(∆x + ∆y)

S−1∑
s=0

(s+1)τ∑
t=sτ

wt
(
η2
t + η3

t

)
+

(
512τ2L2

µ
+ 512L2τ2

)
σ2

S−1∑
s=0

(s+1)τ∑
t=sτ

wt
(
η2
t + η3

t

)
.

Using the fact that
(
1− 1

4µηt
)
wt
ηt
≤ wt−1

ηt−1
, we can cancel up the terms:

wT
ηT

E
(∥∥∥x(T+1) − x∗

∥∥∥2

+
∥∥∥y(T+1) − y∗

∥∥∥2
)

≤ w0

η0

(∥∥∥x(1) − x∗
∥∥∥2

+
∥∥∥y(1) − y∗

∥∥∥2
)

+

(
1024τ2L2

µ
+ 1023L2τ2

)
(∆x + ∆y)

S−1∑
s=0

(s+1)τ∑
t=sτ

wt
(
η2
t + η3

t

)
+

(
512τ2L2

µ
+ 512L2τ2

)
σ2

S−1∑
s=0

(s+1)τ∑
t=sτ

wt
(
η2
t + η3

t

)
+

S−1∑
s=0

(s+1)τ∑
t=sτ

2wtηtσ
2

n
.

Dividing both side by wT
ηT

yields:

E
[∥∥∥x(T+1) − x∗

∥∥∥2

+
∥∥∥y(T+1) − y∗

∥∥∥2
]

≤ 8

µ(T + a)3

w0

η0

(∥∥∥x(1) − x∗
∥∥∥2

+
∥∥∥y(1) − y∗

∥∥∥2
)

+
8

µ(T + a)3

(
1024τ2L2

µ
+ 1024L2τ2

)
(∆x + ∆y)

(
64T

µ2
+

Θ (lnT )

µ3

)
+

8

µ(T + a)3

(
512τ2L2

µ
+ 512L2τ2

)
σ2

(
64T

µ2
+

Θ (lnT )

µ3

)
+

8

µ(T + a)2

16Tσ2

µn

≤ O
(
a3

T 3

)
+O

(
κ2τ2 (∆x + ∆y)

µT 2

)
+O

(
κ2τ2σ2

µT 2

)
+O

(
σ2

µ2nT

)
.

Plugging in τ =
√
T/n concludes the proof.

B Proof of Nonconvex-Strongly-Concave Case

B.1 Overview of proofs

Now we proceed to the proof of convergence rate in nonconvex-strongly-concave setting. Recall that in this case
we study the envelope function Φ(·) and y∗(·). The following proposition establishes the smoothness property of
these auxiliary functions.

Proposition 1 (Lin et al [29]). If a function f(x, ·) is µ-strongly concave and L smooth, then Φ(x) is β = κL+L
smooth and y∗(x) is κ-Lipschitz where κ = L/µ.

Since Φ is β-smooth, then the starting point is to conduct the standard analysis scheme for nonconvex smooth
function on one iteration as follows:

E
[
Φ(x(t+1))

]
− E

[
Φ(x(t))

]
≤ −η

2
E
[∥∥∥∇Φ(x(t))

∥∥∥2
]
−
(
ηx − 3βη2

x

)
E

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t),y(t))

∥∥∥∥∥
2

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+
(
2η + 3βη2

x

)
L2E

[(
δ(t)
x + δ(t)

y

)]
+
ηxL

2

2
E
[∥∥∥y∗(x(t))− y(t)

∥∥∥2
]

+
3βη2

xσ
2

2n
.

We can see the convergence depends on δ(t)
x + δ

(t)
y , and a new term:

∥∥y∗(x(t))− y(t)
∥∥2

. The bound we derived for
δ

(t)
x + δ

(t)
y is no longer suitable here since in nonconvex objective, convergence to global saddle point is NP-hard.

Instead, we derive the following deviation bound with the help of gradient dissimilarity :

1

T

T∑
t=1

E
(
δ(t)
x + δ(t)

y

)
≤ 10τ2(η2

x + η2
y)

(
σ2 +

σ2

n

)
+ 10τ2η2

xζx + 10τ2η2
yζy.

Another thing is to bound the gap of current dual iterate and optimal dual variable:
∥∥y∗(x(t))− y(t)

∥∥2
. [29] has

established the convergence of it, but they use a fairly large dual step size O(1/L). However, in the local descent
method, due to the issue of local model drifting, we are forced to stick with a small step size. Thus, as our main
contribution in this part, we established the convergence of

∥∥y∗(x(t))− y(t)
∥∥2

using a smaller dual step size:

1

T

T∑
t=1

E
[∥∥∥y(t) − y∗(x(t))

∥∥∥2
]
≤ 2Cκ

T
E
[∥∥∥y(0) − y∗(x(0))

∥∥∥2
]

+O

(
Cη2

yσ
2

n

)

+
1

T

T∑
t=1

O
(
C
(
ηy + η2

y

)
+ C2η2

x

)
E
[
δ(t)
x + δ(t)

y

]

+
1

T

T∑
t=1

O

C2η2
xE

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t),y(t))

∥∥∥∥∥
2
 ,

where C = 2
ηyL

. C could be large if we choose ηy to be small, and will thus negatively affect convergence rate,
which means we trade some rate for communication efficiency.

Putting these piece together, and letting ηx and ηy to be sufficiently small, we can cancel up the term
E
[∥∥ 1

n

∑n
i=1∇xfi(x(t),y(t))

∥∥2
]
and establish the convergence rate.

B.2 Proof of technical lemmas

Before proceeding to the main proof of theorem, let us introduce a few useful intermediate results. The following
lemma shows the analysis for one iteration of local SGDA, on nonconvex-strongly-concave function.

Lemma B.1. For local-SGDA, under the assumptions in Theorem 5.1, the following statement holds:

E
[
Φ(x(t+1))

]
− E

[
Φ(x(t))

]
≤ −η

2
E
[∥∥∥∇Φ(x(t))

∥∥∥2
]
−
(
ηx − 3βη2

x

)
E

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t),y(t))

∥∥∥∥∥
2


+
(
2η + 3βη2

x

)
L2E

[(
δ(t)
x + δ(t)

y

)]
+
ηxL

2

2
E
[∥∥∥y∗(x(t))− y(t)

∥∥∥2
]

+
3

2n
βη2

xσ
2,

where β = L+ κL, and δ(t)
x = 1

n

∑n
i=1

∥∥∥x(t)
i − x(t)

∥∥∥2

, δ
(t)
y = 1

n

∑n
i=1

∥∥∥y(t)
i − y(t)

∥∥∥2

.

Proof. According to [29], Φ(·) is β = L+ κL-smooth, together with updating rule, so we have:

Φ(x(t+1)) ≤ Φ(x(t)) +
〈
∇Φ(x(t)),x(t+1) − x(t)

〉
+
β

2

∥∥∥x(t+1) − x(t)
∥∥∥2

≤ Φ(x(t))− ηx

〈
∇Φ(x(t)),

1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i ; ξti)

〉
+
β

2
η2

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i ; ξti)

∥∥∥∥∥
2

.
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Taking expectation on both sides yields:

E
[
Φ(x(t+1))

]
≤ E

[
Φ(x(t))

]
− ηx

〈
∇Φ(x(t)),

1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

〉
+
β

2
η2
xE

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i ; ξti)

∥∥∥∥∥
2


≤ E
[
Φ(x(t))

]
− ηx

〈
∇Φ(x(t)),

1

n

n∑
i=1

∇xfi(x(t),y(t))

〉
+
β

2
η2
xE

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i ; ξti)

∥∥∥∥∥
2


− ηx

〈
∇Φ(x(t)),

1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )− 1

n

n∑
i=1

∇xfi(x(t),y(t))

〉
.

Using the identity 〈a, b〉 = − 1
2‖a− b‖

2 + 1
2‖a‖

2 + 1
2‖b‖

2, we have:

E
[
Φ(x(t+1))

]
− E

[
Φ(x(t))

]
≤ −ηx

2
E
[∥∥∥∇Φ(x(t))

∥∥∥2
]
− ηx

2
E

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t),y(t))

∥∥∥∥∥
2
+

ηx
2
E

∥∥∥∥∥∇Φ(x(t))− 1

n

n∑
i=1

∇xfi(x(t),y(t))

∥∥∥∥∥
2


+
ηx
2

1

2
E
[∥∥∥∇Φ(x(t))

∥∥∥2
]

+ 2E

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )− 1

n

n∑
i=1

∇xfi(x(t),y(t))

∥∥∥∥∥
2


+
β

2
η2
xE

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i ; ξti)

∥∥∥∥∥
2


≤ −ηx
4
E
[∥∥∥∇Φ(x(t))

∥∥∥2
]
− ηx

2
E

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t),y(t))

∥∥∥∥∥
2
+

ηxL
2

2
E
[∥∥∥y∗(x(t))− y(t)

∥∥∥2
]

+ ηxL
2 1

n

n∑
i=1

E
[
2
∥∥∥x(t)

i − x
(t)
∥∥∥2

+ 2
∥∥∥y(t)

i − y
(t)
∥∥∥2
]

+
β

2
η2
xE

3

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t),y(t))

∥∥∥∥∥
2

+ 3

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )− 1

n

n∑
i=1

∇xfi(x(t),y(t))

∥∥∥∥∥
2

+ 3σ2


≤ −ηx

4
E
[∥∥∥∇Φ(x(t))

∥∥∥2
]
−
(
η

2
− 3β

2
η2

)
E

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t),y(t))

∥∥∥∥∥
2
+

ηxL
2

2
E
[∥∥∥y∗(x(t))− y(t)

∥∥∥2
]

+ (2ηx + 3βη2
x)L2E

[
δ(t)
x + δ(t)

y

]
+

3β

2n
η2
xσ

2.

The following lemma characterizes the local model deviation bound for nonconvex-strongly-concave function.
Lemma B.2. For local-SGDA, under assumptions of Theorem 5.1, the following statement holds true:

1

T

T∑
t=1

1

n

n∑
i=1

E
[∥∥∥x(t) − x(t)

i

∥∥∥2
]

+ E
[∥∥∥y(t) − y(t)

i

∥∥∥2
]
≤ 10τ2(η2

x + η2
y)

(
σ2 +

σ2

n

)
+ 10τ2η2

xζx + 10τ2η2
yζy.

Proof. We start to prove the first statement here. For the simplicity of notations, we define δt = E[δtx + δty] =

1
n

∑n
i=1 E

[∥∥∥x(t) − x(t)
i

∥∥∥2
]

+ E
[∥∥∥y(t) − y(t)

i

∥∥∥2
]
. Assume sτ + 1 ≤ t ≤ (s+ 1)τ . Notice that:

δt =
1

n

n∑
i=1

E


∥∥∥∥∥∥xsτ −

(s+1)τ∑
j=sτ

ηx
n

n∑
k=1

∇xfk(x
(j)
k ,y

(j)
k ; ξjk)−

xsτ − (s+1)τ∑
j=sτ

ηx∇xfi(x(j)
i ,y

(j)
i ; ξji )

∥∥∥∥∥∥
2

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+
1

n

n∑
i=1

E


∥∥∥∥∥∥ysτ −

(s+1)τ∑
j=sτ

ηy
n

n∑
k=1

∇yfk(x
(j)
k ,y

(j)
k ; ξjk)−

ysτ − (s+1)τ∑
j=sτ

ηy∇yfi(x(j)
i ,y

(j)
i ; ξji )

∥∥∥∥∥∥
2


= τ

(s+1)τ∑
j=sτ

η2
x

n

n∑
i=1

E

∥∥∥∥∥ 1

n

n∑
k=1

∇xfk(x
(j)
k ,y

(j)
k ; ξjk)−∇xfi(x(j)

i ,y
(j)
i ; ξji )

∥∥∥∥∥
2


+ τ

(s+1)τ∑
j=sτ

ηy
n

n∑
i=1

E

∥∥∥∥∥ 1

n

n∑
k=1

∇yfk(x
(j)
k ,y

(j)
k ; ξjk)−∇yfi(x(j)

i ,y
(j)
i ; ξji )

∥∥∥∥∥
2


= τ

(s+1)τ∑
j=sτ

η2
x

n

n∑
i=1

E

[∥∥∥∥∥ 1

n

n∑
k=1

∇xfk(x
(j)
k ,y

(j)
k ; ξjk)−∇xfk(x

(j)
k ,y

(j)
k ) +∇xfk(x

(j)
k ,y

(j)
k )−∇xfk(x(j),y(j))

+∇xfk(x(j),y(j))−∇xfi(x(j),y(j)) +∇xfi(x(j),y(j))−∇xfi(x(j)
i ,y

(j)
i ) +∇xfi(x(j)

i ,y
(j)
i )−∇xfi(x(j)

i ,y
(j)
i ; ξti)

∥∥∥2
]

+ τ

(s+1)τ∑
j=sτ

η2
y

n

n∑
i=1

E

[∥∥∥∥∥ 1

n

n∑
k=1

∇yfk(x
(j)
k ,y

(j)
k ; ξjk)−∇yfk(x

(j)
k ,y

(j)
k ) +∇yfk(x

(j)
k ,y

(j)
k )−∇yfk(x(j),y(j))

+∇yfk(x(j),y(j))−∇yfi(x(j),y(j)) +∇yfi(x(j),y(j))−∇yfi(x(j)
i ,y

(j)
i ) +∇yfi(x(j)

i ,y
(j)
i )−∇yfi(x(j)

i ,y
(j)
i ; ξji )

∥∥∥2
]

≤
(s+1)τ∑
j=sτ

5η2
x

(
σ2 +

σ2

n
+ 2L2δj + ζx

)
+ 5η2

y

(
σ2 +

σ2

n
+ 2L2δj + ζy

)
.

Summing over t from sτ to (s+ 1)τ yields:

(s+1)τ∑
t=sτ

δt ≤
(s+1)τ∑
t=sτ

(s+1)τ∑
j=sτ

5τη2
x

(
σ2 +

σ2

n
+ 2L2δj + ζx

)
+ 5τη2

y

(
σ2 +

σ2

n
+ 2L2δj + ζy

)

≤ 10L2τ2(η2
x + η2

y)

(s+1)τ∑
j=sτ

δj + 5τ2(η2
x + η2

y)

(
σ2 +

σ2

n

)
+ 5τ2η2

xζx + 5τ2η2
yζy. (11)

Since τ = T 1/3

n1/3 , ηx = n1/3

LT 2/3 , ηy = 2
LT 1/2 and T ≥ max

{
1603

n2 , 403/2
}
, then 10L2τ2(η2

x + η2
y) ≤ 1

2 , by re-arranging
the terms we have:

(s+1)τ∑
t=sτ+1

δt ≤ 10τ3(η2
x + η2

y)

(
σ2 +

σ2

n

)
+ 10τ3η2

xζx + 10τ3η2
yζy.

Summing over s from 0 to T/τ − 1, and dividing both sides by T can conclude the proof of the first statement:

1

T

T∑
t=1

δt ≤ 10τ2(η2
x + η2

y)

(
σ2 +

σ2

n

)
+ 10τ2η2

xζx + 10τ2η2
yζy.

The next lemma establishes an upper bound on the dual optimality gap.
Lemma B.3. For local-SGDA, if we choose ηy = 2

CL , then under assumptions of Theorem 5.1, the gap between
yt and y∗(x(t)) can be bounded as follows:

1

T

T∑
t=1

E
[∥∥∥y(t) − y∗(x(t))

∥∥∥2
]
≤ 2Cκ

T
E
[∥∥∥y(0) − y∗(x(0))

∥∥∥2
]

+ 2Cκ

(
1 +

1

2(Cκ− 1)

)
4η2
yσ

2

n

+
1

T

T∑
t=1

2Cκ

(
1 +

1

2(Cκ− 1)

)(
4ηyL

2

µ
+ 8η2

yL
2

)
E
[
δ(t)
x + δ(t)

y

]
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+
1

T

T∑
t=1

4C2κ4η2
xE

3

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t),y(t))

∥∥∥∥∥
2

+ 6L2(δ(t)
x + δ(t)

y ) +
3σ2

n

 .
(12)

where δ(t)
x = 1

n

∑n
i=1

∥∥∥x(t)
i − x(t)

∥∥∥2

and δ(t)
y = 1

n

∑n
i=1

∥∥∥y(t)
i − y(t)

∥∥∥2

.

Proof. According to arithmetic and geometric inequality and Cauchy’s inequality: ‖a+ b‖2 ≤ ‖a‖2 + 2‖a‖‖b‖+

‖b‖2 ≤
(

1 + 1
q

)
‖a‖2 + (1 + q) ‖b‖2, we have:

E
[∥∥∥y∗(x(t))− y(t)

∥∥∥2
]
≤
(

1 +
1

2(Cκ− 1)

)
E
[∥∥∥y∗(x(t−1))− y(t)

∥∥∥2
]

+ (1 + 2(Cκ− 1))E
[∥∥∥y∗(x(t))− y∗(x(t−1))

∥∥∥2
]
.

Then we are going to bound
∥∥y∗(x(t−1))− y(t)

∥∥2
and

∥∥y∗(x(t))− y∗(x(t−1))
∥∥2

separately.

First, according to updating rule for y and strong concavity, we have:

E
[∥∥∥y(t) − y∗(x(t−1))

∥∥∥2
]

= E

∥∥∥∥∥y(t−1) + ηy
1

n

n∑
i=1

∇yfi(x(t−1)
i ,y

(t−1)
i ; ξti)− y∗(x(t−1))

∥∥∥∥∥
2


≤ E
[∥∥∥y(t−1) − y∗(x(t−1))

∥∥∥2
]

+ η2
yE

∥∥∥∥∥ 1

n

n∑
i=1

∇yfi(x(t−1)
i ,y

(t−1)
i ; ξti)

∥∥∥∥∥
2


+ 2ηyE

[〈
1

n

n∑
i=1

∇yfi(x(t−1)
i ,y

(t−1)
i ),y(t−1) − y∗(x(t−1))

〉]

≤ E
[∥∥∥y(t−1) − y∗(x(t−1))

∥∥∥2
]

+ η2
y

4E
[∥∥∥∇yF (x(t−1),y∗(x(t−1)))

∥∥∥2
]

︸ ︷︷ ︸
=0

+4E
[∥∥∥∇yF (x(t−1),y(t−1))−∇yF (x(t−1),y∗(x(t−1)))

∥∥∥2
]

+ η2
y

1

n

n∑
i=1

(
4E
[∥∥∥∇yfi(x(t−1),y(t−1))−∇yfi(x(t−1)

i ,y
(t−1)
i )

∥∥∥2
]

+ 4
σ2

n

)

+ 2ηyE

[〈
1

n

n∑
i=1

∇yfi(x(t−1),y(t−1)),y(t−1) − y∗(x(t−1))

〉]

+ 2ηyE

[〈
1

n

n∑
i=1

∇yfi(x(t−1)
i ,y

(t−1)
i )−∇xfi(x(t−1),y(t−1)),y(t−1) − y∗(x(t−1))

〉]

≤ (1− µηy)E
[∥∥∥y(t−1) − y∗(x(t−1))

∥∥∥2
]

+ 4η2
y

σ2

n
+
µηy
2

E
[∥∥∥y(t−1) − y∗(x(t−1))

∥∥∥2
]

+ 2 (ηy − 4η2
yL)︸ ︷︷ ︸

≥0

E
[
F (x(t−1),y(t−1))− F (x(t−1),y∗(x(t−1)))

]
︸ ︷︷ ︸

≤0

+

(
2ηy
µ

+ 4η2
y

)
E

[
1

n

n∑
i=1

∥∥∥∇yfi(x(t−1)
i ,y

(t−1)
i )−∇yfi(x(t−1),y(t−1))

∥∥∥2
]

≤
(

1− µηy
2

)
E
[∥∥∥y(t−1) − y∗(x(t−1))

∥∥∥2
]

+
4η2
yσ

2

n
+

(
4ηyL

2

µ
+ 8η2

yL
2

)
E
[
δ(t−1)
x + δ(t−1)

y

]
. (13)



Deng, Mahdavi

Then, for the term
∥∥y∗(x(t))− y∗(x(t−1))

∥∥2
, since y∗(·) is κ-Lipschitz, we have:

E
[∥∥∥y∗(x(t))− y∗(x(t−1))

∥∥∥2
]
≤ κ2E

[
‖x(t) − x(t−1)‖2

]
= κ2η2

xE

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t−1)
i ,y

(t−1)
i ; ξti)

∥∥∥∥∥
2


≤ κ2η2
xE

3

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t−1),y(t−1))

∥∥∥∥∥
2

+ 3
1

n

n∑
i=1

∥∥∥∇xfi(x(t−1)
i ,y

(t−1)
i )−∇xfi(x(t−1),y(t−1))

∥∥∥2

+
3σ2

n


≤ κ2η2

xE

3

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t−1),y(t−1))

∥∥∥∥∥
2

+ 6L2(δ(t−1)
x + δ(t−1)

y ) +
3σ2

n

 .
(14)

Recall that we choose ηy = 2
CL , C > 0. Combining (13) and (14) yields:

E
[∥∥∥y∗(x(t))− y(t)

∥∥∥2
]

≤
(

1 +
1

2(Cκ− 1)

)((
1− µηy

2

)
E
[∥∥∥y(t−1) − y∗(x(t−1))

∥∥∥2
]

+
4η2
yσ

2

n
+

(
4ηyL

2

µ
+ 8η2

yL
2

)
E
[
δ(t−1)
x + δ(t−1)

y

])

+ (1 + 2(Cκ− 1))κ2η2
xE

3

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t−1),y(t−1))

∥∥∥∥∥
2

+ 6L2(δ(t−1)
x + δ(t−1)

y ) +
3σ2

n


≤
(

1 +
1

2(Cκ− 1)

)(
1− 1

Cκ

)
E
[∥∥∥y(t−1) − y∗(x(t−1))

∥∥∥2
]

+

(
1 +

1

2(Cκ− 1)

)(
4η2
yσ

2

n
+

(
4ηyL

2

µ
+ 8η2

yL
2

)
E
[
δ(t−1)
x + δ(t−1)

y

])

+ (1 + 2(Cκ− 1))κ2η2
xE

3

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t−1),y(t−1))

∥∥∥∥∥
2

+ 6L2(δ(t−1)
x + δ(t−1)

y ) +
3σ2

n

 .
Using the fact

(
1 + 1

2(Cκ−1)

) (
1− 1

Cκ

)
=
(
1− 1

2Cκ

)
, and unrolling the recursion yields:

E
[∥∥∥y∗(x(t))− y(t)

∥∥∥2
]

≤
(

1− 1

2Cκ

)
E
[∥∥∥y(t−1) − y∗(x(t−1))

∥∥∥2
]

+

(
1 +

1

2(Cκ− 1)

)(
4η2
yσ

2

n
+

(
4ηyL

2

µ
+ 8η2

yL
2

)
E
[
δ(t−1)
x + δ(t−1)

y

])

+ (1 + 2(Cκ− 1))κ2η2
xE

3

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t−1),y(t−1))

∥∥∥∥∥
2

+ 6L2(δ(t−1)
x + δ(t−1)

y ) +
3σ2

n


≤
(

1− 1

2Cκ

)t
E
[∥∥∥y(0) − y∗(x(0))

∥∥∥2
]

+

t∑
j=1

(
1− 1

2Cκ

)t−j (
1 +

1

2(Cκ− 1)

)(
4η2
yσ

2

n
+

(
4ηyL

2

µ
+ 8η2

yL
2

)
E
[
δ(t−1)
x + δ(t−1)

y

])

+

t∑
j=1

(
1− 1

2Cκ

)t−j
(1 + 2(Cκ− 1))κ2η2

xE

3

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(j−1),y(t−1))

∥∥∥∥∥
2

+ 6L2(δj−1
x + δj−1

y ) +
3σ2

n


≤
(

1− 1

2Cκ

)t
E
[∥∥∥y(0) − y∗(x(0))

∥∥∥2
]

+ 2Cκ

(
1 +

1

2(Cκ− 1)

)(
4η2
yσ

2

n

)
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+

t∑
j=1

(
1− 1

2Cκ

)t−j (
1 +

1

2(Cκ− 1)

)((
4ηyL

2

µ
+ 8η2

yL
2

)
E
[
δ(t−1)
x + δ(t−1)

y

])

+

t∑
j=1

(
1− 1

2Cκ

)t−j
(1 + 2(Cκ− 1))κ2η2

xE

3

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(j−1),y(j−1))

∥∥∥∥∥
2

+ 6L2(δj−1
x + δj−1

y ) +
3σ2

n

 .
Summing from t = 1 to T , and dividing by T yields:

1

T

T∑
t=1

E
[∥∥∥y∗(x(t))− y(t)

∥∥∥2
]

≤ 1

T

T∑
t=1

(
1− 1

2Cκ

)t
E
[∥∥∥y(0) − y∗(x(0))

∥∥∥2
]

+ 2Cκ

(
1 +

1

2(Cκ− 1)

)
4η2
yσ

2

n

+
1

T

T∑
t=1

t∑
j=1

(
1− 1

2Cκ

)t−j (
1 +

1

2(Cκ− 1)

)(
4ηyL

2

µ
+ 8η2

yL
2

)
E
[
δ(t−1)
x + δ(t−1)

y

]

+
1

T

T∑
t=1

t∑
j=1

(
1− 1

2Cκ

)t−j
(1 + 2(Cκ− 1))κ2η2

xE

3

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(j−1),y(t−1))

∥∥∥∥∥
2

+ 6L2(δj−1
x + δj−1

y ) +
3σ2

n

 .
≤ 2Cκ

T
E
[∥∥∥y(0) − y∗(x(0))

∥∥∥2
]

+ 2Cκ

(
1 +

1

2(Cκ− 1)

)
4η2
yσ

2

n

+
1

T

T∑
t=0

2Cκ

(
1 +

1

2(Cκ− 1)

)(
4ηyL

2

µ
+ 8η2

yL
2

)
E
[
δ(t)
x + δ(t)

y

]

+
1

T

T∑
t=0

4C2κ4η2
xE

3

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t),y(t))

∥∥∥∥∥
2

+ 6L2(δ(t)
x + δ(t)

y ) +
3σ2

n

 .

B.3 Proof of Theorem 5.1

Now we provide the proof of Theorem 5.1. In Lemma B.1, summing over t = 1 to T and divding both sides by T
yields:

1

T

(
E
[
Φ(x(T+1))

]
− E

[
Φ(x(0))

])
≤ −ηx

2

1

T

T∑
t=1

E
[∥∥∥∇Φ(x(t))

∥∥∥2
]
−
(
ηx − 3βη2

x

) 1

T

T∑
t=1

E

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t),y(t))

∥∥∥∥∥
2


+
(
2ηx + 3βη2

x

)
L2 1

T

T∑
t=1

E
[(
δ(t)
x + δ(t)

y

)]
+
ηxL

2

2

1

T

T∑
t=1

E
[∥∥∥y∗(x(t))− y(t)

∥∥∥2
]

+
3

2
βη2

x

σ2

n
.

For the simplicity of the notation, we let < = 1
T

∑T
t=1 E

[∥∥ 1
n

∑n
i=1∇xfi(x(t),y(t))

∥∥2
]
. Re-arranging the terms

and plugging in Lemma B.2 and Lemma B.3 gives:

1

T

T∑
t=1

E
[∥∥∥∇Φ(x(t))

∥∥∥2
]

≤ 2

ηxT
E
[
Φ(x(0))

]
− 2 (1− 3βηx)<

+ 2 (2 + 3βηx)L2 1

T

T∑
t=1

E
[(
δ(t)
x + δ(t)

y

)]
+ L2 1

T

T∑
t=1

E
[∥∥∥y∗(x(t))− y(t)

∥∥∥2
]

+ 3βηx
σ2

n
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≤ 2

ηxT
E
[
Φ(x(0))

]
− 2 (1− 3βηx)<+ 3βηx

σ2

n

+ (4 + 6βηx)L2

[
10τ2(η2

x + η2
y)

(
σ2 +

σ2

n

)
+ 10τ2η2

xζx + 10τ2η2
yζy

]
+

2L2Cκ

T
E
[∥∥∥y(0) − y∗(x(0))

∥∥∥2
]

+

(
2C2κ2L2

Cκ− 1

)
4η2
yσ

2

n

+ 4C2κ4η2
xL

2

(
<+ 6L2

[
10τ2(η2

x + η2
y)

(
σ2 +

σ2

n

)
+ 10τ2η2

xζx + 10τ2η2
yζy

]
+

3σ2

n

)
+

(
2C2κ2L2

Cκ− 1

)(
4ηyL

2

µ
+ 8η2

yL
2

)[
10τ2(η2

x + η2
y)

(
σ2 +

σ2

n

)
+ 10τ2η2

xζx + 10τ2η2
yζy

]
.

≤ 2

ηxT
E
[
Φ(x(0))

]
+

2L2Cκ

T
E
[∥∥∥y(0) − y∗(x(0))

∥∥∥2
]
− 2

(
1− 3βηx − 4C2κ4η2

xL
2
)
<

+ 10

(
4 + 6βηx + 24C2κ4η2

xL
2 +

(
2C2κ2

Cκ− 1

)(
4ηyL

2

µ
+ 8η2

yL
2

))
L2

[
τ2(η2

x + η2
y)

(
σ2 +

σ2

n

)
+ τ2η2

xζx + τ2η2
yζy

]
+

12C2κ4η2
xL

2σ2

n
+ 3βηx

σ2

n
+

(
2C2κ2L2

Cκ− 1

)
4η2
yσ

2

n
.

By choosing ηx = n1/3

LT 2/3 , C = T 1/2 and T ≥ max

{(
16n4/3κ4+

√
16n4/3κ8−12βn1/3/L

2

)3

, 403/2, 1603

n2

}
in Theorem 5.1

such that
1− 3βηx − 4C2κ4η2

xL
2 ≥ 0,

holds, then we have:

1

T

T∑
t=1

E
[∥∥∥∇Φ(x(t))

∥∥∥2
]
≤ 2

ηxT
E
[
Φ(x(0))

]
+

2L2Cκ

T
E
[∥∥∥y(0) − y∗(x(0))

∥∥∥2
]

+ 10

(
4 + 6βηx + 24C2κ4η2

xL
2 +

(
2C2κ2

Cκ− 1

)(
4ηyL

2

µ
+ 8η2

yL
2

))
L2

[
τ2(η2

x + η2
y)

(
σ2 +

σ2

n

)
+ τ2η2

xζx + τ2η2
yζy

]
+

12C2κ4η2
xL

2σ2

n
+

3βηxσ
2

n
+

(
2C2κ2L2

Cκ− 1

)
4η2
yσ

2

n
.

Plugging in τ = T 1/3

n1/3 and ηx = n1/3

LT 2/3 ,ηy = 2

LT
1
2
, will conclude the proof:

1

T

T∑
t=1

E
[∥∥∥∇Φ(x(t))

∥∥∥2
]
≤ O

(
L

(nT )1/3
+
κ4L2σ2

(nT )1/3
+
L2ζx
T 2/3

+
L2ζy

n2/3T 1/3
+
L2κ

T 1/2

)
.

C Proof of Local SGDA+ under Nonconvex-PL Setting

C.1 Overview of proofs

Now we proceed to the proof of convergence rate in nonconvex-PL setting. In this case we still study the envelope
function Φ(·). The following proposition establishes the smoothness property of these auxiliary functions.
Proposition 2 (Nouiehed et al [39]). If a function F (x, ·) satisfies µ-PL condition and L smooth, then Φ(x) is
β = κL/2 + L smooth where κ = L/µ.

Since Φ is β-smooth, then the starting point is similar to what we did in nonconvex-strongly-concave case, to
conduct the one iteration analysis scheme for nonconvex smooth function on one iteration as follows:

E
[
Φ(x(t+1))

]
− E

[
Φ(x(t))

]
≤ −ηx

2
E
[∥∥∥∇Φ(x(t))

∥∥∥2
]
−
(
ηx
2
− βη2

x

2

)
E

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

∥∥∥∥∥
2

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+
2ηxL

2

µ
E
[
(Φ(x(t))− F (x(t),y(t)))

]
+ 2ηxL

2E
[
δ(t)
x + δ(t)

y

]
+
βη2

xσ
2

2n
.

We can see the convergence depends on δ(t)
x + δ

(t)
y , and E

[
(Φ(x(t))− F (x(t),y(t)))

]
. For δ(t)

x + δ
(t)
y , we bound it

in an analogous way to nonconvex-strongly-concave case.

Another thing is to bound the gap E
[
(Φ(x(t))− F (x(t),y(t)))

]
. Here we borrow the proof idea from [43]:

1

T

T∑
t=1

E
[
Φ(x(t))− F (x(t),y(t))

]
≤

2E
[
Φ(x(0))− F (x(0),y(0))

]
µηyT

+
2

µT

T∑
t=1

(
L2η2

x

σ2

n
+ 2L2Sη2

x(G2
x + σ2) + 2L2E

[
δ(t)
x + δ(t)

y

])

+

[
2(1− µηy)

µηy

(
η2
xL

2
+
βη2

x

2

)
+ L2η2

x

]
1

T

E

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(0)
i ,y

(0)
i )

∥∥∥∥∥
2
+

T∑
t=1

E

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

∥∥∥∥∥
2


+
2(1− µηy)

µηy

1

T

(
T∑
t=1

(
1

2
ηxE

[∥∥∥∇Φ(x(t))
∥∥∥2
]

+
η2
xLσ

2

2n

)
+ E

[∥∥∥∇Φ(x(0))
∥∥∥2
])

+
2(1− µηy)

µηy

1

T

T∑
t=1

(
2ηxL

2E
[
δ(t)
x + δ(t)

y

]
+
βη2

xσ
2

2n

)
+
ηyLσ

2

n
.

Putting these piece together, concludes the proof.

C.2 Proof of technical lemmas

We first introduce some useful lemmas. The following lemma performs one iteration analysis of local SGDA+, on
nonconvex-PL objective.
Lemma C.1. For local-SGDA+, under the assumptions in Theorem 6.1, the following statement holds:

E
[
Φ(x(t+1))

]
− E

[
Φ(x(t))

]
≤ −ηx

2
E
[∥∥∥∇Φ(x(t))

∥∥∥2
]
−
(
ηx
2
− βη2

x

2

)
E

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

∥∥∥∥∥
2


+
2ηxL

2

µ
E
[
(Φ(x(t))− F (x(t),y(t)))

]
+ 2ηxL

2E
[
δ(t)
x + δ(t)

y

]
+
βη2

xσ
2

2n
.

where β = L+ κL/2.

Proof. Since Φ(·) is β = L+ κL-smooth, we have:

Φ(x(t+1)) ≤ Φ(x(t)) +
〈
∇Φ(x(t)),x(t+1) − x(t)

〉
+
β

2

∥∥∥x(t+1) − x(t)
∥∥∥2

≤ Φ(x(t))− ηx

〈
∇Φ(x(t)),

1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i ; ξti)

〉
+
β

2
η2

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i ; ξti)

∥∥∥∥∥
2

.

Taking expectation on both sides yields:

E
[
Φ(x(t+1))

]
≤ E

[
Φ(x(t))

]
− ηx

〈
∇Φ(x(t)),

1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

〉
+
β

2
η2
xE

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i ; ξti)

∥∥∥∥∥
2
 .

Using the identity 〈a, b〉 = − 1
2‖a− b‖

2 + 1
2‖a‖

2 + 1
2‖b‖

2, we have:

E
[
Φ(x(t+1))

]
− E

[
Φ(x(t))

]
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≤ −ηx
2
E
[∥∥∥∇Φ(x(t))

∥∥∥2
]
− ηx

2
E

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

∥∥∥∥∥
2
+ ηxE

∥∥∥∥∥∇Φ(x(t))− 1

n

n∑
i=1

∇xfi(x(t),y(t))

∥∥∥∥∥
2


+ ηxE

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )− 1

n

n∑
i=1

∇xfi(x(t),y(t))

∥∥∥∥∥
2


+
β

2
η2
xE

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

∥∥∥∥∥
2
+

βη2
xσ

2

2n

≤ −ηx
2
E
[∥∥∥∇Φ(x(t))

∥∥∥2
]
−
(
ηx
2
− βη2

x

2

)
E

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

∥∥∥∥∥
2
+ ηxL

2E
[∥∥∥φ(x(t))− y(t)

∥∥∥2
]

+ ηxL
2 1

n

n∑
i=1

E
[
2
∥∥∥x(t)

i − x
(t)
∥∥∥2

+ 2
∥∥∥y(t)

i − y
(t)
∥∥∥2
]

+
βη2

xσ
2

2n

≤ −ηx
2
E
[∥∥∥∇Φ(x(t))

∥∥∥2
]
−
(
ηx
2
− βη2

x

2

)
E

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

∥∥∥∥∥
2
+ ηxL

2E
[∥∥∥φ(x(t))− y(t)

∥∥∥2
]

+ 2ηxL
2E
[
δ(t)
x + δ(t)

y

]
+
βη2

xσ
2

2n
.

According to [13], PL condition implies quadratic growth, we have:∥∥∥φ(x(t))− y(t)
∥∥∥2

≤ 2

µ
(F (x(t), φ(x(t)))− F (x(t),y(t))) =

2

µ
(Φ(x(t))− F (x(t),y(t))), (15)

which concludes the proof.

The following lemma characterizes the sub-linear convergence of gap E
[
Φ(x(t))− F (x(t),y(t))

]
.

Lemma C.2. For local-SGDA+, under the assumptions in Theorem 6.1, the following statement holds:

1

T

T∑
t=1

E
[
Φ(x(t))− F (x(t),y(t))

]
≤

2E
[
Φ(x(0))− F (x(0),y(0))

]
µηyT

+
2

µT

T∑
t=1

(
L2η2

x

σ2

n
+ 2L2Sη2

x(G2
x + σ2) + 2L2E

[
δ(t)
x + δ(t)

y

])

+

[
2(1− µηy)

µηy

(
η2
xL

2
+
βη2

x

2

)
+ L2η2

x

]
1

T

E

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(0)
i ,y

(0)
i )

∥∥∥∥∥
2
+

T∑
t=1

E

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

∥∥∥∥∥
2


+
2(1− µηy)

µηy

1

T

(
T∑
t=1

(
1

2
ηxE

[∥∥∥∇Φ(x(t))
∥∥∥2
]

+
η2
xLσ

2

2n

)
+ E

[∥∥∥∇Φ(x(0))
∥∥∥2
])

+
2(1− µηy)

µηy

1

T

T∑
t=1

(
2ηxL

2E
[
δ(t)
x + δ(t)

y

]
+
βη2

xσ
2

2n

)
+
ηyLσ

2

n
.

Proof. According to smoothness of F (x, ·), we have

F (x(t+1),y(t)) ≤ F (x(t+1),y(t+1))−
〈
∇yF (x(t+1),y(t)),y(t+1) − y(t)

〉
+
L

2

∥∥∥∥∥ 1

n

n∑
i=1

∇yfi(x̃,y(t)
i ; ξti)

∥∥∥∥∥
2

≤ F (x(t+1),y(t+1))− ηy
〈
∇yF (x(t+1),y(t)),

1

n
∇yfi(x̃,y(t)

i ; ξti)

〉
+
η2
yL

2

∥∥∥∥∥ 1

n

n∑
i=1

∇yfi(x̃,y(t)
i ; ξti)

∥∥∥∥∥
2
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Taking expectation on both sides yields:

E[F (x(t+1),y(t))] ≤ E[F (x(t+1),y(t+1))]− ηyE

[〈
∇yF (x(t+1),y(t)),

1

n

n∑
i=1

∇yfi(x̃,y(t)
i )

〉]

+
η2
yL

2
E

∥∥∥∥∥ 1

n

n∑
i=1

∇yfi(x̃,y(t)
i ; ξti)

∥∥∥∥∥
2


≤ E[F (x(t+1),y(t+1))]− ηy
2
E
[∥∥∥∇yF (x(t+1),y

(t)
i )
∥∥∥2
]

+
1

2
ηyE

∥∥∥∥∥∇yF (x(t+1),y(t))− 1

n

n∑
i=1

∇yfi(x̃,y(t)
i )

∥∥∥∥∥
2


−

(
ηy
2
−
η2
yL

2

)
E

∥∥∥∥∥ 1

n

n∑
i=1

∇yfi(x̃,y(t)
i )

∥∥∥∥∥
2
+

η2
yLσ

2

2n
(16)

≤ E[F (x(t+1),y(t+1))]− ηy
2
E
[∥∥∥∇yF (x(t+1),y

(t)
i )
∥∥∥2
]
−

(
ηy
2
−
η2
yL

2

)
E

∥∥∥∥∥ 1

n

n∑
i=1

∇yfi(x̃,y(t)
i )

∥∥∥∥∥
2
+

η2
yLσ

2

2n

+
1

2
ηyE

∥∥∥∥∥∇yF (x(t+1),y(t))−∇yF (x(t),y(t)) +∇yF (x(t),y(t))− 1

n

n∑
i=1

∇yfi(x̃,y(t)
i )

∥∥∥∥∥
2


≤ E[F (x(t+1),y(t+1))]− ηy
2
E
[∥∥∥∇yF (x(t+1),y

(t)
i )
∥∥∥2
]
−

(
ηy
2
−
η2
yL

2

)
E

∥∥∥∥∥ 1

n

n∑
i=1

∇yfi(x̃,y(t)
i )

∥∥∥∥∥
2
+

η2
yLσ

2

2n

+ ηy E
[∥∥∥∇yF (x(t+1),y(t))−∇yF (x(t),y(t))

∥∥∥2
]

︸ ︷︷ ︸
T1

+ηy E

∥∥∥∥∥∇yF (x(t),y(t))− 1

n

n∑
i=1

∇yfi(x̃,y(t)
i )

∥∥∥∥∥
2


︸ ︷︷ ︸
T2

,

where we use the identity 〈a, b〉 = − 1
2‖a− b‖

2 + 1
2‖a‖

2 + 1
2‖b‖

2.

To bound T1, we notice that:

T1 ≤ L2E
[∥∥∥x(t+1) − x(t)

∥∥∥2
]
≤ L2η2

xE

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

∥∥∥∥∥
2
+ L2η2

x

σ2

n
.

For T2, we bound it as follows:

T2 ≤ 2E
[∥∥∥∇yF (x(t),y(t))−∇yF (x̃,y(t))

∥∥∥2
]

+ 2E

∥∥∥∥∥∇yF (x̃,y(t))− 1

n

n∑
i=1

∇yfi(x̃,y(t)
i )

∥∥∥∥∥
2


≤ 2L2E
[∥∥∥x(t) − x̃

∥∥∥2
]

+ 2L2 1

n

n∑
i=1

E
[∥∥∥y(t) − y(t)

i

∥∥∥2
]

≤ 2L2Sη2
x(G2

x + σ2) + 2L2 1

n

n∑
i=1

E
[∥∥∥y(t) − y(t)

i

∥∥∥2
]

Putting these pieces together yields:

E[F (x(t+1),y(t))] ≤ E[F (x(t+1),y(t+1))]− ηy
2
E
[∥∥∥∇yF (x(t+1),y(t))

∥∥∥2
]
−

(
ηy
2
−
η2
yL

2

)
E

∥∥∥∥∥ 1

n

n∑
i=1

∇yfi(x̃,y(t)
i )

∥∥∥∥∥
2
+

η2
yLσ

2

2n

+ ηy

L2η2
xE

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

∥∥∥∥∥
2
+ L2η2

x

σ2

n


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+ ηy

(
2L2Sη2

x(G2
x + σ2) + 2L2 1

n

n∑
i=1

E
[∥∥∥y(t) − y(t)

i

∥∥∥2
])

≤ E[F (x(t+1),y(t+1))]− ηy
2
E
[∥∥∥∇yF (x(t+1),y(t))

∥∥∥2
]
−

(
ηy
2
−
η2
yL

2

)
E

∥∥∥∥∥ 1

n

n∑
i=1

∇yfi(x̃,y(t)
i )

∥∥∥∥∥
2
+

η2
yLσ

2

2n

+ ηy

L2η2
xE

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

∥∥∥∥∥
2
+ L2η2

x

σ2

n


+ ηy

(
2L2Sη2

x(G2
x + σ2) + 2L2 1

n

n∑
i=1

E
[∥∥∥y(t) − y(t)

i

∥∥∥2
])

.

Now, applying the PL condition to substitute
∥∥∇yF (x(t+1),y(t))

∥∥2
:∥∥∥∇yF (x(t+1),y(t))

∥∥∥2

≥ 2µ(Φ(x(t+1))− F (x(t+1),y(t))). (17)

Thus we have:

ηyµE
[
(Φ(x(t+1))− F (x(t+1),y(t)))

]
≤ E[F (x(t+1),y(t+1))]− E[F (x(t+1),y(t))] +

η2
yLσ

2

2n

+ ηy

L2η2
xE

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

∥∥∥∥∥
2
+ L2η2

x

σ2

n


+ ηy

(
2L2Sη2

x(G2
x + σ2) + 2L2 1

n

n∑
i=1

E
[∥∥∥y(t) − y(t)

i

∥∥∥2
])

.

Re-arranging the terms yields:

E
[
(Φ(x(t+1))− F (x(t+1),y(t+1)))

]
≤ (1− µηy)E

[
(Φ(x(t+1))− F (x(t+1),y(t)))

]
+
η2
yLσ

2

2n

+ ηy

L2η2
xE

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

∥∥∥∥∥
2
+ L2η2

x

σ2

n


+ ηy

(
2L2Sη2

x(G2
x + σ2) + 2L2 1

n

n∑
i=1

E
[∥∥∥y(t) − y(t)

i

∥∥∥2
])

.

Notice that in RHS:

E[Φ(x(t+1))− F (x(t+1),y(t))] = E[Φ(x(t))− F (x(t),y(t))] + E[Φ(x(t+1))− Φ(x(t))]︸ ︷︷ ︸
T3

+E[F (x(t),y(t))− F (x(t+1),y(t))]︸ ︷︷ ︸
T4

(18)

According to Lemma C.1 we can bound T3 as:

T3 ≤ −
ηx
2
E
[∥∥∥∇Φ(x(t))

∥∥∥2
]
−
(
ηx
2
− βη2

x

2

)
E

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

∥∥∥∥∥
2


+
2ηxL

2

µ
E
[
(Φ(x(t))− F (x(t),y(t)))

]
+ 2ηxL

2E
[
δ(t)
x + δ(t)

y

]
+
βη2

xσ
2

2n
.

For T4, applying smoothness of F (·,y(t)) gives:

T4 = E[F (x(t),y(t))− F (x(t+1),y(t))] ≤ E[−
〈
∇xF (x(t),y(t)),x(t+1) − x(t)

〉
] +

L

2
E
[∥∥∥x(t+1) − x(t)

∥∥∥2
]
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= ηxE

[〈
∇xF (x(t),y(t)),

1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

〉]
+
η2
xL

2
E

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

∥∥∥∥∥
2
+

η2
xLσ

2

2n

≤ 1

2
ηxE

[∥∥∥∇xF (x(t),y(t))
∥∥∥2
]

+
1

2
ηxE

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

∥∥∥∥∥
2
+

η2
xL

2
E

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

∥∥∥∥∥
2
+

η2
xLσ

2

2n

≤ ηxE
[∥∥∥∇Φ(x(t))

∥∥∥2
]

+ ηxE
[∥∥∥∇xF (x(t),y(t))−∇Φ(x(t))

∥∥∥2
]

+

(
1

2
ηx +

η2
xL

2

)
E

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

∥∥∥∥∥
2
+

η2
xLσ

2

2n
.

For E
[∥∥∇xF (x(t),y(t))−∇Φ(x(t))

∥∥2
]
, we apply the smoothness of F and quadratic growth of F (x, ·) to get:

E
[∥∥∥∇xF (x(t),y(t))−∇Φ(x(t))

∥∥∥2
]
≤ L2E

[∥∥∥y(t) − y∗(x(t))
∥∥∥2
]
≤ 2L2

µ
E
[
F (x(t),y∗(x(t)))− F (x(t),y(t))

]
.

Using above bound to replace E
[∥∥∇xF (x(t),y(t))−∇Φ(x(t))

∥∥2
]
we can finally bound T4 as:

T4 ≤ ηxE
[∥∥∥∇Φ(x(t))

∥∥∥2
]

+ ηx
2L2

µ
E
[
Φ(x(t))− F (x(t),y(t))

]
+

(
1

2
ηx +

η2
xL

2

)
E

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

∥∥∥∥∥
2
+

η2
xLσ

2

2n
.

Plugging T3 and T4 back yields:

E
[
(Φ(x(t+1))− F (x(t+1),y(t+1)))

]
≤ (1− µηy)

(
1 + ηx

4L2

µ

)
E
[
(Φ(x(t))− F (x(t),y(t)))

]
+
η2
yLσ

2

2n

+ (1− µηy)

ηxE [∥∥∥∇Φ(x(t))
∥∥∥2
]

+

(
1

2
ηx +

η2
xL

2

)
E

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

∥∥∥∥∥
2
+

η2
xLσ

2

2n


+ (1− µηy)

−ηx
2
E
[∥∥∥∇Φ(x(t))

∥∥∥2
]
−
(
ηx
2
− β

2
η2
x

)
E

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

∥∥∥∥∥
2
+ 2ηxL

2E
[
δ(t)
x + δ(t)

y

]
+
βη2

xσ
2

2n


+ ηy

L2η2
xE

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

∥∥∥∥∥
2
+ L2η2

x

σ2

n


+ ηy

(
2L2Sη2

x(G2
x + σ2) + 2L2 1

n

n∑
i=1

E
[∥∥∥y(t) − y(t)

i

∥∥∥2
])

≤
(

1− µηy
2

)
E
[
(Φ(x(t))− F (x(t),y(t)))

]
+
η2
yLσ

2

2n

+ (1− µηy)

(
1

2
ηxE

[∥∥∥∇Φ(x(t))
∥∥∥2
]

+
η2
xLσ

2

2n

)
+

[
(1− µηy)

(
η2
xL

2
+
βη2

x

2

)
+ ηyL

2η2
x

]
E

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

∥∥∥∥∥
2


+ (1− µηy)

(
2ηxL

2E
[
δ(t)
x + δ(t)

y

]
+
βη2

xσ
2

2n

)
+ ηy

(
L2η2

x

σ2

n
+ 2L2Sη2

x(G2
x + σ2) + 2L2 1

n

n∑
i=1

E
[∥∥∥y(t) − y(t)

i

∥∥∥2
])

,

where we use the fact (1 − µηy)(1 + 4L2ηx
µ ) ≤ (1 − µηy

2 ) due to ηx ≤ µηy
2(4L2/µ−4L2ηy) . Denote At =

E
[
(Φ(x(t))− F (x(t),y(t)))

]
. It is obvious that At ≥ 0 for all t. Then, based on the above inequality and
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do the summation:

1

T

T∑
t=1

At ≤
1

T

T−1∑
t=0

(
1− µηy

2

)
At +

1

T

T−1∑
t=0

[
(1− µηy)

(
η2
xL

2
+
βη2

x

2

)
+ ηyL

2η2
x

]
E

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

∥∥∥∥∥
2


+
1

T

T−1∑
t=0

(1− µηy)

(
1

2
ηxE

[∥∥∥∇Φ(x(t))
∥∥∥2
]

+
η2
xLσ

2

2n

)
+
η2
yLσ

2

2n

+
1

T

T−1∑
t=0

(1− µηy)

(
2ηxL

2E
[
δ(t)
x + δ(t)

y

]
+
βη2

xσ
2

2n

)

+
1

T

T−1∑
t=0

ηy

(
L2η2

x

σ2

n
+ 2L2Sη2

x(G2
x + σ2) + 2L2 1

n

n∑
i=1

E
[∥∥∥y(t) − y(t)

i

∥∥∥2
])

≤ (1− µηy
2

)
1

T

(
A0 +

T∑
t=1

At

)
+
η2
yLσ

2

2n

+

[
(1− µηy)

(
η2
xL

2
+
βη2

x

2

)
+ ηyL

2η2
x

]
1

T

E

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(0)
i ,y

(0)
i )

∥∥∥∥∥
2
+

T∑
t=1

E

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

∥∥∥∥∥
2


+ (1− µηy)
1

T

(
T∑
t=1

(
1

2
ηxE

[∥∥∥∇Φ(x(t))
∥∥∥2
]

+
η2
xLσ

2

2n

)
+ E

[∥∥∥∇Φ(x(0))
∥∥∥2
])

+ (1− µηy)
1

T

T∑
t=1

(
2ηxL

2E
[
δ(t)
x + δ(t)

y

]
+
βη2

xσ
2

2n

)

+ ηy
1

T

T∑
t=1

(
L2η2

x

σ2

n
+ 2L2Sη2

x(G2
x + σ2) + 2L2E

[
δ(t)
x + δ(t)

y

])
Re-arranging the terms will conclude the proof:

1

T

T∑
t=1

At ≤
2A0

µηyT
+
ηyLσ

2

n

+

[
2(1− µηy)

µηy

(
η2
xL

2
+
βη2

x

2

)
+ L2η2

x

]
1

T

E

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(0)
i ,y

(0)
i )

∥∥∥∥∥
2
+

T∑
t=1

E

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

∥∥∥∥∥
2


+
2(1− µηy)

µηy

1

T

(
T∑
t=1

(
1

2
ηxE

[∥∥∥∇Φ(x(t))
∥∥∥2
]

+
η2
xLσ

2

2n

)
+ E

[∥∥∥∇Φ(x(0))
∥∥∥2
])

+
2(1− µηy)

µηy

1

T

T∑
t=1

(
2ηxL

2E
[
δ(t)
x + δ(t)

y

]
+
βη2

xσ
2

2n

)

+
2

µT

T∑
t=1

(
L2η2

x

σ2

n
+ 2L2Sη2

x(G2
x + σ2) + 2L2E

[
δ(t)
x + δ(t)

y

])
.

The next lemma bounds the local model deviations on nonconvex-PL objective.

Lemma C.3. For local-SGDA+, under assumptions of Theorem 6.1, the following statement holds true:

1

T

T∑
t=1

1

n

n∑
i=1

E
[∥∥∥x(t) − x(t)

i

∥∥∥2
]

+ E
[∥∥∥y(t) − y(t)

i

∥∥∥2
]
≤ 10τ2(η2

x + η2
y)

(
σ2 +

σ2

n

)
+ 10τ2η2

xζx + 10τ2η2
yζy.
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Proof. Similarly, for the second statement, we define γt = 1
n

∑n
i=1 E

[∥∥∥x(t) − x(t)
i

∥∥∥2
]

+ E
[∥∥∥y(t) − y(t)

i

∥∥∥2
]
, then

we have:

γt ≤ 1

n

n∑
i=1

1

n

n∑
k=1

E


∥∥∥∥∥∥xrτ −

(r+1)τ∑
j=rτ

ηx∇xfk(x
(j)
k ,y

(j)
k ; ξjk)−

xrτ − (r+1)τ∑
j=rτ

ηx∇xfi(x(j)
i ,y

(j)
i ; ξji )

∥∥∥∥∥∥
2


+
1

n

n∑
i=1

1

n

n∑
k=1

E


∥∥∥∥∥∥yrτ −

(r+1)τ∑
j=rτ

ηy∇yfk(x̃,y
(j)
k ; ξjk)−

yrτ − (r+1)τ∑
j=rτ

ηy∇yfi(x̃,y(j)
i ; ξji )

∥∥∥∥∥∥
2


≤ τ
(r+1)τ∑
j=rτ

η2
x

n

n∑
i=1

1

n

n∑
k=1

E
[∥∥∥∇xfk(x

(j)
k ,y

(j)
k ; ξjk)−∇xfi(x(j)

i ,y
(j)
i ; ξji )

∥∥∥2
]

+ τ

(r+1)τ∑
j=rτ

ηy
n

n∑
i=1

1

n

n∑
k=1

E
[∥∥∥∇yfk(x̃,y

(j)
k ; ξjk)−∇yfi(x̃,y(j)

i ; ξji )
∥∥∥2
]

≤ τ
(r+1)τ∑
j=rτ

η2
x

n

n∑
i=1

1

n

n∑
k=1

E
[∥∥∥∇xfk(x

(j)
k ,y

(j)
k ; ξjk)−∇xfk(x

(j)
k ,y

(j)
k ) +∇xfk(x

(j)
k ,y

(j)
k )−∇xfk(x(j),y(j))

+∇xfk(x(j),y(j))−∇xfi(x(j),y(j)) +∇xfi(x(j),y(j))−∇xfi(x(j)
i ,y

(j)
i ) +∇xfi(x(j)

i ,y
(j)
i )−∇xfi(x(j)

i ,y
(j)
i ; ξti)

∥∥∥2
]

+ τ

(r+1)τ∑
j=rτ

η2
y

n

n∑
i=1

1

n

n∑
k=1

E
[∥∥∥∇yfk(x̃,y

(j)
k ; ξjk)−∇yfk(x̃,y

(j)
k ) +∇yfk(x̃,y

(j)
k )−∇yfk(x̃,y(j))

+∇yfk(x̃,y(j))−∇yfi(x̃,y(j)) +∇yfi(x̃,y(j))−∇yfi(x̃,y(j)
i ) +∇yfi(x̃,y(j)

i )−∇yfi(x̃,y(j)
i ; ξji )

∥∥∥2
]

≤
(r+1)τ∑
j=rτ

5η2
x

(
σ2 +

σ2

n
+ 2L2γj + ζx

)
+ 5η2

y

(
σ2 +

σ2

n
+ 2L2γj + ζy

)
.

Summing over t from rτ to (r + 1)τ yields:

(r+1)τ∑
t=rτ

γt ≤
(r+1)τ∑
t=rτ

(r+1)τ∑
j=rτ

5τη2
x

(
σ2 +

σ2

n
+ 2L2γj + ζx

)
+ 5τη2

y

(
σ2 +

σ2

n
+ 2L2γj + ζy

)

≤ 10L2τ2(η2
x + η2

y)

(r+1)τ∑
j=rτ

γj + 5τ2(η2
x + η2

y)

(
σ2 +

σ2

n

)
+ 5τ2η2

xζx + 5τ2η2
yζy. (19)

Since 10L2τ2(η2
x + η2

y) ≤ 1
2 , by re-arranging the terms we have:

(r+1)τ∑
t=rτ+1

γt ≤ 10τ3(η2
x + η2

y)

(
σ2 +

σ2

n

)
+ 10τ3η2

xζx + 10τ3η2
yζy.

Summing over r from 0 to T/τ − 1, and dividing both sides by T can conclude the proof of the first statement:

1

T

T∑
t=1

γt ≤ 10τ2(η2
x + η2

y)

(
σ2 +

σ2

n

)
+ 10τ2η2

xζx + 10τ2η2
yζy.
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C.3 Proof of Theorem 6.1

According to Lemma C.1, we sum over t = 1 to T , and divide both sides with T :

1

T

(
E
[
Φ(x(T+1))

]
− E

[
Φ(x(1))

])
≤ −ηx

2

1

T

T∑
t=1

E
[∥∥∥∇Φ(x(t))

∥∥∥2
]
−
(
ηx
2
− βη2

x

2

)
1

T

T∑
t=1

E

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

∥∥∥∥∥
2


+
2ηxL

2

µ

1

T

T∑
t=1

E
[
(Φ(x(t))− F (x(t),y(t)))

]
+

1

T

T∑
t=1

2ηxL
2E
[
δ(t)
x + δ(t)

y

]
+
βη2

xσ
2

2n
.

Plugging in Lemma C.2 yields:

1

T

(
E
[
Φ(x(T+1))

]
− E

[
Φ(x(1))

])
≤ −

(
ηx
2
− 4(1− µηy)L2

µ2ηy
η2
x

)
︸ ︷︷ ︸

♠

1

T

T∑
t=1

E
[∥∥∥∇Φ(x(t))

∥∥∥2
]

+
8η3
xL

4

µ2
S(G2

x + σ2) +
2ηxL

2

µ

ηyLσ
2

n

−
(
ηx
2
− βη2

x

2
− 2ηxL

2

µ

[
2(1− µηy)

µηy

(
η2
xL

2
+
βη2

x

2

)
+ L2η2

x

])
︸ ︷︷ ︸

♣

1

T

T∑
t=1

E

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t)
i ,y

(t)
i )

∥∥∥∥∥
2


+

(
2ηxL

2 +
8ηxL

4

µ2
+

8(1− µηy)L4

µ2ηy
η2
x

)
1

T

T∑
t=1

E
[
δ(t)
x + δ(t)

y

]
+

(
8(1− µηy)ηxL

2(L+ β)

µ2ηy
+ β +

8ηxL
4

µ2

)
η2
xσ

2

2n

+
2ηxL

2

µ

E
[
Φ(x(0))

]
− E

[
F (x(0),y(0))

]
µηyT

+

[
2(1− µηy)

µηy

(
η2
xL

2
+
βη2

x

2

)
+ L2η2

x

] E [∥∥ 1
n

∑n
i=1∇xfi(x(0),y(0))

∥∥2
]

T


+

2ηxL
2

µ

2(1− µηy)

µηy

E
[∥∥∇xΦ(x(0))

∥∥2
]

T

 .

Recall that we choose: ηx = n1/3

LT 2/3 , ηy = n1/3

LT 1/2 , τ = T 1/3

n2/3 , S = T 1/3

n2/3 , and

T ≥ max


βn1/3

2L
+

√
β2n2/3

4L2
+

8L(L+ β)n1/3

µ2
+

4L2n2/3

µ

3/2

, (8κ2)6

 ,

so we know that ♠ ≥ ηx
4 and ♣ ≥ 0. Plugging in ηx, ηy, τ, S, and plugging in Lemma C.3 will conclude the proof

for Theorem 6.1:

1

T

T∑
t=1

E
[∥∥∥∇Φ(x(t))

∥∥∥2
]
≤ O

(
βσ2

(nT )1/3
+

κ2L2ζy
n2/3T 1/3

+
κ2L2ζx
n2/3T

+
κ2L2G2

x

T
+

κ2

n1/3T 1/2

)
. (20)

D Proof of Local SGDA+ under Nonconvex-One-Point-Concave Setting

D.1 Overview of the proof techniques

In this section we are going to present the proof of convergence of local SGDA+, under the setting that F is
nonconvex in x but one point concave in y. In this setting, Φ(x) is no longer smooth any more, and y∗(x) is not
Lipschitz. As we mentioned in the main paper, we study the Moreau evenlope function: Φ1/2L(x). The proof
mainly contains two parts: one iteration analysis of Moreau envelope and Convergence of SGA under
one point concave condition.
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Step I: One iteration analysis of Moreau envelope. By examining one iteration of local SGDA+, we have
the following relation:

E[Φ1/2L(x(t))] ≤ E
[
Φ1/2L(x(t−1))

]
+ Lη2

x(G2
x + σ2

x) + 2ηxL
2 1

n

n∑
i=1

E
[∥∥∥x(t−1)

i − x(t−1)
∥∥∥2

+
∥∥∥y(t−1)

i − y(t−1)
∥∥∥2
]

+ 2Lηx

(
E
[
Φ(x(t−1))

]
− E

[
F (x(t−1),y(t−1))

])
− ηx

8
E
[∥∥∥∇Φ1/2L(x(t−1))

∥∥∥2
]
.

It turns out our next job is to bound local model deviation E
[∥∥∥x(t−1)

i − x(t−1)
∥∥∥+

∥∥∥y(t−1)
i − y(t−1)

∥∥∥] and the

gap E[Φ(x(t−1))]−E[F (x(t−1),y(t−1))]. The the analysis of deviation term is similar to what we did in nonconvex-
strongly-concave setting. The remaining tricky part is how to bound E[Φ(x(t−1))]− E[F (x(t−1),y(t−1))].

Step II: Convergence of SGA under one point concave condition. To deal with E[Φ(x(t))] −
E[F (x(t),y(t)], we first notice that:

E[Φ(x(t))]− E[F (x(t),y(t))] = E[F (x(t),y∗(xt))]− E[F (x̃,y∗(x̃))] + E[F (x̃,y∗(x̃))]− E[F (x(t),y(t))]

≤ E[F (x(t),y∗(xt))]− E[F (x̃,y∗(xt))] + E[F (x̃,y∗(x̃))]− E[F (x(t),y(t))]

≤ E[F (x(t),y∗(xt))]− E[F (x̃,y∗(xt))]︸ ︷︷ ︸
T1

+E[F (x̃,y∗(x̃))]− E[F (x̃,y(t))]︸ ︷︷ ︸
T2

+ E[F (x̃,y(t))]− E[F (x(t),y(t))]︸ ︷︷ ︸
T3

.

According to the Lipschitz continuity of F , and the fact that x̃ will be updated every S iterations, we can bound
T1 and T3 by ηxSGx

√
G2
x + σ2.

The tricky part is to handle T2. Basically fixing x̃, we wish to know how fast E[F (x̃,y(t))] converges to
E[F (x̃,y∗(x̃))]. Thanks to one point concave property and the updating rule of local SGDA+ where we fixed x̃
while updating y, we can show that:

(k+1)S∑
t=kS+1

E
[
F (x̃,y∗(x̃))− F (x̃,y(t))

]
≤ D

ηy
+ L

(k+1)S∑
t=kS+1

1

n
E
[∥∥∥y(t)

i − y
(t)
∥∥∥2
]

+ 2ηyL
2

(k+1)S∑
t=kS+1

1

n
E
[∥∥∥ y(t)

i − y
(t)
∥∥∥2
]

+
ηySσ

2

n
.

Putting these pieces together will conclude the proof.

D.2 Proof of technical lemmas

Lemma D.1 (One iteration analysis). For local SGDA+, under Theorem 6.2’s assumption, the following
statement holds:

E[Φ1/2L(x(t))] ≤ E
[
Φ1/2L(x(t−1))

]
+ Lη2

x(G2
x + σ2

x) + 2ηxL
2 1

n

n∑
i=1

E
[∥∥∥x(t−1)

i − x(t−1)
∥∥∥2

+
∥∥∥y(t−1)

i − y(t−1)
∥∥∥2
]

+ 2Lηx

(
E
[
Φ(x(t−1))

]
− E

[
F (x(t−1),y(t−1))

])
− ηx

8
E
[∥∥∥∇Φ1/2L(x(t−1))

∥∥∥2
]
.

Proof. Define x̂(t) = arg minx∈X Φ(x) + L‖x− x(t)‖2, the by the definition of Φ1/2L we have:

Φ1/2L(x(t)) ≤ Φ(x̂(t−1)) + L‖x̂(t−1) − x(t)‖2. (21)

Meanwhile according to updating rule we have:

E
[∥∥∥x̂(t−1) − x(t)

∥∥∥2
]

= E

∥∥∥∥∥x(t−1) − ηx
1

n

n∑
i=1

∇xfi(x(t−1)
i ,y

(t−1)
i ; ξ

(t)
i )

∥∥∥∥∥
2

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≤ E
[∥∥∥x̂(t−1) − x(t−1)

∥∥∥2
]

+ η2
xE

∥∥∥∥∥ 1

n

n∑
i=1

∇xfi(x(t−1)
i ,y

(t−1)
i ; ξ

(t)
i )

∥∥∥∥∥
2


+ 2ηxE

[〈
x̂(t−1) − x(t−1),

1

n

n∑
i=1

∇xfi(x(t−1)
i ,y

(t−1)
i )

〉]

≤ E
[∥∥∥x̂(t−1) − x(t−1)

∥∥∥2
]

+ η2
x(G2

w + σ2
w) + 2ηx

〈
x̂(t−1) − x(t−1),

1

n

n∑
i=1

∇xfi(x(t−1),y(t−1))

〉

+ ηx

(
L

2
E
[∥∥∥x̂(t−1) − x(t−1)

∥∥∥2
]

+
2

L
E

[
1

n

n∑
i=1

∥∥∥∇xfi(x(t−1)
i ,y

(t−1)
i )−∇xfi(x(t−1),y(t−1))

∥∥∥2
])

≤ E
[∥∥∥x̂(t−1) − x(t−1)

∥∥∥2
]

+ η2
x(G2

w + σ2
w) + ηx2L

1

n

n∑
i=1

E
[∥∥∥x(t−1)

i − x(t−1)
∥∥∥2

+
∥∥∥y(t−1)

i − y(t−1)
∥∥∥2
]

+ 2ηxE
[〈
x̂(t−1) − x(t−1),∇xF (x(t−1),y(t−1))

〉]
+
ηxL

2
E
[∥∥∥x̂(t−1) − x(t−1)

∥∥∥2
]
. (22)

According to smoothness of F we obtain:

E
[〈
x̂(t−1) − x(t−1),∇xF (x(t−1),y(t−1))

〉]
≤ E

[
F (x̂(t−1),y(t−1))

]
− E

[
F (x(t−1),y(t−1))

]
+
L

2
E
[∥∥∥x̂(t−1) − x(t−1)

∥∥∥2
]

≤ E
[
Φ(x̂(t−1))

]
− E

[
F (x(t−1),y(t−1))

]
+
L

2
E
[∥∥∥x̂(t−1) − x(t−1)

∥∥∥2
]

≤ E
[
Φ(x̂(t−1))

]
+ LE

[∥∥∥x̂(t−1) − x(t−1)
∥∥∥2
]

︸ ︷︷ ︸
≤E[Φ(x(t−1))]+LE

[
‖x(t−1)−x(t−1)‖2

]
−E

[
F (x(t−1),y(t−1))

]
− L

2
E
[∥∥∥x̂(t−1) − x(t−1)

∥∥∥2
]

≤ E
[
Φ(x(t−1))

]
− E

[
F (x(t−1),y(t−1))

]
− L

2
E
[∥∥∥x̂(t−1) − x(t−1)

∥∥∥2
]
. (23)

Plugging (22) and (23) into (21) yields:

E
[
Φ1/2L(x(t))

]
≤ E

[
Φ(x̂(t−1))

]
+ LE

[∥∥∥x̂(t−1) − x(t−1)
∥∥∥2
]

+ 2ηxL
2 1

n

n∑
i=1

E
[∥∥∥x(t−1)

i − x(t−1)
∥∥∥2

+
∥∥∥y(t−1)

i − y(t−1)
∥∥∥2
]

+ 2ηxL

(
E
[
Φ(x(t−1))

]
− E

[
F (x(t−1),y(t−1))

]
− L

2
E
[∥∥∥x̂(t−1) − x(t−1)

∥∥∥2
])

+ Lη2
x(G2

w + σ2
w) +

ηxL
2

2
E
[∥∥∥x̂(t−1) − x(t−1)

∥∥∥2
]

≤ E
[
Φ1/2L(x(t−1))

]
+ Lη2

x(G2
w + σ2

w) + 2ηxL
2 1

n

n∑
i=1

E
[∥∥∥x(t−1)

i − x(t−1)
∥∥∥2

+
∥∥∥y(t−1)

i − y(t−1)
∥∥∥2
]

+ 2Lηx

(
E
[
Φ(x(t−1))

]
− E

[
F (x(t−1),y(t−1))

])
− ηx

8
E
[∥∥∥∇Φ1/2L(x(t−1))

∥∥∥2
]
,

where we use the result from Lemma 2.8 in [29]: ∇Φ1/2L(x) = 2L(x− x̂).

The following lemma derives the convergence rate of the gap E[Φ(x(t))]− E[F (x(t),y(t))].

Lemma D.2. For local SGDA+, under Theorem 6.2’s assumption, the following statement holds:

1

T

T∑
t=1

E[Φ(x(t))]− E[F (x(t),y(t))] ≤ 2ηxSGx
√
G2
x + σ2 +

D

Sηy
+ (L+ 4ηyL

2)
1

T

T∑
t=1

1

n

n∑
i=1

E
[∥∥∥y(t)

i − y
(t)
∥∥∥2
]

+
ηyσ

2

n
.
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Proof. Consider t = kS + 1 to (k + 1)S. Let x̃ denote the latest snapshot iterate. Observe that:

E[Φ(x(t))]− E[F (x(t),y(t))] ≤ E[F (x(t),y∗(xt))]− E[F (x̃,y∗(xt))] + E[F (x̃,y∗(x̃))]− E[F (x(t),y(t))]

≤ GxE‖x(t) − x̃‖+ E[F (x̃,y∗(x̃)]− E[F (x̃,y(t))] + E[F (x̃,y(t))]− E[F (x(t),y(t)]

≤ 2ηxSGx
√
G2
x + σ2 + E[F (x̃,y∗(x̃)]− E[F (x̃,y(t))]. (24)

where we use the fact f(·,y) is Gx-Lipschitz, so that:

E[F (x(t),y∗(xt))]− E[F (x̃,y∗(xt))] ≤ GxE‖x(t) − x̃‖ ≤ ηxSGx
√
G2
x + σ2,

E[F (x̃,y(t))]− E[F (x(t),y(t))] ≤ GxE‖x(t) − x̃‖ ≤ ηxSGx
√
G2
x + σ2.

Summing over t = kS + 1 to (k + 1)S in (24), and dividing both sides with T yields:

(k+1)S−1∑
t=kS

E[Φ(x(t))]− E[F (x(t),y(t))] ≤ 2ηxS
2Gx

√
G2
x + σ2 +

(k+1)S−1∑
t=kS

E[F (x̃,y∗(x̃)]− E[F (x̃,y(t))]. (25)

Now let us study the convergence of E[F (x̃,y∗(x̃)]− E[F (x̃,y(t))].

By the updating rule of y we have:

E
[
‖y(t+1) − y∗(x̃)‖2

]
= E

∥∥∥∥∥y(t) + ηy
1

n

n∑
i=1

∇yfi(x̃,y(t)
i ; ξti)− y∗(x̃)

∥∥∥∥∥
2


= E
[∥∥∥y(t) − y∗(x̃)

∥∥∥2
]

+ 2ηyE

[〈
1

n

n∑
i=1

∇yfi(x̃,y(t)
i ; ξti),y

(t) − y∗(x̃)

〉]
+ η2

yE

∥∥∥∥∥ 1

n

n∑
i=1

∇yfi(x̃,y(t)
i ; ξti)

∥∥∥∥∥
2


≤ E
[∥∥∥y(t) − y∗(x̃)

∥∥∥2
]

+ 2ηyE

[〈
1

n

n∑
i=1

∇yfi(x̃,y(t)
i ),y(t) − y(t)

i

〉]

+ 2ηyE

[〈
1

n

n∑
i=1

∇yfi(x̃,y(t)
i ),y

(t)
i − y

∗(x̃)

〉]
+ η2

yE

∥∥∥∥∥ 1

n

n∑
i=1

∇yfi(x̃,y(t)
i )

∥∥∥∥∥
2
+

η2
yσ

2

n
.

Applying one point concavity and L-smoothness of fi(x̃, ·) we have:

E
[
‖y(t+1) − y∗(x̃)‖2

]
≤ E

[∥∥∥y(t) − y∗(x̃)
∥∥∥2
]

+ 2ηy
1

n

n∑
i=1

E
[
fi(x̃,y

(t))− fi(x̃,y∗(x̃))
]

+ ηyL
1

n

n∑
i=1

E
[∥∥∥y(t)

i − y
(t)
∥∥∥2
]

+ 4η2
yLE

[
F (x̃,y∗(x̃))− F (x̃,y(t))

]
+ 2η2

yL
2 1

n

n∑
i=1

E
[∥∥∥ y(t)

i − y
(t)
∥∥∥2
]

+
η2
yσ

2

n

≤ E
[∥∥∥y(t) − y∗(x̃)

∥∥∥2
]

+ (2ηy − 4η2
yL)︸ ︷︷ ︸

≥ηy

E
[
F (x̃,y(t))− F (x̃,y∗(x̃))

]
+
η2
yσ

2

n

+ ηyL
1

n

n∑
i=1

E
[∥∥∥y(t)

i − y
(t)
∥∥∥2
]

+ 2η2
yL

2 1

n
E
[∥∥∥ y(t)

i − y
(t)
∥∥∥2
]

≤ E
[∥∥∥y(t) − y∗(x̃)

∥∥∥2
]
− ηyE

[
F (x̃,y∗(x̃))− F (x̃,y(t))

]
+
η2
yσ

2

n

+ ηyL
1

n

n∑
i=1

E
[∥∥∥y(t)

i − y
(t)
∥∥∥2
]

+ 2η2
yL

2 1

n

n∑
i=1

E
[∥∥∥ y(t)

i − y
(t)
∥∥∥2
]
.
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Re-arranging the terms, and summing t = kS + 1 to (k + 1)S yields:

(k+1)S∑
t=kS+1

E
[
F (x̃,y∗(x̃))− F (x̃,y(t))

]
≤ 1

ηy

(
E
[∥∥∥y(kS+1) − y∗(x̃)

∥∥∥2
]
− E

[
‖y((k+1)S) − y∗(x̃)‖2

])
+
ηySσ

2

n

+ L

(k+1)S∑
t=kS+1

1

n
E
[∥∥∥y(t)

i − y
(t)
∥∥∥2
]

+ 2ηyL
2

(k+1)S∑
t=kS+1

1

n
E
[∥∥∥ y(t)

i − y
(t)
∥∥∥2
]

≤ D

ηy
+ L

(k+1)S∑
t=kS+1

1

n
E
[∥∥∥y(t)

i − y
(t)
∥∥∥2
]

+ 2ηyL
2

(k+1)S∑
t=kS+1

1

n
E
[∥∥∥ y(t)

i − y
(t)
∥∥∥2
]

+
ηySσ

2

n
.

Plugging above bound into (25) yields:

(k+1)S−1∑
t=kS

E[Φ(x(t))]− E[F (x(t),y(t)] ≤ 2ηxS
2Gx

√
G2
x + σ2 +

D

ηy
+ (L+ 4ηyL

2)

(k+1)S∑
t=kS+1

1

n

n∑
i=1

E
[∥∥∥y(t)

i − y
(t)
∥∥∥2
]

+
Sηyσ

2

n
.

Finally, summing k = 0 to T/S − 1, and dividing both sides by T will conclude the proof:

1

T

T∑
t=1

E[Φ(x(t))]− E[F (x(t),y(t))] ≤ 2ηxSGx
√
G2
x + σ2 +

D

Sηy
+ (L+ 4ηyL

2)
1

T

T∑
t=1

1

n

n∑
i=1

E
[∥∥∥y(t)

i − y
(t)
∥∥∥2
]

+
ηyσ

2

n
.

D.3 Proof of Theorem 6.2

In this section we provide the full proof of Theorem 6.2. We first sum over t = 1 to T in Lemma D.1, and divide
both sides with T :

1

T

T∑
t=1

E
[∥∥∥∇Φ1/2L(x(t))

∥∥∥2
]
≤

8E[Φ1/2L(x(0))]− 8E[Φ1/2L(x(T ))]

ηxT
+ 16

1

T

T∑
t=1

L2E

[
1

n

n∑
i=1

∥∥∥x(t)
i − x

(t)
∥∥∥+

∥∥∥y(t)
i − y

(t−1)
∥∥∥]

+ 16L
1

T

T∑
t=1

(
E[Φ(x(t))]− E[F (x(t),y(t)]

)
+ 8Lη2

x(G2
x + σ2).

Plugging in Lemma D.2 and C.3 yields:

1

T

T∑
t=1

E
[∥∥∥∇Φ1/2L(x(t))

∥∥∥2
]

≤
8E[Φ1/2L(x(0))]

ηxT
+ 16L2

(
10τ2(η2

x + η2
y)

(
σ2 +

σ2

n

)
+ 10τ2η2

xζx + 10τ2η2
yζy

)
+ 8Lηx(G2

x + σ2)

+ 8L

(
2ηxSGx

√
G2
x + σ2 +

D

Sηy
+ (L+ 4ηyL

2)
1

T

T∑
t=1

1

n

n∑
i=1

E
[∥∥∥y(t)

i − y
(t)
∥∥∥2
]

+
ηyσ

2

n

)
.

≤
8E[Φ1/2L(x(0))]

ηxT
+ 16L2

(
10τ2(η2

x + η2
y)

(
σ2 +

σ2

n

)
+ 10τ2η2

xζx + 10τ2η2
yζy

)
+ 8Lηx(G2

x + σ2)

+ 8L

(
2ηxSGx

√
G2
x + σ2 +

D

Sηy
+ (L+ 4ηyL

2)

(
10τ2(η2

x + η2
y)

(
σ2 +

σ2

n

)
+ 10τ2η2

xζx + 10τ2η2
yζy

)
+
ηyσ

2

n

)
≤

8E[Φ1/2L(x(0))]

ηxT
+ (16L2 + 8L(L+ 4ηyL

2))

(
10τ2(η2

x + η2
y)

(
σ2 +

σ2

n

)
+ 10τ2η2

xζx + 10τ2η2
yζy

)
+ 8Lηx(G2

x + σ2)

+ 8L

(
2ηxSGx

√
G2
x + σ2 +

D

Sηy
+
ηyσ

2

n

)
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If we choose ηx = 1

LT
5
6
, ηy = 1

4LT
1
2
, τ = T

1
3 /n

1
6 , S = T

2
3 we recover the rate:

1

T

T∑
t=1

E
[∥∥∥∇Φ1/2L(x(t))

∥∥∥2
]
≤ O

(
Lσ2

T
1
6

)
+O

(
D

T
1
6

)
+O

(
L2σ2

(nT )
1
3

+
L2ζx

n
1
3T

+
L2ζy

(nT )
1
3

)
+O

(
LG2

x

T
1
6

)
+O

(
σ2

nT
1
6

)
,

as stated by the theorem.


