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Appendix

Here we present the omitted proofs of convergence rates. In Section A we give the proof of convergence in
strongly-convex-strongly-concave setting. Section B includes the proof for nonconvex-strongly-concave functions,
and in Section C we present proof of local SGDA~+ for nonconvex-PL objectives. Finally, in Section D we provide
the proof of local SGDA+ on nonconvex-one-point-concave setting.

A Strongly-Convex-Strongly-Concave Setting

A.1 Overview of proof techniques

Before we dive into the proof we first sketch the proof of convergence of local SGDA under strongly-convex-
strongly-concave setting. We define the following notions to denote the (virtual) average primal and dual solution
at tth iteration:
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and the deviation between local primal and dual solutions and their corresponding averages:
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Homogeneous setting In homogeneous setting, we first study the behavior of local SGDA for one iteration.
With the help of strong convexity, concavity and smoothness we can show that:
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Then, to bound dy ® + 0y () , with the help of strong convexity and smoothness, we can indeed show that it decreases
in the order of O(7(1 + (L w)n)* n?0?). By properly choosing 7 and 7, we recover the rate O(n?0?) as desired.

Heterogeneous setting Similarly to homogeneous setting, we first do the one iteration analysis
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Next we need to bound deviation (Sg) + (55), which is also our main technical contribution in this section. We
consider the interval of 7 steps, if we choose step size to be small enough and properly choose quadratic weights
wy = (t + a)?, to make sure the deviation changes slowly, we can finally prove the following statement:
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where we related the deviation to the gap between current iterates and saddle points, and heterogeneity at global
optimum.
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A.2 Proof in homogeneous setting

In this section we are going to present the proof in homogeneous case. Let us introduce some technical lemmas
first which will help our proof.

A.2.1 Proof of technical lemmas

The following lemma performs one iteration analysis of local SGDA, on strongly convex function.

Lemma A.1. For local-SGDA, under Theorem 4.1’s assumptions, the following relation holds true:
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Proof. According to updating rule and strong convexity we have:
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We now proceed to bound terms H% S VoF(z Et), yft)) V. F(x®, y(t))H and H% S VoF(z @, yft))H .
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By applying Jensen’s inequality on H% S VaF(z Et), yz(t)) V. F(x®, y(t))H we have:
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where we use the smoothness in the second last inequality.

Then we switch to bound H% S VoF(z Et)7 yft))H as follows:
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where in the second equality we used the fact that V,F'(x*,y*) = 0.
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Putting these pieces together yields:

2
x* } < (1 — iun) E [Hm(t) —x*

8 252
+ 2L + 60y + T
1 n

E [Hm(“‘l) - —2nE (F(:c(t), y®) — F(x*, y(t)))

+ 40’ L°E (59 + Hw(t) . >H2 + 5§j>) .
Similarly, we can get:
«||? 3
E {Hy(t“) - } (1 - 4un) “y(“ } —277E ™, y*) - F(w(“,y(”))

] o2

+ —nL?E(6M + 1)) +
1

2

Adding above two inequalities up yields:
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Since n < VL e have 8n?L? < &1, then we can conclude:
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The next lemma characterizes the local model deviation during the dynamics of local SGDA.

Lemma A.2. For local-SGDA, under Theorem 4.1’s assumptions, the following relation holds true for any
i,j €n]:
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where we used the p-strong-convexity and L-smoothness assumptions, that imply uI < H; < LT and puI < Hy < L1
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Let e = mgt) — :c‘gt), el = yl(,t) - ygt). Writing the above inequalities into compact matrix form, we have:
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Taking squared norm and expectation over (4) yields:
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Now let us examine the upper bound of ||.At||2. According to [54] (Lemma G.1), we have:
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So || A||* < (1+(L—p)n)?. Letting to denote the latest synchronization stage, and plugging || A*||> < (1+(L—p)n)?
2
] < (14 (L= wn)°E +8n%0”

back to (6) we have:
Et+1 &.t
2 ] I
t—to

<> (U + (L= wn)* 8o’

=0
<7(1+ (L= p)n)*8n°c?,

2

to
where we use the fact H Ffo] = 0 at second inequality.
€

Y

A.2.2 Proof of Theorem 4.1

Now we can proceed to the proof of Theorem 4.1.

Proof. According to Lemma A.1 we have:
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Notice that F(z®, y*) — F(z*, y®) = F(z®), y*) — F(z*,y*) + F(z*,y*) — F(z*,y®) > 0, we can omit this

term. We plug Lemma A.2 into (7) to get:
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Unrolling the recursion yields:
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we have:

Plugging in 7 = and n =

() _

2log T\ "
<(1-2F0) (e[l o]+ oo - D
log To2 2L  4logT PELYS 25msT 1281l0g? T
8logTo 3 416 og L 1+ (L og 8log 52
w2nT 2 u2T n log uT 2T

) _

T
8log T'o? 32L2 4logT
1
+ w2nT +< 2 +16 2T nlogT

Notice that:

< exp(—log T?) (E [Hw( -z

y tos T 25T 19810g2 T
Tz o ].

27 4(L—p)logT

2T
41 T nlog T 41 T a(L— L)longlo T T L_
<L+@—u)(% ) :(L+@—u)(% ) ’ ’ <@m<&um>.
So we can conclude the proof:

wT wr n
E {Hm(m —x* ’ 2]

E [« —a " + [y v |]

*

-y

< T2
8log T'o 3212 41ogT T 8(L —p)\ 128log®T
1 L
+ w2nT + < 2 +16 u2T nlogT P un u2T? 7
<0 1 n o? n k20?2 " K202
- T2 p2nT  p2nT  p2nT?)°
as stated where we used O() in last inequality to keep key parameters. O

A.3 Proof in heterogeneous setting

In this section we are going to present the proof in heterogeneous case. Let us introduce some technical lemmas
first which will help our proof.

A.3.1 Proof of technical lemmas

The following lemma performs one iteration analysis:

Lemma A.3. For local-SGDA, under Theorem 4.2’s assumptions, the following relation holds true:
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Proof. According to updating rule and strong convexity:
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Now we are going to bound terms
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The next lemma upper bounds the weighted accumulative local model deviations between two communication
rounds in strongly convex setting under heterogeneous data assumption.

Lemma A.4. For local-SGDA, under Theorem 4.2’s assumption, by letting w; = (t+ a)?, the following inequality
holds:
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Proof. Assume that s7 <t < (s+ 1)7. According to the updating rule, we have:
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Plugging back and taking expectation yields:
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Notice that w; = (t +a)? and a > 7, so wy < Wst1)r < 4wy, Vi, j such that s7 <, < (s+1)7. So we have:
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The following lemma also gives the upper bound for weighted local model deviations, but the weights multiplied
in front of E [59 + 51(;)} is different from Lemma A .4.

Lemma A.5. For local-SGDA, under Theorem 4.2’s assumption, by letting w; = (t + a)?, the following holds:
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where we omit a n; in (9) since n; < 1.
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Since 1y = W and a = max{2048k>7, 1024+/27x2, 256K2}, we have the following facts:
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t=sT j=sT
(s+1)1 (s+1)T
+ 6472 Z wjn?Am + 1672 Z wjn;’UQ
Jj=sT Jj=sT
1 (s+1)7 ' 4 (s+1)7 ' 9 ' 9
< 1 wj (IE {5:9) + 5!(,’)}) + 1280772 L? Z wj (IE {Ha}(]) -z @) _ g ])
Jj=sT Jj=sT
(s4+1)7 (s+1)7
+ 6472 Z w;in; Ay + 1672 Z w]n]202
Jj=sT j=sT
1 (s+1)7 ‘ _ (s+1)7 9
<7 py) w; (]E {5‘,9) + 5 D 256L2 ]Z;T w; ( {H () _ g D
(s+1)1 (s+1)T
+ 6472 Z wjn;’Ax + 1672 Z wjnj-’02
j=sT j=sT
1 (s+1)1 1 (s+1)1 9
- , (4) () (4 _ (4)
S (B[ +69)) + oz z pny 2 ( U) D g ; D
(s+1)1 (s+1)T
+ 6472 Z wjn?Aw + 1672 Z w;n
j=sT j=sT
Similarly, we get:
(s+1)7 (s+1 1 (s+1)7 5 5
(t) - ( ) _ ) a*
3 wnels <1 > v (B[s9+op]) + L > % (k[ - )
(s+1)1 (s+1)T
+ 6472 Z wjn?Ay + 1672 Z ’U.)jﬁ?O’z
j=sT J=sT
Combining the two inequalities yields:
(s+1)7 1 (s+1)T 1 (s+1)T w. 2
(t) (t) z . (4) (4) ) () _ p*
t; wyr, (E [63,- + 5 }) <3 Z: wj (E [5; + 0y ]) + g Z g (E [Ha:] x
(s+1)T (s+1)T
+ 6472 Z wjnj (Az +Ay) + 3272 Z w]
Jj=sT Jj=sT
(s+1 ( 1 (s+ 0 9
t) i) % *
= - ;;T wene ( [ —1—5 })_128L2 Z ,Lu?]n (IE {Hmﬁ x ])

(s+1)T (s+1)T
+6472 > win (Mg + Ay) +3277 Y winlo?

j =ST ] =ST

)

o)
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(s+1)7 1 (s+1)7 w 2
(t) (t) Bt} @) _ p* (@) *
— t% wtnt {53: +5y }) < 6412 j; Hn; n; (]E |:Hw ! T ! :|>
(s+1)7 (s+1)7
+ 12872 Z wjn? (A, + A,) + 6472 Z wjn?OQ.
J=sT Jj=sT

A.3.2 Proof of Theorem 4.2

Now we are going to proof Theorem 4.2.

Proof. According to Lemma A.3 we have:

2 2 1 2 2
el -]+ w o o] < (1- o) (= e -] 2 [ - o[ ])
2,2

* * 6 g
— 2 (F@,y") - F(a",y™")) + DR + 00 + ”n

+8n2L°E (5;“ + 5;”) .

Then, letting w; = (t + a)? and multiplying %t on both sides, and summing up from ¢ =1 to T*

S—1 s+1)T
> 3 (o e e o)
s=0 t=sT
S—1(s+1)T 9 9
w * *
<X 3 (1) e (e o [0 v ])
s=0 t=sT e
S—1(s+1)7 S—1(s+1)7 2wt’r]t0'
—2)° 3wk (Fa,y) - Fay ™)+ > 3
s=0 t=sT s=0 t=sT
16L2 R ®) zs_l(SH)T ) o st
D > wE (0 +00) 481230 3w (6 +6). (10)
s=0 t=sT s=0 t=sT

T1 T2

Then we use Lemmas A.4 and A.5 in T7 and T, to get:

S—1(s+1)7 . 9 . 9
=3 > g (e e )
—1(s+1)T S—1(s+1)7
10247212 32 512722
+ oD wn (Dp+Ay) + = winp o’
H s=0 t=sT H s=0 t=sT
S—1 s+1)T 9 9
-2 5 g ([ e | o o)
s=0 t=
S—1(s+1)7 S—1(s+1)7
+ 1024 L%72 Z Z wnp (A + A,) + 5120772 Z Z wnio®
s=0 t=sT s=0 t=sT

Plugging T} and T» back into (10) yields:

ZO t; (H (t+1) _ g 2

-y

i Hy(t+1) —yt

2 S—1(s4l)r 1 ws ® 2
< 1—- —E H:c R
)X 3 (1) e (

)
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S—1(s+1)7 S—1(s+1)7 9
—22 3 wt]E( (", y*) - (t)) Z > 2o
=0 t=sT =0 t=sT

S—1(s+1)7
+1024L27-2> (De+8)> 0 > w (nf +1f)

s=0 t=sT

< 102472 L2
_|_ .

S—1(s+1)7

2712
+ (m;L + 512L2T2) 2> > we (nf +0})

s=0 t=sT

Using the fact that (1 — 7,u77t) < mll we can cancel up the terms:

wT (H (T+1) _ g 2+“y(T+1)_y* 2)

nr

<3 (=0 =1+ o)
Mo

1024722 Sl
+<;+1023L272> A +A) 3" S wi (nf +97)

s=0 t=sT

512r2L2 ST SOE 20mi0?
+<+512L272) N wmiAn))+> DY ——.
K s=0 t=sT s=0 t=sT
Dividing both side by ylelds
T+1 2 T+1 2
E[Hw(“m* ol =]
2 2
s v (= o+ v -o[)
8 102472 L2 647 O (InT)
+ +1024L* 2> Ay + A <+>
w(T + a)? ( [ ) (Bt ) (i p?
127212 4T InT 16702
i 3(5 u +512L272)02(62 G(r; )) L
w(T' +a) I w(T +a)*  pn
a3 K272 (AL + Ay) k271202 o?
< R (Ba 1 Ay) R0 )
O< )+O< pT? >+O< pI? >+O<u2nT)
Plugging in 7 = y/T/n concludes the proof. O

B Proof of Nonconvex-Strongly-Concave Case

B.1 Overview of proofs

Now we proceed to the proof of convergence rate in nonconvex-strongly-concave setting. Recall that in this case
we study the envelope function ®(-) and y*(-). The following proposition establishes the smoothness property of

these auxiliary functions.

Proposition 1 (Lin et al [29]). If a function f(x,-) is p-strongly concave and L smooth, then ®(x) is § = kL+ L
smooth and y*(x) is k-Lipschitz where k = L/ .

Since ¢ is f-smooth, then the starting point is to conduct the standard analysis scheme for nonconvex smooth
function on one iteration as follows:

va 0} (t))

E[o@®))] - E [s(1)] < - [HW o) ] (11 — 367%) E
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*(m(t)) —y®

+ (20+36n2) LE [ (6 +657) | + %2L2IE [

2] | 3pnio*
] 2n

y* (x®) — y® H2 The bound we derived for

(59(5) + (58) is no longer suitable here since in nonconvex objective, convergence to global saddle point is NP-hard.
Instead, we derive the following deviation bound with the help of gradient dissimilarity:

We can see the convergence depends on (5g) + 58),

T

1 2

- ZIE (55? + 5§j)) < 107%(n2 +n?2) <02 + 2) + 10702 ¢ 4+ 107°02¢,.
t=1

Another thing is to bound the gap of current dual iterate and optimal dual variable: m(t) H [29] has
established the convergence of it, but they use a fairly large dual step size O(1/L). Hovvever in the local descent
method, due to the issue of local model drifting, we are forced to stick with a small step size. Thus, as our main

contribution in this part, we established the convergence of Hy* (w(t)) —y® HQ using a smaller dual step size:

r [l e e o (447)
+ % > 0(C(ny+m)+C°n2)E [5;” + 55}@

n 2
LS Vi, )
n
=1

where C' = n— C' could be large if we choose 7, to be small, and will thus negatively affect convergence rate,
which means we trade some rate for communication efficiency.

Putting these piece together, and letting 7, and 7, to be sufficiently small, we can cancel up the term
E [H% S Vafi(z®), y(t))H2] and establish the convergence rate.
B.2 Proof of technical lemmas

Before proceeding to the main proof of theorem, let us introduce a few useful intermediate results. The following
lemma shows the analysis for one iteration of local SGDA, on nonconvex-strongly-concave function.

Lemma B.1. For local-SGDA, under the assumptions in Theorem 5.1, the following statement holds:

]E{@(a:(t“))} —E[(P(w(t))] <—71E [qu> ®) H ] (7= — 3872) E H vafi(w(”,y“))
=1

(™) — y®

2 2
+ (20 +36n2) B [ (00 + 60 )] + EE [ ] + %677502

2

2
where 8 =L+ kL, and 5;“ = %Z?:l H%m - iB(t)H ) 5;” B Zz 1 ’ y(t)H .

Proof. According to [29], ®(-) is § = L 4+ xL-smooth, together with updating rule, so we have:

2@ D) < @) + (Va(e®), 2t —2) 12 200 0|

1 n
S (@(m(t)) — Nz <V(I)(:B(t))7 ﬁ Zvrfz Et)aygt)agt >
i=1

2

Zv JHCIRNTEN)
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Taking expectation on both sides yields:

2
(t+1) ] _ @y 1 @ o\ B a1 )
E[o(@!))] <E |o@®)] %<V®m)%;;%ﬁ Zw,»+2%E nZ}uﬁl,%,@
1 3 g
] _ ) 1 () 2 ® 40 gt
<E[o(")] nr<v<1>(a: ),n;vxﬁ(m, )> SIE Zv fi@, "€l
1 n
_ 20, _1 () (0)
Zv fila yi) n;vzfz(w Y )>.
Using the identity (a,b) = —3|la — b||? + 3|la||® + 1]b]|?, we have:
E [Cb(w(tﬂ))} “E {tb(ac(t))}
2 1 n 2 2
L 0] H Nl (2@ 4y ® Nz )
< Iz _ Iz il
< E[HV@(w |- 58| |2 X v |+ FE Zv fi(z®,y®)
1 2 ’
+n—; ]E{qu)(m(t))H]JFQE | ZVf (t) (t) Zv fi(z®, y®)
/8 1 n 2
niE anvxfz 'Et)7y§t)7 z)
1=1
T 2 mLQ * 2
S—ZE[HV@(wm)M— vaf, (2, ") +”21E[ (w“))—y(“}
1 <& 2 2
el e
niZl
1 & ’
+ﬁn§E 3|~ D Vafiz® y)|| +3 ZV fila, g ZVf ®,y") +302
i=1
la | n_ 30 o 1N (©) ® n.L? () _ y®
<_7EH@(H_*_7 E||=S" v, /i@, E
< -2 ||veeo|| - (2- L n;v“wy) + gy @
v
o s ]+ Lo

The following lemma characterizes the local model deviation bound for nonconvex-strongly-concave function.

Lemma B.2. For local-SGDA, under assumptions of Theorem 5.1, the following statement holds true:

Pl et
T t=1 " i=1 '

2
o]+ & [ -

5o E [Hw(t)

1 n (s+1)7
5’5:EZE Z Zv fr(x
=1 j=sT

Je e

Proof. We start to prove the first statement here. For the simplicity of notations, we define §* =

G ,,0)
k]7ykj’ )

2
y"

} <1072 (n2 +ny) (02

(s+1)7

Z 77$ xfz (J

] =ST

02
+ n) + 10702 ¢ 4+ 10702 ¢,.

E[d; +dy] =

2
ygt)H ] Assume s7+1 <t < (s+ 1)7. Notice that:

2

(). ga

Dy el
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1 n (S+1)T’r] (s41)7 2
oD By Y ”Zv ful@? y?sel) — - NV fiz? ys )
=1 Jj=sT Jj=sT
(s+1)T 2 n 4 ' 4 2
-7y - ZJE ZV ful@d y€]) — Vafi(@l? y?s€l)
] ST
(s+1)1 7 ‘ ' 2
i {15 S MR e
Jj=sT =1
S+1)7’n2 n 1 n ) )
=7 Z QCZ]E Ezvxfk(w,(f),y,(f);fj) \Y% fk(a:k ,yk )+V fk(fﬂk ,yk ) Vo fr (29, y))
j=sT k=1
+Vo (@D, y ) = Vo fi(@ D,y D) + Vo fi(2D), y D) = V, fi(2D, ) + Ve i yP) = Vo S yl €l }
(s+1)1 77
+7 Z yZE Zvyf wk 7yk ; k) yfk(wk >yk )+vyfk(33k >'!lk ) Vyfr(z (])7'!/(]))
j=sT

+V, 12D,y D) = v, £,y D) + v, f;(D, y) — ¥, fi(z?, y) + V, fi(@?, yP) — v, fi@, y s €h)

]

(s+1)T
< > o (0 +— + 20257 +§w) + 512 (a + — + 20267 + gy)

_] ST

Summing over ¢ from s7 to (s + 1)7 yields:

(s+1)T (s4+1)7 (s+1)7
Z 5t < Z Z 512 <0’ +— + 20257 + Cx> + 571, <O’ +— + 20257 + Cy>
t=sT t=sT j=sT
(s+1)T ‘ o2
100272 1) 3 045202+ ) (07 4 %) e+ 5, (1)
Jj=sT

1/3 nl/3

Since 7 = %,nz = Ty = LT21/2 and 7' > max {12—(2)3,403/2}, then 10L%72(n2 + 775) < %7 by re-arranging

the terms we have:

(s+1)7 2
g
S 8 <1072 ) ("2 i n> 10706 + 107Gy

t=s7+1

Summing over s from 0 to 7//7 — 1, and dividing both sides by T' can conclude the proof of the first statement:

T

1 2

7 > 6t <10m (2 + ) <02 + (;) + 107202 + 10702,
t=1

The next lemma establishes an upper bound on the dual optimality gap.

Lemma B.3. For local-SGDA, if we choose 1, = &, then under assumptions of Theorem 5.1, the gap between
yt and y* (x®) can be bounded as follows:

T 2 2
1 2 2Ck 2 1 dnzo
1INk ’ ®) _ o (® H < Uhe H ©) _ o ((® ‘ 9 1 y
T; “y vEh| | s 7By -y )‘ PR\ o) T
T
1 1 4n, L?
fE 9 1 Y 212\ R [s® (t)
+Tt:1 Cl{( +2(C"f_1)> ( K S ) [5w +6y]
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T n 2
1 1 302
o D ACTKIE (3| =Y Ve fi@® y )|+ 6L (0 + 6)) + =
t=1 i=1
(12)
2
where 8 = DD H ) _ and (53(,” =15, ‘ yz(,t) —y®

Proof. According to arithmetic and geometric inequality and Cauchy’s inequality: ||a + b||? < ||la||? + 2| al|||b|| +
6112 < (14 1) llall? + (1 + ) [B]]%, we have:

?| 1= (s

Then we are going to bound ||y*(z(*~) — y(’f)H2

(™) — y® *(xD) — y®

v -y ).

1 +(1+2(Cr—1)E U

®) — y*(:c(t_l))H2 separately.

First, according to updating rule for y and strong concavity, we have:

o[ -]

2
_ 1 _ - .
=E y(t D"'”@/EZvyfi(wgt 1)7yz('t l)éff)_y (“’(t 1))
i=1
2
_]E|:Hy(t—1) ( (t— 1) H ZV fz ’ (t 1)’£t)

1< t—1)  (t—1 _ v (t—
+2n,E angvyfi(fvg gDy gyt g (2 1))>]

<E {Hy(tm _ y*(mul))Hg]

2 2
+o? | 4E nyF(m@1>,y*(m<t1>))H }+4]E nyF(m<t1>,y<t1>) - VP, y 20| ]

=0

1 — B B _ 2 o2
w3 (18 U\Vyfi@“ D90 - Bl ] +4%)

+ 2n,E K ZV filz YD), ylt 1)_y*($(t1))>]

—|—217y l< ZV fz 7y§t 1)) wai(w(t_l),y(t_l)),y(t_l)—y*(m(t_l))>]

_ RCEINE a® - RCEIN &
< (l—uny)E[ Y — g (2 ”)H ] +dny— + S'E [Hy“ D -y ”)H }

+2(ny — 4n§L) E {F(m(tfl)’y(tfl)) _ F(m(t71)7y*(m(t*1)))}

20 <0

2 RS —n (- —1) = )P
+ (Zy+4n§>E EZHVyﬁ(wEt V™) =V fi Ty ”)M
i=1

2 An? o2 2
< (1 uny) l:Hyt 1) _y*(w(t—l))H } " nyo N (477yL +817§L2> E [5(;_1) _'_51(}—1)} ' (13)
n I
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Then, for the term ||y*(z®)) — y*(w(t_l))H2, since y*(-) is k-Lipschitz, we have:

“|

2
@) =y @) ] < 25 [l -0

2

1 & - -
= r*n’E EZmel(mft 1)3y£t 1)555)
< W2E valx(tl (t-1))
- L 9
<KE (3] Vafi(zT,ytY)
=1

Recall that we choose 7, =

E[ () _ymm

- 12, 307
oyl = Vi@t 2

+3- ZHV filz

_ _ 30?
+6L2(6Y N + Y1) + —

(14)

&z, C > 0. Combining (13) and (14) yields:

< (1 n 2(0;31)) <(1 l“ly) |:Hy(t 1) y*(w(t—l))H2:| N 477202 . <4nZL2 N 8172L2> E {5;t—1) +51(f_1)D

+ (14 2(Ck — 1)) K*n°E |3

< (1 5em) (-
+(Hz(cﬁlq )(

PR |3

N

)ell-

<4ny
A

+(14+2(Ck—1))k

Using the fact (1 + m) (1-2)

E[ () ymm

(o ge)ello-

+ (14 2(Ck — 1)) K*n’E {3

1\
_ ) _
2Cf{> E [Hy

IR
]

:]’Jt 1) y(t 1))

(1-

2
y*(w“‘”)H } +

2 2
+6L*(307Y 4+ ¢ Y) + 30 ]
n

H)H]

+ 8n2L2> E [5; by 55}”})

2 3 9

g(t=1) y(t=1)) +6L2(5€(ct—1)+§?(f—1))+i

QC%)’ and unrolling the recursion yields:

1 Anjo? 4, L? 272 (t=1) | s(t—1)
<1+2(0H1)> ( - +( v+ sl )]E[(Sw + 6 }

2

(t—1) , (t—1) 2/¢(t—1) (t—1) 30°
Y )| +6L (5:0 + 6y )+ W

t 1\t
- _ 2,2
(1 26%) (14+2(Ck—1))k*n;E |3

y*(m(o))H2] 420K (1 +

1\’ 1 dnZo® [ 4n,L?
1— 1 Y Y 2L2 E 5(t71) 6(1‘/71)
20&) < Jr2(0;@—1)) ( n +( i 8y {m + oy }

2
3
+ 6125 + 60 + %

lZv (20D, =)
n s xJi )

1 477502
2(0&—1))( n >
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+Zt: . - T A L? +8n2L? E{é“*l)w(t*l)}
2Ck 2(Ck —1) 1 » 4

2

+6L*(63 " + 6] 1)+3i

t t—j n
1 . ,
- (1 - H) (1+2(Ck —1))&*%E |3 - > Vo i@l 4l
1 =1

t=1
T t
1 1 2 1 4n
<3S (1- — IEH (0) _ gy <°>‘ 20k ( 1
_T;< 20%) {y v (@) ] +20 t3ce—1n)
T t t—j 2
1 1 1 any L 272 (t—1) | s(t—1)
= 1— o~ 1 L?)E
+T;jz_;< 2Cn> <+2(C/£—1)>< i 8y [5:” 0y ]
1 Yy L\ 2 1) t 1 i 2/cj—1 i—1 30?
+TZ (1_m> (1+2(Ck—1)) " mE |3 ZV fi(xY~ NI +6L2(G1 " + 67 + =
t=1 j=1
2Ck . 2 1 4n?
<7 E My@ Y ("B(O))H ] 20k (H 2(6%-1)) Z
T
1 1 4n, L?
ht 1 v 272 t) 4 50
+T§2C,‘£( +2(0H1)>< r +8nyL>E[5m +§y}
T n 2
+%Z4C2 : %vaﬁ(w(“,y@) +6L7(60 +61) + 3;
t=0 i=1
O

B.3 Proof of Theorem 5.1
Now we provide the proof of Theorem 5.1. In Lemma B.1, summing over ¢ = 1 to T" and divding both sides by T

yields:

! (E [@(:n(T'H))] _E {@(x@))})

T
<-rye e - <nm_35ng>;inz S|
t=1 i=1
+(2nx+3ﬁn2)L21XT:E[(WM(”)} ZEU 1)~y }+ B i
’ Tt:l

For the simplicity of the notation, we let ® = Zthl E [H% S Vafi(z®), y(t))H2] Re-arranging the terms
and plugging in Lemma B.2 and Lemma B.3 gives:
Ly @ |?
72w
t=1
2

< —E[0@®)] - 2(1-38m.) R

nT'

+2(2+36n,) L Z [(55;>+5§>)}+L2 XT: “
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<iE[q>( )] ~2(1 - 36n.) % + 39 o
=0T T Nz nmn

2
+ (4 + 68n,) L? [1072(77_3 +n;) <02 + :) + 107292 ¢, + 10729 gy}

2L%Ck 2 2025212\ 4nio?
), %(.(0) H Yy
T ]E{Hy vy @) }+<Cm—1> n

2 30 2
+ 4C? K42 L2 <§R +6L2 {107’2(7735 + 773) <02 + Uﬂ) +107%92¢, + 107 nygy} + >

202K2L2 4n, L2 )
! ( cr 1 ) ( " +8"5L2> {1072("3 ) <02+ 0) + 10722, + 10#775@,} .

2 2LQC’/1
< E[@ <0>} LR H ) _ <0>H —2(1 - 38n, — 4C?
< TE [0 )]+ =5 v ( 36n, —AC* KM L) R
20%K2 4n, L? 2
+ 10 4+65nz +2402:‘€ 77:1,’ —|— i ny +8n2L2 L2 7—2(175 +fr]2) 0-2 + i +7— 77;1;4-512 +T /]7 Cy
Ck—1 ] Y Y n Y
1202 k42 [2 02 2 202422\ 4n2o?
| 20l | o | (2C7RILTY A,
n Ck—1 n

By choosing n,, =

LT2/3 9

3
4/3,.4 4/3 .8 __ 1/3 .
C =TY? and T > max { <16" " +\/16"2 K7 128 /L) ,403/2, 1223} in Theorem 5.1

such that
1 —38n, —4C?*k*n2L* > 0,

holds, then we have:
T
1 2 2 2L%Ck . 2
e o] < e o]« 2205 -y
t=1

2022\ [ 4n,L? 2
+10 (4 + 661, + 24C%*K* 2 L? + ( ) ( My 8nyL2)> L? {72(773 + ;) (02 + 2) + 7202 + TGy

Crk—1
12C?K%n2 L% 0? 367710 20%K%L2
+ +
n n Crk—1
L T1/3 nl/3 2 .
Plugging in 7 =~ and 0, = 7rm 0y = P will conclude the proof:
2

T 472 2 2 2 2
(t) k*Leo L2(, LGy L*k
Z MV@ H ] < )1/3 + (nT)1/3 + T2/3 + n2/371/3 + T1/2 | °

C Proof of Local SGDA -+ under Nonconvex-PL Setting

C.1 Overview of proofs

Now we proceed to the proof of convergence rate in nonconvex-PL setting. In this case we still study the envelope
function ®(-). The following proposition establishes the smoothness property of these auxiliary functions.

Proposition 2 (Nouiched et al [39]). If a function F(x,-) satisfies p-PL condition and L smooth, then ®(x) is
8 =kL/2+ L smooth where k = L/ .

Since ® is S-smooth, then the starting point is similar to what we did in nonconvex-strongly-concave case, to
conduct the one iteration analysis scheme for nonconvex smooth function on one iteration as follows:

E|0@")| -E |o@")| < -TE [HW)(:B“))M - (77; ﬂm) ZV s )

2
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Bnzo?
2n

2, L?
L2
n

E|(@(@@®) - F@",y )] + 20, L°E 60 + 60| +
We can see the convergence depends on 5¢) + (53(,0, and E [(@(z®) — F(z®,y®))]. For 5 + 55), we bound it

in an analogous way to nonconvex-strongly-concave case.

Another thing is to bound the gap E [(®(z®) — F(z®,y®))]. Here we borrow the proof idea from [43]:

T
Z [ o(x®) (<t>,y<t>)]

IE [® (D) — F (g0 () 2
[@(®) - Pz, y)] +2Z(L%ﬁfn+2L25n§(G§+02)+2L2]E [55#5@”})

<
py T pT =
21— pumy) (2L Bn? 1 1< 1z ’
+ ,UT]y T)L_F ’I’}x _|_L2 2 = 7zvlfl($§0),y£0)) +Z]E Zv fz z ayz )
K11y 2 2 T i t=1

G (S (el ] ) e

2(1— pmy) 1 ¢ 2 Bnzo 1y Lo
AT ) 2 91, L*E [5@ 4ot } v
+ pny T tz:; g » v 2n + n

Putting these piece together, concludes the proof.

C.2 Proof of technical lemmas

We first introduce some useful lemmas. The following lemma performs one iteration analysis of local SGDA+, on
nonconvex-PL objective.

Lemma C.1. For local-SGDA+, under the assumptions in Theorem 6.1, the following statement holds:

E [@(m““))] _E {@(m(t))} < —%”JE {HV@(:B(“)HQ} - (772” - ﬂn’”) ZV fi(z" y")

on, L? 2
—+ N 5%0
" 2n

2

E[(@@®) - P@®,y®))] +20.1%E [0 + 5] +
where 8 = L+ kL/2.
Proof. Since ®(+) is 8 = L + kL-smooth, we have:

B(@D) < B(a®) + <V@(w(t) (t+1) > 5Hw(t+1 (t)Hz

< d(x) le< ZV fi(z (t) (t) €1 >

Taking expectation on both sides yields:

2

Zv JHCIRNTEN)

2

]E[‘I’(w(t“))} SE[‘P(%(”)} <V¢ ), ZV Fila) y )> Ui Hiivxﬁ(w?)’y?);ﬁf)

Using the identity (a,b) = —3|la — b||? + 3|la||® + 1]b]|?, we have:

E [@(w(t“))} ) {(I)(m(t))}
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n 2 2
s—’gE[Hw<w<t>>]ﬂ—”’”E LS Vi y)| | +nE H ) —fZV fila®,y®)
=1
2
+n.E H Zv NCIRNN Zv iz, y®)
| o
® () PNL0”
H ZV file” ;") o
2 6 2 2
s—%ﬂ“h@@wﬂ}—<2 %> }:vﬁ 2 ") +%ﬁEMMﬂ%—¢“]

1 & 2 , 2 Bnio
enat S ol e sl -]+ 252
i=1

2n
<—?EUW@@mW1_<? 6%)

2 2
2 t (1) Bnzo
+ 20, L°E |80 + 6| + ==

2
ZVf (), yi)

+ 1. L%E [Hqﬁ(w“’) - y“)Hz]

According to [13], PL condition implies quadratic growth, we have:

o) -y < 2

2
< =P, o)) - F(@",y")) =
I
which concludes the proof.

;(‘P(w(t)) — F(z",y")), (15)

The following lemma characterizes the sub-linear convergence of gap E [@(w(t)) — F(z®, y(t))].
Lemma C.2. For local-SGDA+, under the assumptions in Theorem 6.1, the following statement holds:

l ZE [ o(z®) — F(z®, y@)}

_ 2E [q)(w(o)) _ F(w((’), y(O))]

pny T’ pI
T n
2(1 - 2L, i 1 1
+ {( m]/my) ( 5 - >+L2nx] ( ZV i@y |+ 3B anvzfi " y")
Y t=1 =1

PR (5 (hnn el + 57 +E[”W””””HQD

1
T
201 — um,) 1 Lo?
4 20 pmy) E(Q%LQ]E{&S)JF(SA Pz >+nyg.

2
D (L i + 202803 (GF + 0%) + 2L°E [55;) + 5§>D

2 2

2n n

Proof. According to smoothness of F(x,-), we have

2

LIl N
P, y1) < Fath) D) - <VyF(ﬂc(t“),y“)), y ) — y(t)> +5 - Zvyfi(w,ygt);ff)

2

< F(xH gty —p, <VyF(w(t+1),y @), V i@,y €l > ZV fi@ el




Local Stochastic Gradient Descent Ascent

Taking expectation on both sides yields:

E[F(a:(t"’l),y

] < E[F(z"V, y )] — n,E

1 — .
<VyF(w(t-i-1)7 y(t)), - Zl vyfi(m, ygt))>]

2

2 n
nyL 1 - (t) t
——E |- E (T, Y; 5 &

+ 5 ni:lvyf(a: Y, &)

2
7. 201
< E[F (2D, yt+1)] = ?”]E [Hvyp@(tﬂ)’yl(t))H } n 5777;1@

1 & L
va(w(t-H),y(t)) - ;Vyfi(a: y )

2

2 n 27 2
ny Myl 1 5 n, Lo
A i B e ; =7 16
(2 2 ) n;v-’ff (@ 2n (16)
(1) (t+1)y _ 1 1), ny L (t)2n2La2
t+1) , (t+1 y t+1 v y y
. 2
+ §nyE HVyF(:B<t+1)7y(t)) _ VyF(.’E(t)7y(t)) + VyF(:I:(t) (t) Zvyfl
(1) 41y _ Ty ( ny ol n2Le?
t+1) , (t+1 y ) y y y
< E[F (@), y*))] EMVFw H}( - ) ZVme T
2 1 2
+n,E [Hva(w(t-&-l)’y(t)) _ va(w(t)’y(t))H } +n, E VyF(w(t),y(t)) _ Zvyfi(fhy?)) :
n
i=1
T
T
where we use the identity (a,b) = —%|la — b||> + 3[|a|* + 3||b]|*.
To bound T}, we notice that:
2 2
T, < LE [Hx@“)—m(t) < L22E H ZV Fi@® | |+ 2
n
For T5, we bound it as follows:
2
T, < 2F [Hva(m(t), 0y - v, F(& y™) H ] +2E ||V, F(z fvayfz &,y
2 ) _ A~ 2 21 - (t) Olls
<2I°E H:c —a:H +2L°- 3 E Hy g
i=1
20 22 | 2 21 ¢ (t) 2
<2L°Sni(Gi +0°) +2L ﬁZ]E Hy -y,
i=1
Putting these pieces together yields:
EIF (2D 4® EIF (2D 4t+D) g Fgt+D) 4® 2 Ny 77y (t) Lo’
< _— &z — — < -
[P,y )] < BF@eD,y )] - 2 |9, ree, )| - (2 vayz ks

2

+ny | Ln3E + L —

ZV iz, y")
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)

2 n
<E[F(@),y* D)) - 2B nyF<w<t+l>,ym)H } - (”v _ y>

1 n
y <2L2Sn§(Gi +o%) 2L E [Hy(t) — gyl
=1

2
ngLa2

+2n

ZV Fil@,y")

2

2
2

+ L%ga—
n

+ny LQUO%E H Zv fZ 1 7y1 )

1 — o2
+n, <2L25n§.(G§. +0%) +20° Z;E [Hy(t) — >H D .

Now, applying the PL condition to substitute HVyF(a:(t“), y(t))HQ:

2
[V F @,y )| = 20(0(2 ) - P+, yO)). (17)
Thus we have:
772[/0.2
mpE [(@(2) = F@),y )| < B[R0,y D)) — EF@), ) + 22
2
+ny | L*n3E H ZV Fi@ |||+ L2

1 & NTE:
+ 1y <2L2sn§.(G§ +0%) 207 Z;E [Hy(t) — )H D .

Re-arranging the terms yields:
2L0.2

n
E (q,(w(tﬂ)) _ F(w(t“),y(t“)))] <(1- uny )E [ (t+1)) F(:,;(Hl)’y(t)))} + y27n

2
o
+ L%}i;

2
+n, | LPn2E H vafi(w,(»”,yﬁ”)

1 & ‘
+, <2L25n§(Gi +0%) 20 Z;JE {Hy(t) — 4
1=

2} )
Notice that in RHS:
B0 ) = Fla™),y0)] = E(@®) - Fla,y )] + E[p()) - o)+ B[P, y®) - Falt),y0)

Ts Ty

(18)

According to Lemma C.1 we can bound T3 as:

Ty < —%“’E U)W(m(t))m _ <772m m)

20, L?
L2
"

2

Z V. fil=",y")

Bnzo?
2n

E |(@(@@®) - F@®,y )] + 20, L°E 60 + 60| +

For Ty, applying smoothness of F(-,y*)) gives:

]

Ty = E[F(2®,y®) — F(zt+), 4®)] < B[ <V1F(m(t), y ), pt+D) _ a;(t>>] n g]E [wal) _x®
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2
2L0.2
:an <v m(t y(t Zv fl 7, 7 7 )> nx ]E Zv fl Z 7 z ) +n$2n
1 21 1 1 & ® @ ’ ’ n2Lo?
<= £1E H LF (t)7 (t) H a .LE - xJi ‘t; ‘t T ? -
< gk |9 r@®.y )] + 30 PRSI ZszyJ I
2
ON[E () ON[E 1 ngLo®
<k |||Ve@))| | + .k || v.F@?,y) - Vo) | + (50 ZV fi@? | |+
For E [HV F(x® y®) — 0| } we apply the smoothness of F' and quadratic growth of F(z,-) to get:
2
MV F(a.y) - Vo) ] < I’E [Hyu) =) ] Fla®,y* (@) - Fa®,y)] .
Using above bound to replace E [HVQJF(:B(”, y®) = vo(z®) HZ} we can finally bound T} as:
oyl*] ., 2E* ) _ F(a® 4®
Ty < n,E VCID(sc ) + N NE ‘I’(:]Z ) F(:I: Y )
2
1 2L 1< © @ nzLo*
'z = E - xJi i I .
(gm0 BT v |+
Plugging T3 and T, back yields:
E (@) - Fa),y D))
412 n2Lo?
< - pm) (140,25 ) 5 [(oe) - F<m<t>,y<t>>>} A
2 1 1 & ’ 2L
1) net [0+ (o 0 )| |13 Vsl ol | + B2
+ - pm,) | 8 |[va@)] ] + (G + 2 el |+
N B 12 ®  (®) ’ Bno®
_ _z (t) Je 22 it (ol t 2 (t) (t) Pla®
+ (1~ pmy) qum; H] (2 2%)1& n;vwfz(xi YO | 20l [0+ )] + P

2

+y | L*nzE H Zv Fial | | + 1292

1 n
. <2L2Sn§(G§ +0%) + 207~ 21@ [Hy(t) _y

< (1-12) 2 o) - pa )] + B

1 2 2 Lo? 2L 2 1 &
+ (1 = pmy) (anE {HW)(w(“)H } + 17271) + [(1 = py) (772 + 5;7 ) +nyL2n§} K H” > Vefilw ")
i=1
+ (1= pny) (20, L°E {6“) + 5“)} il
Y v x Y 2n

o2 1< 2
+ 11y (L%ﬁ;n +2L2S0(G 4 0%) +2L°~ 3 E [Hy(t) ~ 9" } ,
i=1

where we use the fact (1 — un,)(1 + %) < (1 — H) due to n, < W@MW' Denote A; =
E [(@(x®) — F(z®,y®))]. It is obvious that A, > 0 for all t. Then, based on the above inequality and
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do the summation:
2

3 b Hy Ly naL | B 22 (t)
T—1 , ,
- L 2 U%LUQ n:Lo
t=0
T—1
- Bnio?
+ 5 > (1= pmy) (anLﬁE [0 + 0] + 25
t=0
1 T-1 9 20'2 ) ) ) ) 21 n " )
o Sy | LR T+ 2L2Si2(GE 4 0?) + 2L S “)y(w g ]
= =1
T
2L
<=7 (A 2o ) ”

2

ZVfZ L) Zszwyz)

o2

T
2 22
[ wvy( 7)o

1 d ’
(1~ )7 (Z “n.E ‘V@ (t))H } + )+E Mw(w(‘”)H ])
1
T ﬁ7720'2
=iz 3 (e [+ ] < 2F)

T
1
+ 1y > <L2 27 L 9L2902(G2 + 0?) + 2L°E [5;“ + 6Z(j)D
t=1

Re-arranging the terms will conclude the proof:

T
1 24 Lo?
Loy, < 2o mlot
it pny T n
2(1 — pmy) (n2l  Bn; S Ly 2
R 10| E5 > T B o [ ES m e
My 2 2 =1 i
T
2(1 — pmy) 1 <1 [ onll2] . malo® o |I?
) “nE HV(D z® H + 27 ) 4R pr 2© H
T ; 5 () 5 (™)

1—w7y 1 > [w (t):| Bnzo®
+ T;(%LE +o | + =

2
2 2 2 2 2
T§j<L + 202502 (G2 +o)+2L]E[5§f)+6§f)D.

The next lemma bounds the local model deviations on nonconvex-PL objective.

Lemma C.3. For local-SGDA+, under assumptions of Theorem 6.1, the following statement holds true:

11
D

t=1 i=1

n

2 2 2
E [Ha}(t) — :L'Et)H ] +E {Hy(t) — ygt)H } < 107’2(77_2 + 7}3) <02 + Uﬂ) + 107277,»%@ + 1072175@.
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2 2
Proof. Similarly, for the second statement, we define v = L 3" | E [Hm(t) - g;gt)H ] +E {Hy(t) _ yl(_t)H ], then

we have:

1 n 1 n (r+1)7 (r4+1)7 2
'Yt < 525 E Z NeVa fk 513k 7yk afj) ' — Z nwifi(wz('])vysj)afj)
i=1 k=1 j=rT j=rT
2
Iy~ 1y ke G). i ey 5. o
=Y D BT = D mVule(@y 6 — | v - D mVafi@ yiE)
=1 k=1 j=rT j=rT
TR L G) (). i G .G
< . - J D). edy G 3). ¢d
<ty B nZE[HV i@y ie) - Vahi@? yli ) ]
j=rt =1 k=1
(r+1)7 n 1 n ) )
Y ;’ZnZE[Hvyfk@s,yé”;f@—vyfxas v €l) ]
j=r7 i=1 =1

=T Z %w %ZE[HV Fi( wk ,yff, AR fk(wk ’yk )+ Y, fk(wk 7?Jk ) = Vo fula,yD)

j=rt i=1 k=1

V. f1(@29),y D) =V, fi(aD, y D) + V, fi(2D, yD) =V, ;29 gy + Y, fi(@?,yP) - Vo fi(@D yl el

(7’+1)T n
1
sy - ZgZ (V05 65 60) — Vo i@ v) + Vo fil@ w) — 9y (@5 )
j=rT i=1 k=1
+vyfk(537y(j)) - Vyfi(ivy(j)) + Vyfi(i'vy(j)) vy fi(@, yz ) + Vyfi(i'vyz(‘j)) -V, fi(z, ygj)afj)
(r+1)7
< > o <o + — +2L27 +§x) + 5n; <o +—+2L2y +<y>

] T

|

Summing over ¢ from 77 to (r 4+ 1)7 yields:

(r+1)7 (r4+1)7 (r+1)7
Z 7t Z Z 57'171(0 —|——+2L2’y +§w)+57ny<a —|——+2L2fy —l—()
t=r7 t=rt j=rT
(r+1)7 _ 02
< 10L272 (2 + 175) Z 7+ 572 (02 + nZ) (02 + n) + 57202, + 57’2175@. (19)
Jj=rt

Since 10L272(n2 + 775) < %, by re-arranging the terms we have:
(r+1)7 0_2
> A <10 + ) <02 + n) +107°03 ¢ + 107°n5 ¢,

t=r7+1

Summing over r from 0 to T'/7 — 1, and dividing both sides by T' can conclude the proof of the first statement:

T
1 o?
727" <107 (0 + gy <02 + n) + 10703 ¢, + 107°02¢,.

]
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C.3 Proof of Theorem 6.1

According to Lemma C.1, we sum over ¢t = 1 to T', and divide both sides with T

T

7 (2o -2 o)) < 573w [veet|] - (5 -22) 7 ZE va a4
o, L2 1 22
TIM T;]E[@(m(t)) F(z®,y®)) } Tzzn IL2F [ t)+51(f)}+67;7n0

Plugging in Lemma C.2 yields:

L (ot 2 o)

< — (7729: w > ZE [qu) (t) H :| Gi +0_2) 4 277;[,2 nyioﬂ

L)

2

. 2 o, L2 [2(1— 2L 2 1 &
B <77 _Bnz 2n [ (1 — pmy) (m N B%) +L277“2”D IS g
2 2 n 1)y 2 2 T P

1 n
n 1=1

Sn.Lt  8(1— umy) 8(1 — pn, mL2 L+B) 5. 8neLh nio®
u 1121y 121, 0 n

. 2
o L2 (E[0(z©)] —E [F(m<0>,y<0>)] {2(1 ~umy) <ngL ﬂng> , 2] E LS, Ve fil@®,y )]
+ + = | ——+ + L3

I pny T [y 2 2 T

L 22220~y (B[94

I [y T
nl/3 nl/3 T1/3 T1/3
Recall that we choose: 0, = {r7s, Ty = T2, T = 375 SO = 373, and
3/2
Bnl/3 B2n2/3  SL(L+ B)nl/3  4L?n?/3 2.6
T > max 5T 102 2 + m ,(8K7)° 2,

so we know that # > Z= and & > 0. Plugging in 7,,7,, 7,5, and plugging in Lemma C.3 will conclude the proof
for Theorem 6.1:

T
1 2 ﬁ02 K2L2C I€2L2C k2202 (2
j— (t) Y xT T
T ;E [HV‘I)(ZB )H } =0 <(7lT)1/3 - n2/3T1/3 + n2/3T * T + nl/371/2 | ° (20)

O

D Proof of Local SGDA+ under Nonconvex-One-Point-Concave Setting

D.1 Overview of the proof techniques

In this section we are going to present the proof of convergence of local SGDA+, under the setting that F is
nonconvex in « but one point concave in y. In this setting, ®(x) is no longer smooth any more, and y*(x) is not
Lipschitz. As we mentioned in the main paper, we study the Moreau evenlope function: @/, (). The proof
mainly contains two parts: one iteration analysis of Moreau envelope and Convergence of SGA under
one point concave condition.
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Step I: One iteration analysis of Moreau envelope. By examining one iteration of local SGDA+, we have
the following relation:

B 1 < _ N _ 2
E[®, /o, (z?)] <E |:(I)1/2L(:B(t 1))} L2 (G2 + o?) +2%L252E U wZ(t D _ 1)H i Hygt D _ gl 1)H ]
i—1
2
+ 2L1, (E {‘I’(w(t_l))} -E [F(w(t_1)7y(t_1))}> - %E [HVCI)l/zL(«’E(t_l)>H ] .

It turns out our next job is to bound local model deviation E H

wz(t—l) _ w(tq)H i Hylgt-l) _ y(tfl)m and the
gap E[@(z(~D)] —E[F (21, y*1)]. The the analysis of deviation term is similar to what we did in nonconvex-
strongly-concave setting. The remaining tricky part is how to bound E[®(x(*~1)] — E[F(2¢~1) ¢¢=1)].

Step II: Convergence of SGA under one point concave condition. To deal with E[®(x®)] —
E[F (2", y™®], we first notice that:

E[@(x")] ~ E[F(z",y")] = E[F (&), y"(2"))] - E[F(&,y"(&))] + E[F(&,y"(@))] - E[F (2", y*))]

(@,y"(&))] — E[F (=), y®)]
<E[F(2",y*(«")] - E[F(&,y" (@"))] + E[F (&, y"(&))] — E[F(@,y")]
T Ty
+E[F(2,y")] - E[F(z,y")]

According to the Lipschitz continuity of F', and the fact that & will be updated every S iterations, we can bound
Ty and T3 by 1,SGz+/G2 + o2.

The tricky part is to handle Th. Basically fixing &, we wish to know how fast E[F(&,y")] converges to
E[F(Z,y*(2))]. Thanks to one point concave property and the updating rule of local SGDA+ where we fixed &
while updating y, we can show that:

(k+1)S (k1S | ) (k1S |

> E[F@y @) - F@ ) +L > - U yi -y }JrQnyLz Y CE {H y{ —y®
n

t=kS+1 t= kS+1 t=kS+1

Putting these pieces together will conclude the proof.

D.2 Proof of technical lemmas

Lemma D.1 (One iteration analysis). For local SGDA+, under Theorem 6.2s assumption, the following
statement holds:

1< _ 2 _ 2
E[®; )or, ()] < E [@1/%(1,(#1))} I3 (G2 4 02) + 2%[4252E U’mgt 1) _ m(tA)H " Hygt 1 y(tfl)H ]
2t (< ot -8 [0y )]) - e [ommntae ]
Proof. Define ¥ = argmingey ®(z) + L]l — 2® |2, the by the definition of 121, we have:

By o () < @@y + L)z — 2O (21)

Meanwhile according to updating rule we have:

E [ A w<t>m _E

2

201 _ Zv Sl D)

1
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2

2 1 < _ _
—:v(H)H } +n2E Hngvzﬂ(wgt RTIRTIR)

gIEUﬁ:

1 — _ 3
+ QUEE [<i(t_1) - a:(t_l)a ﬁ Z foz(wz(t 1)7 ygt 1))>‘|
i=1

2 Lo

=k U @ a m(til)H } + (G, + o) + 21, <i'(t1) — Y, - Zfoi(m(t1)7y(t1))>

=1

L p(t=1) _ . (t=1) (t 1) (t—1) 1) (=1 ||

+ 1 §E z H + ]E HV Fi@ Y YY) v, fi(a Ly )H
2 ) )
<E U T - w(tfl)H } +172(G% +02) + nx2Lﬁ ZE Mf’%('t_l) _ w(tfl)H " Hyg;-m - y(t,l)H ]

i=1

+ 21, E [<§;(t—1) — w(t_1)7sz(w(t_l),y(t_l))>] N %E [

2t m“—l)HQ] L (22

According to smoothness of F' we obtain:

E [<&(t—1> D), vwF(x“—l),y(t—l))ﬂ

<E [F({U(t—l),y(t—l))} ) [F<$(t—1)7y(t—1))] n sE [

=1 _ p(t=1) H}

IN

E[CD ~ (t— 1)} Flz tl) tl))}_’_LE[
2

o] ) -
[

<E[@ (= 1)+ LE[ |2t~ a1 | ]

20 o }

IN

E[o@" )]+ LE :;;“—1)—93“—1)”1

<E {cb(a;“*l))} _E [F(w(f*1>7y<t*1>)} _ gE [

&t x“l)m . (23)

Plugging (22) and (23) into (21) yields:

2 1 & _ 2 _ 2
3[pyte] < 2[ow ] 2 Jo ) a0 i S i o -]
i=1

2
&) - D

+2n,L <IE [@(w(t_l))} _E [F(a:(t_l),y(t_l))] _ g]E {

2
—:c@*l)H ]

<E (010 (@ )] + Lu2(G2 + 02) + 2m, L2 ZE[H =D _

2 (2 2 77xL2 ~(t—
+ Lz (G, +025) + T]E z

2
T —y(t‘l)H }

+ 2L, (E [@(w(t—l))] o) [F(:c(t_l),y(t_l))D MV@l/gL H }
where we use the result from Lemma 2.8 in [29]: V@57 (x) = 2L(x — 2). O

The following lemma derives the convergence rate of the gap E[®(z))] — E[F(z®,y®)].
Lemma D.2. For local SGDA++, under Theorem 6.2°s assumption, the following statement holds:

o2

T n
D 1 1 2
o(z)] - E[F(2',y")] < 20,5G,/G2 + 0% + S +(L+ 477yL2)f § o § E {Hygt) - y(t)H ] " nyn
4 t=1 " i=1

HMH
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Proof. Consider t = kS + 1 to (k+1)S. Let & denote the latest snapshot iterate. Observe that:
E[e(z")] —E[F(«"),y")] < E[F(2"),y"(2"))] - E[F(2,y" (") + E[F(2,y"(&))] - E[F(z",y")]
< G.E||lz") — &|| + E[F(Z,y"(®)] - E[F(w,y(t))] +E[F(&,y")] - E[F(=",y")]
< 20, 8G.\/G2 + 02 + E[F(&,y"(2)] — E[F (&, y")]. (24)
where we use the fact f(-,y) is G,-Lipschitz, so that:
E[F (2", y"(2"))] - E[F(Z,y"(2")] < G.El2™ — &| < n.5G.v/G2 + 02,
E[F(z,y")] - E[F(z",y")] < G,E|lz") — &| < n,SG.\/G2 + 02

Summing over t = kS + 1 to (k+ 1)S in (24), and dividing both sides with T yields:

(k4+1)S—1 (k+1)S-1
> E@@@®)] -E[F(z®,y")] < 20,5°G,/G2+ 02+ Y E[F(z,y"(2) - E[F(z,y")]. (25
t=kS t=kS

Now let us study the convergence of E[F (&, y*(&)] — E[F(&,y™®)].
By the updating rule of y we have:

E [y - y*(@))?]

= |||y ® 4~ Zv fil@, s €h) — y* (@)

=1

| —

|

<Zvymy &),y - <>>

. B 2
E U y® *y*(w)H } + 2n,E

o [H IR

|

n

2 1 <
< &) _ ¥ (4 - (i Y ) _ g,
<E “y Y (w)H } + 2n,E <n ;:1 Vyfi®,y,”’).y Y;
2
Z . Z 0
+277y szwyz 1, y( Vflmyz +

Applying one point concavity and L-smoothness of f;(&,-) we have:

E [Ily(t“) - y*(ﬁc)llﬂ <E U(y(“ - y*(ﬁc)m + 2ny% zn: E [fi(:i, y") - i, y*(ﬁf))} + nyL% zn:E [Hyﬁt) —y® 1
=1 =1
2

i 2 2o
+ 4, LE [F(:i,y*(fi)) - F(-’ivy(”)} + 2L~ K U) yt -y } + nyT
=1

2 .2
My

<E U‘y(t) - y*(i)’r] +w]}3 {F(i,y(t)) B F(.’i,y*(i))] N i

>y
1 <& 2 1 2
+nyL—> E {Hyf;t) ~y"| ] + 2y L~ E {H yl | }
i=1

My

n

]

<&||u-v@|| - ne[rey@) - rey)] +

1 — . 2
+y L~ ZI]E {Hy( ) —y®
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Re-arranging the terms, and summing ¢t = kS + 1 to (k + 1)S yields:

(k+1)S 1 9 50_2
> E[F@y @) - F@y")| < — (E [Hy<“+1> -~y (@) ] —E [y 9 —y (@) ]) e
t=kS-+1 Ty n
(k+1)S 9 (k+1)S 1 ® 2
t
cr Y Le [l -] renr X e[| v -]
t=kS+1 t=kS+1
(k+1)S ) (k+1)5 5
1 2 ST
<7 (®) 2 L H ) _ (1) Myo0”
LY = {Hy —y }—FZnyL D n]E[ R
t= kS+1 t=kS+1
Plugging above bound into (25) yields:
(k+1)S—1 (k+1)5 9 Sn..o2
S E@@?)] - E[F@®,y")] < 20,52G, /G2 +02—|—77+ (L+dn,2%) Y Z]E “ Py ] + 27
t=kS t= kS—i—l =1

Finally, summing k£ = 0 to T'/S — 1, and dividing both sides by T" will conclude the proof:

T T n
D 1 1
Z o(a)] - E[F(2,y")] < 20,9G,/G2 + 0% + R L) > -3 E U MONING
t=1 Y t=1 " i=1

2 2
]+W
n

D.3 Proof of Theorem 6.2

In this section we provide the full proof of Theorem 6.2. We first sum over ¢ =1 to 7" in Lemma D.1, and divide
both sides with T

T T n
1 2 8E[®1 /2 (z(0)] — 8E[® o1 (2 1 _
+ (t) /2L / - - ) (@) ® ., (t-1)
L5t ¢ BN 1 S g [ o]y
1 T
el (t) 2® (t) 2
+16L Y (Ef@(=)] - y0]) +8LR2(G2 + o).

Plugging in Lemma D.2 and C.3 yields:

o] [y

< 8E[@1 /or, ()]
- Ne T

D 11
2 2, = %) -
8L <2nzsaxm+ ot LAY DY E s

t:l =1

2
+ 16L> (1072(775 +n;) <02 + 2) + 107 02¢, + 10727,34;,) + 8Ln, (G2 + 0?)

0 _yo| ] )

- > +107%n2¢, + 1072 ycy) + 8L, (G2 + o?)

E[® (0)
< SE[ 1/2L(5'3 )

< T + 16L> <1072(n§+n§) < +

D 2 2
+ 8L <2nmSGm G2+ 02+ S + (L + 4n,L?) <1072(n3 +1;) (02 + 2) +107202¢, + 1072775@) + "y; )
Y

< SE[(I)l/ZL(w(O))]

2
T + (1617 +8L(L + 4n, L?)) (1072(7;5 +1;) (02 + ‘;) +107" 03¢ + 1072n§<y> +8Ln, (G2 + 0?)

D 2
+ 8L <2nxSGz G2+o2+—+ L )
Sny n
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1 2
-1 /ns, S =T35 we recover the rate:
LT ALT?

T 2 2 ) 2 2 2 2
r3E vt <o (57) vo (77) +o (Fr + s + ir) +o (50) +o ()
T Ts Ts (nT)s nsT (nT)s 4 nTs

6

as stated by the theorem. O



