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Abstract

Local SGD is a promising approach to over-
come the communication overhead in dis-
tributed learning by reducing the synchroniza-
tion frequency among worker nodes. Despite
the recent theoretical advances of local SGD
in empirical risk minimization, the efficiency
of its counterpart in minimax optimization
remains unexplored. Motivated by large scale
minimax learning problems, such as adver-
sarial robust learning and training generative
adversarial networks (GANs), we propose lo-
cal Stochastic Gradient Descent Ascent (local
SGDA), where the primal and dual variables
can be trained locally and averaged period-
ically to significantly reduce the number of
communications. We show that local SGDA
can provably optimize distributed minimax
problems in both homogeneous and hetero-
geneous data with reduced number of com-
munications and establish convergence rates
under strongly-convex-strongly-concave and
nonconvex-strongly-concave settings. In addi-
tion, we propose a novel variant local SGDA+,
to solve nonconvex-nonconcave problems. We
give corroborating empirical evidence on dif-
ferent distributed minimax problems.

1 Introduction

We study minimax optimization problems of the form

min
x∈Rdx

max
y∈Rdy

{
F (x,y) :=

1

n

n∑
i=1

fi(x,y)

}
, (1)

where data are distributed across n nodes so that
each node i will have its own objective function
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fi(·, ·). The local objective function is defined as
fi(·, ·) = Eξ∼Di [`(·, ·; ξ)], where Di is the local data
distribution of ith client and ` is the loss function.
Numerous machine learning problems fall in this cat-
egory. A canonical instance is adversarially robust
learning. Consider the following robust linear re-
gression minx∈Rdx maxy∈Rdy

1
n

∑n
i=1 `(x

>(ai+y); bi)+
λx
2 ‖x‖

2 − λy
2 ‖y‖

2, where {(ai, bi)}ni=1 are input pairs
of training data. We wish to learn a predictor x
that is robust to small perturbation y. Another
popular minimax application is Generative Adversar-
ial Network (GAN) [8], which can be formulated as:
minx∈Rdx maxy∈Rdy Ea∼Dreal [`(Dy(a))]+Ea∼Dx [`(1−
Dy(a))], where x is the parameter of the generator net-
work Dx and y is the parameter of the discriminator
network Dy.

The centrality of these applications in machine learn-
ing motivates considerable interest in efficiently solving
minimax optimization problems. Among all popular
algorithms, primal-dual stochastic gradient algorithms
are definitely the most popular ones [38, 37, 48]. The
most classic algorithm in this category is stochastic gra-
dient descent ascent (SGDA), which has been proven
to be an effective algorithm for minimax optimization
both empirically and theoretically [29]. However, in
practice, due to the huge volume of data, or to protect
the privacy of user data (e.g., federated learning sce-
nario [18, 19]), a distributed algorithm while lowering
the communication cost is preferred and is the focus
of this paper. A conventional distributed approach to
solve (1) is parameter server model, where every client
(user) sends its local stochastic gradient to a central
node, and the central node performs stochastic gradient
descent procedure on primal and dual variables by ag-
gregating local stochastic gradients. Unfortunately, this
approach causes heavy communication outage, which
has been reported to be the main bottleneck slowing
down the distributed optimization [1, 30, 44, 55].

A notable research effort to reduce the commutation
complexity under a computation budget is to employ
local SGD with periodic averaging [34, 46]. In lo-
cal SGD, the idea is to perform multiple local up-
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Assumption Setting Results Comm. Rounds Convergence Rate

Strongly-Convex-Strongly-Concave Homogeneous Theorem 4.1 Ω̃ (n) Õ
(
κ2σ2

µ2nT

)
Heterogeneous Theorem 4.2 Ω

(√
nT
)

O

(
κ2(∆x+∆y+σ2)

µnT

)
Nonconvex-Strongly-Concave Homogeneous Theorem 5.1 Ω

(
n1/3T 2/3

)
O
(

L2σ2

(nT )1/3

)
Heterogeneous Theorem 5.1 Ω

(
n1/3T 2/3

)
O
(

L2σ2

(nT )1/3
+ L2ζx

T2/3 +
L2ζy

n2/3T1/3

)
Nonconvex-PL condition Homogeneous Theorem 6.1 Ω

(
T 2/3

)
O
(

βσ2

(nT )1/3

)
Heterogeneous Theorem 6.1 Ω

(
T 2/3

)
O
(

βσ2

(nT )1/3
+

κ2L2ζy

n2/3T1/3 + κ2L2ζx
n2/3T

)
Nonconvex-One-Point-Concave Homogeneous Theorem 6.2 Ω

(
T 2/3

)
O
(
Lσ2

T1/6

)
Heterogeneous Theorem 6.2 Ω

(
T 2/3

)
O
(
Lσ2

T1/6 + L2ζx
n1/3T

+
L2ζy

(nT )1/3

)
Table 1: A summary of our results under different settings. We use Õ(·) and Ω̃(·) to hide logarithmic term.
∆x and ∆y are heterogeneity at the optimum (see Definition 2). ζx and ζy denote gradient dissimilarity (see
Definition 4).

dates, wherein clients update their own local models
via SGD for multiple iterations, and the models of
the different clients are averaged periodically. While
this algorithm introduces additional noise due to lo-
cal updates over fully synchronous SGD, it is shown
that by careful choice of learning rate, local SGD can
achieve same asymptotic performance as synchronous
SGD, while benefiting from reduced communication
rounds [46, 53, 49, 9, 15, 27]. Motivated by the success
of local SGD and a key observation that in some min-
imax applications (e.g., aforementioned robust linear
regression and GANs), the primal and dual variables
can be trained in a distributed manner and locally, we
extend local SGD to tackle minimax learning problems
and propose local stochastic gradient descent ascent (lo-
cal SGDA) algorithm. In local SGDA, local nodes will
optimize their own version of primal and dual variables
for multiple steps, and then they synchronize and do
model averaging via central server. However, despite it
being an extremely simple algorithm, and the thorough
understanding of local SGD on minimization problem,
local SGDA, as its counter-part in minimax problem,
still lacks theoretical foundations. Thus, a natural
question that arises is: Does local SGDA provably
optimize distributed minimax problems too?

We answer above question in the affirmative, by es-
tablishing the convergence rate of local SGDA in
both homogeneous data setting, where local func-
tions in (1) have the same distribution (IID), i.e.,
D1 = . . . = Dn = D, and heterogeneous data set-
ting, where local functions are not necessarily real-
ized by the same distribution (non-IID). Our main
contributions can be summarized as follows. We are
the first to show that local SGDA provably optimizes
the distributed minimax problem with communication
efficiency, on both homogeneous and heterogeneous
data. For strongly-convex-strongly-concave setting,
we obtain the convergence rate of Õ

(
1
nT

)
with Ω̃(n)

communication rounds in homogeneous local functions
setting, and O

(
∆x+∆y

nT

)
with Ω(

√
nT ) communication

rounds in heterogenous setting, where ∆x + ∆y is the
quantity reflecting heterogeneity. It recovers the same
asymptotic rate and communication rounds as local
SGD in the smooth strongly-convex minimization prob-
lem [16, 52, 51], up to a constant factor. For nonconvex-
strongly-concave problem, we get the rate O

(
1

(nT )1/3

)
with Ω

(
T 2/3

)
communication rounds, under both data

allocation settings. In addition, in order to efficiently
solve the nonconvex-nonconcave minimax optimiza-
tion problems, we propose a variant of local SGDA,
dubbed as local SGDA+, a single loop algorithm to
solve nonconvex-nonconcave problems. We establish
its convergence rate on two classes of functions, which
are nonconvex in x but satisfies Polyak-Łojasiewicz
(PL) condition in y [13], and nonconvex in x but one-
point-concave in y. We summarize the obtained rates
for different settings in Table 1.

2 Prior Art

Single Machine Minimax Optimization. The his-
tory of minimax optimization dates back to Brown [3],
where he proposed a bilinear form minimax problem.
Korpelevich [20] then proposed the extra gradient (EG)
method to solve this bilinear problem. Following their
path, Nemirovski [37], Nesterov [38] and Tseng [48]
studied the general smooth convex-concave minimax
problem, and proposed algorithms which achieve the
same asymptotic rate O (1/T ). Du and Hu [6] prove
the linear convergence of primal-dual gradient method
on a class of convex-concave functions. The other
popular algorithm for convex-concave optimization is
Optimistic Gradient Descent Ascent (OGDA), which
is widely studied and has many applications in ma-
chine learning [4, 25, 36]. For strongly-convex-concave
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setting, Thekumprampil et al [47] proposed an algo-
rithm combing Nesterov accelerated gradient descent
and Mirror-Prox, which achieves near optimal rate
Õ(1/T 2). For strongly-convex-strongly-concave set-
ting, Lin et al [28] leveraged the idea of accelerated
gradient descent, and gave a nearly optimal minimax
algorithm, which matches the lower bound given in [40].
Some literature [29, 39, 41, 47] also conduct trials on
nonconvex-concave minimax optimization, and among
them the most related work to us is [29], where they
study the single machine SGDA, under nonconvex-
(strongly)-concave case. Recently, due to the raise
of GANs [8], a vast amount of work is devoted to
nonconvex-nonconcave optimization [7, 31, 32].

Distributed Minimax Optimization. A few recent
studies are devoted to decentralized minimax optimiza-
tion. Srivastava et al [45] proposed a decentralized
algorithm to solve the convex-concave saddle point
problem over a network. Mateos and Cortes [33] pro-
posed a subgradient method and prove the convergence
under convex-concave case. Liu et al [32] analyzed the
convergence of networked optimistic stochastic gradient
descent ascent (OSGDA) on nonconvex-nonconcave set-
ting. [43] studied a variant of local SGDA, and provided
the convergence analysis on PL-PL and nonconvex-PL
objective. We note that [2] also studies the convergence
of local SGDA on strongly-convex-strongly-concave set-
ting, but their analysis is not as tight as ours. Recently,
federated adversarial training [43] and FedGAN [42]
are proposed to solve large-scale and privacy-preserving
minimax problem, which can be seen as application
instances of our work.

Local SGD. Communication efficiency has been stud-
ied extensively in distributed SGD. The most related
idea to this paper is local SGD or FedAvg [34]. Fe-
dAvg is firstly proposed by Mcmahan et al [34] to
alleviate communication bottleneck in the distributed
machine learning. Stich [46] was the first to prove
that local SGD achieves O (1/T ) convergence rate with
only O(

√
T ) communication rounds on IID data for

smooth strongly-convex loss functions. Haddadpour
et al [9] analyzed the convergence of local SGD on
nonconvex (PL condition) function, and proposed an
adaptive synchronization scheme. [16] gave the tighter
bound of local SGD, which directly reduces the O(

√
T )

communication rounds in [46] to O(n), under smooth
strongly-convex setting. Recently, Yuan and Ma [54]
proposed the first accelerated local SGD, which further
reduced the communication rounds to O(n1/3). [10]
gave the analysis of local GD and SGD on smooth
nonconvex functions in non-IID setting. Li et al [22]
analyzed the convergence of FedAvg under non-IID
data for strongly convex functions. [52, 51] investi-
gated the difference between local SGD and mini-batch

Algorithm 1: Local SGDA
input: Synchronization gap τ , Communication
rounds S, Number of iterations T = Sτ , Initial
local models x(0)

i , y(0)
i for i ∈ [n].

parallel for i = 1, ..., n do
for s = 0, . . . , S − 1 do

all nodes send their local model x(sτ)
i and

y
(sτ)
i to server.

x(sτ) = 1
n

∑n
i=1 x

(sτ)
i

y(sτ) = 1
n

∑n
i=1 y

(sτ)
i

server sends x(sτ), y(sτ) to all nodes;
each client initializes its local models:
x

(sτ)
i = x(sτ) and y(sτ)

i = y(sτ).
for t = sτ, . . . , (s+ 1)τ − 1 do

sample a minibatch ξti from local data
x

(t+1)
i = x

(t)
i − ηx∇xfi

(
x

(t)
i ,y

(t)
i ; ξti

)
y

(t+1)
i = y

(t)
i + ηy∇yfi

(
x

(t)
i ,y

(t)
i ; ξti

)
end

end
end

SGD, in both homogeneous and heterogeneous data
settings.

3 Local SGDA

In this section we formally introduce local SGDA algo-
rithm for solving distributed minimax problems. The
proposed algorithm can be viewed as a variant of SGDA,
which is one of the most popular primal-dual stochas-
tic gradient algorithm to solve centralized minimax
optimization problems. Specifically, for solving the
optimization problem in (1), at tth iteration, SGDA
performs the following updates on primal and dual
variables:

x(t+1) = x(t) − ηx∇xF
(
x(t),y(t); ξt

)
y(t+1) = y(t) + ηy∇yF

(
x(t),y(t); ξt

)
,

where ξt is minibatch sampled at tth iteration to com-
pute stochastic gradient, and ηx and ηy are learning
rates.

The key difficulty of deploying SGDA in a distributed
setting stems from the fact that after tth updating,
server needs to communicate global models x(t) and
y(t) to all nodes, so clients can locally evaluate the
gradient on x(t) and y(t). Meanwhile local users should
send their local gradients back to the server for aggrega-
tion/averaging. This suffers from heavy communication
cost and could hinder the scalability of the algorithm
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as communication is known to be a major bottleneck
that slows down the training process [1, 30, 44, 55].

As mentioned earlier, to mitigate the communication
bottleneck, a popular idea is to update models locally
via SGD, and then average them periodically [34, 46].
Motivated by this, we advocate a local primal-dual
algorithm for minimax optimization as detailed in Al-
gorithm 1. To formally present the steps of proposed
Local SGDA algorithm, consider S as the rounds of
communication between server and clients, and τ as
the number of local updates performed by clients be-
tween two consecutive communication rounds. The
algorithm proceeds for T = Sτ iterations and at tth
local iteration, the ith node locally performs the SGDA
on its own local primal and dual variables

x
(t+1)
i = x

(t)
i − ηx∇xfi

(
x

(t)
i ,y

(t)
i ; ξti

)
,

y
(t+1)
i = y

(t)
i + ηy∇yfi

(
x

(t)
i ,y

(t)
i ; ξti

)
,

for τ iterations, where ξti is the minibatch sampled by
ith client from its local data to compute local stochas-
tic gradient at iteration t. At sth synchronization
round, the server aggregates local models x(sτ)

i and
y

(sτ)
i , to perform the averaging: x(sτ) = 1

n

∑n
i=1 x

(sτ)
i

and y(sτ) = 1
n

∑n
i=1 y

(sτ)
i . Then, the server sends the

averaged models back to local nodes. We note that com-
pared to fully synchronous distributed SGDA, which re-
quires T communication round, in local SGDA we only
require T/τ communications. Despite its simplicity, we
are not aware of any prior result that establishes the
convergence rate of local methods in minimax setting.
In the following sections, we show that the proposed
algorithm enjoys a fast convergence rate while signifi-
cantly reducing the communication rounds by properly
choosing the number of local updates τ .

4 Strongly-Convex-Strongly-Concave
Case

In this section we will present the convergence analysis
of local SGDA for strongly-convex-strongly-concave
functions, under both homogeneous and heterogeneous
data settings. In the strongly-convex-strongly-concave
minimax problem, our goal is to find the saddle point
of global objective, as defined below:
Definition 1. The tuple (x∗,y∗) is said to be saddle
point of convex-concave function F (x,y) if F (x∗,y) ≤
F (x∗,y∗) ≤ F (x∗,y),∀x ∈ Rdx ,y ∈ Rdy .

To facilitate our analysis, we make the following stan-
dard assumptions on objective function and noise of
stochastic gradients.
Assumption 1 (Strong Convexity). fi(x,y) is
strongly convex in x, which implies there exists a

µ > 0 such that ∀x,x′ ∈ Rdx ,y ∈ Rdy it holds that
fi(x,y) ≥ fi(x′,y)+〈∇xfi(x′,y),x′−x〉+ µ

2 ‖x−x
′‖2.

Assumption 2 (Strong Concavity). fi(x,y) is
strongly concave in y, which implies there exists a
µ > 0 such that ∀x ∈ Rdx ,y,y′ ∈ Rdy it holds that
fi(x,y) ≤ fi(x,y′)+ 〈∇yfi(x,y′),y′−y〉− µ

2 ‖y−y′‖2.
Assumption 3 (Smoothness). There exists a L >
0 such that ∀i ∈ [n], ‖∇fi(x1,y1) − ∇fi(x2,y2)‖ ≤
L‖(x1,y1)− (x2,y2)‖, ∀x ∈ Rdx ,y ∈ Rdy .
Assumption 4 (Bounded Variance). The
variance of stochastic gradients computed at
each local function is bounded, i.e., ∀i ∈
[n],E[‖∇xfi(x,y; ξ) − ∇xfi(x,y)‖2] ≤ σ2 and
E[‖∇yfi(x,y; ξ)−∇yfi(x,y)‖2] ≤ σ2.

Main techniques. In our analysis, due to infrequent
synchronization, the key is to bound the deviation
among local and global models as defined below

δ(t)
x =

1

n

n∑
i=1

∥∥∥x(t)
i − x

(t)
∥∥∥2

, δ(t)
y =

1

n

n∑
i=1

∥∥∥y(t)
i − y

(t)
∥∥∥2

,

(2)

where x(t) = 1
n

∑n
i=1 x

(t)
i and y(t) = 1

n

∑n
i=1 y

(t)
i are

(virtual) primal and dual global averages at iteration
t, respectively. We note that virtual averages are in-
troduced for analysis purposes and only computed at
synchronization rounds.

Despite minimization problems, where we already have
a solid theory to bound the deviation between global
and local models [46, 9, 10, 22, 16, 14, 23, 52, 51], none
of these guarantees apply to minimax problem, due to
the unstable nature of primal-dual optimization. Hence
the key step in our analysis is to develop a relatively
tight bound for quantities introduced in (2). In the
homogeneous setting, we show that under the dynamic
of primal-dual algorithm, and smooth strongly convex
assumption, the deviation δ(t)

x +δ
(t)
y can decrease as the

rate of O(τ(1+(L−µ)η)2τη2σ2). By properly choosing
τ and η, we can recover the rate O(τη2σ2), which
matches with the existing tightest deviation bounds
of local SGD [16, 52]. In the heterogeneous setting,
we prove that, by carefully controlling the step size,
we can develop the deviation bound that depends on
distance between the current iterate and the saddle
point (x∗,y∗): ‖x(t) −x∗‖2 + ‖y(t) − y∗‖2, plus terms
that capture heterogeneity.

4.1 Convergence in homogeneous setting

We now turn to stating the convergence rate in homo-
geneous setting.

Theorem 4.1. Suppose each client’s objective function
fi satisfy Assumptions 1,2,3,4. If we use local SGDA
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(Algorithm 1) under homogeneous data setting to opti-
mize (1), choosing synchronization gap as τ = T

n log T ,
using learning rate ηx = ηy = 4 log T

µT , and by denoting
κ = L/µ, it holds that

E
[∥∥∥x(T ) − x∗

∥∥∥2

+
∥∥∥y(T ) − y∗

∥∥∥2
]

≤ Õ
(

1

T 2
+

σ2

µ2nT
+
κ2σ2

µ2nT
+

κ2σ2

µ2nT 2

)
.

The proof of Theorem 4.1 is deferred to Appendix A. It
can be observed that we obtain an Õ( 1

nT ) convergence
rate with only Õ(n) communication rounds. This in-
deed implies that we can achieve a linear speedup in
terms of number of clients n, while significantly reduc-
ing the communication complexity from T (fully syn-
chronous SGDA) to Õ(n) in strongly-convex-strongly-
concave setting. We also note that the obtained bound
matches the best known rate of local SGD for mini-
mization problems [16], up to a logarithmic factor. The
notable difference is that in [16], the communication
rounds can be a constant, i.e., O(n), but in our result,
we have an extra logarithmic dependency on T . We
leave removing this log factor as a future work.

4.2 Convergence in heterogeneous setting

We now turn to stating the convergence rate of local
SGDA for strongly-convex-strongly-concave functions
in heterogeneous local data setting. To this end, we
first need to decide a proper notion to capture the
heterogeneity among local functions by introducing the
following quantities.
Definition 2 (Heterogeneity at Optimum). The het-
erogeneity at global saddle point (x∗,y∗) is defined as

∆x =
1

n

n∑
i=1

‖∇xfi(x∗,y∗)‖2,

∆y =
1

n

n∑
i=1

‖∇yfi(x∗,y∗)‖2.

Definition 2 is a generalized notion borrowed from [16],
where they firstly employ it in the analysis of local SGD.
It characterizes the heterogeneity of each local function
at the global optimums of primal and dual variables.
The following theorem establishes the convergence rate
of local SGDA in heterogeneous settings.
Theorem 4.2. Let each client’s objective fi satisfy
Assumptions 1,2,3,4. If we use local SGDA (Algo-
rithm 1) under heterogeneous data setting to optimize
(1), choosing synchronization gap τ =

√
T/n, using

decreasing learning rate ηx = ηy = ηt = 8
µ(t+a) , where

a = max
{

2048κ2τ, 1024
√

2τκ2, 256κ2
}
, κ = L/µ, then

the following convergence holds:

E
[∥∥∥x(T ) − x∗

∥∥∥2

+
∥∥∥y(T ) − y∗

∥∥∥2
]
≤ O

(
a3

T 3

)
+O

(
σ2

µ2nT

)
+O

(
κ2 (∆x + ∆y)

µnT

)
+O

(
κ2σ2

µnT

)
.

The proof of Theorem 4.2 is deferred to Appendix A.
Here we obtain an O

(
κ2(∆x+∆y)

µnT

)
rate using

√
nT

communication rounds, which also enjoys the linear
speedup w.r.t. the number of the nodes. This result
recovers the convergence rate of local SGD or FedAvg on
strongly-convex minimization problems [16]. Our result
does not need bounded gradient assumption, and we
recover the linear dependency on function heterogeneity
at global optimum, which matches the best bound for
local SGD in minimization problems [16]. The most
analogous work to ours is [2], where it achieves an Õ( 1

T )

rate with O(n1/3T 2/3) communication rounds, which
is worse than our result.

5 Nonconvex-Strongly-Concave Case

In this section we will present the convergence of local
SGDA for nonconvex-strongly-concave functions. In
this setting, since objective is no longer convex, we are
unable to show the convergence to global saddle point.
Thus, following the standard machinery in nonconvex-
concave analysis [29, 47, 41], we introduce the following
envelope function which will prove useful in convergence
analysis.

Definition 3. We define the following envelope func-
tions to facilitate our analysis:

Φ(x) = F (x,y∗(x)),y∗(x) = arg max
y∈Rdy

F (x,y). (3)

We consider the convergence rate to the first order
stationary point of Φ(x), as advocated in seminal
nonconvex-concave minimax literature [29, 41, 47].
Namely, we will show how fast ‖∇Φ(x)‖ vanishes. Our
analysis here mainly considers heterogeneous setting,
but it can be easily generalized to homogeneous setting
as well. We will use the following quantity to measure
heterogeneity in nonconvex-strongly-concave case.

Definition 4 (Gradient Dissimilarity). We define the
following quantities to measure the gradient dissimilar-
ity among local functions:

ζx = sup
(x,y)∈Rdx×Rdy

1

n

n∑
i=1

‖∇xfi(x,y)−∇xF (x,y)‖2 ,

ζy = sup
(x,y)∈Rdx×Rdy

1

n

n∑
i=1

‖∇yfi(x,y)−∇yF (x,y)‖2 .
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Definition 4 is also a customary notion of heterogeneity
in distributed optimization [23, 51], and we will use it
to quantify the data heterogeneity in the nonconvex-
nonconcave case. The following theorem establishes
the convergence rate.
Theorem 5.1. Let each client’s objective function fi
satisfy Assumptions 2-4. Running Algorithm 1 under
heterogeneous data setting, choosing τ = T 1/3

n1/3 and
learning rates ηx = n1/3

LT 2/3 aand ηy = 2

LT
1
2
, if we choose

sufficiently large T such that

T ≥ max

{
403/2,

1603

n2
,(

16n4/3κ4 +
√

16n4/3κ8 − 12βn1/3/L

2

)3}
,

holds, then we have

1

T

T∑
t=1

E
[∥∥∥∇Φ(x(t))

∥∥∥2
]
≤ O

(
κ4L2σ2

(nT )1/3
+
L2ζx
T 2/3

+
L2ζy

n2/3T 1/3

)
,

where κ = L/µ, β = L+ κL.

The proof of Theorem 5.1 is deferred to Appendix B. We
note that when we assume local data distributions are
homogeneous, the above rate still holds but the terms
ζx and ζy that correspond to heterogeneity will disap-
pear. Theorem 5.1 shows that local SGDA converges
in the rate of O

(
1

(nT )1/3

)
with O

(
n

1
3T

2
3

)
communi-

cation rounds. Also, local SGDA enjoys linear speedup
in the number of workers n. The most analogue work
to ours in this setting is [29], where they study the
convergence of centralized SGDA (single machine) for
noncovex-strongly-concave objectives, and achieve an
O( 1√

T
) convergence rate. However, their algorithm

requires that the mini-batch size of stochastic gradients
to be very large, i.e., O( 1

ε2 ) to reach an ε-stationary
point, therefore, requiring more computation budget
per iteration. In our case, the batch size can be a
constant, which avoids expensive large batch evalua-
tions. We also note that as pointed out in [29], due to
the nonsymmetric nature of the nonconvex-(strongly)-
concave problem, we need different step sizes for primal
and dual variables. In fact, since objective is strongly-
concave in dual variable, we can choose a larger dual
step size as stated in Theorem 5.1.

6 Local SGDA+

In this section, we proceed to an even harder seting
where the objective is nonconvex in primal variable
x and nonconcave in dual parameter y. Nonconvex-
nonconcave minimax optimization is an active research
area due to the rise of GANs [8], and a few recent

Algorithm 2: Local SGDA+
Input: Synchronization gap τ , Snapshot gap S,
Number of iterations T , Initial local models x(0)

i ,
y

(0)
i for i ∈ [n].

parallel for i = 1, ..., n do
for t = 0, ..., T − 1 do

x
(t+1)
i = x

(t)
i − ηx∇xfi

(
x

(t)
i ,y

(t)
i ; ξti

)
y

(t+1)
i = y

(t)
i + ηy∇yfi

(
x̃,y

(t)
i ; ξti

)
if t+ 1 divides τ then

all nodes send their local model x(t)
i

and y(t+1)
i to server.

x(t+1) = 1
n

∑n
i=1 x

(t+1)
i ;

y(t+1) = 1
n

∑n
i=1 y

(t+1)
i ;

send x(t+1), y(t+1) to all nodes to
update their local models.

each client initializes its local models:
x

(t+1)
i = x(t+1) and y(t+1)

i = y(t+1).
end
if t+ 1 divides S then

all nodes send their local model x(t+1)
i

to server.
take snapshot: x̃ = 1

n

∑n
i=1 x

(t+1)
i ;

send x̃ to all nodes.
end

end
end

studies have proposed efficient algorithms for optimiz-
ing nonconvex-nonconcave objectives [26, 12, 50, 39].
However, these algorithms are all double loop: they
require solving the maximization problem to get a
ε-accurate solution, and then go back to solve mini-
mization problem. The drawbacks will be two-fold:
first, they introduce a new hyperparameter ε, which
needs to be pre-tuned; second, the implementation will
be more complicated, and is not straightforward to
be extended to distributed setting. In this section,
we propose a variant of local SGDA, dubbed as lo-
cal SGDA+, aimed at solving nonconvex-nonconcave
minimax problems in distributed setting with reduced
communication overhead.

Our proposal: snapshot iterate and stale gra-
dients. Before introducing our algorithm, let us first
discuss the single machine setting to illustrate our main
ideas. In the vanilla single loop (S)GDA, we query the
gradient based on current iterate (x(t),y(t)). It posts
difficulty to prove the convergence since under noncon-
cavity assumption, we do not know how close y(t) is
to y∗(x(t)) (as elaborated in [29], in nonconcave case,
y∗(·) is not even Lipschitz). As a result, the existing
methods mainly follow a double loop schema: at outer
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loop, we update x(t−1) using SGD or its variants to
get x(t), and then, we fix x(t), and run few steps of
stochastic gradient ascent to solve inner maximization
problem: maxy∈Rdy F (x(t),y) to get an ε-accurate ap-
proximation of y∗(x(t)), where ε is the predetermined
level of accuracy. This is a successful algorithm, but
due the two weaknesses we mentioned before, we prefer
a single loop algorithm is distributed setting. In order
to alleviate the need for the inner loop, we propose
to update y with stale gradients evaluated on some
past snapshot iterate x̃. To be more specific, each
local worker will perform following update:

x
(t+1)
i = x

(t)
i − ηx∇xfi

(
x

(t)
i ,y

(t)
i ; ξti

)
,

y
(t+1)
i = y

(t)
i + ηy∇yfi

(
x̃,y

(t)
i ; ξti

)
.

The update for primal x(t)
i is identical to what we did

in local SGDA, however, when we update the dual
model y(t)

i , instead of evaluating gradient on x(t)
i , we

query gradient evaluated on a snapshot iterate x̃, which
will be updated every S iterations. This updating
scheme can guarantee that we can optimize on y for
fixed x but without actually locking the update of
x. This algorithm will no longer need the inner loop
hyperparameter ε and it is easy to be implemented in a
distributed fashion. The detailed steps of local SGDA+
are provided in Algorithm 2. We note that by choosing
a small primal learning rate, x̃ will not drift far away
from current iterate x(t)

i , and hence its convergence is
guaranteed.

6.1 Convergence of local SGDA+

We now establish the convergence of local SGDA+ for
a class of nonconvex-nonconcave function. We consider
two function class: (i) F (x,y) is nonconvex in x, and
satisfies PL-condition in y. (ii) F (x,y) is nonconvex
in x, and one-point concave in y. To do so, we make
the following assumptions on the objective.
Assumption 5 (Polyak-Łojasiewicz Condition).
F (x,y) is said to satisfy Polyak-Łojasiewicz (PL)
condition in y if ∀x ∈ Rdx , the following holds:
1
2 ‖∇yF (x,y)‖2 ≥ µ (F (x,y∗(x))− F (x,y)) ,∀y ∈
Rdy .
Assumption 6 (Lipschitz Continuity in x). F (x,y)
is said to be Gx-Lipschitz in x if the following holds:
∀x,x′ ∈ Rdx : ‖F (x,y)− F (x′,y)‖ ≤ Gx ‖x− x′‖.

The following theorem establishes the convergence rate
of local SGDA+ on nonconvex-PL objectives.
Theorem 6.1 (Nonconvex-PL). Let objective function
F satisfies Assumption 5 and local functions satisfy
Assumptions 3 and 6. Also assume F is Gx Lipschitz
in x. Running Algorithm 2 under heterogeneous data

setting, by choosing τ = T 1/3, S = T 2/3, ηx = n1/3

LT 2/3 ,
ηy = n1/3

LT 1/2 , τ = T 1/3

n2/3 , and S = T 1/3

n2/3 , if we set

T ≥ max
{

(8κ2)6,

O

βn1/3

2L
+

√
8L(L+ β)n1/3

µ2
+

4L2n2/3

µ

3/2
 ,

then it holds that

1

T

T∑
t=1

E
[∥∥∥∇Φ(x(t))

∥∥∥2
]

≤ O
(

βσ2

(nT )1/3
+

κ2L2ζy
n2/3T 1/3

+
κ2L2ζx
n2/3T

+
κ2L2G2

x

T

)
,

where κ = L/µ, β = L+ κL.

The proof of Theorem 6.1 is deferred to Appendix C.
Again, if we assume local functions are homogeneous,
this rate also holds but the terms ζx and ζy will dis-
appear. Here we obtain an O

(
1

(nT )1/3

)
rate with only

O(T 2/3) communication rounds, as good as what we
get in nonconvex-strongly-concave case. The most anal-
ogous work is [43], where they prove the convergence
rate of vanilla local SGDA on nonconvex-PL game.
Their work shows that, the vanilla local SGDA can
still converge under nonconvex-PL condition. However,
their analysis does not generalize to nonconvex-one-
point-concave setting, but we develop the convergence
theory of local SGDA+, as we will present in the next
theorem. Another similar work is [39], where they
study the single machine algorithm in nonconvex-PL
setting. They propose a double loop gradient descent
ascent, and achieve and Õ

(
1

T 1/2

)
convergence rate un-

der their convergence measure, which is recognized as
the first analysis for nonconvex-PL game, to our best
knowledge.

Now, we proceed to an even harder case: the objective
is nonconvex in x and one-point concave in y. One
point convexity/concavity property has been shown to
hold under the dynamic of SGD on optimizing neural
networks [24, 17, 56], which has been demonstrated
both theoretically and empirically. In addition, some
works on minimax optimization also adapt similar as-
sumption [35, 32, 31, 11]. Since our objective is no
longer strongly-concave or PL in y, then it will be dif-
ficult to analyze the dynamic of Φ directly, because Φ
is not smooth any more. Instead, we study the Moreau
envelope of Φ, in order to analyze the convergence, as
suggested in several recent studies [5, 29, 41].

Definition 5 (Moreau Envelope). A function Φp(x)
is the p-Moreau envelope of a function Φ if Φp(x) :=

minx′∈Rdx
{

Φ(x′) + 1
2p‖x

′ − x‖2
}
.
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We will use 1/2L-Moreau envelope of Φ, following the
setting in [29, 41], and state the convergence rate in
terms of ‖∇Φ1/2L(x)‖.
Assumption 7 (One Point Concavity). fi(x,y) is
said to satisfy one point concavity in y if we fix x,
then ∀y ∈ Rdy , the following holds: 〈∇yfi(x,y),y −
y∗(x)〉 ≤ fi(x,y)− fi(x,y∗(x)).
Theorem 6.2 (Nonconvex-One-Point-Concave). Let
local functions satisfy Assumptions 3, 6 and 7, and
‖y(t)‖2 ≤ D

2 , ‖y
∗(x̃)‖2 ≤ D

2 for all t and x̃ during
iterating. Also assume F is Gx Lipschitz in x. Run-
ning Algorithm 2 under heterogeneous data setting, by
choosing ηx = 1

LT
5
6
, ηy = 1

4LT
1
2
, τ = T

1
3 /n

1
6 , S = T

2
3 ,

it holds that:

1

T

T∑
t=1

E
[∥∥∥∇Φ1/2L(x(t))

∥∥∥2
]
≤ O

(
Lσ2

T 1/6

)
+O

(
L2σ2 + LG2

x

(nT )1/3
+

L2ζx
n1/3T

+
L2ζy

(nT )1/3

)
+O

(
D

T 1/6

)
.

The proof of Theorem 6.2 is deferred to Appendix D.
Local SGDA+ is guaranteed to find the first order
stationary point of Φ1/2L(x) at the rate of O( 1

T 1/6 )

with T 2/3 communication rounds. Again, if we assume
local functions are homogeneous, this rate also holds
but the terms ζx and ζy will disappear. The most
similar work to ours is [29], where they analyze the
single machine SGDA on nonconvex-concave setting,
and established a rate of O( 1

T 1/4 ). In contrast, we
consider a more difficult concave setting, and their
analysis technique does not apply here directly.

7 Experiments

In this section, we empirically examine the conver-
gence of the proposed algorithms local SGDA and local
SGDA+. We use two datasets, MNIST and a synthetic
dataset and develop our code using distributed API
of PyTorch. For the Algorithm 1, to have a strongly
convex-strongly concave loss function, we consider the
robust linear regression problem, and for the Algo-
rithm 2, to construct a nonconvex-nonconcave problem,
we consider the robust neural network training, and use
a 2-layer MLP model with a cross entropy loss function.
First, we explain the generation of non-iid datasets and
then turn into the experimental results.

Datasets. To generate a synthetic non-iid dataset,
we follow the steps from [21]. In here, we only use
the parameter to control the divergence between local
datasets, while the true models for data generation of
each node is coming from the same distribution. Hence,
for each node we generate a weight matrixW i ∈ Rm×1

and a bias b ∈ Rc, where the output for the ith client

is yi = W>
i xi + b. The model is generated based on a

Gaussian distributionW i ∼ N (0, 1) and bi ∼ N (0, 1).
The input data xi ∈ Rm has m features and is drown
from a Gaussian distribution xi ∼ N (µi,Σ), where
µi ∼ N (Mi, 1) and Mi ∼ N (0, α). Also the variance
Σ is a diagonal matrix with value of Σk,k = k−1.2.
In this process, by changing α we can control the di-
vergence between local input data of different nodes.
We create 3 different datasets by changing this pa-
rameter for the regression task, namely, Synthetic (0.0),
Synthetic (0.25), and Synthetic (0.5). For the MNIST
dataset and for the classification task, we follow the
same procedure in [34], where we allocate data from
only 2 classes per node. This way, the data is dis-
tributed heterogeneously among nodes.

Robust Linear Regression. In this experiments
the model and loss function is defined as

min
w

max
‖δ‖2≤1

1

n

n∑
i=1

(w>(xi + δ)− yi)2 +
1

2
‖w‖2,

For the convergence measure, we can use the robust
loss. Given a model ŵ, its robust loss is defined as

`(ŵ) = max
‖δ‖2≤1

1

n

n∑
i=1

(ŵ>(xi + δ)− yi)2 +
1

2
‖ŵ‖2,

so each time to evaluate a node’s robust loss, we have
to solve above maximization problem. One way to do it
is to run few steps of gradient ascent to get a estimated
δ̂.

In the first set of experiments, we run the training pro-
cedure proposed in Algorithm 1 on synthetic datasets
that introduced before. We set the input dimension
to 60 and each node has between 400 to 500 samples.
We generate data for 100 nodes, and drawn 20% of
each node’s data for the test dataset to make it the
average distribution among all nodes. We use the same
learning rates for both dual and primal variables, and
use a decaying mechanism to decrease it by 5% every
iteration. The initial learning rate for all the experi-
ments is set to 0.001. The results of this experiment
is depicted in Figure 1, where we compare the local
SGDA (τ ∈ {5, 10, 15}) with normal SGDA (τ = 1).
It is clear that to achieve certain level of the robust
loss, local SGDA needs significantly fewer number of
communication rounds, compared to vanilla SGDA,
hence it achieves communication efficiency.

Robust Neural Network Training. Similar to the
setting of Robust Linear Regression in [39], here we
just replace the model with a DNN and optimize

min
W

max
‖δ‖2≤1

1

n

n∑
i=1

`(hW (xi + δ), yi).
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(a) Synthetic (0.0) (b) Synthetic (0.25) (c) Synthetic (0.5)

Figure 1: Linear regression with synthetic datasets using local SGDA (τ > 1) comparing to SGDA (τ = 1). Local
SGDA can achieve the same robust loss with fewer number of communication rounds than SGDA.

Figure 2: Comparing local SGDA+ with normal SGDA
(τ = 1, S = 1) on training a 2-layer MLP on heteroge-
neous MNIST dataset over 100 nodes. Local SGDA+
acn converge to the same accuracy as SGDA with fewer
rounds of communication between nodes and the server.

For this experiment, to evaluate Algorithm 2, we use a
2-layer MLP, each with 200 neurons followed by ReLU
activation and a cross entropy loss function at the end.
We divide the MNIST dataset among 100 nodes, each
with only having access to 2 classes to introduce het-
erogeneity among local data shards. The test dataset
is a pool of all classes, hence, it is the average dataset
over all nodes. We use the same decaying learning
rate scheme as the linear regression, where the initial
learning rate is set to 0.01. In this experiment, we set
the snapshot gap S = τ2, as suggested in Theorem 6.1.
The convergence measure is the robust accuracy, and
we compute it similarly to robust loss as in robust linear
regression. The results of these experiments are shown
in Figure 2, where compared to normal SGDA (τ = 1,
S = 1), the proposed local SGDA+ can converge faster

in terms of number of communications.

8 Conclusions and Path Forward

In this paper we proposed a communication effi-
cient distributed method to solve minimax optimiza-
tion problems and establish its convergence rate
for strongly-convex-strongly-concave and nonconvex-
strongly-concave objectives in both homogeneous and
heterogeneous data distribution settings. We also pro-
posed a single loop variant of proposed algorithm to
address nonconvex-noncancave problems that arises in
learning GANs. The present work is the first to study
local SGD method in minimax setting and leaves many
interesting directions as future work. We believe some
of the obtained rates can be tightened. Investigating
the achievable rates via local methods in minimax set-
ting also remains open. Another future work will be
the exploration of faster algorithm to match the known
lower bound of first order minimax algorithm obtained
in [40].
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