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Appendix

A Omitted Proofs

A.1 Notation

We begin with notations. For a random variable X, its sub-gaussian norm/Orlicz norm is defined as kXk 2 =

inf{t > 0 : E[eX2
/t

2

]  1}. For a d-dimensional random vector Y , the sub-gaussian norm of Y is defined as
kY k 2 = supv2Sd�1 khY, vik, where S

d�1 denotes the sphere of a unit ball in Rd. For two sequences of positive
numbers an and bn, an . bn means that for some constant c > 0, an 6 cbn for all n, and an ⇣ bn if an . bn

and bn . an. Further, we use the notion op and Op, where for a sequence of random variables Xn, Xn = op(an)
means Xn/an ! 0 in probability, Xn = Op(bn) means that for any " > 0, there is a constant K, such that
P(|Xn|  K · bn) � 1 � ", and Xn = ⌦p(bn) means that for any " > 0, there is a constant K, such that
P(|Xn| � K · bn) � 1� ". Finally, we use c0, c1, c2, C1, C2, . . . to denote generic positive constants that may vary
from place to place.

Besides, let L = L1L2, then �(·) is L1L2-Lipchitz in `2-norm.

A.2 Proof of Theorem 1

We firstly consider to prove a bound for

P
⇣�� 1

n

nX

i=1

�(zi)� E�(z)
�� > t

⌘
,

where zi ⇠ N (µ,�2
I).

Lemma 1. There exists a universal constant c, such that

P
⇣�� 1

n

nX

i=1

�(zi)� E�(z)
�� > c�

�
p
dL̃p
n/2

+ L

r
2 log(2/�)
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�⌘
6 �.

From the above inequality, we can immediately obtain

P
⇣�� 1

n

nX
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�(zi)
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��+ c�
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p
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+ L

r
2 log(2/�)

n
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6 �.

Remark 5. Note that the concentration bound still holds for y�(yz) and �(yz) by simply applying conditional

probability.

Proof. Let #u(z) = h�(z)� E�(z), u
↵

P
⇣�� 1

n

nX
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�(zi)� E�(z)
�� > t

⌘
= P
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�(zi)� E�(z), u
↵
> t

⌘

= P
⇣

sup
kuk=1

1

n

nX

i=1

#u(zi) > t

⌘

6 P
⇣

sup
u,u02B(0,1)
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#u(zi)�
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�� > t
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Let us use chaining and Orlicz-processes to obtain a bound. We prove { 1
n

P
n

i=1 #u(zi), u 2 B(0, 1)} is a #2-process
with respect to a rescaled distance k · k/� for some � > 0. If so, we will have
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The LHS
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As long as
tn

�2�2L2
> 2, i.e. � 6

p
n/2

�L
,

we would obtain the Dudley entropy integral as

J(D) =
1

�

Z 1

0

r
log(1 + exp(d log

1

�
))d� ⇡ const ·

p
d

�
.

We let � =
p

n/2/(�L), it gives us J(D) = (�L̃)/
p
n/2, where L̃ = const · L.

Next, let us consider bounding

P
�
ŵ

>(�(z)� b̂) 6 0
�
= P

⇣
ŵ

>

kŵk
(�(z)� b̂) 6 0

⌘
. (notice ŵ = 0 is of zero probability)

We further denote ⌫w =
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i
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i
)
⇤
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From Lemma 1, we can obtain

P
���kŵ � ⌫wk

�� > �
�
6 �,

P
⇣
kb̂� ⌫bk > �

⌘
6 �.

Notice that for any unit vector v, v>(�(z)� b̂) is a �L-Lipschitz function of (z>, z>1 , · · · , z
>

n
)> ⇠ N (0, I(n+1)m),

by standard concentration, we have the following lemma.

Lemma 2. For any t > 0 and unit vector v
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).

Next, we provide a bound for hŵ, ⌫wi.

Lemma 3. For any t > 0
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Taking � = 2 exp( �nt
2
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Proof. LHS is equivalent to
P
�
|hŵ � ⌫w, ⌫wi| > t

�
.

Besides, we have hŵ � ⌫w, ⌫w/k⌫wki =
1
n

P
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i=1hyi�(yizi)� ⌫w, ⌫w/k⌫wki is a sum of sub-gaussian variables with
constant �L, then by sub-gaussian tail bound we have
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[Proof of Theorem 1] If we denote E = A [ B, where A =
n
|hŵ, ⌫wi � k⌫wk

2
| 6 �Lk⌫wk
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o
,
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As long as we choose � and t such that
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We take
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As a result, we obtain
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with probability at least 1� �1 � �.
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so that
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Thusly,
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�(ŵ, b̂) > 2 exp

✓
�d(

p
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which gives us the final result stated in the theorem.

A.3 Proof of Theorem 2

Since we know # is L0

2-Lipchitz continuous in `1-norm. Then, we know

P(x,y)⇠P [9u 2 Bp(x, ") :
⌦
ŵ, y · (#(u)� b̂)

↵
6 0] > P(zy,y)⇠P0 [9u 2 Bp(yz, "/L

0

2) :
⌦
ŵ, y · (�(u)� b̂)

↵
6 0]

since the pre-image of bBp(x, ") via # includes the set Bp(yz, "/L0

2). Then following the argument in Schmidt
et al. (2018), the result follows.

Remark 6. As a side interest, we also provide an analysis to show the lower bound result in Theorem 3.2 is

achievable up to a logarithm factor, by purely using labeled data. This scale matches the result in Schmidt et al.

(2018), but under a more general model considered in our paper.

P(x,y)⇠P [9u 2 Bp(x, ") : fŵ,b̂
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⌦
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where 1/p+ 1/q = 1.
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When p = 1, q = 1, it leads to kŵk1/kŵk 6
p
d. Recall in Theorem 1, E = A [ B, where A =
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, |kŵ � ⌫wk

�� 6 2
p

2c�L̃

r
d

n

with probability at least 1� �1 � �. We choose t such that

ŵ
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A.4 Statistical Measures

Recall the definition of

d⌫ = max
n
kµ̃1 � µ1k

kµ̃1 � µ̃2k
,
kµ̃2 � µ2k

kµ̃1 � µ̃2k

o
.

We now make connections to commonly used statistical measures and provide a sketch of proof.

(a). Wasserstein Distance: the Wasserstein Distance induced by metric ⇢ between distributions P1 and P2 over
Rd is defined as

W⇢(P1,P2) = sup
kfkLip61

[

Z
fdP1 � fdP2],

where kfkLip 6 1 indicates the class of f : Rd
7! R such that for any x, x

0
2 Rd, |f(x)� f(x)| 6 ⇢(x, x0). Let us

consider ⇢(x, x0) = kx� x
0
k.

Proposition 3. Suppose max{W⇢(P1, P̃1),W⇢(P2, P̃2)} 6 ⌧ , for ⌧ > 0, then we have kµi � µ̃ik 6 ⌧, i = 1, 2.
As a result,

d⌫ 6 ⌧

kµ̃1 � µ̃2k
.

If we further have ⌧ 6 kµ1 � µ2k/2, we have d⌫ 6 ⌧/(kµ1 � µ2k � 2⌧).

Proof. Notice f(x) = x also satisfies kfkLip 6 1, then we know kµi � µ̃ik 6 ⌧, i = 1, 2. If we further have
⌧ 6 kµ1 � µ2k/2, plugging into the denominator, the result follows.
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(b). Maximal Information: Maximal Information between distributions P1 and P2 over Rd is defined as

MI(P1,P2) = sup
O✓Rd

max

⇢
Px⇠P1(x 2 O)

Px⇠P2(x 2 O)
,
Px⇠P2(x 2 O)

Px⇠P1(x 2 O)

�
.

Proposition 4. Suppose max{MI(P1, P̃1),MI(P2, P̃2)} 6 ⌧ for 1 6 ⌧ 6 1 + kµ1 � µ2k/(2kµ1k+ 2kµ2k), then
we have kµi � µ̃ik 6 (⌧ � 1)kµik, i = 1, 2. As a result, we have

d⌫ 6 (⌧ � 1)max{kµ1k, kµ2k}

kµ1 � µ2k � 2(⌧ � 1)(kµ1k+ kµ2k)
.

As we can see, as ⌧ ! 1, d⌫ ! 0.

Proof. Let X1 ⇠ P1, X2 ⇠ P2. By the definition of Maximal Information,

sup
x2Rd

max

⇢
P(X1 = x)

P(X2 = x)
,
P(X2 = x)

P(X1 = x)

�
6 ⌧.

Then, we know kµi � µ̃ik 6 (⌧ � 1)kµik, i = 1, 2 once we notice for all corresponding entries of the vector of X1

and X2, their maximal information is bounded by ⌧. So,

d⌫ 6 (⌧ � 1)max{kµ1k, kµ2k}

kµ̃1 � µ̃2k
.

If we further have ⌧ 6 1 + kµ1 � µ2k/(2kµ1k+ 2kµ2k), plugging into the denominator, the result follows.

(c). H-Divergence: let H be a class of binary classifiers, then H-divergence between distributions P and P
0 over

Rd is defined as
DH(P,P

0) = sup
h2H

|Px⇠P(h(x) = 1)� Px⇠P0(h(x) = 1)|.

To illustrate the connection between Theorem 3 and H-divergence, we consider a specific hypothesis class

H =
�
h|h(t) = sgn(w>(t� b)), (w, b) 2 Rd

⇥ Rd
 
. (3)

Proposition 5. Suppose for Xi ⇠ Pi and X̃i ⇠ P̃i i = 1, 2, the sub-gaussian norm of kXi � µik 2 and

kX̃i � µ̃ik 2 are bounded by � and �̃, where Xi ⇠ Pi, X̃i ⇠ P̃i and µi, µ̃i are the corresponding means.

Let ↵ = ⇣
p

log(4/(1� ⌧)), where ⇣ = max{�, �̃}, if max{DH(P1, P̃1), DH(P2, P̃2)} 6 ⌧, for ⌧ 6 1, we have

kµi � µ̃ik 6 ↵, i = 1, 2. As a result,

d⌫ 6 ↵

kµ̃1 � µ̃2k
.

If we further have ⌧ 6 1� 4 exp(�kµ1 � µ2k
2
/4⇣2), then d⌫ 6 ↵/(kµ1 � µ2k � 2↵).

Proof. It follows a simple geometric argument – a hyperplane cannot distinguish the two distributions too well.
Recall if kXi � µik 2 6 �i and kX̃i � µ̃ik 2 6 �̃i, then for i = 1, 2

P(kXi � µik > t) 6 2 exp(�
t
2

�2
), P(kX̃i � µ̃ik > t) 6 2 exp(�

t
2

�̃2
)

Consider t⇤ such that

2 exp(�
t
⇤2

⇣2
) = (1� ⌧)/2, i.e. t

⇤ = ↵/2.

It is easy to see the distance k(µ1�µ2)/2� (µ̃1� µ̃2)/2k should be upper bounded by 2t⇤, otherwise, there exists
a hyperplane such that the probability mass of X1 ⇠ P1 and X̃1 ⇠ P̃1 has high probability mass on di↵erence
side of the hyperplane.

As we can see in the case for Wasserstein Distance, as ⌧ ! 0, d⌫ ! 0. However, for H-Divergence when ⌧ ! 0,
d⌫ will not go to 0. That is due to the constraint of capacity of H. Even if ⌧ = 0, Pi and P̃i can still be quite
di↵erent.
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A.5 Proof of Theorem 3 and Proposition 1

Let us recall the statement of Theorem 3 with some specified constants.

Theorem 7 (Robust accuracy). Consider the Gaussian generative model, where the marginal distribution of the

input x of labeled domain is a uniform mixture of two distributions with mean µ1 = E[�(z)] and µ2 = E[�(�z)]
respectively, where z ⇠ N (0,�2

Is1). Suppose the marginal distribution of the input of unlabeled domain is

a mixture of two sub-gaussian distributions with mean µ̃1 and µ̃2 with mixing probabilities q and 1 � q and��E
⇥
#(x̃i)� E[#(x̃i)] | aT#(x̃i) = b

⇤��  c" · (
p
d + |b|) for fixed unit vector a. Assuming the sub-gaussian norm

for both labeled and unlabeled data are upper bounded by a universal quantity �max := C�d
1/4

, cq < q < 1 � cq,

kµ̃1 � µ̃2k2 = Cµ

p
d, for some constants C� > 0,0 < cq < 1/2, Cµ > 0 su�ciently large, and

d⌫ = max
n
kµ̃1 � µ1k

kµ̃1 � µ̃2k
,
kµ̃2 � µ2k

kµ̃1 � µ̃2k

o
< c0,

for some constant c0  1/4, then the robust classification error is at most 1% when d is su�ciently large, n � C

for some constant C (not depending on d and ") and

ñ & "
2 log d

p

d.

Now let us proceed to the proof.

For simplicity of presentation. We first denote the distributions for the two classes of labeled data as
subGaussian(µ1,�

2
max), and subGaussian(µ2,�

2
max) respectively. Similarly, we also denote the distributions

for the two classes of unlabeled data as subGaussian(µ̃1,�
2
max), and subGaussian(µ̃2,�

2
max) respectively. Also,

to avoid the visual similarity and emphasize the estimates constructed by the labeled and unlabeled data respec-
tively, we write ŵ as ŵintermediate, b̂ as b̂intermediate, w̃ as w̃final and b̃ as b̃final.

Then, let us write out the robust error of misclassifying class 1 against the `1 attack (the robust error of
misclassifying class 2 can be bounded similarly) as

max
k�k1L0
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P
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2 + db, we then have
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We are going to bound |
✓̂
>
final

k✓̂finalk
(µ1 � µ̃1)|, |

✓̂
>
final

k✓̂finalk
(µ̃1 � µ̃2)/2|, and |

✓̂
>
final

k✓̂finalk
db| respectively.

Let µ̃ = (µ̃1 � µ̃2)/2, ⌫̃ = (µ̃1 + µ̃2)/2, µ = (µ1 � µ2)/2, ⌫ = (µ1 + µ2)/2, and bi be the indicator that the ith
pseudo-label ỹi is incorrect, so that x̃i ⇠ ⌫̃ + subGaussian

�
(1� 2bi) ỹiµ̃,�2

�

Let ñ1 =
P

ñ

i=1 1{ỹi = 1}, ñ2 =
P

ñ

i=1 1{ỹi = �1}. We recall the final direction estimator as

✓̂final =
1

2ñ1

X
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x̃i �
1

2ñ2

X

ỹi=�1

x̃i

=
1

2ñ1

X

ỹi=1

(1� 2bi) µ̃+
1

2ñ1

X

ỹi=1

"i +
1

2ñ2

X

ỹi=�1

(1� 2bi) µ̃�
1

2ñ2

X

ỹi=�1

"i,



Zhun Deng
⇤
, Linjun Zhang

⇤
, Amirata Ghorbani, James Zou

where ✏i ⇠ subGaussian
�
0,�2

�
independent of each other.

Now let

� :=
1

2ñ1

X

ỹi=1

(1� 2bi) +
1

2ñ2

X
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(1� 2bi) ,
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X
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"i �
1

2ñ2

X

ỹi=�1

"i.

We then have the decomposition and bound
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⇣
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⇣
� kµ̃k

2 + µ̃
>
�̃

⌘2

⇣
� kµ̃k

2 + µ̃>�̃

⌘2

=
1

kµ̃k
2 +

k�̃k
2
�

1
kµ̃k

2

⇣
µ̃
>
�̃

⌘2

⇣
� kµ̃k

2 + µ̃>�̃

⌘2 
1

kµ̃k
2 +

k�̃k
2

kµ̃k
4
⇣
� + 1

kµ̃k
2 µ̃

>�̃

⌘2 . (4)

To write down concentration bounds for k�̃k2 and µ̃
>
�̃ we must address their sub-Gaussianity. To do so, write

�̃ =
1

2
P

ñ

i=1 1(ỹi = 1)

ñX

i=1

1(ỹi = 1)"i �
1

2
P

ñ

i=1 1(ỹi = �1)

ñX

i=1

1(ỹi = �1)"i,

and
ỹi

i.i.d.
⇠ sign

⇣
(ziµ̃+ ⌫̃ � b̂intermediate + "i)

>
✓̂intermediate

⌘
,

ỹi✏i
i.i.d.
⇠ sign

⇣
(ziµ̃+ ⌫̃ � b̃intermediate + "i)

>
✓̂intermediate

⌘
· ✏i,

where zi is the true label of x̃i (taken value from ±1).

We then have

E[1(ỹi = 1)] =P((ziµ̃+ ⌫̃ � b̃intermediate + "i)
>
✓̂intermediate > 0)

=
1

2
P((µ̃1 � b̃intermediate + "i)

>
✓̂intermediate > 0) +

1

2
P((µ̃2 � b̃intermediate + "i)

>
✓̂intermediate > 0)

=
1

2
P((µ̃1 �

µ1 + µ2

2
+ eb + "i)

>
✓̂intermediate > 0) +

1

2
P((µ̃2 �

µ1 + µ2

2
+ eb + "i)

>
✓̂intermediate > 0)

�
1

2
P((µ̃1 �

µ1 + µ2

2
+ eb)

>
✓̂intermediate + "

>

i
✓̂intermediate > 0)

=
1

2
P(">

i
✓̂intermediate > �(µ̃1 � µ1 +

µ1 � µ2

2
+ eb)

>
✓̂intermediate)

The term in the last line can be bounded as follows. Let us recall d⌫ = max
n

kµ̃1�µ1k

kµ̃1�µ̃2k
,
kµ̃2�µ2k

kµ̃1�µ̃2k

o
< c0 implies

that kµ̃� µk < c0kµ̃k, and therefore kµk � kµ̃k � c0kµ̃k = (1� c0)kµ̃k. We then obtain

|(µ̃1 � µ1)
>
µ|  kµ̃1 � µ1k · kµk  c0kµ̃k · kµk 

c0

1� c0
kµk

2
.

As a result, we have

|(µ̃1 � µ1 +
µ1 � µ2

2
+ eb)

>
✓̂intermediate| =|(µ̃1 � µ1 +

µ1 � µ2

2
+ eb)

>(µ+ ew)|

�kµk
2
� |(µ̃1 � µ1)

>
µ|� |e

>

b
µ|� |(µ̃1 � µ1 +

µ1 � µ2

2
+ eb)

>
ew|

&⌦p(
p

d).
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We then have

E[1(ỹi = 1)] �
1

2
P(">

i
✓̂intermediate > �(µ̃1 � µ1 +

µ1 � µ2

2
+ eb)

>
✓̂intermediate)

�
1

2
P(">

i

µ1 � µ2

2
> 0) �

c

2
, (5)

for some constant c close to 1 when d is su�ciently large.

Therefore, we have

1

ñ

ñX

i=1

1(ỹi = 1) � c+ op(1),

and

k
1

P
ñ

i=1 1(ỹi = 1)

ñX

i=1

1(ỹi = 1)"ik . k
1

ñ

ñX

i=1

1(ỹi = 1)"ik

In addition, we have

kE[1(ỹi = 1)✏i]k = kE[E[1(ỹi = 1)✏i | ✓̂
>

intermediate"i]]k  E[
p

d+ |✓̂
>

intermediate"i]|] .
p

d.

Since k1(ỹi = 1)✏(j)
i

� E[1(ỹi = 1)✏(j)
i

]k 2  2k1(ỹi = 1)✏(j)
i

k 2  Ck✏
(j)
i

k 2  C�max, we have

P

0

@
 
1

ñ

ñX

i=1

1(ỹi = 1)✏(j)
i

!2

� (E[1(ỹi = 1)✏(j)
i

])2 + t
2
· �

2
max

1

A  e
�Cñt

2

.

Therefore, by union bound, with probability at least 1� d
�1,

k
1

P
ñ

i=1 1(ỹi = 1)

ñX

i=1

1(ỹi = 1)"ik
2 . k

1

ñ

ñX

i=1

1(ỹi = 1)✏ik
2 =

dX

j=1

 
1

ñ

ñX

i=1

1(ỹi = 1)✏(j)
i

!2

. d+ d ·
log d

ñ
�
2
max.

Similarly, we have

k
1

P
ñ

i=1 1(ỹi = �1)

ñX

i=1

1(ỹi = �1)"ik
2 . k

1

ñ

ñX

i=1

1(ỹi = �1)✏ik
2 =

dX
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1

ñ

ñX

i=1
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i

!2

. d+d·
log d

ñ
�
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Then, since k�̃k
2
 k

1
2
Pñ

i=1 1(ỹi=1)

P
ñ

i=1 1(ỹi = 1)"ik2 + k
1

2
Pñ

i=1 1(ỹi=�1)

P
ñ

i=1 1(ỹi = �1)"ik2, we have

k�̃k
2 = Op(d · (1 +

log d

ñ
�
2)).

The same technique also yields a crude bound on µ̃
>
�̃ = 1

2ñ1

P
ñ

i=1 1(ỹi = 1)µ̃>
"i �

1
2ñ2

P
i=1 1(ỹi = �1)µ̃>

"i.
We can write

1(ỹi = 1)µ̃>
✏i

i.i.d.
⇠ 1

⇣
(ziµ̃+ ⌫̃ � b̂intermediate + "i)

>
✓̂intermediate > 0

⌘
· µ̃

>
✏i.

Since k1(ỹi = 1)µ̃>
✏ik#2  Ckµ̃

>
✏
(j)
i

k#2  Ckµ̃k2�, we have

P
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1

ñ

ñX

i=1

1(ỹi = 1)µ̃>
✏i

!2

� t
2
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2
�
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2
�
2

1

A  e
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.

and by the fact that
⇣

1
ñ1

P
ñ

i=1 1(ỹi = 1)µ̃>
✏i

⌘2
.
⇣

1
ñ

P
ñ

i=1 1(ỹi = 1)µ̃>
✏i

⌘2
, we have

P
⇣���µ̃>

�̃

��� �
p

2� kµ̃k+ kµ̃k�
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= P

✓���µ̃>
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���
2
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2
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2
◆
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�ñ/8

.
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Finally, we need to argue that � is not too small. Recall that � = 1
2ñ1

P
ỹi=1 (1� 2bi) +

1
2ñ2

P
ỹi=�1 (1� 2bi)

where bi is the indicator that ỹi is incorrect and therefore

E
h
1� 2bi | ✓̂intermediate, ỹi = 1

i
= 1� 2P(f

✓̂intermediate
| x̃ ⇠ subGaussian(µ̃1,�

2))

= 2P(">
i
✓̂intermediate > �(µ̃1 � µ1 +

µ1 � µ2

2
+ eb)

>
✓̂intermediate)� 1.

This term can be lower bounded similarly as equation 7, which satisfies

E
h
1� 2bi | ✓̂intermediate, ỹi = 1

i

=2P(">
i
✓̂intermediate > �(µ̃1 � µ1 +

µ1 � µ2

2
+ eb)

>
✓̂intermediate)� 1 �

4

5
,

with high probability when d is su�ciently large.

Similarly, we have

E
h
1� 2bi | ✓̂intermediate, ỹi = �1

i
�

4

5
,

with high probability when d is su�ciently large.

Therefore we expect � to be reasonably large as long as E[�] � 4
5 . Indeed, define

�̃ =
1

ñ

nX

i=1

(1� 2bi).

We then have

E[�̃] �E[ 1
ñ

X

yi=1

(1� 2bi) +
1

ñ

X

yi=�1

(1� 2bi)]

�E[ 1
ñ
·
4

5
ñ1 +

1

ñ
·
4

5
ñ2] �

4

5
.

By using � �
1
2 �̃, we have

P(� �
1

5
) � P(�̃ �

2

5
) = 1� P(�̃ <

2

5
)

�1� P(|�̃ � E[�̃]| > 2

5
) � 1� e

�cñ
,

where the last inequality is due to Hoe↵ding’s inequality.

As a result, we have � �
2
5 with high probability.

Define the event,

E =

⇢
k�̃k

2
 k�(

kµk

kµ̃k
µ̃� µ)k2 +

d · �
2
max

ñ
log d+ d⇠

2
n
,

���µ>
�̃

��� 
p

2�max kµk+ �µ
>(

kµk

kµ̃k
µ̃� µ) + ⇠nkµk and � �

2

5

�
;

by the preceding discussion,

P
�
E
C
�


1

d
+ e

�ñ/8 + e
�ckµk

2
/8�2

max + 2e�cnkµk/2�max + e
�cñ

Moreover, by the bound (6), E implies

���✓̂final
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⇣
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1
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k�̃k
2
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�
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4
⇣

2
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⌘2 .
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Therefore,

µ̃
>
✓̂final

�max

���✓̂final
���
�

0

B@
�
2
max

kµ̃k
2 +

d · (1 + log d

ñ
�
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4
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with probability � 1� ( 1
d
+ e

�ñ/8 + e
�ckµk

2
/8�2

max + 2e�cnkµk/2�max).

Recall that we take �max := C�d
1/4 and kµ̃1 � µ̃2k2 = Cµ

p
d for su�ciently large Cµ, we than have when

ñ & "
2
d log d,

µ̃
>
✓̂final���✓̂final
���

= ⌦P (
p

d).

Then let us consider
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X
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1
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1

ñ2

X

ỹi=�1

(1� 2bi)

When n > C for su�ciently large C, we have �  0.01.

Also, let us denote �̃2 = 1
2ñ1

P
ỹi=1 "i +

1
2ñ2

P
ỹi=�1 "i, we then have
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We also have
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Therefore, when the constant Cµ is su�ciently large,

✓̂
>

final

k✓̂finalk
((µ1 � µ̃1) +

µ̃1 � µ̃2

2
� db)

�|
✓̂
>

final

k✓̂finalk
µ̃|� |

✓̂
>

final

k✓̂finalk
(µ1 � µ̃1)|� |

✓̂
>

final

k✓̂finalk
db|
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B@
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2 +

d · (1 + log d
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�
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4
⇣

1
6 �
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1
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� 2c0kµ̃k � (�Cµ +
c"

�Cµ � c"
) ·

p

d

=⌦P (
p

d).

The robust error is then

P
⇣

✓̂
>

final

k✓̂finalk
" 6 �

✓̂
>

final

k✓̂finalk
(µ1 � b̂) + L

0

1 · "
p

d

⌘

=P
⇣

✓̂
>

final

k✓̂finalk
" 6 �

✓̂
>

final

k✓̂finalk
((µ1 � µ̃1) +

µ̃1 � µ̃2

2
� db) + L

0

1 · "
p

d

⌘

 exp(�C

p

d)  0.01,

when d is su�ciently large.

A.6 Proof of Proposition 1

The proof of Proposition 1 is very similar to those of Theorem 3 except for the tail probabilities changed from
subgaussian to g(·). For completeness, we present the proof below.

We first recall the definition of Dg:

Dg(µ,�
2) = {X 2 Rd : 8v 2 Rd

, kvk2 = 1,Var(Xj)  �
2

P(|vT (X � µ)| > � · t)  g(t)},

and restate Proposition 1.

Proposition 1 Suppose Dg is closed under independent summation, and assume
��E
⇥
x̃i � E[x̃i] | aT x̃i = b

⇤�� .
p
d+ |b| for fixed unit vector a, �̃  �max ⇣ d

1/4, kµ̃1 � µ̃2k2 ⇣
p
d, c < q < 1� c for some constant 0 < c < 1/2,

and

d⌫ = max
n
kµ̃1 � µ1k

kµ̃1 � µ̃2k
,
kµ̃2 � µ2k

kµ̃1 � µ̃2k

o
< c0,

for some constant c0  1/4, then the robust classification error is at most 1% when d is su�ciently large, n � C

for some constant C (not depending on d and ") and

ñ & "
2
· (g�1(1/d log d))2 ·

p

d.

Now let us proceed to the proof.

We first recall the distributions for the two classes of labeled data as Dg(µ1,�
2
max), and Dg(µ2,�

2
max) respectively.

Similarly, we also denote the distributions for the two classes of unlabeled data as Dg(µ̃1,�
2
max), and Dg(µ̃2,�

2
max)

respectively. Also, to avoid the visual similarity and emphasize the estimates constructed by the labeled and
unlabeled data respectively, we write ŵ as ŵintermediate, b̂ as b̂intermediate, w̃ as w̃final and b̃ as b̃final.

Then, let us write out the robust error of misclassifying class 1 against the `1 attack (the robust error of
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misclassifying class 2 can be bounded similarly) as

max
k�k1L0

1"

P
⇣

✓̂
>

final

k✓̂finalk
(x̃+ � � b̃final) 6 0 | x̃ ⇠ Dg(µ̃1,�
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⌘

Denote b̃final :=
µ̃1+µ̃2

2 + db, we then have

P
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k✓̂finalk
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We are going to bound |
✓̂
>
final

k✓̂finalk
(µ1 � µ̃1)|, |

✓̂
>
final

k✓̂finalk
(µ̃1 � µ̃2)/2|, and |
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>
final

k✓̂finalk
db| respectively.

Let µ̃ = (µ̃1 � µ̃2)/2, ⌫̃ = (µ̃1 + µ̃2)/2, µ = (µ1 � µ2)/2, ⌫ = (µ1 + µ2)/2, and bi be the indicator that the ith
pseudo-label ỹi is incorrect, so that x̃i ⇠ ⌫̃ +Dg

�
(1� 2bi) ỹiµ̃,�2

�

Let ñ1 =
P

ñ

i=1 1{ỹi = 1}, ñ2 =
P

ñ

i=1 1{ỹi = �1}. We recall the final direction estimator as
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ỹi=1

(1� 2bi) µ̃+
1

2ñ1
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where ✏i ⇠ Dg

�
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�
independent of each other.
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We then have the decomposition and bound
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To write down concentration bounds for k�̃k2 and µ̃
>
�̃ we must control their tail bound. To do so, write

�̃ =
1

2
P
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ñX

i=1
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and
ỹi

i.i.d.
⇠ sign

⇣
(ziµ̃+ ⌫̃ � b̂intermediate + "i)

>
✓̂intermediate

⌘
,

ỹi✏i
i.i.d.
⇠ sign

⇣
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>
✓̂intermediate

⌘
· ✏i,

where zi is the true label of x̃i (taken value from ±1).

We then have

E[1(ỹi = 1)] =P((ziµ̃+ ⌫̃ � b̃intermediate + "i)
>
✓̂intermediate > 0)

=
1

2
P((µ̃1 � b̃intermediate + "i)

>
✓̂intermediate > 0) +

1

2
P((µ̃2 � b̃intermediate + "i)

>
✓̂intermediate > 0)

=
1

2
P((µ̃1 �

µ1 + µ2

2
+ eb + "i)

>
✓̂intermediate > 0) +

1

2
P((µ̃2 �

µ1 + µ2

2
+ eb + "i)

>
✓̂intermediate > 0)

�
1

2
P((µ̃1 �

µ1 + µ2

2
+ eb)

>
✓̂intermediate + "

>

i
✓̂intermediate > 0)

=
1

2
P(">

i
✓̂intermediate > �(µ̃1 � µ1 +

µ1 � µ2

2
+ eb)

>
✓̂intermediate)

The term in the last line can be bounded as follows. Let us recall d⌫ = max
n

kµ̃1�µ1k

kµ̃1�µ̃2k
,
kµ̃2�µ2k

kµ̃1�µ̃2k

o
< c0 implies

that kµ̃� µk < c0kµ̃k, and therefore kµk � kµ̃k � c0kµ̃k = (1� c0)kµ̃k. We then obtain

|(µ̃1 � µ1)
>
µ|  kµ̃1 � µ1k · kµk  c0kµ̃k · kµk 

c0

1� c0
kµk

2
.

As a result, we have

|(µ̃1 � µ1 +
µ1 � µ2

2
+ eb)

>
✓̂intermediate| =|(µ̃1 � µ1 +

µ1 � µ2

2
+ eb)

>(µ+ ew)|

�kµk
2
� |(µ̃1 � µ1)

>
µ|� |e

>

b
µ|� |(µ̃1 � µ1 +

µ1 � µ2

2
+ eb)

>
ew|

&⌦p(
p

d).

We then have

E[1(ỹi = 1)] �
1

2
P(">

i
✓̂intermediate > �(µ̃1 � µ1 +

µ1 � µ2

2
+ eb)

>
✓̂intermediate)

�
1

2
P(">

i

µ1 � µ2

2
> 0) �

c

2
, (7)

for some constant c close to 1 when d is su�ciently large.

Therefore, we have

1

ñ

ñX

i=1

1(ỹi = 1) � c+ op(1),

and

k
1

P
ñ

i=1 1(ỹi = 1)

ñX

i=1

1(ỹi = 1)"ik . k
1

ñ

ñX

i=1

1(ỹi = 1)"ik

In addition, we have

kE[1(ỹi = 1)✏i]k = kE[E[1(ỹi = 1)✏i | ✓̂
>

intermediate"i]]k  E[
p

d+ |✓̂
>

intermediate"i]|] .
p

d.

By the definition of Dg, we have

P

0

@
 
1

ñ

ñX

i=1

1(ỹi = 1)✏(j)
i

!2

� (E[1(ỹi = 1)✏(j)
i

])2 + t
2
· �

2
max

1

A  g(C
p

ñt).
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Therefore, by union bound, with probability at least 1� (log d)�1,

k
1

P
ñ

i=1 1(ỹi = 1)

ñX

i=1

1(ỹi = 1)"ik
2 . k

1

ñ

ñX

i=1

1(ỹi = 1)✏ik
2 =

dX

j=1

 
1

ñ

ñX

i=1

1(ỹi = 1)✏(j)
i

!2

. d+d·
(g�1(1/d log d))2

ñ
�
2
max.

Similarly, we have

k
1

P
ñ

i=1 1(ỹi = �1)

ñX

i=1

1(ỹi = �1)"ik
2 . k

1

ñ

ñX

i=1

1(ỹi = �1)✏ik
2 =

dX

j=1

 
1

ñ

ñX

i=1

1(ỹi = �1)✏(j)
i

!2

. d+d·
(g�1(1/d log d))2

ñ
�
2
max.

Then, since k�̃k
2
 k

1
2
Pñ

i=1 1(ỹi=1)

P
ñ

i=1 1(ỹi = 1)"ik2 + k
1

2
Pñ

i=1 1(ỹi=�1)

P
ñ

i=1 1(ỹi = �1)"ik2, we have

k�̃k
2 = Op(d · (1 +

(g�1(1/d log d))2

ñ
�
2)).

The same technique also yields a crude bound on µ̃
>
�̃ = 1

2ñ1

P
ñ

i=1 1(ỹi = 1)µ̃>
"i �

1
2ñ2

P
i=1 1(ỹi = �1)µ̃>

"i.
We can write

1(ỹi = 1)µ̃>
✏i

i.i.d.
⇠ 1

⇣
(ziµ̃+ ⌫̃ � b̂intermediate + "i)

>
✓̂intermediate > 0

⌘
· µ̃

>
✏i.

By definition of Dg, we have

P

0

@
 
1

ñ

ñX

i=1

1(ỹi = 1)µ̃>
✏i

!2

� t
2
· kµ̃k

2
�
2 + kµ̃k

2
�
2

1

A  g(C
p

ñt).

and by the fact that
⇣

1
ñ1

P
ñ

i=1 1(ỹi = 1)µ̃>
✏i

⌘2
.
⇣

1
ñ

P
ñ

i=1 1(ỹi = 1)µ̃>
✏i

⌘2
, we have

P
⇣���µ̃>

�̃

��� �
p

2� kµ̃k+ kµ̃k�

⌘
= P

✓���µ̃>
�̃

���
2
� C�

2
kµ̃k

2
◆

 g(C
p

ñ).

Finally, we need to argue that � is not too small. Recall that � = 1
2ñ1

P
ỹi=1 (1� 2bi) +

1
2ñ2

P
ỹi=�1 (1� 2bi)

where bi is the indicator that ỹi is incorrect and therefore

E
h
1� 2bi | ✓̂intermediate, ỹi = 1

i
= 1� 2P(f

✓̂intermediate
| x̃ ⇠ subGaussian(µ̃1,�

2))

= 2P(">
i
✓̂intermediate > �(µ̃1 � µ1 +

µ1 � µ2

2
+ eb)

>
✓̂intermediate)� 1.

This term can be lower bounded similarly as equation 7, which satisfies

E
h
1� 2bi | ✓̂intermediate, ỹi = 1

i

=2P(">
i
✓̂intermediate > �(µ̃1 � µ1 +

µ1 � µ2

2
+ eb)

>
✓̂intermediate)� 1 �

4

5
,

with high probability when d is su�ciently large.

Similarly, we have

E
h
1� 2bi | ✓̂intermediate, ỹi = �1

i
�

4

5
,

with high probability when d is su�ciently large.

Therefore we expect � to be reasonably large as long as E[�] � 4
5 . Indeed, define

�̃ =
1

ñ

nX

i=1

(1� 2bi).
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We then have

E[�̃] �E[ 1
ñ

X

yi=1

(1� 2bi) +
1

ñ

X

yi=�1

(1� 2bi)]

�E[ 1
ñ
·
4

5
ñ1 +

1

ñ
·
4

5
ñ2] �

4

5
.

By using � �
1
2 �̃, we have

P(� �
1

5
) � P(�̃ �

2

5
) = 1� P(�̃ <

2

5
)

�1� P(|�̃ � E[�̃]| > 2

5
) � 1� e

�cñ
,

where the last inequality is due to Hoe↵ding’s inequality.

As a result, we have � �
2
5 with high probability.

Define the event,

E =

⇢
k�̃k

2
 k�(

kµk

kµ̃k
µ̃� µ)k2 +

d · �
2
max

ñ
log d+ d⇠

2
n
,

���µ>
�̃

��� 
p

2�max kµk+ �µ
>(

kµk

kµ̃k
µ̃� µ) + ⇠nkµk and � �

2

5

�
;

by the preceding discussion,

P
�
E
C
�


1

log d
+ g(C

p

ñ) + g(Ckµk/�max) + 2g(C
p
ñkµk/�max) + e

�cñ

Moreover, by the bound (6), E implies

���✓̂final
���
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⇣
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⌘2 
1

kµ̃k
2 +

k�̃k
2

kµ̃k
4
⇣
� + 1
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2 µ̃

>�̃
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1
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⇣

2
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⌘2 .

Therefore,
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>
✓̂final
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���✓̂final
���
�

0
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�
2
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kµ̃k
2 +
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�
2
max)

kµ̃k
4
⇣

2
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with probability � 1� ( 1
log d

+ g(C
p
ñ) + g(Ckµk/�max) + 2g(C

p
ñkµk/�max) + e

�cñ).

Recall that we take �max := C�d
1/4 and kµ̃1 � µ̃2k2 = Cµ

p
d for su�ciently large Cµ, we than have when

ñ & "
2
d(g�1(1/d log d))2,

µ̃
>
✓̂final���✓̂final
���

= ⌦P (
p

d).

Then let us consider
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1

2ñ1

X
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2ñ2
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ỹi=�1

(1� 2bi)
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Let

� :=
1

ñ1

X

ỹi=1

(1� 2bi)�
1

ñ2

X

ỹi=�1

(1� 2bi)

When n > C for su�ciently large C, we have �  0.01.

Also, let us denote �̃2 = 1
2ñ1

P
ỹi=1 "i +

1
2ñ2

P
ỹi=�1 "i, we then have

|�̃
>
�̃2| = k

1
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ỹi=1

"ik
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1
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2
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1
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X
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We also have
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ñ
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d

Therefore, when the constant Cµ is su�ciently large,
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The robust error is then

P
⇣

✓̂
>

final

k✓̂finalk
" 6 �

✓̂
>

final

k✓̂finalk
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p
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⌘

=P
⇣
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" 6 �
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2
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1 · "
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⌘

 exp(�C

p

d)  0.01,

when d is su�ciently large.

A.7 Proof of Theorem 4

Let us consider the following modelr: x ⇠ N(yµ,�2
I) with y uniform on {�1, 1} and µ 2 Rd. Consider a linear

classifier fw(x) = sgn(x>
w).

It’s easy to see that the robust error probability is

err
1

robust
(f) = Q(

µ
>
w

�kwk
�

"kwk1

�kwk
),
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where Q = 1
p
2⇡

R
1

x
e
�t

2
/2

dt.

Therefore

argmin
kwk=1

err
1

robust
(fw) = argmax

kwk=1

µ
>
w

�kwk
�

"kwk1

�kwk

=argmax
kwk=1

µ
>
w � "kwk1

=argmax
kwk=1

dX

j=1

µjwj � "|wj |

By observation, when reaching maximum, we have to have sgn(wj) = sgn(µj), therefore

argmax
kwk=1

dX

j=1

µjwj � "|wj |

=argmax
kwk=1

dX

j=1

(µj � " · sgn(µj))wj

=
T"(µ)

kT"(µ)k
,

where T"(µ) is the hard-thresholding operator with (T"(µ))j = sgn(µj) ·max{|µj |� ", 0}.

Now let us consider the example: µ with µj > " for all j = 1, 2, ...d. For the shifted domain, we let µ̃1 = �µ̃2 =
µ̃ = µ� " · 1p, and the mixing proportion is half-half.

Let bi be the indicator that the ith pseudo-label ỹi = sgn(x̃>

i
ŵintermediate) is incorrect, so that x̃i ⇠

N
�
(1� 2bi) ỹiµ̃,�2

I
�
, and let

� :=
1

ñ

ñX

i=1

(1� 2bi) 2 [�1, 1].

We may write the final direction estimator as

✓̂final =
1

ñ

ñX

i=1

ỹix̃i = �µ̃+
1

ñ

ñX

i=1

ỹi✏i

where ✏i ⇠ N
�
0,�2

I
�
independent of each other.

By orthogonal invariance of Gaussianality, we choose a coordinate system such that the first coordinate is in the
direction of ŵintermediate, we then have

k
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ñ

ñX

i=1

ỹi✏ik
2
2 =|

1

ñ

ñX
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ỹi✏i1|
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2 +
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|
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�
2

ñ
�
2
ñ
+

�
2

ñ
�
2
d�1.

In addition, we have kµ̃k
2
2 = d"

2. Therefore, if (1/d+ 1/ñ) · �
2

"2
! 0, we will then have

✓̂final

k✓̂finalk
! µ̃,

and therefore

err
1

robust
(fŵfinal)  err

1

robust
(fµ).
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A.8 Proof of Theorem 5

Suppose the labeled domain distribution is 1
2N(µ,�2

Ip) +
1
2N(�µ,�

2
Ip). Let v 2 Rp be a vector such that

v
>
µ = 0, kµk = akvk for some a > 0, and let the unlabeled domain distribution be 1

2N(v,�2
Ip)+

1
2N(�v,�

2
Ip).

That is, µ1 = �µ2 = µ, µ̃1 = �µ̃2 = v.

We then have

d⌫ = max{|
kµ̃1 � µ1k

kµ̃1 � µ̃2k
|,
kµ̃2 � µ2k

kµ̃1 � µ̃2k
|} =

p
1 + a2 · kvk

2kvk
=

p
1 + a2 · kµ̃1 � µ̃2k

2
,

which falls into the specified class.

Now let us consider the case where µ = e1, v = a
�1

e2, where e1, e2 are the canonical basis, and study the
performance of the classifier sgn(✓̂>final(z � b̂)), where

b̂final =
1

2ñ1

X

ỹi=1

x̃i +
1

2ñ2

X

ỹi=�1

x̃i; ✓̂final =
1

2ñ1

X

ỹi=1

x̃i �
1

2ñ2

X

ỹi=�1

x̃i.

Similar to the proof in the last section, let bi be the indicator that ỹi is incorrect and we decompose ✓̂final and b̂

into

✓̂final =
1

2ñ1

X

ỹi=1

x̃i �
1

2ñ2

X

ỹi=�1

x̃i

=
1

2ñ1
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b̂final =
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ỹi=1

x̃i +
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=
1

2ñ1
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ỹi=1
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1
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"i.

Now let us investigate bi carefully. When ỹi = 1, we have

E[bi | ỹi = 1] = P(x̃ ⇠ subGaussian(µ̃1,�
2) | (x̃� b̂intermediate)

>
✓̂intermediate > 0)

=
P((x̃� b̂intermediate)>✓̂intermediate > 0) | x̃ ⇠ subGaussian(µ̃1,�

2)

P((x̃� b̂intermediate)>✓̂intermediate > 0) | x̃ ⇠ (µ̃1,�
2)) + P((x̃� b̂intermediate)>✓̂intermediate > 0) | x̃ ⇠ (µ̃2,�

2))

=
1

2
+Op(

r
d

n
).

As a result, we have

w̃final = (Op(

r
d

n
) +Op(

r
1

ñ
))v +

1

2ñ1

X

ỹi=1

"i �
1

2ñ2

X

ỹi=�1

"i;

b̂final = (Op(

r
d

n
) +Op(

r
1

ñ
))v +

1

2ñ1

X

ỹi=1

"i +
1

2ñ2

X

ỹi=�1

"i.

Then let us study "i | ỹi = 1. When ỹi = 1, we have

(x̃� b̂intermediate)
>
✓̂intermediate > 0.
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Recall that µ = e1, v = a
�1

e2 the inequality is equivalent to

he1, "ii+OP (

r
d

n
) > 0.

and put no constraint on other coordinates. Similarly, when ỹi = �1, we have

he1, "ii+OP (

r
d

n
) < 0,

and put no constraint on other coordinates.

As a result, we have
w̃final

kw̃finalk2
= (Op(

r
d

n
) +Op(

r
1

ñ
))v + e1;

b̂final = (Op(

r
d

n
) +Op(

r
1

ñ
))v +Op(

r
d

ñ
).

Then we write out the misclassification error

P
⇣

✓̂
>

final

k✓̂finalk
(x̃� b̂) 6 0 | x̃ ⇠ subGaussian(v,�2)

⌘
= P

⇣
✓̂
>

final

k✓̂finalk
" 6 Op(

r
d

ñ
) +Op(

r
d

n
)
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=1/2 +Op(

r
d

ñ
) +Op(

r
d

n
).

Therefore, when d

n
and d

ñ
su�ciently small, we then have

�
",1(w̃, b̃) � �

1(w̃, b̃) � 49%.

A.9 The high-dimensional EM algorithm mentioned in the main paper

The algorithm used in the main paper to extract the support information from the unlabeled domain is presented
in the following in Algorithm 1, which is adapted from Cai et al. (2019).

A.10 Proof of Theorem 6

Let us first adapt the Theorem 3.1 in Cai et al. (2019), which states the convergence rate of Algorithm 1

Lemma 4 (adapted from Theorem 3.1 in Cai et al. (2019)). Under the same conditions of Theorem 3.6, if we

choose the initializations of Algorithm 1 according to Hardt & Price (2015). Then there is a constant  2 (0, 1),
such that the estimator �̂(T0) satisfies

k�̂(T0) � (µ̃1 � µ̃2)k2 . 
T0 · (k�̂(0)

� (µ̃1 � µ̃2)k2 + |!̂
(0)

� q|) + �

r
m log d

ñ
.

In particular, if we let T0 & (� log())�1 log(n · (k�̂(0)
� (µ̃1 � µ̃2)k2 + |!̂

(0)
� q|)), we have

k�̂(T0) � (µ̃1 � µ̃2)k2 . �

r
m log d

ñ
.

As a direct consequence of Lemma 4, we have

k�̂(T0) � (µ̃1 � µ̃2)k1 . �

r
m log d

ñ
.

Using the condition that minµ̃1,j�µ̃2j 6=0 |µ̃1j � µ̃2,j | � C�
p

2m log d/ñ for su�ciently large C, we then have, with
high probability,

Ŝ = Supp(�̂(T0)) = Supp(µ̃1 � µ̃2).

Therefore, when we project the labeled data to this support Ŝ, it reduce the model to the previous setting
considered in Theorem 3.1 and 3.2 with the dimension of ⌫(x̃) reduced to m. Combing the proofs of Theorem
3.1, 3.2, and 3,3m we then have the desired result that if n & "

2 log d
p
m, we have

�
",1(ŵsparse, b̂sparse)  10�3 +OP (

1

n
+

1

d
).
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Algorithm 1 Clustering of HIgh-dimensional Gaussian Mixtures with the EM (CHIME)

1: Inputs: Initializations !̂(0)
, µ̂

(0)
1 , and µ̂

(0)
2 , maximum number of iterations T0, and a constant  2 (0, 1). Set

�̂(0) = argmin
�2Rp

⇢
1

2
k�k2 � �>(µ̂(0)

1 � µ̂
(0)
2 ) + �

(0)
n

k�k1

�
,

where the tuning parameter �(0)
n = C1 · (|!̂| _ kµ̂

(0)
1 � µ̂

(0)
2 k2,s)/

p
s+ C�

p
log p/n.

2: for t = 0, 1, . . . , T0 � 1 do
3: Let

�✓̂(t)(x̃i) =
!̂
(t)

!̂(t) + (1� !̂(t)) exp
�
((µ̂(t)

2 � µ̂
(t)
1 ))>

�
x̃i �

µ̂
(t)
1 +µ̂

(t)
2

2

� .

4: Update !̂
(t+1)

, µ̂
(t+1)
1 , and µ̂

(t+1)
2 , by

!̂
(t+1) = !̂(✓̂(t)) =

1

n

nX

i=1

�✓̂(t)(x̃i),

µ̂
(t+1)
1 = µ̂1(✓̂

(t)) =
n
n�

nX

i=1

�✓̂(t)(x̃i)
o�1n nX

i=1

(1� �✓̂(t)(x̃i))x̃i

o
,

µ̂
(t+1)
2 = µ̂2(✓̂

(t)) =
n nX

i=1

�✓̂(t)(x̃i)
o�1n nX

i=1

�✓̂(t)(x̃i)x̃i

o
,

and update �̂(t+1) via

�̂(t+1) = argmin
�2Rp

⇢
1

2
k�k2 � �>(µ̂(t+1)

1 � µ̂
(t+1)
2 ) + �

(t+1)
n

k�k1

�
,

with

�
(t+1)
n

= �
(t)
n

+ C�

r
log p

n
.

5: end for
6: Output the support of �̂(T0), Ŝ = Supp(�̂(T0)).
7: Project xi’s to Ŝ = Supp(�̂(T0)), estimate ŵ and b̂ on these projected samples
8: Construct the classifier sgn(ŵ>(z

Ŝ
)� b̂)
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B Experimental Implementation on Synthetic Data

We here complement our theory result in Theorem 4 and Theorem 6 by experiments with synthetic data.
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Figure 2: Error Di↵erence vs ": we use synthetic data described in Theorem 4, where the Error Di↵erence =
Adversarial Error when Unlabeled Data from the Same Domain - Adversarial Error when Unlabeled Data from
the Shifted Domain. We can see that error di↵erence is positive for all the " we take, which implies unlabeled
data from a shifted domain works even better.
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Figure 3: Error Di↵erence vs ": we use gaussian synthetic data with sparsity structure, where we create 100
dimensional Gaussian data for both original domain and shifted domain, and only the first 10 coordinates matters
(mean di↵erence of positive and negative distribution of data from each domain is non-zero for only the first 10
coordinates). The Error Di↵erence = Adversarial Error with Semi-supervised Learning Algorithm - Adversarial
Error with Algorithm with Unknown Sparsity. We can see that error di↵erence is positive for all the " we take,
which implies our algorithm with unknown sparsity works better when there is some common sparsity structure.

C Experimental Implementation on Real Data

We use the implementation from Carmon et al. (2019) that can be accessed from https://github.com/
yaircarmon/semisup-adv
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C.1 Experimental setup

We follow the implementation in Carmon et al. (2019) for our experiments:

C.1.1 CIFAR10/CINIC-10

Architecture We use a Wide ResNet 28-10 Zagoruyko & Komodakis (2016) architecture.

Training hyperparemeters We use a batch size of 256 with SGD optimizer (along with Nesterov momentum
of 0.1). We use cosine learning rate annealing Loshchilov & Hutter (2016) with initial rate of 0.01 and no restarts.
The weight decay parameter is set to 0.0005. We define an epoch to be a pass over 50000 training points. For
normal training we run 200 epochs. For adversarial training and stability training we run 100 and 400 epochs
respectively.

Data Augmentation We do a 4-pixel random cropping and a random horizontal flip.

Adversarial attacks We use the recommended parameters in Carmon et al. (2019). In test time, we run 40
iterations of projected gradient descent with step-size of 0.01 and do 5 restarts.

Stability training We et noise variance to � = 0.25. In test time, we set N0 = 100 and N = 10000 with
↵ = 0.001.

C.1.2 SVHN

We use similar parameters to CIFAR-10/CINIC-10 except the following.

architecture We use a Wide ResNet 16-8.

Training hyper-parameters The same as CIFAR-10/CINIC-10 except we use batch size of 128 and run 98k
gradient steps for all models.

Data Augmentation We do not perfom any augmentation.

C.2 Cheap-10 dataset creation pipeline

To create the Cheap-10 dataset, for each CIFAR-10 class, we create 50 related keywords to search for on Bing
image search engine. Using an existing image downloding API implementation 4, we were able to download
⇠ 1000 images for each key-word search. CIFAR-10 dataset is made of 10 classes. For animal classes (bird, cat,
deer, dog, frog, horse), our keyboards were made of names of di↵erent breeds and di↵erent colors or adjectives
known to accompany the specific animal. For instance, Parasitic Jaeger, Scottish Fold cat, Pygmy Brocket
Deer, Spinone Italiano Dog, Northern Leopard Frog, and Belgian Horse. For other classes (airplane, automobile,
ship, truck), we search for di↵erent brands or classes. For example, Lockheed Martin F-22 Raptor, Renault
automobile, Tanker ship, and Citroën truck. We then downsize images to the original CIFAR-10 size of 32x32.
We show example images of the dataset compared to CIFAR-10 images in Fig. 4.

4https://github.com/hardikvasa/google-images-download
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Figure 4: Cheap-10 examples Each row shows 10 examples of Cheap-10 dataset.


