Efficient Methods for Structured Nonconvex-Nonconcave Min-Max Optimization

A Additional Background

Definition A.1 (Convex conjugate). Given a convex function ¢ : R? — R U {+00}, its convex conjugate ¥* is
defined by:
(V€ RY): *(z) = sup {(z,%) — Y(x)}.

x€R4

The following standard fact can be derived using Fenchel-Young inequality Vx,z € R? : ¢(x) + *(z) > (z,x),
and it is a simple corollary of Danskin’s theorem (see, e.g., Bertsekas (1971); Bertsekas et al. (2003)).

Fact A.2. Let ¢ : RY — RU{+oc} be a closed convex proper function and let 1* be its convex conjugate. Then,
Vg € 0y*(z),

g € argsup{(z, x) — ¥ (x)},
xER4

where 0v*(z) is the subdifferential set (the set of all subgradients) of ¥* at point z. In particular, if ¢¥* is
differentiable, then argsup,cra{(z,x) — ¥ (x)} is a singleton set and V*(z) is its only element.

Proposition 2.3. Given, z,u € R?, p € (1,00) and q € {p, 2}, let

1
w = argmin{ (z,v) + —|lu— VHZ}
q

veR
Then, for p* = p%l, q- = q%-’
- v(i*||z||gi) and  Lllw —ullg = [z 2.
q q q
Proof. The statements in the proposition are simple corollaries of conjugacy of the functions ¥ (u) = %Huﬂg and

z||Zi In particular, the first part follows from

¥(2)= &

¢ (z) = sup {(z,v) — (v},

veRd

by the definition of a convex conjugate and using that %Hqu and q%||z||gi are conjugates of each other, which

are standard exercises in convex analysis for ¢ € {p,2} (see, e.g., (Borwein and Zhu, 2004, Exercise 4.4.2) and
(Boyd et al., 2004, Example 3.27)).

The second part follows by V¢*(z) = argsup,, cpe{(z, v)—9(v)}, due to Fact A.2 (¢ and ¢* are both continuously

differentiable for p € (1,00)). Lastly, %HW —uf|f = %Hz g: can be verified by setting w = u — V(q% z g) O
Proposition 2.4. Forany L >0, k>0,q>k,t >0, and § > 0,
%it” S;{th-+ §7
K q 2
_ (204=R)\ T
where A = ((?T:)) La/*,
Proof. The proof is based on the Fenchel-Young inequality and the conjugacy of functions ‘”“T‘ and |y5|5 for

rys > 1, % + % = 1, which implies xy < ITT + y?s, Va,y > 0. In particular, setting r = ¢/k, s = ¢/(q — k), and
x = t%, we have
q - K
Lw I8 L= ) oo
ot qy qK

It remains to set § = %y#, which, solving for y, gives y = (QL‘(SZZ))Q—H

. q
choice, A = Lq—ty. O

, and verify that, under this



Jelena Diakonikolas, Constantinos Daskalakis, Michael I. Jordan

B Omitted Proofs from Section 3
Lemma 3.1. Let F : R® — R? be an arbitrary L-Lipschitz operator that satisfies Assumption 1 for some
u* € U*. Gwen an arbitrary initial point ug, let the sequences of points {u;}i>1, {Q;}i>0 evolve according to

(EG+) for some B € (0,1] and positive step sizes {a;}i>0. Then, for any v > 0 and any k > 0, we have:

1 1
hie < gllu =g |* = S ut = we |

+ %@ — ax(1 - B))IIF ()]

) (3.2)
g oy 8) F ()
1/aiL
1 Gt} | LS
where hy, is defined as in Eq. (3.1).
Proof. Fix any k > 0 and write hy equivalently as
hy = a, <F(l_lk), Upr — u®) + ag (F(uk), U — Uga1) ( )
B.1

ap (F(8e) = F(ug), B = wern) + a5 1P (@)

The proof proceeds by bounding above individual terms on the right-hand side of Eq. (B.1). For the first term,
the first-order optimality in the definition of ugy; gives:

apF(0g) + ugrr —ug = 0.
Thus, we have
ar (F(Ug), g1 — u*) = = (Wpq1 — g, Ugy1 — u’)

1, 1, 1 (B.2)
= Sl = = = e | = G e = e

For the second term on the right-hand side of Eq. (B.1), the first-order optimality in the definition of @, implies:
ak _ _
— (F(ug) + g — g, Ugr — 0g) =0,

B

which, similarly as for the first term, leads to:
i (), = i) = g — g = 2 g — 2 = e — w2 (B.3)

For the third term on the right-hand side of Eq. (B.1), applying Cauchy-Schwarz inequality, L-Lipschitzness of
F, and Young’s inequality, respectively, we have:

ap (F(ug) — F(ug), 0 — ugr1) < agl|F(ug) — F(ug)[||ag — ug4a]
< apL|tg — ugllf[tg — wp |

< akL

2

_ akL _
g = el S o — (B.4)

where the last inequality holds for any v > 0.
Using that Gy — ux = = F(ug), up1 — up = —apF(0x) and combining Eqs. (B.2)-(B.4) with Eq. (B.1), we
have:

1 % 1 % Qg _
hie < Sl = wgl|* = Sl = v [* + - (0 — an(L = 8) [ F ()|

L
2@@M7ﬂﬂﬂww 5 (%5 = Bl — e

as claimed. O
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C Omitted Proofs from Section 4

We start by first proving the following lemma that holds for generic choices of algorithm parameters aj and
5. We will then use this lemma to deduce the convergence bounds for different choices of p > 1 and both the
deterministic and the stochastic oracle access to F.

Lemma C.1. Let p > 1 and let F : R? — R? be an arbitrary L-Lipschitz operator w.r.t. || - ||, that satisfies
Assumption 1 for some u* € U*. Given an arbitrary initial point uy, let the sequences of points {u; }i>1, {Q;}i>o0
evolve according to (EGp+) for some B € (0,1] and positive step sizes {a;};>0. Then, for any v > 0 and any
k>0:

o . _ ~ ay ~
b < = ak (M, Ue — ") — ag (M — M, U — Wpe1) + 7p||F(uk) o
* * B_m
+ ¢p(u”, ug) — ¢p(u*, ugy1) + Pllug g1 — ugllg
arApy — B - apAi /v — Bmy | _
+ BT =Py g+ PP gy 4 0,

q—2
where hy is defined as in Eq. (4.7), 0 is any positive number, and Ay = (%) * L2, When q = 2, the
statement also holds with 6, =0 and A, = L.

Proof. We begin the proof by writing hy equivalently as:

(= — * — = * a —
hi = ag <F(uk)7uk —u > —ag (Mg, 0 —u*) + %pHF(uk) f,*
= a <F(ﬁk)7u;€+1 —u*>+ak <F(uk),ﬁk —uk+1> (Cl)
. - a
+ar <F(ﬁk) ~ F(uy), g — uk+1> — ag (g, T — u*) + %pIIF(ﬁk) o

The proof now proceeds by bounding individual terms on the right-hand side of the last equality.

Let My y1(u) = ag <V1:“(ﬁk),u — uk> + ¢p(u,u), so that up1 = argmingcpa My41(u). By the definition of
Bregman divergence of My :

Mpy1(0*) = My1(Wgg1) + (VMep1 (e1), 0" — W) + Dy, (05, 0getn).

As uyyy = argming,cga My1(u), we have VM1 (ugy1) = 0. Further, Dy, (W', uy1) = Dy (. ;) (0", ugp1).
When p < 2, ¢, itself is a Bregman divergence, and we have Dy, ., (u*,up11) = ¢p(u*, ups1). When p > 2,

op(u,uy) = %Hu —uy||h, and as ¢, is p-uniformly convex with constant 1, it follows that Dy, ., (u*, upy1) >

%Hu* — W1 |lh = ¢p(u*, ugy1). Thus:

My1(0”) = M1 (k1) + dp(u”, upya).

Equivalently, applying the definition of Mj1(+) to the last inequality:

ag <vp(ﬁk), Ug 41 — u*> < ¢p(u”,ug) — dp(u, upt1) — Gp(Wkt1,uy)

m.
< gp(u’, ug) — gp(u*, upyy) — 717|‘uk+1 — g2,

where the last inequality follows from Eq. (4.6).

Now let Mj,(u) = & <F(uk), u-— uk> + %Hu — u[|% so that U = argmin,cga M (u). By similar arguments as

above,

My, (ugq1) = My(0y) + (VM (), U — k) + Doy (Wgep1, g

— _ m _
> My () + Tp||uk+1 — |3,
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where the inequality is by VM (11;) = 0 and the fact that %H -||# is g-uniformly convex w.r.t. || -||, with constant
my, by the choice of ¢ from Eq. (4.3). Applying the definition of My (u) to the last inequality:

3 ) 3 ) )
ak <F(uk),uk - uk+1> < g(||uk+1 —wl|f — [Tk — gl — mpllappr — aklF)- (C.3)

The remaining term to bound is <F(ﬁk) — F(uk), ag — uk+1> . Using the definitions of 7, nx, we have:

<F(1—1k) — F(u), 0y, — uk+1> = (F(uy) — F(ug), 0 — Wpy1) — (M — M, U — Ug1)

—~
INE
S

= (M — Mk, U — Wgp1) + [|[F(0r) — F(ug) [l p [ar — wpegallp

—~
<.
S

=

< — (M — Mi, W — Ugg1) + L]0 — ugllpl|or — wpsallp

—

111) B B L B L
< = e = W) = o el
where (7) is by Holder’s inequality, (i) is by L- Llpschltzness of F, and (#i¢) is by Young’s inequality, which holds

for any v > 0. Now, let 0 > 0 and A, = (gg'iq:)) L4/% . Then, applying Proposition 2.4 to the last two terms

in the last inequality:

(F(@0) = F(w0), 8 = et ) < = (7 = 0, B — W)

+ T”u’“ —ul|] + ?“uk — Wpp 1] + Ok

Observe that when ¢ = 2, there is no need to apply Proposition 2.4, and the last inequality is satisfied with
5k =0 and Ak =1L

Combining Egs. (C.2)-(C.4) with Eq. (C.1), we have:

_ % _ _ a _
hi < —ap (M, O — 1) — ag (M — Ne, W — W) +%p||F(uk) 2

* * —m
T gp(u” ug) — p(ut, wppn) + 2 2 s

arApy — B - agAy /vy — Bmy
+ ?Huk —ul|] + /qp|uk — Wt ||} + ardg,

as claimed. 0

We are now ready to state and prove the main convergence bounds. For simplicity, we first start with the case of
exact oracle access to F'. We then show that we can build on this result by separately bounding the error terms
due to the variance of the stochastic estimates F'.

Deterministic Oracle Access. The main result is summarized in the following theorem.

Theorem 4.1. Let p > 1 and let F : R — R? be an arbitrary L-Lipschitz operator w.r.t. || - ||, that satisfies
Assumption 1 with p =0 for some u* € U*. Assume that we are given oracle access to the exact evaluations of
F,ie., i = n; = 0, Vi. Given an arbitrary initial point ug € RY, let the sequences of points {u;}i>1, {@;}i>o
evolve according to (EG,+) for B € (0,1] and step sizes {a;}i>o specified below. Then, we have:

m,3/ . . .
(i) Let p € (1,2]. If B=m, =p—1, a = %, then all accumulation points of {ug}tr>0 are in U*, and,
furthermore Yk > 0:

Xk: ” 16L2¢p(u*,u0)
P mp?(k +1)

L2 — w2
:O<<p—1>2<kil>)'

i=0
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L?|lu*—uol|2
(p—1)%e?

In particular, within k = O( ) iterations EC,+ can output a point u with |[F(u)|,- < e.

q—2
W) Letpe (2,00). If =121, 0, =6>0, A= (%2)7 LY2 and a, = 5= = a, then, Yk > 0:
2 dq 2A
RPN T RN

In particular, for any € > 0, there is a choice of § = CE—Z)L, where C), is a constant that only depends on p,
p

such that EGp+ can output a point u with ||F(u)

-0 ((HE)

iterations. Here, the O, notation hides constants that only depend on p.

p* < €in at most

Proof. Observe that, as 7, =n; =0, Vi > 0 and p = 0, Lemma C.1 and the definition of h; give:

—m
0 S hk S ¢p(u*7uk) - (rbp(u*vuk-‘rl) + ﬁ &

arNgy — B -
+ BT Py — w2 +

w1 — ugll?
(C.5)

A —
wwk — st % + axdy,

Proof of Part (i). In this case, we can set d; = 0 (see Lemma C.1), Ay = L, and ¢ = 2. Therefore, setting

3/2

B =my, ar = “2—, and y = \/% we get from Eq. (C.5) that
* * My _
dp(u*,upq1) < dp(u*,ug) — Tplluk — w7 (C.6)

It follows that ||, —uy||2 converges to zero as k — co. By the definition of ti; and Proposition 2.3, §||a; —uy|2 =
2

5 [ F (ue)

dp(u*,uy) > Z2lu* — w2, my, > 0, it follows that [[u* — ug||, is bounded, and, thus, {uy}x>0 is a bounded

sequence. The proof that all accumulation points of {uy}r>o are in U* is standard and omitted (see the proof

of Theorem 3.2 for a similar argument).

2., and, so, ||F(uy)

p+ converges to zero as k — oo. Further, as ¢,(u*, ui) < ¢,(u*, up) < 0o and

To bound k%_l Zf:o || F(u;)]|2., we telescope the inequality from Eq. (C.6) to get:

k

myp Z [w; — ui”i < 4(¢p(U*v ug) — ¢p(U*7 uyq1)) < 4¢p(U*7 ug).
=0

To complete the proof of this part, it remains to use that ||, — ;|2 = %’2 | F'(u;)

2
5+ (already argued above), the

definitions of aj and 3, and m, = p — 1. The bound on ¢,(u*, ug) follows from the definition of ¢, in this case.

In particular, if we denote 1(u) = 1|u — up||2, then ¢, (u*,ug) = Dy (u*, up). Using the definition of Bregman

divergence and the fact that, for this choice of ¥, we have ||V (u)|,+ = |[u — ugl|, Yu € R?, (see the last part
of Proposition 2.3) it follows that:

. 1, . 1 1
Byl ) = g = vl = 5o — ol — (¥ (5~ wol2)]

1 2
uo,u*—uo> :§Hu*—u0||p.

Proof of Part (ii). In this case, ¢ = p, ¢p(u,v) = %||u—v||g, and m,, = 1. Using Proposition 2.3, |[uy — ||} =

*
akp

S|P () [ and [[ugys — ugl| = ax?”[|F(@)|[5- . Combining with Eq. (C.5), we have:
1 * 1 * (B - l)akp* — *
0< —flu” —we[f = —flu” — wpa [|] + ———— [ F'(@)][}-
' (A mpp* A/p B (7
a — a * a . — _
S E e+ S = g [ + ki
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Nowlet7:175:%,§k:5>0, and a = ﬁ = ﬁ = a. Then axAry — 8 = axAr/y — 8 =0 and Eq. (C.7)
simplifies to: '

1

a?” p* * L.
< —fu” =l = =0 = ugqa [ + ad.
p p

g”F(ﬁkM

p*

Telescoping the last inequality and then dividing it by 2

k
1 < 2wt —uollh  2ps
=[P P
> IF @) < o)t (C.8)

Now, for EG,+ to be able to output a point u with ||F(u)||,« < ¢, it suffices to show that for some choice of 6 and
k we can make the right-hand side of Eq. (C.8) at most €” . This is true because then EG,+ can output the point
0; = argming<; <y [[F'(@;)|p-. For stochastic setups, the guarantee would be in expectation, and EG,+ could

output a point @; with ¢ chosen uniformly at random from {0, ..., %}, similarly as discussed in the proof of
Theorem 3.2.
p—2
Observe first that, as A = (;%52) > LP/2 and p* = p%v we have that:
1) 1 1,1
ﬁ :(5(2A) :521”_1/\17_1
a
— 25 1§26 (72) ot LG,
p
Setting —= _1 < %, recalling that p* = - ~L-, and rearranging, we have:
" P p \=mP .
02 Sgpi_l(ﬁ) R A e
27 P p
Equivalently:
€2
0 < 5 .
= Cr—1) 2D -
L. Q'JTPPT(PP;?)%
o 2(@2p—1) 2(p—1)
It can be verified numerically that (2=2 5" is a constant between and 1, while it is clear that 2 v P =
P

2(2p 1) 2(p—1)

,whereC_2 pr

O(p?) is a constant that only depends on p. Hence, it suffices to set § = L

4“‘1 —uolp

It remains to bound the number of iterations k so that 2”“ —olly < 5 Equlvadently7 we need k41 > %

(k+1)
Plugging § = % into the definition of A, using that p*

EIJ

P —L- and 51mphfylng, we have:

a?” = (20" =251 (pii 2)%2"’%L%%
pé

Thus,

k= op((i) pe— z>+%Lp||u* _ u0|g> — op((LHu*e—uollp)p)

as claimed. 0

Stochastic Oracle Access. To obtain results for stochastic oracle access to F, we only need to bound the
terms €% & —ay, (MK, ay, — u*) — ag (M — Mg, W, — Up41) from Lemma C.1 corresponding to the stochastic error
in expectation, while for the rest of the analysis we can appeal to the results for the deterministic oracle access
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to F. In the case of p = 2, there is one additional term that appears in hj due to replacing F'(uy) with F(ﬁk)
This term is simply equal to:

ap ~ _ — agp _ _ _ — agp _
5 B F @) 13 — 1 @) 31 7] = =5 BIE @) + a3 — |17 @31 5] = =0t (C.9)

We start by bounding the stochastic error £° in expectation.

Lemma 4.3. Let £° = —ay, (i, U, — u*) —ay (M — Nk, Ui — Ugt1), where N and Ny, are defined as in Eq. (4.2)
and all the assumptions of Theorem 4.4 below apply. Then, for q defined by Eq. (4.3) and any 7 > 0:

q

2q*/2ak‘f 0k2 + 52 7 /2 T
< O [ - g

E[£°]

qrTe

where the expectation is w.r.t. all the randomness in the algorithm.

Proof. Let us start by bounding —ay, (7], iy — u*) first. Conditioning on Fj, 7 is independent of @1, and u*,
and, thus:

E[—ak (ﬁk, flk - u*>] = E[E[—ak (ﬁk, 1_1]C - u*> |]?k]] =0.

The second term, —ay (N — Mg, U — Ugt1) , can be bounded using Holder’s inequality and Young’s inequality
as follows:

E[ = ar (M — ks 0 — Wpep1) | < Efar]|in — melpe [0k — g ]

ax?" |7k — |3 T4 .
|:—q*7_q* } +]E{?Huk — uk+1||p]

IA

E

It remains to bound IE[Hﬁk — Nk g} Using triangle inequality,

2]1<

]E[( p*)q*}
E[((Hﬁkllp* + ||7Ik||p*)2)q*/2]
< (E[(Inx ) »

where the last line is by Jensen’s inequality, as ¢* € (1,2], and so ()9 /2 is concave. Using Young’s inequality
and linearity of expectation:

E ([l — m 1725 [l =+ 1725

pe T [l

»)’]

(EQIme 2] + B[l 2.])

(032 +53).

p =+ [ <2
<9

Putting everything together:

Efllne - millg] < 29 (04” +37)7 /2

and
E[€°] = E[ — ay, (Mg — mg, Wy, — g1 ]
20" /20, 0" (0,2 + 52)7 /2 s
- & (*k i i) —HE[—HUk — w12,
q T4 q
as claimed. )

We are now ready to bound the total oracle complexity of EG,+ (and its special case EG+), as follows.
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Theorem 4.4. Let p > 1 and let F : RY — R be an arbitrary L-Lipschitz operator w.r.t. || - I, that satisfies
Assumption 1 for some u* € U*. Given an arbitrary initial point ug € R%, let the sequences of points {w;}i>1,
{@;}i>0 evolve according to (EG,+) for some B € (0,1] and positive step sizes {a;}i>0. Let the variance of a
single query to the stochastic oracle F be bounded by some 02 < 00.

(i) Let p=2 and p € [O,ﬁ), where p = 4\/1§L. If 8 = % and ay = ﬁ, then EGp+ can output a point u with
E[||F(u)|2] < € with at most

(s wa—))

oracle queries to F'.

m / . . =~
(ii) Let p € (1,2) and p=0. If ar, = % and 8 = m,, then EG,+ can output a point u with E[||F(u)

p] <€
with at most
L?[[u* — up? o2
O( I ! HP(1+ 2))
myp2e Mpe
oracle queries to F, where mp =p— 1.
(iti) Letp>2 and p=0. If B = % and aj, = a = %, then EG,+ can output a point u with E[||F(u),+] < € with
at most
Op<(Lu* - 110||p)p(1 + <E>p ))
€ €
oracle queries to F, where p* = pfl.
Proof. Combining Lemmas C.1 and 4.3, we have, Vk > 0:
20" 2y 9" (04,2 4 G2)7 /2 T4 ay PG> arp , =
~ N — q ZRPTR luled )12
0 < Elly] < e B[~ menllg] + S B[R F@)
" * B —my q C.10
+E|¢p(u”, ug) — ¢p(u®, upt1) + w1 — agll3 (C.10)
apApy — B - arA/y — By |
+ E{+|\uk —wg||f + #Huk — Wppa ][] + akék},

Proof of Part (i). In this case, ¢ =2, m, =1, =0, Ay, = L, and ¢,(u*,u) = 3|lu* — ul3, and, further,
U1 — ug = —apF(ag), so Eq. (C.10) simplifies to

2ak2((fk2 + 5']%) i akpakQ

< Elhi] <
0<Elh] < 272 2
1, . 1, . ar>(B—1)+awp, =, _
+E[5 " — wellf = Sl — a3+ : 17 () 3]
agly =P agL/y =B+ 1°

+E[ 3 ||ax _uk||§+ 5 ||t —Uk+1||g},

Taking 8 =1, 72 =1, v =2, and a; = ﬁ, and recalling that p = ﬁ, we have:

= 2
A POk

ar(p = PE[|IF(@)|3] < E[u —well3 — u” — wprall3] + dar®(04” + a0)” + 5

Telescoping the last inequality and dividing both sides by ax(p — p)(k + 1), we get:

k

1 - 2VEL|[u" —wol} | V2Yo(02+07) | pYi,0F
S E[IF@w)|E] < 2 4 n + -

kt 1 (k+1)(p—p) Lip=p)k+1)  2(k+1)(p—p)
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In particular, if variance of a single sample of F evaluated at an arbitrary point is o2 and we take n samples of
F in each iteration, then:

k

: Xﬁmﬂmmﬂghﬁwm—mﬁ+a%w@L+m.

Rl G+DG-p) ' 20(o—p)

To finish the proof of this part, we require that both terms on the right-hand side of the last inequality are
2
bounded by . For the first term, this leads to:

* 2 * 2
b= 4\/§L2H1_1 wlp | _ O(LH;1 _ 110“2)_
e(p—p) e(p—p)

For the second term, the bound is:

202(4v/2/L 2
n= i Sl T ) (2\(/ + ) —0(720_ )
e(p—p) Le*(p — p)
Thus, the total number of required oracle queries to F is bounded by:
Lju* — w3 o’
M1+n):O( _ (1+ . ))
e(p—p) Le*(p —p)

As discussed before, u; with ¢ chosen uniformly at random from {0, ..., k} will satisfy || F'(Q;)|2 < € in expecta-
tion.

Proof of Part (ii). In this case, ¢ =2, m, =p—1,5 =0, Ay, = L, and p = 0. Thus, Eq. (C.10) simplifies to:

Zak2(0k2 + 5’,%)
272

+ E{%(U*auk) — ¢p(u*,upqr) + b

0 <E[h] <

—my

2

s — ug2]

axLy— 8, _ apL/y — Bm, + 1% _
+ E{%ﬂﬂuk - ukllﬁ + £ /7 f L la, — Uk+1||,27]
/
In this case, the same choices for a; and £ as in the deterministic case suffice. In particular, let a; = mgz 2,
B=my, v = ﬁ, and 72 = msz Then, using that, from Proposition 2.3, § |ty — u||? = %Hﬁ(uk) 2, we
have ) 22 )
ar“m ~ N N arp“ (o +0 )
g BlIF0l3] < E[ap(u", me) = gy’ men) | + F=7 =28
Telescoping the last inequality and dividing both sides by (k + 1) GZ;TP, we have:
k . k _
LS R[F)|2] < 8E 0 0) | 83 ing(oi 4 o) 1)
k414 VP (ke 1)my2 (k+1)m,

Now let 0;2 = 62 = 02 /n, where o2 is the variance of a single sample of F and n is the number of samples taken

P =

per iteration. Then, similarly as in Part (i), to bound the total number of samples, it suffices to bound each term
on the right-hand side of Eq. (C.11) by é The first term was already bounded in Theorem 4.1, and it leads to:

L?||u* — UOllﬁ)
: :

kzO(

2
mp?e

For the second term, it suffices that:
2

"= O(mUpeQ)’
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and the bound on the total number of samples follows.
Proof of Part (iii). In this case, ¢ = p, m, =1, p = 0, ¢p(u*,u) = %Hu* — ul|2, and we take 0 = § > 0,

p,
p—2 p
A =A= (%)TLE. Eq. (C.10) now simplifies to:

20" 2P (03,2 + 5’%)17*/2

0 <Elhi] <
< Bl < L
1, ., 1, . 1
P[0 = il = e = v+ e - ] (©12)
agAy — 5, _ agN/y+ 7P -3, _
+E[7k ; g —uyfp+ BT P Mp ||uk—uk+1\|£+ak5].

Recall that, by Proposition 2.3, L{luy41 — ugl[h = %Hﬁ(ﬁk) g Let B=1 ar=a= 7,77 =1, and y = 1.

Then 8 —1= -1, ayAy — 8=~ <0, and apA/y+ 77 — 3 =0, and Eq. (C.12) leads to:

* 4+p * *
aP _ 220-D aP (3,2 + 67)P /2
%E[HF(%) + .

” + ad.
p

" 1, . 1
] <E[ I =l et - waf]

Telescoping the last inequality and then dividing both sides by %(k + 1), we have:

k % 3p+2_ _ *
LS g < A w2 p (el ot 2
k+1~ IR = gt (k4-1) p*(k+1) art —1°

Now let 02 be the variance of a single sample of F and suppose that in each iteration we take n samples to
2
estimate F'(@;) and F(u;). Then 0,* = 5;> = %, and the last equation simplifies to

k pt2 .
1 =ty 2t —ullf 25T pa? 2pé
1 2L BIIF@)5] < = it 0
k+13 a?" (k+1) prn ar” —1
To complete the proof, similarly as before, it suffices to show that we can choose k and n so that % +

5 p* Lr? p*
2p € 2r—lpo
aP* —1 < 2 and p*n

Part (ii), it suffices to choose § = Op(%), which leads to:
k:Op <LHu*7uO||P)p .
€

p+2 * *
92p—1tlpgp oP
_ 717 —of? ).
p*ep eP

< % For the former, following the same argument as in the proof of Theorem 4.1,

For the latter, it suffices to choose:

n

The total number of queries to the stochastic oracle is then bounded by k(1 + n). O
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