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A Additional Background

Definition A.1 (Convex conjugate). Given a convex function  : Rd ! R [ {+1}, its convex conjugate  ⇤ is
defined by:

(8z 2 Rd) :  
⇤(z) = sup

x2Rd

{hz,xi �  (x)}.

The following standard fact can be derived using Fenchel-Young inequality 8x, z 2 Rd :  (x) +  
⇤(z) � hz,xi ,

and it is a simple corollary of Danskin’s theorem (see, e.g., Bertsekas (1971); Bertsekas et al. (2003)).

Fact A.2. Let  : Rd ! R[ {+1} be a closed convex proper function and let  ⇤ be its convex conjugate. Then,
8g 2 @ 

⇤(z),

g 2 argsup
x2Rd

{hz,xi �  (x)},

where @ ⇤(z) is the subdi↵erential set (the set of all subgradients) of  ⇤ at point z. In particular, if  ⇤ is
di↵erentiable, then argsupx2Rd{hz,xi �  (x)} is a singleton set and r ⇤(z) is its only element.

Proposition 2.3. Given, z,u 2 Rd, p 2 (1,1) and q 2 {p, 2}, let

w = argmin
v2Rd

n
hz,vi+ 1

q
ku� vkqp

o
.

Then, for p
⇤ = p

p�1 , q
⇤ = q

q�1 :

w = u�r
⇣ 1

q⇤
kzkq

⇤

p⇤

⌘
and

1

q
kw � ukqp =

1

q
kzkq

⇤

p⇤ .

Proof. The statements in the proposition are simple corollaries of conjugacy of the functions  (u) = 1
qkuk

q
p and

 
⇤(z) = 1

q⇤ kzk
q⇤

p⇤ . In particular, the first part follows from

 
⇤(z) = sup

v2Rd

{hz,vi �  (v)},

by the definition of a convex conjugate and using that 1
qkuk

q
p and 1

q⇤ kzk
q⇤

p⇤ are conjugates of each other, which

are standard exercises in convex analysis for q 2 {p, 2} (see, e.g., (Borwein and Zhu, 2004, Exercise 4.4.2) and
(Boyd et al., 2004, Example 3.27)).

The second part follows byr ⇤(z) = arg supv2Rd{hz,vi� (v)}, due to Fact A.2 ( and  ⇤ are both continuously

di↵erentiable for p 2 (1,1)). Lastly, 1
qkw � ukqp = 1

qkzk
q⇤

p⇤ can be verified by setting w = u�r
�

1
q⇤ kzk

q⇤

p⇤
�
.

Proposition 2.4. For any L > 0,  > 0, q � , t � 0, and � > 0,

L


t
  ⇤

q
t
q +

�

2
,

where ⇤ =
� 2(q�)

�q

� q�


L
q/

.

Proof. The proof is based on the Fenchel-Young inequality and the conjugacy of functions |x|r
r and |y|s

s for

r, s � 1, 1
r + 1

s = 1, which implies xy  xr

r + ys

s , 8x, y � 0. In particular, setting r = q/, s = q/(q � ), and
x = t


, we have

L


t
  Lt

q

qy
+

L(q � )

q
y


q� .

It remains to set �
2 = L(q�)

q y


q� , which, solving for y, gives y =
� �q
2L(q�)

�q�
, and verify that, under this

choice, ⇤ = Ltq

qy .
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B Omitted Proofs from Section 3

Lemma 3.1. Let F : Rd ! Rd be an arbitrary L-Lipschitz operator that satisfies Assumption 1 for some
u
⇤ 2 U⇤. Given an arbitrary initial point u0, let the sequences of points {ui}i�1, {ūi}i�0 evolve according to

(eg+) for some � 2 (0, 1] and positive step sizes {ai}i�0. Then, for any � > 0 and any k � 0, we have:

hk  1

2
ku⇤ � ukk2 �

1

2
ku⇤ � uk+1k2

+
ak

2

�
⇢� ak(1� �)

�
kF (ūk)k2

+
ak

2

2�2

�
akL� � �

�
kF (uk)k2

+
1

2

⇣
akL

�
� �

⌘
kūk � uk+1k2,

(3.2)

where hk is defined as in Eq. (3.1).

Proof. Fix any k � 0 and write hk equivalently as

hk = ak hF (ūk),uk+1 � u
⇤i+ ak hF (uk), ūk � uk+1i

+ ak hF (ūk)� F (uk), ūk � uk+1i+ ak
⇢

2
kF (ūk)k2.

(B.1)

The proof proceeds by bounding above individual terms on the right-hand side of Eq. (B.1). For the first term,
the first-order optimality in the definition of uk+1 gives:

akF (ūk) + uk+1 � uk = 0.

Thus, we have

ak hF (ūk),uk+1 � u
⇤i = �huk+1 � uk,uk+1 � u

⇤i

=
1

2
ku⇤ � ukk2 �

1

2
ku⇤ � uk+1k2 �

1

2
kuk � uk+1k2.

(B.2)

For the second term on the right-hand side of Eq. (B.1), the first-order optimality in the definition of ūk implies:

ak

�
hF (uk) + ūk � uk,uk+1 � ūki = 0,

which, similarly as for the first term, leads to:

ak hF (uk), ūk � uk+1i =
�

2
kuk � uk+1k2 �

�

2
kuk � ūkk2 �

�

2
kuk+1 � ūkk2. (B.3)

For the third term on the right-hand side of Eq. (B.1), applying Cauchy-Schwarz inequality, L-Lipschitzness of
F, and Young’s inequality, respectively, we have:

ak hF (ūk)� F (uk), ūk � uk+1i  akkF (ūk)� F (uk)kkūk � uk+1k
 akLkūk � ukkkūk � uk+1k

 akL�

2
kūk � ukk2 +

akL

2�
kūk � uk+1k2, (B.4)

where the last inequality holds for any � > 0.

Using that ūk � uk = �ak
� F (uk), uk+1 � uk = �akF (ūk) and combining Eqs. (B.2)-(B.4) with Eq. (B.1), we

have:

hk  1

2
ku⇤ � ukk2 �

1

2
ku⇤ � uk+1k2 +

ak

2

�
⇢� ak(1� �)

�
kF (ūk)k2

+
ak

2

2�2

�
akL� � �

�
kF (uk)k2 +

1

2

⇣
akL

�
� �

⌘
kūk � uk+1k2,

as claimed.
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C Omitted Proofs from Section 4

We start by first proving the following lemma that holds for generic choices of algorithm parameters ak and
�. We will then use this lemma to deduce the convergence bounds for di↵erent choices of p > 1 and both the
deterministic and the stochastic oracle access to F.

Lemma C.1. Let p > 1 and let F : Rd ! Rd be an arbitrary L-Lipschitz operator w.r.t. k · kp that satisfies
Assumption 1 for some u

⇤ 2 U⇤. Given an arbitrary initial point u0, let the sequences of points {ui}i�1, {ūi}i�0

evolve according to (egp+) for some � 2 (0, 1] and positive step sizes {ai}i�0. Then, for any � > 0 and any
k � 0:

hk  � ak h⌘̄k, ūk � u
⇤i � ak h⌘̄k � ⌘k, ūk � uk+1i+

ak⇢

2
kF (ūk)k2p⇤

+ �p(u
⇤
,uk)� �p(u

⇤
,uk+1) +

� �mp

q
kuk+1 � ukkqp

+
ak⇤k� � �

q
kūk � ukkqp +

ak⇤k/� � �mp

q
kūk � uk+1kqp + ak�k,

where hk is defined as in Eq. (4.7), �k is any positive number, and ⇤k =
⇣

q�2
�kq

⌘ q�2
2
L
q/2. When q = 2, the

statement also holds with �k = 0 and ⇤k = L.

Proof. We begin the proof by writing hk equivalently as:

hk = ak

D
F̃ (ūk), ūk � u

⇤
E
� ak h⌘̄k, ūk � u

⇤i+ ak⇢

2
kF (ūk)k2p⇤

= ak

D
F̃ (ūk),uk+1 � u

⇤
E
+ ak

D
F̃ (uk), ūk � uk+1

E

+ ak

D
F̃ (ūk)� F̃ (uk), ūk � uk+1

E
� ak h⌘̄k, ūk � u

⇤i+ ak⇢

2
kF (ūk)k2p⇤ .

(C.1)

The proof now proceeds by bounding individual terms on the right-hand side of the last equality.

Let Mk+1(u) = ak

D
rF̃ (ūk),u� uk

E
+ �p(u,uk), so that uk+1 = argminu2Rd Mk+1(u). By the definition of

Bregman divergence of Mk+1 :

Mk+1(u
⇤) = Mk+1(uk+1) + hrMk+1(uk+1),u

⇤ � uk+1i+DMk+1(u
⇤
,uk+1).

As uk+1 = argminu2Rd Mk+1(u), we have rMk+1(uk+1) = 0. Further, DMk+1(u
⇤
,uk+1) = D�p(·,uk)(u

⇤
,uk+1).

When p  2, �p itself is a Bregman divergence, and we have DMk+1(u
⇤
,uk+1) = �p(u⇤

,uk+1). When p > 2,
�p(u,uk) = 1

pku � ukkpp, and as �p is p-uniformly convex with constant 1, it follows that DMk+1(u
⇤
,uk+1) �

1
pku

⇤ � uk+1kpp = �p(u⇤
,uk+1). Thus:

Mk+1(u
⇤) � Mk+1(uk+1) + �p(u

⇤
,uk+1).

Equivalently, applying the definition of Mk+1(·) to the last inequality:

ak

D
rF̃ (ūk),uk+1 � u

⇤
E
 �p(u

⇤
,uk)� �p(u

⇤
,uk+1)� �p(uk+1,uk)

 �p(u
⇤
,uk)� �p(u

⇤
,uk+1)�

mp

q
kuk+1 � ukkqp,

(C.2)

where the last inequality follows from Eq. (4.6).

Now let M̄k(u) =
ak
�

D
F̃ (uk),u� uk

E
+ 1

qku � ukkqp so that ūk = argminu2Rd M̄k(u). By similar arguments as

above,

M̄k(uk+1) = M̄k(ūk) +
⌦
rM̄k(ūk),uk+1 � ūk

↵
+DMk(uk+1, ūk)

� M̄k(ūk) +
mp

q
kuk+1 � ūkkqp,
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where the inequality is by rM̄k(ūk) = 0 and the fact that 1
qk ·k

q
p is q-uniformly convex w.r.t. k ·kp with constant

mp, by the choice of q from Eq. (4.3). Applying the definition of M̄k(u) to the last inequality:

ak

D
F̃ (uk), ūk � uk+1

E
 �

q

�
kuk+1 � ukkqp � kūk � ukkqp �mpkuk+1 � ūkkqp

�
. (C.3)

The remaining term to bound is
D
F̃ (ūk)� F̃ (uk), ūk � uk+1

E
. Using the definitions of ⌘̄k,⌘k, we have:

D
F̃ (ūk)� F̃ (uk), ūk � uk+1

E
= hF (ūk)� F (uk), ūk � uk+1i � h⌘̄k � ⌘k, ūk � uk+1i
(i)
 �h⌘̄k � ⌘k, ūk � uk+1i+ kF (ūk)� F (uk)kp⇤kūk � uk+1kp
(ii)
 �h⌘̄k � ⌘k, ūk � uk+1i+ Lkūk � ukkpkūk � uk+1kp
(iii)
 �h⌘̄k � ⌘k, ūk � uk+1i+

L�

2
kūk � ukk2p +

L

2�
kūk � uk+1k2p,

where (i) is by Hölder’s inequality, (ii) is by L-Lipschitzness of F, and (iii) is by Young’s inequality, which holds

for any � > 0. Now, let �k > 0 and ⇤k =
⇣

2(q�)
�kq

⌘ q�


L
q/

. Then, applying Proposition 2.4 to the last two terms

in the last inequality:
D
F̃ (ūk)� F̃ (uk), ūk � uk+1

E
 � h⌘̄k � ⌘k, ūk � uk+1i

+
⇤k�

q
kūk � ukkqp +

⇤k

q�
kūk � uk+1kqp + �k.

(C.4)

Observe that when q = 2, there is no need to apply Proposition 2.4, and the last inequality is satisfied with
�k = 0 and ⇤k = L.

Combining Eqs. (C.2)-(C.4) with Eq. (C.1), we have:

hk  � ak h⌘̄k, ūk � u
⇤i � ak h⌘̄k � ⌘k, ūk � uk+1i+

ak⇢

2
kF (ūk)k2p⇤

+ �p(u
⇤
,uk)� �p(u

⇤
,uk+1) +

� �mp

q
kuk+1 � ukkqp

+
ak⇤k� � �

q
kūk � ukkqp +

ak⇤k/� � �mp

q
kūk � uk+1kqp + ak�k,

as claimed.

We are now ready to state and prove the main convergence bounds. For simplicity, we first start with the case of
exact oracle access to F . We then show that we can build on this result by separately bounding the error terms
due to the variance of the stochastic estimates F̃ .

Deterministic Oracle Access. The main result is summarized in the following theorem.

Theorem 4.1. Let p > 1 and let F : Rd ! Rd be an arbitrary L-Lipschitz operator w.r.t. k · kp that satisfies
Assumption 1 with ⇢ = 0 for some u

⇤ 2 U⇤. Assume that we are given oracle access to the exact evaluations of
F, i.e., ⌘̄i = ⌘i = 0, 8i. Given an arbitrary initial point u0 2 Rd

, let the sequences of points {ui}i�1, {ūi}i�0

evolve according to (egp+) for � 2 (0, 1] and step sizes {ai}i�0 specified below. Then, we have:

(i) Let p 2 (1, 2]. If � = mp = p � 1, ak = mp
3/2

2L , then all accumulation points of {uk}k�0 are in U⇤
, and,

furthermore 8k � 0:

1

k + 1

kX

i=0

kF (ui)k2p⇤  16L2
�p(u⇤

,u0)

mp
2(k + 1)

= O

⇣ L
2ku⇤ � u0k2p

(p� 1)2(k + 1)

⌘
.
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In particular, within k = O
�L2ku⇤�u0k2

p

(p�1)2✏2

�
iterations egp+ can output a point u with kF (u)kp⇤  ✏.

(ii) Let p 2 (2,1). If � = 1
2 , �k = � > 0, ⇤ =

� q�2
�q

� q�2
2
L
q/2, and ak = 1

2⇤ = a, then, 8k � 0:

1

k + 1

kX

i=0

kF (ūi)kp
⇤

p⇤ 
2ku⇤ � u0kpp
ap

⇤(k + 1)
+

2p�

ap
⇤�1

.

In particular, for any ✏ > 0, there is a choice of � = ✏2

CpL
, where Cp is a constant that only depends on p,

such that egp+ can output a point u with kF (u)kp⇤  ✏ in at most

k = Op

✓⇣
Lku⇤ � u0kp

✏

⌘p
◆

iterations. Here, the Op notation hides constants that only depend on p.

Proof. Observe that, as ⌘̄i = ⌘i = 0, 8i � 0 and ⇢ = 0, Lemma C.1 and the definition of hk give:

0  hk  �p(u
⇤
,uk)� �p(u

⇤
,uk+1) +

� �mp

q
kuk+1 � ukkqp

+
ak⇤k� � �

q
kūk � ukkqp +

ak⇤k/� � �mp

q
kūk � uk+1kqp + ak�k,

(C.5)

Proof of Part (i). In this case, we can set �k = 0 (see Lemma C.1), ⇤k = L, and q = 2. Therefore, setting

� = mp, ak = mp
3/2

2L , and � = 1p
mp

we get from Eq. (C.5) that

�p(u
⇤
,uk+1)  �p(u

⇤
,uk)�

mp

4
kūk � ukk2p. (C.6)

It follows that kūk�ukk2p converges to zero as k ! 1. By the definition of ūk and Proposition 2.3, 1
2kūk�ukk2p =

ak
2

2�2 kF (uk)k2p⇤ , and, so, kF (uk)kp⇤ converges to zero as k ! 1. Further, as �p(u⇤
,uk)  �p(u⇤

,u0) < 1 and

�p(u⇤
,uk) � mp

2 ku⇤ � ukk2p, mp > 0, it follows that ku⇤ � ukkp is bounded, and, thus, {uk}k�0 is a bounded
sequence. The proof that all accumulation points of {uk}k�0 are in U⇤ is standard and omitted (see the proof
of Theorem 3.2 for a similar argument).

To bound 1
k+1

Pk
i=0 kF (ui)k2p⇤ , we telescope the inequality from Eq. (C.6) to get:

mp

kX

i=0

kūi � uik2p  4(�p(u
⇤
,u0)� �p(u

⇤
,uk+1))  4�p(u

⇤
,u0).

To complete the proof of this part, it remains to use that kūi�uik2p = ak
2

�2 kF (ui)k2p⇤ (already argued above), the

definitions of ak and �, and mp = p� 1. The bound on �p(u⇤
,u0) follows from the definition of �p in this case.

In particular, if we denote  (u) = 1
2ku � u0k2p, then �p(u⇤

,u0) = D (u⇤
,u0). Using the definition of Bregman

divergence and the fact that, for this choice of  , we have kr (u)kp⇤ = ku� u0kp, 8u 2 Rd
, (see the last part

of Proposition 2.3) it follows that:

�p(u
⇤
,u0) =

1

2
ku⇤ � u0k2p �

1

2
ku0 � u0k2p �

⌧
ru

⇣1
2
ku� u0k2p

⌘���
u=u0

,u
⇤ � u0

�
=

1

2
ku⇤ � u0k2p.

Proof of Part (ii). In this case, q = p, �p(u,v) =
1
pku�vkpp, and mp = 1. Using Proposition 2.3, kuk� ūkkpp =

ak
p⇤

�p⇤ kF (uk)kp
⇤

p⇤ and kuk+1 � ukkpp = ak
p⇤kF (ūk)kp

⇤

p⇤ . Combining with Eq. (C.5), we have:

0  1

p
ku⇤ � ukkpp �

1

p
ku⇤ � uk+1kpp +

(� � 1)akp
⇤

p
kF (ūk)kp

⇤

p⇤

+
(ak⇤k� � �)akp

⇤

p�p⇤ kF (uk)kp
⇤

p⇤ +
ak⇤k/� � �

p
kūk � uk+1kpp + ak�k.

(C.7)
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Now let � = 1, � = 1
2 , �k = � > 0, and ak = 1

2⇤k
= 1

2⇤ = a. Then ak⇤k� � � = ak⇤k/� � � = 0 and Eq. (C.7)
simplifies to:

a
p⇤

2p
kF (ūk)kp

⇤

p⇤  1

p
ku⇤ � ukkpp �

1

p
ku⇤ � uk+1kpp + a�.

Telescoping the last inequality and then dividing it by ak
p⇤ (k+1)
2p , we have:

1

k + 1

kX

i=0

kF (ūi)kp
⇤

p⇤ 
2ku⇤ � u0kpp
ap

⇤(k + 1)
+

2p�

ap
⇤�1

. (C.8)

Now, for egp+ to be able to output a point u with kF (u)kp⇤  ✏, it su�ces to show that for some choice of � and
k we can make the right-hand side of Eq. (C.8) at most ✏p

⇤
. This is true because then egp+ can output the point

ūi = argmin0ik kF (ūi)kp⇤ . For stochastic setups, the guarantee would be in expectation, and egp+ could
output a point ūi with i chosen uniformly at random from {0, . . . , k}, similarly as discussed in the proof of
Theorem 3.2.

Observe first that, as ⇤ =
�p�2

p�

� p�2
2
L
p/2 and p

⇤ = p
p�1 , we have that:

�

ap
⇤�1

= �(2⇤)p
⇤�1 = �2

1
p�1⇤

1
p�1

= 2
1

p�1 �
p

2(p�1)

⇣
p� 2

p

⌘ p�2
2(p�1)

L
p

2(p�1) .

Setting 2p�
ap⇤�1  ✏p

⇤

2 , recalling that p⇤ = p
p�1 , and rearranging, we have:

�
p⇤
2  ✏

p⇤

2
2p�1

p p

⇣
p

p� 2

⌘ p�2
2p p⇤

L
�p⇤/2

.

Equivalently:

�  ✏
2

L · 2
2(2p�1)

p p
2(p�1)

p (p�2
p )

p�2
p

.

It can be verified numerically that (p�2
p )

p�2
p is a constant between 1

e and 1, while it is clear that 2
2(2p�1)

p p
2(p�1)

p =

O(p2) is a constant that only depends on p. Hence, it su�ces to set � = ✏2

CpL
, where Cp = 2

2(2p�1)
p p

2(p�1)
p .

It remains to bound the number of iterations k so that
2ku⇤�u0kp

p

ap⇤ (k+1)
 ✏p

⇤

2 . Equivalently, we need k+1 � 4ku⇤�u0kp
p

ap⇤ ✏p⇤
.

Plugging � = ✏2

CpL
into the definition of ⇤, using that p⇤ = p

p�1 , and simplifying, we have:

a
p⇤

= (2⇤)p
⇤
= 2

p
p�1

⇣
p� 2

p�

⌘ p�2
2 · p

p�1
L

p
2 ·

p
p�1

= Op

✓⇣1
✏

⌘ p(p�2)
p�1

L
p

◆
.

Thus,

k = Op

✓⇣1
✏

⌘ p(p�2)
p�1 + p

p�1
L
pku⇤ � u0kpp

◆
= Op

✓⇣
Lku⇤ � u0kp

✏

⌘p
◆
,

as claimed.

Stochastic Oracle Access. To obtain results for stochastic oracle access to F, we only need to bound the
terms Es def

= �ak h⌘̄k, ūk � u
⇤i � ak h⌘̄k � ⌘k, ūk � uk+1i from Lemma C.1 corresponding to the stochastic error

in expectation, while for the rest of the analysis we can appeal to the results for the deterministic oracle access
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to F. In the case of p = 2, there is one additional term that appears in hk due to replacing F (ūk) with F̃ (ūk).
This term is simply equal to:

ak⇢

2
E[kF̃ (ūk)k22 � kF (ūk)k22|F̄k] =

ak⇢

2
E[kF (ūk) + ⌘̄kk22 � kF (ūk)k22|F̄k] =

ak⇢

2
�̄
2
k. (C.9)

We start by bounding the stochastic error Es in expectation.

Lemma 4.3. Let Es = �ak h⌘̄k, ūk � u
⇤i�ak h⌘̄k � ⌘k, ūk � uk+1i, where ⌘̄k and ⌘k are defined as in Eq. (4.2)

and all the assumptions of Theorem 4.4 below apply. Then, for q defined by Eq. (4.3) and any ⌧ > 0:

E[Es]  2q
⇤/2

ak
q⇤(�k2 + �̄

2
k)

q⇤/2

q⇤⌧ q
⇤ + E

h
⌧
q

q
kūk � uk+1kqp

i
,

where the expectation is w.r.t. all the randomness in the algorithm.

Proof. Let us start by bounding �ak h⌘̄k, ūk � u
⇤i first. Conditioning on F̄k, ⌘̄k is independent of ūk and u

⇤,
and, thus:

E[�ak h⌘̄k, ūk � u
⇤i] = E

⇥
E[�ak h⌘̄k, ūk � u

⇤i |F̄k]
⇤
= 0.

The second term, �ak h⌘̄k � ⌘k, ūk � uk+1i , can be bounded using Hölder’s inequality and Young’s inequality
as follows:

E
⇥
� ak h⌘̄k � ⌘k, ūk � uk+1i

⇤
 E

⇥
akk⌘̄k � ⌘kkp⇤kūk � uk+1kp

⇤

 E
hakq

⇤k⌘̄k � ⌘kkq
⇤

p⇤

q⇤⌧ q
⇤

i
+ E

h
⌧
q

q
kūk � uk+1kqp

i
.

It remains to bound E
⇥
k⌘̄k � ⌘kkq

⇤

p⇤
⇤
. Using triangle inequality,

E
⇥
k⌘̄k � ⌘kkq

⇤

p⇤
⇤
 E

h�
k⌘̄kkp⇤ + k⌘kkp⇤

�q⇤i

= E
h��

k⌘̄kkp⇤ + k⌘kkp⇤
�2�q⇤/2i


⇣
E
⇥�
k⌘̄kkp⇤ + k⌘kkp⇤

�2⇤⌘q⇤/2
,

where the last line is by Jensen’s inequality, as q
⇤ 2 (1, 2], and so (·)q⇤/2 is concave. Using Young’s inequality

and linearity of expectation:

E
⇥�
k⌘̄kkp⇤ + k⌘kkp⇤

�2⇤  2
⇣
E
⇥
k⌘̄kk2p⇤

⇤
+ E

⇥
k⌘kk2p⇤

⇤⌘

 2(�k
2 + �̄

2
k).

Putting everything together:

E
⇥
k⌘̄k � ⌘kkq

⇤

p⇤
⇤
 2q

⇤/2(�k
2 + �̄

2
k)

q⇤/2

and

E[Es] = E
⇥
� ak h⌘̄k � ⌘k, ūk � uk+1i

⇤

 2q
⇤/2

ak
q⇤(�k2 + �̄

2
k)

q⇤/2

q⇤⌧ q
⇤ + E

h
⌧
q

q
kūk � uk+1kqp

i
,

as claimed.

We are now ready to bound the total oracle complexity of egp+ (and its special case eg+), as follows.
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Theorem 4.4. Let p > 1 and let F : Rd ! Rd be an arbitrary L-Lipschitz operator w.r.t. k · kp that satisfies
Assumption 1 for some u

⇤ 2 U⇤. Given an arbitrary initial point u0 2 Rd
, let the sequences of points {ui}i�1,

{ūi}i�0 evolve according to (egp+) for some � 2 (0, 1] and positive step sizes {ai}i�0. Let the variance of a
single query to the stochastic oracle F̃ be bounded by some �2

< 1.

(i) Let p = 2 and ⇢ 2
⇥
0, ⇢̄

�
, where ⇢̄ = 1

4
p
2L

. If � = 1
2 and ak = 1

2
p
2L

, then egp+ can output a point u with

E[kF̃ (u)k2]  ✏ with at most

O

⇣
Lku⇤ � u0k22
✏2(⇢̄� ⇢)

⇣
1 +

�
2

L✏2(⇢̄� ⇢)

⌘⌘

oracle queries to F̃ .

(ii) Let p 2 (1, 2] and ⇢ = 0. If ak = mp
3/2

2L and � = mp, then egp+ can output a point u with E[kF̃ (u)kp⇤ ]  ✏

with at most

O

⇣L2ku⇤ � u0k2p
mp

2✏2

⇣
1 +

�
2

mp✏
2

⌘⌘

oracle queries to F̃ , where mp = p� 1.

(iii) Let p > 2 and ⇢ = 0. If � = 1
2 and ak = a = 1

4⇤ , then egp+ can output a point u with E[kF̃ (u)kp⇤ ]  ✏ with
at most

Op

✓⇣
Lku⇤ � u0kp

✏

⌘p⇣
1 +

⇣
�

✏

⌘p⇤⌘◆

oracle queries to F̃ , where p
⇤ = p

p�1 .

Proof. Combining Lemmas C.1 and 4.3, we have, 8k � 0:

0  E[hk] 
2q

⇤/2
ak

q⇤(�k2 + �̄
2
k)

q⇤/2

q⇤⌧ q
⇤ + E

h
⌧
q

q
kūk � uk+1kqp

i
+

ak⇢�̄k
2

2
+ E

h
ak⇢

2
kF̃ (ūk)k2p⇤

i

+ E
h
�p(u

⇤
,uk)� �p(u

⇤
,uk+1) +

� �mp

q
kuk+1 � ukkqp

i

+ E
h
ak⇤k� � �

q
kūk � ukkqp +

ak⇤k/� � �mp

q
kūk � uk+1kqp + ak�k

i
,

(C.10)

Proof of Part (i). In this case, q = 2, mp = 1, � = 0, ⇤k = L, and �p(u⇤
,u) = 1

2ku
⇤ � uk22, and, further,

uk+1 � uk = �akF (ūk), so Eq. (C.10) simplifies to

0  E[hk] 
2ak2(�̄k2 + �̄

2
k)

2⌧2
+

ak⇢�k
2

2

+ E
h1
2
ku⇤ � ukk22 �

1

2
ku⇤ � uk+1k22 +

ak
2(� � 1) + ak⇢

2
kF̃ (ūk)k22

i

+ E
h
akL� � �

2
kūk � ukk22 +

akL/� � � + ⌧
2

2
kūk � uk+1k22

i
,

Taking � = 1
2 , ⌧

2 = 1
4 , � =

p
2, and ak = 1

2
p
2L

, and recalling that ⇢̄ = 1
4
p
2L

, we have:

ak(⇢̄� ⇢)E
⇥
kF̃ (ūk)k22

⇤
 E

⇥
ku⇤ � ukk22 � ku⇤ � uk+1k22

⇤
+ 4ak

2(�k
2 + �̄k)

2 +
ak⇢�̄k

2

2
.

Telescoping the last inequality and dividing both sides by ak(⇢̄� ⇢)(k + 1), we get:

1

k + 1

kX

i=0

E
⇥
kF̃ (ūi)k22

⇤
 2

p
2Lku⇤ � u0k22

(k + 1)(⇢̄� ⇢)
+

p
2
Pk

i=0(�i
2 + �̄

2
i )

L(⇢̄� ⇢)(k + 1)
+

⇢
Pk

i=0 �̄
2
i

2(k + 1)(⇢̄� ⇢)
.
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In particular, if variance of a single sample of F̃ evaluated at an arbitrary point is �2 and we take n samples of
F̃ in each iteration, then:

1

k + 1

kX

i=0

E
⇥
kF̃ (ūi)k22

⇤
 2

p
2Lku⇤ � u0k22

(k + 1)(⇢̄� ⇢)
+
�
2(4

p
2/L+ ⇢)

2n(⇢̄� ⇢)
.

To finish the proof of this part, we require that both terms on the right-hand side of the last inequality are
bounded by ✏2

2 . For the first term, this leads to:

k =

&
4
p
2Lku⇤ � u0k22
✏2(⇢̄� ⇢)

� 1

'
= O

⇣
Lku⇤ � u0k22
✏2(⇢̄� ⇢)

⌘
.

For the second term, the bound is:

n =

&
2�2(4

p
2/L+ ⇢)

✏2(⇢̄� ⇢)

'
= O

⇣
�
2

L✏2(⇢̄� ⇢)

⌘
.

Thus, the total number of required oracle queries to F̃ is bounded by:

k(1 + n) = O

⇣
Lku⇤ � u0k22
✏2(⇢̄� ⇢)

⇣
1 +

�
2

L✏2(⇢̄� ⇢)

⌘⌘
.

As discussed before, ūi with i chosen uniformly at random from {0, . . . , k} will satisfy kF (ūi)k2  ✏ in expecta-
tion.

Proof of Part (ii). In this case, q = 2, mp = p� 1, � = 0, ⇤k = L, and ⇢ = 0. Thus, Eq. (C.10) simplifies to:

0  E[hk] 
2ak2(�k2 + �̄

2
k)

2⌧2

+ E
h
�p(u

⇤
,uk)� �p(u

⇤
,uk+1) +

� �mp

2
kuk+1 � ukk2p

i

+ E
h
akL� � �

2
kūk � ukk2p +

akL/� � �mp + ⌧
2

2
kūk � uk+1k2p

i
.

In this case, the same choices for ak and � as in the deterministic case su�ce. In particular, let ak = mp
3/2

2L ,

� = mp, � = 1p
mp

, and ⌧2 = mp
2

2 . Then, using that, from Proposition 2.3, 1
2kūk � ukk2p = ak

2

2�2 kF̃ (uk)k2p⇤ , we

have
ak

2
mp

4�2
E
⇥
kF̃ (uk)k2p⇤

⇤
 E

h
�p(u

⇤
,uk)� �p(u

⇤
,uk+1)

i
+

ak
2(�k2 + �̄

2
k)

⌧
.

Telescoping the last inequality and dividing both sides by (k + 1)ak
2mp

4�2 , we have:

1

k + 1

kX

i=0

E
⇥
kF̃ (ui)k2p⇤

⇤
 16L2

�p(u⇤
,u0)

(k + 1)mp
2

+
8
Pk

i=0(�i
2 + �̄i

2)

(k + 1)mp
. (C.11)

Now let �i2 = �̄
2
i = �

2
/n, where �2 is the variance of a single sample of F̃ and n is the number of samples taken

per iteration. Then, similarly as in Part (i), to bound the total number of samples, it su�ces to bound each term

on the right-hand side of Eq. (C.11) by ✏2

2 . The first term was already bounded in Theorem 4.1, and it leads to:

k = O

⇣L2ku⇤ � u0k2p
mp

2✏2

⌘
.

For the second term, it su�ces that:

n = O

⇣
�
2

mp✏
2

⌘
,
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and the bound on the total number of samples follows.

Proof of Part (iii). In this case, q = p, mp = 1, ⇢ = 0, �p(u⇤
,u) = 1

pku
⇤ � ukpp, and we take �k = � > 0,

⇤k = ⇤ =
�p�2

p�

� p�2
2
L

p
2 . Eq. (C.10) now simplifies to:

0  E[hk] 
2p

⇤/2
ak

p⇤
(�k2 + �̄

2
k)

p⇤/2

p⇤⌧p
⇤

+ E
h1
p
ku⇤ � ukkpp �

1

p
ku⇤ � uk+1kpp +

� � 1

p
kuk+1 � ukkpp

i

+ E
h
ak⇤� � �

p
kūk � ukkpp +

ak⇤/� + ⌧
p � �

p
kūk � uk+1kpp + ak�

i
.

(C.12)

Recall that, by Proposition 2.3, 1
pkuk+1 � ukkpp = ap⇤

p kF̃ (ūk)kp
⇤

p⇤ . Let � = 1
2 , ak = a = 1

4⇤ , ⌧
p = 1

4 , and � = 1.

Then � � 1 = � 1
2 , ak⇤� � � = � 1

4 < 0, and ak⇤/� + ⌧
p � � = 0, and Eq. (C.12) leads to:

a
p⇤

2p
E
⇥
kF̃ (ūk)kp

⇤

p⇤
⇤
 E

h1
p
ku⇤ � ukkpp �

1

p
ku⇤ � uk+1kpp

i
+

2
4+p

2(p�1) a
p⇤
(�k2 + �̄

2
k)

p⇤/2

p⇤
+ a�.

Telescoping the last inequality and then dividing both sides by ap⇤

2p (k + 1), we have:

1

k + 1

kX

i=0

E
⇥
kF̃ (ūi)kp

⇤

p⇤
⇤


2ku⇤ � u0kpp
ap

⇤(k + 1)
+

2
3p+2

2(p�1) p
Pk

i=0(�i
2 + �̄

2
i )

p⇤/2

p⇤(k + 1)
+

2p�

ap
⇤ � 1

.

Now let �2 be the variance of a single sample of F̃ and suppose that in each iteration we take n samples to
estimate F (ūi) and F (ui). Then �i2 = �̄i

2 = �2

n , and the last equation simplifies to

1

k + 1

kX

i=0

E
⇥
kF̃ (ūi)kp

⇤

p⇤
⇤


2ku⇤ � u0kpp
ap

⇤(k + 1)
+

2
p+2
p�1 p�

p⇤

p⇤n
+

2p�

ap
⇤ � 1

.

To complete the proof, similarly as before, it su�ces to show that we can choose k and n so that
2pku⇤�u0kp

p

ap⇤ (k+1)
+

2p�
ap⇤�1

 ✏p
⇤

2 and 2
p+2
p�1 p�p⇤

p⇤n  ✏p
⇤

2 . For the former, following the same argument as in the proof of Theorem 4.1,

Part (ii), it su�ces to choose � = Op(
✏2

L ), which leads to:

k = Op

✓⇣
Lku⇤ � u0kp

✏

⌘p
◆
.

For the latter, it su�ces to choose:

n =
2

p+2
p�1+1

p�
p⇤

p⇤✏p
⇤ = O

✓
p�

p⇤

✏p
⇤

◆
.

The total number of queries to the stochastic oracle is then bounded by k(1 + n).
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