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Abstract

The use of min-max optimization in the ad-
versarial training of deep neural network clas-
sifiers, and the training of generative ad-
versarial networks has motivated the study
of nonconvex-nonconcave optimization objec-
tives, which frequently arise in these appli-
cations. Unfortunately, recent results have
established that even approximate first-order
stationary points of such objectives are in-
tractable, even under smoothness conditions,
motivating the study of min-max objec-
tives with additional structure. We intro-
duce a new class of structured nonconvex-
nonconcave min-max optimization problems,
proposing a generalization of the extragradi-
ent algorithm which provably converges to a
stationary point. The algorithm applies not
only to Euclidean spaces, but also to gen-
eral `p-normed finite-dimensional real vector
spaces. We also discuss its stability under
stochastic oracles and provide bounds on its
sample complexity. Our iteration complexity
and sample complexity bounds either match
or improve the best known bounds for the
same or less general nonconvex-nonconcave
settings, such as those that satisfy variational
coherence or in which a weak solution to the
associated variational inequality problem is
assumed to exist.

1 Introduction

Min-max optimization and min-max duality theory lie
at the foundations of game theory and mathematical
programming, and have found far-reaching applica-
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tions across a range of disciplines, including complex-
ity theory, statistics, control theory, and online learn-
ing theory. Most recently, min-max optimization has
played an important role in machine learning, notably
in the adversarial training of deep neural network clas-
sifiers and the training of generative deep neural net-
work models. These recent applications have height-
ened the importance of solving min-max optimization
problems with nonconvex-nonconcave objectives, tak-
ing the following general form:

min
x

max
y

f(x,y), (1.1)

where x and y are real-valued vectors and f is not
(necessarily) convex in x for all y and/or not (nec-
essarily) concave in y for all x. There may also be
constraints on x and y, and in many applications x

and y are high-dimensional vectors.

When the objective function is not convex-concave,
von Neumann’s celebrated min-max theorem fails to
apply, and so do most standard optimization methods
for solving (1.1). This has motivated several lines of
investigation, which include extensions of the min-max
theorem beyond convex-concave objectives (e.g. Sion’s
theorem for quasiconvex-quasiconcave objectives), and
the pursuit of computational procedures that target
solutions to (1.1) even in the absence of a min-max
theorem; see Section 1.1 for a review of recent work.
Of course, without strong assumptions on f , (1.1) is
an intractable problem, at least as intractable as gen-
eral nonconvex optimization. Thus, the literature has
targeted locally optimal solutions, in the same spirit as
the targeting of local optima in non-convex optimiza-
tion. Naturally, there are various notions of local op-
timality that have been studied in the literature. Our
focus here will be on the simplest such notion, namely
first-order local optimality, for which, despite the ap-
parent simplicity, many challenges arise (Daskalakis
and Panageas, 2018; Mazumdar et al., 2020).

In contrast to classical optimization problems, where
useful results can be obtained with very mild assump-
tions on the objective function, in min-max optimiza-
tion it is necessary to impose non-trivial assumptions



E�cient Methods for Structured Nonconvex-Nonconcave Min-Max Optimization

on f , even when the goal is only to compute locally
optimal solutions. Indeed, Daskalakis et al. (2021) es-
tablish intractability results in the constrained setting
of the problem, wherein first-order locally optimal so-
lutions are guaranteed to exist whenever the objective
is smooth. Moreover, they show that even the compu-
tation of approximate solutions is PPAD-complete and,
if the objective function is accessible through value-
queries and gradient-queries, exponentially many such
queries are necessary (in particular, exponential in at
least one of the following: the inverse approximation
parameter, the smoothness constant of f , or the diam-
eter of the constraint set).

We expect similar intractability results to hold in the
unconstrained case, which is the case considered in this
paper, even when restricting to smooth objectives that
have a non-empty set of optimal solutions.1 Indeed,
fixed-point complexity-based intractability results for
the constrained case are typically extendable to the
unconstrained case, by embedding the hard instances
within an unbounded domain.

Relatedly, we already know that the unconstrained
Stampacchia variational inequality (SVI) problem for
Lipschitz continuous operators F : Rd ! Rd—a prob-
lem which includes the unconstrained case of (1.1) by

setting F ([xy]) =
⇥ rxf(x,y)
�ryf(x,y)

⇤
—is computationally in-

tractable, even when restricting to operators that have
a non-empty set of SVI solutions.2 This is because:
(i) F is Lipschitz-continuous if and only if the op-
erator T (u) = u � F (u) is Lipschitz-continuous; (ii)
for ✏ � 0, points ū 2 Rd such that kF (ū)k2  ✏ sat-
isfy kT (ū)� ūk2  ✏, i.e. they are ✏-approximate fixed
points of T , and vice versa; and (iii) it is known that
finding approximate fixed points of Lipschitz opera-
tors over Rd is PPAD-hard, even when the operators are
guaranteed to have fixed points (Papadimitriou, 1994).
Moreover, if we restrict attention to algorithms that
only make value queries to T (i.e. F , which corresponds
to the type of access that all first-order algorithms
have), the query complexity becomes exponential in
the dimension (Hirsch et al., 1989). Finally, by the
equivalence of norms, these results extend to arbitrary
`p-normed finite dimensional real vector spaces. Of
course, for these intractability results for SVI to apply
to the nonconvex-nonconcave min-max problem (1.1),
one would need to prove that these complexity results
extend to operators F constructed from a smooth func-
tion f by setting F ([xy]) =

⇥ rxf(x,y)
�ryf(x,y)

⇤
.

1Note that these are stationary points of f in this case.
2We formally define the Stampacchia variational in-

equality problem, (svi), in Section 2. We also define the
harder Minty variational inequality problem, (mvi), in the
same section.

Our contributions. Given the aforedescribed in-
tractability results, our goal is to identify structural
properties that make it possible to solve min-max op-
timization problems with smooth objectives. Focus-
ing on the unconstrained setting of (1.1), we view it
as a special case (obtained by considering the opera-

tor F ([xy]) =
⇥ rxf(x,y)
�ryf(x,y)

⇤
) of the unconstrained varia-

tional inequality problem (svi), and consider instead
this more general problem. We identify conditions for
F under which a generalized version of the extragradi-
ent method of Korpelevich (1976), which we propose,
converges to a solution of (svi) (or, in the special case
of (1.1), to a stationary point of f) at a rate of 1/

p
k

in the number of iterations k. Our condition, pre-
sented as Assumption 1, postulates that there exists a
solution to (svi) that only violates the stronger (mvi)
requirement in a controlled manner that we delineate.
Our generalized extragradient method is based on an
aggressive interpolation step, as specified by (eg+),
and our main convergence result is Theorem 3.2. We
additionally show, in Theorems 4.1 and 4.4, that the
algorithm converges in non-Euclidean settings, under
the stronger condition that an (mvi) solution exists, or
when we only have stochastic oracle access to F (or,
in the special case of (1.1), to the gradient of f).

The condition on F under which our main result ap-
plies is weaker than the assumption that a solution
to (mvi) exists (Zhou et al., 2017; Mertikopoulos et al.,
2019; Malitsky, 2019; Song et al., 2020), an assump-
tion which is already satisfied by several interesting
families of min-max objectives, including quasiconvex-
concave families or starconvex-concave families. Our
significantly weaker condition applies in particular to
(min-max objectives f with corresponding) operators
F that are negatively comonotone (Bauschke et al.,
2020) or positively cohypomonotone (Combettes and
Pennanen, 2004). These conditions have been stud-
ied in the literature for at least a couple of decades,
but only asymptotic convergence results were available
prior to our work for computing solutions to (svi). In
contrast, our rates are asymptotically identical to the
rates that we would get under the stronger assump-
tion that a solution to (mvi) exists, and sidestep the
intractability results for (1.1) suggested by Daskalakis
et al. (2021) for general smooth objectives.

1.1 Further Related Work

A large number of recent works target identifying prac-
tical first-order, low-order, or e�cient online learning
methods for solving min-max optimization problems
in a variety of settings, ranging from the well-behaved
setting of convex-concave objectives to the challeng-
ing setting of nonconvex-nonconcave objectives. There
has been substantial work for convex-concave and
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Table 1: Comparison of iteration complexities required to find a point x with kF (x)kp⇤  ✏ using deterministic
algorithms, where ✏ > 0, F : Rd ! Rd is a Lipschitz operator satisfying Assumption 1 (Section 2) with ⇢ � 0.
Parameter p determines the `p setup, and p

⇤ = p
p�1 is the exponent conjugate to p. Only the dependence on ✏

and possibly the dimension d is shown; the dependence on other problem parameters is comparable for all the
results. eO hides logarithmic factors. ‘—’ indicates that the result does not exist/is not known.

XXXXXXXXXXPaper

Setup
⇢ 2 (0, 1

4L ), p = 2 ⇢ = 0, p = 2 ⇢ = 0, p 2 (1, 2) ⇢ = 0, p > 2

(Dang and Lan, 2015) — O( 1
✏2 ) O(poly(d

1/p�1/2)
✏2 ) O(poly(d

1/2�1/p)
✏2 )

(Lin et al., 2018) — eO( 1
✏2 ) — —

(Song et al., 2020) — O( 1
✏2 ) O( 1

✏2 ) —
This Paper O( 1

✏2 ) O( 1
✏2 ) O( 1

✏2 ) O( 1
✏p )

nonconvex-concave objectives, targeting the compu-
tation of min-max solutions to (1.1) or, respectively,
stationary points of f or �(x) := maxy f(x,y). This
work has focused on attaining improved convergence
rates (Kong and Monteiro, 2019; Lin et al., 2020b;
Thekumparampil et al., 2019; Nouiehed et al., 2019; Lu
et al., 2020; Zhao, 2019; Alkousa et al., 2019; Azizian
et al., 2020; Golowich et al., 2020; Lin et al., 2020a; Di-
akonikolas, 2020) and/or obtaining last-iterate conver-
gence guarantees (Daskalakis et al., 2018; Daskalakis
and Panageas, 2018; Mazumdar et al., 2020; Mer-
tikopoulos et al., 2018; Lin et al., 2018; Hamedani
and Aybat, 2018; Adolphs et al., 2019; Daskalakis and
Panageas, 2019; Liang and Stokes, 2019; Gidel et al.,
2019; Mokhtari et al., 2020; Abernethy et al., 2019;
Liu et al., 2020).

In the nonconvex-nonconcave setting, research has fo-
cused on identifying di↵erent notions of local min-max
solutions (Daskalakis and Panageas, 2018; Mazumdar
et al., 2020; Jin et al., 2020; Mangoubi and Vishnoi,
2021) and studying the existence and (local) conver-
gence properties of learning methods to these points
(Wang et al., 2019; Mangoubi et al., 2020; Mangoubi
and Vishnoi, 2021). As already discussed, recent work
of Daskalakis et al. (2021) shows that, for general
smooth objectives, the computation of even approx-
imate first-order locally optimal min-max solutions is
intractable, motivating the identification of structural
assumptions on the objective function for which these
intractability barriers can be bypassed.

An example such assumption, which is closely related
to the one made in this work, is that an (mvi) solution

exists for the operator F ([xy]) =
⇥ rxf(x,y)
�ryf(x,y)

⇤
, as studied

by Zhou et al. (2017); Lin et al. (2018); Mertikopoulos
et al. (2019); Malitsky (2019); Liu et al. (2020); Song
et al. (2020). As we have already discussed, the as-
sumption we make for our main result in this work is
weaker. Table 1 provides a comparison of our results
to those of existing works, considering the determinis-
tic setting (i.e. having exact value access to F ).

In unconstrained Euclidean setups, the best known
convergence rates are of the order 1/

p
k (Dang and

Lan, 2015; Song et al., 2020), under the assumption
that an (mvi) solution exists. We obtain the same
rate under our weaker Assumption 1. Moreover, under
our weaker assumption, we show that the accumula-
tion points of the sequence of iterates of our algorithm
are (svi) solutions. This was previously established
for alternative algorithms and under the stronger as-
sumption that an (mvi) solution exists (Mertikopoulos
et al., 2019; Malitsky, 2019).

When it comes to more general `p norms, Mertikopou-
los et al. (2019) establish the asymptotic convergence
of the iterates of an optimistic variant of the mirror de-
scent algorithm, under the assumption that an (mvi)
solution exists, but they do not provide any conver-
gence rates. On the other hand, Dang and Lan (2015)
prove a 1/

p
k rate of convergence for a variant of the

mirror-prox algorithm in general normed spaces. This
result, however, requires the regularizing (prox) func-
tion to be both smooth and strongly convex w.r.t. the
same norm, and the constant in the convergence bound
scales at least linearly with the condition number of
the prox function. It is well-known that no function
can be simultaneously smooth and strongly convex
w.r.t. an `p norm with p 6= 2 and have a condition
number independent of the dimension (Borwein et al.,
2009). In fact, unless p is trivially close to 2, we only
know of functions whose condition number would scale
polynomially with the dimension.

Very recent (and independent) work of Song et al.
(2020) proposes an optimistic dual extrapolation
method with linear convergence for a class of prob-
lems that have a “strong” (mvi) solution. (In particu-
lar, their assumption is that there exists u⇤ 2 Rd such
that 8u 2 Rd: hF (u),u� u

⇤i � mku� u
⇤k2 for some

constant m � 0; the case m = 0 recovers the existence
of a standard (mvi) solution.) Their result only ap-
plies to norms that are strongly convex, which in the
case of `p norms is true only for p 2 (1, 2]. In that case,
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our results match those of Song et al. (2020). For the
case of stochastic oracle access to F, our bounds also
match those of Song et al. (2020) for p 2 (1, 2], and
we also handle the case p > 2 which is not covered by
Song et al. (2020).

Finally, it is worth noting that Zhou et al. (2017);
Mertikopoulos et al. (2019); Malitsky (2019); Song
et al. (2020) consider constrained optimization setups,
which are not considered in our work. We believe that
generalizing our results to constrained setups is possi-
ble, and defer such generalizations to future work.

2 Notation and Preliminaries

We consider real d-dimensional spaces (Rd
, k · kp),

where k · kp is the standard `p norm for p � 1. In
particular, k · k2 =

p
h·, ·i is the `2 (Euclidean) norm

and h·, ·i denotes the inner product. When the context
is clear, we omit the subscript 2 and just write k · k
for the Euclidean norm k · k2. Moreover, we denote by
p
⇤ = p

p�1 the exponent conjugate to p.

We are interested in finding stationary points for min-
max problems of the form:

min
x2Rd1

max
y2Rd2

f(x,y), (P)

where f is a smooth (possibly nonconvex-nonconcave)
function and d1 + d2 = d. In this case, stationary
points can be defined as the points at which the gra-
dient of f is the zero vector. As is standard, the ✏-
approximate variant of this problem for ✏ > 0 is to find
a point (x,y) 2 Rd1 ⇥Rd2 such that krf(x,y)kp⇤  ✏.

We will study Problem (P) through the lens of vari-
ational inequalities, described in Section 2.1. To do
so, we consider the operator F : Rd ! Rd defined
via F (u) =

⇥ rxf(x,y)
�ryf(x,y)

⇤
, where u =

⇥x
y

⇤
and where

rxf (respectively, ryf) denotes the gradient of f

w.r.t. x (respectively, y). It is clear that F is Lipschitz-
continuous whenever f is smooth and that kF (u)kp⇤ 
✏ for u =

⇥x
y

⇤
holds if and only if krf(x,y)kp⇤  ✏.

2.1 Variational Inequalities and Structured

(Possibly Non-Monotone) Operators

Let F : Rd ! Rd be an operator that is L-Lipschitz-
continuous w.r.t. k · kp:

(8u,v 2 Rd) : kF (u)�F (v)kp⇤  Lku�vkp. (a1)

F is said to be monotone if:

(8u,v 2 Rd) : hF (u)� F (v),u� vi � 0. (2.1)

Given a closed convex set U ✓ Rd and an operator F,

the Stampacchia Variational Inequality problem con-
sists in finding u

⇤ 2 Rd such that:

(8u 2 U) : hF (u⇤),u� u
⇤i � 0. (svi)

In this case, u
⇤ is referred to as the strong solution

to the variational inequality corresponding to F and
U . When U ⌘ Rd (the case considered here), it must
be the case that kF (u⇤)kp⇤ = 0. We will assume that
there exists at least one (svi) solution, and will denote
the set of all such solutions by U⇤

.

The Minty Variational Inequality problem consists in
finding u

⇤ such that:

(8u 2 U) : hF (u),u⇤ � ui  0, (mvi)

in which case u
⇤ is referred to as the weak solution

to the variational inequality corresponding to F and
U . If we assume that F is monotone, then (2.1) im-
plies that every solution to (svi) is also a solution to
(mvi), and the two solution sets are equivalent. More
generally, if F is not monotone, all that can be said
is that the set of (mvi) solutions is a subset of the set
of (svi) solutions. In particular, (mvi) solutions may
not exist even when (svi) solutions exist. These facts
follow from Minty’s theorem (see, e.g., (Kinderlehrer
and Stampacchia, 2000, Chapter 3)).

We will not, in general, be assuming that F is mono-
tone. Note that the Lipschitzness of F on its own is
not su�cient to guarantee that the problem is compu-
tationally tractable, as discussed in the introduction.
Thus, additional structure is needed, which we intro-
duce in the following.

Weak MVI solutions. We define the class of prob-
lems with weak (mvi) solutions as the class of problems
in which F satisfies the following assumption.

Assumption 1 (Weak mvi). There exists u
⇤ 2 U⇤

such that:

(8u 2 Rd) : hF (u),u� u
⇤i � �⇢

2
kF (u)k2p⇤ , (a2)

for some parameter ⇢ 2
⇥
0, 1

4L

�
.

We will only provide results for ⇢ > 0 in the case of
the `2 norm. For p 6= 2, we will require a stronger as-
sumption; namely, that an (mvi) solution exists, which
holds when ⇢ = 0.

2.2 Example Settings Satisfying

Assumption 1.

The class of problems that have weak (mvi) solutions
in the sense of Assumption 1 generalizes other struc-
tured non-monotone variational inequality problems,
as we discuss in this section.
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When ⇢ = 0, we recover the class of problems that
have an (mvi) solution. This class contains all uncon-
strained variationally coherent problems studied in,
e.g., Zhou et al. (2017); Mertikopoulos et al. (2019),
which encompass all min-max problems with objec-
tives that are bilinear, pseudo-convex-concave, quasi-
convex-concave, and star-convex-concave.

When ⇢ > 0 and p = 2, Assumption 1 is implied by
F being �⇢

2 -comonotone (Bauschke et al., 2020) or
⇢
2 -cohypomonotone (Combettes and Pennanen, 2004),
defined as follows:

(8u,v 2 Rd) :

hF (u)� F (v),u� vi � �⇢
2
kF (u)� F (v)k22. (2.2)

In particular, Assumption 1 is equivalent to requiring
that (2.2) be satisfied for general u and v = u

⇤, where
u
⇤ is a solution to (svi) (in which case F (u⇤) = 0).

Note that Assumption 1 does not imply that a solu-
tion to (mvi) exists, unless ⇢ = 0. It is further impor-
tant to note that cohypomonotone operators arise as
inverses of operators that only need to be Lipschitz-
continuous. (In fact, even a weaker property su�ces;
see Bauschke et al. (2020).) This is particularly in-
teresting as, combined with our main result, it im-
plies that we can e�ciently find zeros of inverses of
Lipschitz-continuous operators, as long as those in-
verses are su�ciently Lipschitz, even though finding
zeros of Lipschitz-continuous operators is computa-
tionally intractable, in general, as we have discussed.

It is interesting to note that Assumption 1 does not im-
ply that, in the min-max setting, f is convex-concave
(or, more generally, that F is monotone), even in a
neighborhood of an (svi) solution u

⇤ =
⇥
x⇤

y⇤
⇤
, i.e., a

stationary point of f . To see this, fix y = y
⇤ and

consider f(x,y⇤) for x in a small neighborhood of x⇤
.

Using the fact that a continuously-di↵erentiable func-
tion is well-approximated by its linear approximation
within small neighborhoods, all that we are able to
deduce from Assumption 1 is that

f(x⇤
,y

⇤)� f(x,y⇤) ⇡
Dh

rxf(x,y
⇤)

ryf(x,y
⇤)

i
,

h
x⇤�x
y⇤�y⇤

iE

 ⇢

2
krf(x,y⇤)k2p⇤ .

In particular, Assumption 1 does not preclude that
f(x⇤

,y
⇤) is larger than f(x,y⇤); it only bounds how

much larger it can be by a quantity proportional to
krf(x,y⇤)k2p⇤ . Compare this also to the Polyak-
 Lojasiewicz condition (see, e.g., Nouiehed et al. (2019);
Yang et al. (2020)), which imposes the opposite in-
equality, namely, that f(x,y⇤)� f(x⇤

,y
⇤) is bounded

above by a multiple of krf(x,y⇤)k2p⇤ .

One way that a generic operator F may satisfy As-
sumption 1 is when there is a constant � > 0 such

that for some u
⇤ 2 U⇤ we have

(8u 2 Rd) hF (u),u� u
⇤i � ��

2
ku� u

⇤k2p, (2.3)

and when the operator F does not plateau or be-
come too close to a linear operator around u

⇤; namely,
kF (u) � F (u⇤)kp⇤ � µku � u

⇤kp. (Note that (2.3) is
always satisfied with � = 2L for L-Lipschitz opera-
tors, but we may need � to be smaller than 2L). Then
Assumption 1 would be satisfied with ⇢ = �

µ . For a
min-max problem, assuming f is twice di↵erentiable,
this would mean that the lowest eigenvalue of the sym-
metric part of the Jacobian of

⇥ rxf(x,y)
�ryf(x,y)

⇤
is bounded

below by ��/2 in any direction u � u
⇤ and the func-

tion f is su�ciently “curved” (not close to a linear or
a constant function) around u

⇤ =
⇥
x⇤

y⇤
⇤
.

Finally, we discuss a concrete min-max application
wherein there are no (mvi) solutions, but there do
exist (svi) solutions satisfying the weak (mvi) condi-
tion of Assumption 1. This application arises in the
context of two-agent zero-sum reinforcement learning
problems studied by many authors, including recently
by Daskalakis et al. (2020). In Section 5.1 of that work,
the authors consider a special case of the general two-
agent zero-sum RL problem, called von Neumann’s ra-
tio game, for which they observe that, even on a ran-
dom example, the (mvi) solution set is empty, yet the
extragradient method still converges in practice (albeit
at a slower rate). Interestingly, it is easy to construct
examples of the von Neumann ratio game for which
no (mvi) solution exists, but the weak (mvi) condition
of Assumption 1 does hold, and yet the stronger cohy-
pomonotonicity condition of (2.2) does not hold. In-
deed, one such example is obtained for the game shown
in Proposition 2 of their paper, setting s = 1/2 and
✏ = .49. Here (mvi) fails, the weak (mvi) condition
of Assumption 1 is satisfied, and cohypomonotonic-
ity fails to hold, e.g., for u = (x,y) = (0.1, 0.3) and
v = (x0

,y
0) = (0.8, 0.3). To be clear, the von Neu-

mann ratio game gives rise to a constrained min-max
problem while our algorithm targets the unconstrained
setting. While extending our result to the constrained
setting remains open, our example here demonstrates
that there is value in further studying the weak (mvi)
condition of Assumption 1 in the constrained setting
as well.

2.3 Useful Definitions and Facts

We now list some useful definitions and facts that will
subsequently be used in our analysis. Additional back-
ground, including proofs of Propositions 2.3 and 2.4 is
provided in Appendix A.

Definition 2.1 (Uniform convexity). Given p � 2, a
di↵erentiable function  : Rd ! R [ {+1} is said to
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be p-uniformly convex w.r.t. k · k and with constant m
if 8x,y 2 Rd

,

 (y) �  (x) + hr (x),y � xi+ m

p
ky � xkp.

Observe that when p = 2, we recover the standard def-
inition of strong convexity. Thus, uniform convexity is
a generalization of strong convexity.

Definition 2.2 (Bregman divergence). Let  : Rd !
R be a di↵erentiable function. Then its Bregman di-
vergence between points x,y 2 Rd is defined by

D (x,y) =  (x)�  (y)� hr (y),x� yi .

It is immediate that the Bregman divergence of a con-
vex function is non-negative.

Useful facts for `p setups. We now outline some
useful auxiliary results used specifically in Section 4,
where we study the case that p is not necessarily equal
to 2.

Proposition 2.3. Given, z,u 2 Rd, p 2 (1,1) and
q 2 {p, 2}, let

w = argmin
v2Rd

n
hz,vi+ 1

q
ku� vkqp

o
.

Then, for p
⇤ = p

p�1 , q
⇤ = q

q�1 :

w = u�r
⇣ 1

q⇤
kzkq

⇤

p⇤

⌘
and

1

q
kw�ukqp =

1

q
kzkq

⇤

p⇤ .

Another useful result is the following proposition,
which will allow us to relate Lipschitzness of F to uni-
form convexity of the prox mapping 1

qk · k
q
p in the def-

inition of the algorithm. The ideas used in the proof
can be found in the proofs of (d’Aspremont et al., 2018,
Lemma 5.7), (Nesterov, 2015, Lemma 2), and in (De-
volder et al., 2014, Section 2.3).

Proposition 2.4. For any L > 0,  > 0, q � , t � 0,
and � > 0,

L


t
  ⇤

q
t
q +

�

2
,

where ⇤ =
� 2(q�)

�q

� q�


L
q/

.

3 Generalized Extragradient for

Problems with Weak MVI Solutions

In this section, we consider the setup with the Eu-
clidean norm k · k = k · k2, i.e., p = 2. To address
the class of problems with weak (mvi) solutions (see

Assumption 1), we introduce the following generaliza-
tion of the extragradient algorithm, to which we refer
as Extragradient+ (eg+).

ūk = argmin
u2Rd

n
ak

�
hF (uk),u� uki+

1

2
ku� ukk2

o
,

uk+1 = argmin
u2Rd

n
ak hF (ūk),u� uki+

1

2
ku� ukk2

o
,

(eg+)
where � 2 (0, 1] is a parameter of the algorithm and
ak > 0 is the step size. When � = 1, we recover
standard eg.

The analysis relies on the following merit (or gap) func-
tion:

hk := ak

⇣
hF (ūk), ūk � u

⇤i+ ⇢

2
kF (ūk)k2

⌘
, (3.1)

for some u
⇤ 2 U⇤ for which F satisfies Assumption 1.

Then Assumption 1 implies that hk � 0, 8k.

The first (and main) step is to bound all hk’s above,
as in the following lemma.

Lemma 3.1. Let F : Rd ! Rd be an arbitrary L-
Lipschitz operator that satisfies Assumption 1 for some
u
⇤ 2 U⇤. Given an arbitrary initial point u0, let the

sequences of points {ui}i�1, {ūi}i�0 evolve according
to (eg+) for some � 2 (0, 1] and positive step sizes
{ai}i�0. Then, for any � > 0 and any k � 0, we have:

hk  1

2
ku⇤ � ukk2 �

1

2
ku⇤ � uk+1k2

+
ak

2

�
⇢� ak(1� �)

�
kF (ūk)k2

+
ak

2

2�2

�
akL� � �

�
kF (uk)k2

+
1

2

⇣
akL

�
� �

⌘
kūk � uk+1k2,

(3.2)

where hk is defined as in Eq. (3.1).

The proof is provided in Appendix B.

Using Lemma 3.1, we can now draw conclusions about
the convergence of eg+ by choosing parameters �, �
and the step sizes ak to guarantee that hk <

1
2ku

⇤ �
ukk2 � 1

2ku
⇤ � uk+1k2 as long as kF (ūk)k 6= 0.

Theorem 3.2. Let F : Rd ! Rd be an arbitrary L-
Lipschitz operator that satisfies Assumption 1 for some
u
⇤ 2 U⇤. Given an arbitrary initial point u0 2 Rd

, let
the sequences of points {ui}i�1, {ūi}i�0 evolve accord-
ing to (eg+) for � = 1

2 and ak = 1
2L . Then:

(i) all accumulation points of {ūk}k�0 are in U⇤.

(ii) for all k � 1 :

1

k + 1

kX

i=0

kF (ūi)k2  2Lku0 � u
⇤k2

(k + 1)(1/(4L)� ⇢)
.
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In particular, we have that

min
0ik

kF (ūi)k2  2Lku0 � u
⇤k2

(k + 1)(1/(4L)� ⇢)

and

Ei⇠Unif{0,...,k}
⇥
kF (ūi)k2

⇤
 2Lku0 � u

⇤k2

(k + 1)(1/(4L)� ⇢)
,

where i ⇠ Unif{0, . . . , k} denotes an index i cho-
sen uniformly at random from the set {0, . . . , k}.

Proof. Applying Lemma 3.1 with the choice of ak and
� from the theorem statement and with � = 1, we get

hk  1

2
ku⇤ � ukk2 �

1

2
ku⇤ � uk+1k2

+
1

4L

⇣
⇢� 1

4L

⌘
kF (ūk)k2.

By Assumption 1, ⇢ <
1
4L , and, thus, the constant

multiplying kF (ūk)k2 is strictly negative.

As hk � 0 (by Assumption 1), we can conclude that

1

2
ku⇤ � uk+1k2 �

1

2
ku⇤ � ukk2

 � 1

4L

⇣ 1

4L
� ⇢

⌘
kF (ūk)k2  0.

(3.3)

As 1
4L

⇣
1
4L � ⇢

⌘
> 0, Eq. (3.3) implies that kF (ūk)k

converges to zero as k ! 1. Further, as ūk � uk =
�ak

� F (uk), using triangle inequality and F (u⇤) = 0 :

kūk � u
⇤k  kuk � u

⇤k+ ak

�
kF (uk)� F (u⇤)k


⇣
1 + L

ak

�

⌘
kuk � u

⇤k = 2kuk � u
⇤k,

(3.4)
where we have used that F is L-Lipschitz. Now, as
kuk � u

⇤k is bounded (by ku0 � u
⇤k, from Eq. (3.3)),

it follows that the sequence {ūk} is bounded as well,
and thus has a converging subsequence. Let {ūki} be
any converging subsequence of {ūk} and let ū⇤ be its
corresponding accumulation point. Then, as kF (ūk)k
converges to zero as k ! 1, it follows that kF (ūki)k
converges to zero as i ! 1, and so it must be ū⇤ 2 U⇤

.

For Part (ii), telescoping Eq. (3.3), we get:

1

4L

⇣ 1

4L
� ⇢

⌘ kX

i=0

kF (ūi)k2

 1

2
ku0 � u

⇤k2 � 1

2
kuk+1 � u

⇤k2  1

2
ku0 � u

⇤k2.

Rearranging the last inequality:

1

k + 1

kX

i=0

kF (ūi)k2  2Lku0 � u
⇤k2

(k + 1)(1/(4L)� ⇢)
.

It remains to observe that

Ei⇠Unif{0,...,k}[kF (ūi)k2] =
1

k + 1

kX

i=0

kF (ūi)k2

and 1
k+1

Pk
i=0 kF (ūi)k2 � min0ik kF (ūi)k2.

Remark 3.3. Due to Eq. (3.4), we have that all the
iterates of eg+ with the parameter setting as in Theo-
rem 3.2 remain in the ball centered at u⇤ and of radius
at most 2ku0�u

⇤k. Thus, Assumption 1 does not need
to hold globally for the result to apply; it su�ces that
it only applies locally to points from the ball around
u
⇤ with radius 2ku0 � u

⇤k.
Remark 3.4. It is possible to obtain similar conver-
gence results as those of Theorem 3.2 under di↵erent
parameter choices. In particular, for � 2 (0, 1], it suf-
fices that ak  ��

L and ⇢ < ak(1 � �). We settled on
the choice made in Theorem 3.2 as it is simple and
requires tuning only one parameter, L.

Remark 3.5. Note that, in fact, we did not need
to assume that u

⇤ from Assumption 1 is from U⇤;
it could have been any point from Rd for which As-
sumption 1 is satisfied. All that would change in
the proof of Theorem 3.2 is that in Eq. (3.4), using
kF (uk)k  kF (uk) � F (u⇤)k + kF (u⇤)k (by triangle
inequality) we would have 2kuk �u

⇤k+ 1
LkF (u⇤)k on

the right-hand side. Since u⇤ 2 Rd and F is Lipschitz-
continuous, if F is bounded at any point u 2 Rd,
kF (u⇤)k is bounded as well. Thus, we can still con-
clude that kūk�u

⇤k is bounded and proceed with the
rest of the proof. An interesting consequence of this
observation and the proof of Theorem 3.2 is that As-
sumption 1 guarantees existence of an (svi) solution.

4 Extensions: `p Norms and

Stochastic Setups

In this section, we show how to extend the results of
Section 3 to non-Euclidean, `p-normed setups (for ⇢ =
0) and stochastic evaluations of F . In particular, we
let k · k = k · kp for p 2 (1,1)3 and p

⇤ = p
p�1 . Further,

we let F̃ denote the stochastic estimate of F that at
iteration k satisfies:

E[F̃ (ūk)|F̄k] = F (ūk),

E[kF̃ (ūk)� F (ūk)k2p⇤ |F̄k]  �̄
2
k

E[F̃ (uk+1)|Fk+1] = F (uk+1),

E[kF̃ (uk+1)� F (uk+1)k2p⇤ |Fk+1]  �k+1
2
,

(4.1)

3Note that the norms k · k1 and k · k1 are within a con-
stant factor of the `p-norm for p = 1+ 1

log(d) and p = log(d),

respectively, and so taking p 2 (1,1) is w.l.o.g.—for any
p < 1+ 1

log(d) or p > log(d), we can run the algorithm with

p = 1 + 1
log d or p = log d, losing at most a constant factor

in the convergence bound.
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where Fk and F̄k denote the natural filtrations, includ-
ing all the randomness up to the construction of points
uk and ūk, respectively, and �̄2

k,�k+1
2 are the variance

constants. Observe that Fk ✓ F̄k and F̄k ✓ Fk+1. To
simplify the notation, we denote:

⌘̄k = F̃ (ūk)� F (ūk), ⌘k+1 = F̃ (uk+1)� F (uk+1).
(4.2)

The variant of the method we consider here is stated
as follows:

ūk = argmin
u2Rd

n
ak

�

D
F̃ (uk),u� uk

E
+

1

q
ku� ukkqp

o
,

uk+1 = argmin
u2Rd

n
ak

D
F̃ (ūk),u� uk

E
+ �p(u,uk)

o
,

(egp+)
where

q =

(
2, if p 2 (1, 2],

p
⇤ = p

p�1 , if p 2 (2,1)
(4.3)

and

�p(u,uk) =

(
D 1

2k·�u0k2
p
(u,uk), if p 2 (1, 2],

1
pku� ukkpp, if p 2 (2,1).

(4.4)

Notice that for p = 2, egp+ is equivalent to eg+.
Thus, egp+ generalizes eg+ to arbitrary `p norms.
However, egp+ is di↵erent from the standard Extra-
gradient or Mirror-Prox, for two reasons. First is that,
as is the case for eg+, the step sizes that determine
ūk and uk+1 (i.e., ak/� and ak) are not the same in
general, as we could (and will) choose � 6= 1. Sec-
ond, unless p = q = 2, the function 1

qku � ukkqp in
the definition of the algorithm is not a Bregman di-
vergence between points u and uk of any function  .
Further, when p > 2, 1

qku� ukkqp is not strongly con-
vex. Instead, it is p-uniformly convex with constant
1. Additionally, no function whose gap between the
maximum and the minimum value is bounded by a
constant on any ball of constant radius can have con-
stant of strong convexity w.r.t. k ·kp that is larger than
O( 1

d1�2/p ) (d’Aspremont et al., 2018). When p 2 (1, 2],
1
qku�ukkqp is strongly convex with constant p�1 (Ne-

mirovski, 2004). We let mp denote the constant of
strong/uniform convexity of 1

qku� ukkqp, that is:

mp = max{p� 1, 1}. (4.5)

Observe that

�p(u,uk) �
mp

q
ku� ukkqp. (4.6)

This is immediate for p > 2, by the definition of �p
and using that q = p and mp = 1 when p > 2. For
p 2 (1, 2], we have that q = 2, and Eq. (4.6) follows by
strong convexity of 1

2k · k
2
p.

As in the case of Euclidean norms, the analysis relies
on the following merit function:

hk := ak

⇣
hF (ūk), ūk � u

⇤i+ ⇢

2
kF (ūk)k2p⇤

⌘
. (4.7)

Moreover, as before, Assumption 1 guarantees that
hk � 0, 8k. Even though we only handle the case ⇢ = 0
for p 6= 2, the analysis is significantly more challenging
than in the `2 case, and, due to space constraints, we
only state the main results here, while all the technical
details are provided in Appendix C.

Deterministic oracle access. The main result is
summarized in the following theorem.

Theorem 4.1. Let p > 1 and let F : Rd ! Rd be an
arbitrary L-Lipschitz operator w.r.t. k ·kp that satisfies
Assumption 1 with ⇢ = 0 for some u

⇤ 2 U⇤. Assume
that we are given oracle access to the exact evaluations
of F, i.e., ⌘̄i = ⌘i = 0, 8i. Given an arbitrary initial
point u0 2 Rd

, let the sequences of points {ui}i�1,
{ūi}i�0 evolve according to (egp+) for � 2 (0, 1] and
step sizes {ai}i�0 specified below. Then, we have:

(i) Let p 2 (1, 2]. If � = mp = p � 1, ak = mp
3/2

2L ,
then all accumulation points of {uk}k�0 are in U⇤

,

and, furthermore 8k � 0:

1

k + 1

kX

i=0

kF (ui)k2p⇤  16L2
�p(u⇤

,u0)

mp
2(k + 1)

= O

⇣ L
2ku⇤ � u0k2p

(p� 1)2(k + 1)

⌘
.

In particular, within k = O
�L2ku⇤�u0k2

p

(p�1)2✏2

�
itera-

tions egp+ can output a point u with kF (u)kp⇤ 
✏.

(ii) Let p 2 (2,1). If � = 1
2 , �k = � > 0, ⇤ =

� q�2
�q

� q�2
2
L
q/2, and ak = 1

2⇤ = a, then, 8k � 0:

1

k + 1

kX

i=0

kF (ūi)kp
⇤

p⇤ 
2ku⇤ � u0kpp
ap

⇤(k + 1)
+

2p�

ap
⇤�1

.

In particular, for any ✏ > 0, there is a choice of
� = ✏2

CpL
, where Cp is a constant that only depends

on p, such that egp+ can output a point u with
kF (u)kp⇤  ✏ in at most

k = Op

✓⇣
Lku⇤ � u0kp

✏

⌘p
◆

iterations. Here, the Op notation hides constants
that only depend on p.
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Remark 4.2. There are significant technical obsta-
cles in generalizing the results from Theorem 4.1 to
settings with ⇢ > 0. In particular, when p 2 (1, 2), the
proof fails because we take �p(u⇤

,u) to be the Breg-
man divergence of k ·�u0k2p, and relating kūk � ukkp
to kF (uk)kp⇤ would require k · k2p to be smooth, which
is not true. If we had, instead, used ku⇤ � uk2p in

place of �p(u⇤
,u), we would have incurred 1

2ku
⇤ �

ukk2p � mp

2 ku⇤ � uk+1k2p in the upper bound on hk,

which would not telescope, as in this case mp < 1. In
the case of p > 2, the challenges come from a deli-
cate relationship between the step sizes ak and error
terms �k. It turns out that it is possible to guaran-
tee local convergence (in the region where kF (ūk)k2 is
bounded by a constant less than 1) with ⇢ > 0, but ⇢
would need to scale with poly(✏) in this case. As this
is a weak result whose usefulness is unclear, we have
omitted it.

Stochastic oracle access. To obtain results for the
stochastic setups, we mainly need to bound stochas-
tic error terms which decompose from the analysis of
deterministic setups, as in the following lemma.

Lemma 4.3. Let Es = �ak h⌘̄k, ūk � u
⇤i �

ak h⌘̄k � ⌘k, ūk � uk+1i, where ⌘̄k and ⌘k are defined
as in Eq. (4.2) and all the assumptions of Theorem 4.4
below apply. Then, for q defined by Eq. (4.3) and any
⌧ > 0:

E[Es]  2q
⇤/2

ak
q⇤(�k2 + �̄

2
k)

q⇤/2

q⇤⌧ q
⇤ +E

h
⌧
q

q
kūk�uk+1kqp

i
,

where the expectation is w.r.t. all the randomness in
the algorithm.

Theorem 4.4. Let p > 1 and let F : Rd ! Rd be an
arbitrary L-Lipschitz operator w.r.t. k · kp that satis-
fies Assumption 1 for some u

⇤ 2 U⇤. Given an arbi-
trary initial point u0 2 Rd

, let the sequences of points
{ui}i�1, {ūi}i�0 evolve according to (egp+) for some
� 2 (0, 1] and positive step sizes {ai}i�0. Let the vari-
ance of a single query to the stochastic oracle F̃ be
bounded by some �2

< 1.

(i) Let p = 2 and ⇢ 2
⇥
0, ⇢̄

�
, where ⇢̄ = 1

4
p
2L

. If

� = 1
2 and ak = 1

2
p
2L

, then egp+ can output a

point u with E[kF̃ (u)k2]  ✏ with at most

O

⇣
Lku⇤ � u0k22
✏2(⇢̄� ⇢)

⇣
1 +

�
2

L✏2(⇢̄� ⇢)

⌘⌘

oracle queries to F̃ .

(ii) Let p 2 (1, 2] and ⇢ = 0. If ak = mp
3/2

2L and
� = mp, then egp+ can output a point u with

E[kF̃ (u)kp⇤ ]  ✏ with at most

O

⇣L2ku⇤ � u0k2p
mp

2✏2

⇣
1 +

�
2

mp✏
2

⌘⌘

oracle queries to F̃ , where mp = p� 1.

(iii) Let p > 2 and ⇢ = 0. If � = 1
2 and ak =

a = 1
4⇤ , then egp+ can output a point u with

E[kF̃ (u)kp⇤ ]  ✏ with at most

Op

✓⇣
Lku⇤ � u0kp

✏

⌘p⇣
1 +

⇣
�

✏

⌘p⇤⌘◆

oracle queries to F̃ , where p
⇤ = p

p�1 .

5 Discussion

We introduced a new class of structured nonconvex-
nonconcave min-max optimization problems and pro-
posed a new generalization of the extragradient
method that provably converges to a stationary point
in Euclidean setups. Our algorithmic results guaran-
tee that problems in this class contain at least one
stationary point (an (svi) solution, see Remark 3.5).
The class we introduced generalizes other important
classes of structured nonconvex-nonconcave problems,
such as those in which an (mvi) solution exists. We
further generalized our results to stochastic setups and
`p-normed setups in which an (mvi) solution exists.
An interesting direction for future research is to under-
stand to what extent we can further relax the assump-
tions about the structure of nonconvex-nonconcave
problems, while maintaining computational feasibility
of algorithms that can address them.
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