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8 SUPPLEMENTARY MATERIAL

8.1 Proof of Lemma 1

The proof of Lemma 1 is an adaptation from the proof of Theorem 1 in Li et al. (2017).

Proof. Define G(✓) :=
Pt

s=1(µ(X
T
s ✓)� µ(XT

s ✓
⇤))Xs. We have G(✓⇤) = 0 and G(✓̂t) =

Pt
s=1 ✏sXs, where ✏s is

the sub-Gaussian noise at round s. For convenience, define Z := G(✓̂t). From mean value theorem, for any ✓1, ✓2,
there exists v 2 (0, 1) and ✓̄ = v✓1 + (1� v)✓2 such that

G(✓1)�G(✓2) =

"
tX

s=1

µ0(XT
s ✓̄)XsX

T
s

#
(✓1 � ✓2) := F (✓̄)(✓1 � ✓2), (11)

where F (✓̄) =
Pt

s=1 µ
0(XT

s ✓̄)XsXT
s . Therefore, for any ✓1 6= ✓2, we have

(✓1 � ✓2)
T (G(✓1)�G(✓2)) = (✓1 � ✓2)

TF (✓̄)(✓1 � ✓2) > 0,

since µ0 > 0 and �min(Vt+1) > 0. So G(✓) is an injection from d to d. Consider an ⌘-neighborhood of ✓⇤, ⌘ :=
{✓ : k✓ � ✓⇤k  ⌘}, where ⌘ is a constant that will be specified later such that we have c⌘ = inf✓2 ⌘ µ

0(xT ✓) > 0.
When ✓1, ✓2 2 ⌘, from the property of convex set, we have ✓̄ 2 ⌘. From Equation 11, we have when ✓ 2 ⌘,

kG(✓)kV �1
t+1

= kG(✓)�G(✓⇤)kV �1
t+1

=
q

(✓ � ✓⇤)TF (✓̄)V �1
t+1F (✓̄)(✓ � ✓⇤)

� c⌘
p
�min(Vt+1)k✓ � ✓⇤k

The last inequality is due to

F (✓̄) ⌫ c⌘

tX

s=1

XsX
T
s = c⌘Vt+1.

From Lemma A in Chen et al. (1999), we have that
n
✓ : kG(✓)�G(✓⇤)kV �1

t+1
 c⌘⌘

p
�min(Vt+1)

o
⇢ ⌘.

Now from Lemma 7 in Li et al. (2017), we have with probability at least 1� �,

kG(✓̂t)�G(✓⇤)kV �1
t+1

= kZkV �1
t+1

 4R

r
d+ log

1

�
.

Therefore, when

⌘ � 4R

c⌘

s
d+ log 1

�

�min(Vt+1)
,

we have ✓̂t 2 ⌘. Since c⌘ � c1 � c3 > 0 when ⌘  1, we have

k✓̂t � ✓⇤k  4R

c⌘

s
d+ log 1

�

�min(Vt+1)
 1,

when �min(Vt+1) �
16R2[d+log( 1

� )]
c21

.

8.2 Proof of Lemma 2

Note that the condition of Lemma 1 holds with high probability when ⌧ is chosen as Equation 8. This is a
consequence of Proposition 1 in Li et al. (2017), which is presented below for reader’s convenience.
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Proposition 1 (Proposition 1 in Li et al. (2017)). Define Vn+1 =
Pn

t=1 XtXT
t , where Xt is drawn IID from

some distribution in unit ball d. Furthermore, let ⌃ := E[XtXT
t ] be the second moment matrix, let B, �2 > 0 be

two positive constants. Then there exists positive, universal constants C1 and C2 such that �min(Vn+1) � B with
probability at least 1� �2, as long as

n �
 
C1

p
d+ C2

p
log(1/�2)

�min(⌃)

!2

+
2B

�min(⌃)
.

Now we formally prove Lemma 2.

Proof. Note that from the definition of ✓̃0 in the algorithm, when j = 1, the conclusion holds trivially. When
⌧ is chosen as in Equation 8, we have from Lemma 1 and Proposition 1 that k✓̂t � ✓⇤k  1 for all t � ⌧ with
probability at least 1� 2

T 2 . Therefore, ✓̂j⌧ 2 C for all j � 1 with probability at least 1� 2
T 2 . For the analysis

below, we assume ✓̂j⌧ 2 C for all j � 1.

Since ✓̃j 2 C, we have k✓̃j � ✓⇤k  3. Denote ⌘ := {✓ : k✓ � ✓⇤k  ⌘}, we have ✓̃j , ✓̂j⌧ 2 3. For any v > 0,
define ✓̄ = v✓̃j + (1� v)✓̂j⌧ , since 3 is convex, we have ✓̄ 2 3. Therefore, we have from Assumption 2

r2lj,⌧ (✓̄) =
j⌧X

s=(j�1)⌧+1

µ0(XT
s ✓̄)XsX

T
s ⌫ c3

j⌧X

s=(j�1)⌧+1

XsX
T
s .

Since we update ✓̃j every ⌧ rounds and ✓TS
j only depends on ✓̃j . For the next ⌧ rounds, the pulled arms are only

dependent on ✓TS
j . Therefore, the feature vectors of pulled arms among the next ⌧ rounds are IID. According to

Proposition 1 and Equation 8, and by applying a union bound, we have �min

⇣Pj⌧
s=(j�1)⌧+1 XsXT

s

⌘
� ↵

c3
holds

for all j � 1 with probability at least 1� 1
T 2 . This tells us that for all j, lj,⌧ (✓) is a ↵-strongly convex function

when ✓ 2 3. Therefore, we can apply (Theorem 3.3 of Section 3.3.1 in Hazan et al. (2016)) to get for all j � 1

jX

q=1

⇣
lq,⌧ (✓̃q)� lq,⌧ (✓̂j⌧ )

⌘
 G2

2↵
(1 + log j)

where G satisfies G2 � Ekrlq,⌧k2. Note that G  ⌧ since µ(x) 2 [0, 1], Ys 2 [0, 1] and kXsk  1. From Jensen’s
Inequality, we have

jX

q=1

⇣
lq,⌧ (✓̄j)� lq,⌧ (✓̂j⌧ )

⌘
 G2

2↵
(1 + log j).

Since ✓̄j , ✓̂j⌧ 2 3, we have for any v > 0, if ✓ = v✓̄j + (1� v)✓̂j⌧ , then r2lq,⌧ (✓) ⌫ ↵Id for all 1  q  j. SincePj
q=1 rlq,⌧ (✓̂j⌧ ) = 0, we have

k✓̄j � ✓̂j⌧k  G

↵

s
1 + log j

j
.

By applying a union bound, we get the conclusion.

8.3 Proof of Lemma 3

We utilize the concentration property of MLE. Here, we present the analysis of MLE in Li et al. (2017).
Lemma 7 (Lemma 3 in Li et al. (2017)). Suppose �min(V⌧+1) � 1. For any �3 2 (0, 1), the following event

E :=

(
k✓̂t � ✓⇤kVt+1  R

c1

r
d

2
log(1 +

2t

d
) + log

1

�3

)

holds for all t � ⌧ with probability at least 1� �3.

Proof. Note that from Proposition 1, when ↵ � c3, �min(V⌧+1) � 1 holds with probability at least 1� 1
T 2 . The

proof of Lemma 3 is simply a combination of Lemma 2 and Lemma 7 by applying a union bound.
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8.4 Proof of Lemma 4

We use formula 7.1.13 in Abramowitz and Stegun (1948) to help derive the concentration and anti-concentration
inequalities for Gaussian distributed random variables. Details are shown in Lemma 8.

Lemma 8 (Formula 7.1.13 in Abramowitz and Stegun (1948)). For a Gaussian distributed random variable with
mean m and variance �2, we have for z � 1 that

(|Z �m| � z�)  1p
⇡
e�

z2

2 .

For 0 < z  1, we have

(|Z �m| � z�) � 1

2
p
⇡
e�

z2

2 .

Now we prove Lemma 4.

Proof. Since ✓TS
j |Fj⌧ ⇠ N

⇣
✓̄j ,
⇣
2g1(j)2

c3
↵j + 2g2(j)

2

j

⌘
Id
⌘
, and ✓TS

j is independent of
n
[(j+1)⌧
t=j⌧+1At

o
= {xt,a, a 2

[K], j⌧ < t  (j + 1)⌧}, we have for x 2
n
[(j+1)⌧
t=j⌧+1At

o
,

xT (✓̄j � ✓TS
j )|Fj⌧ , x ⇠ N

✓
0,

✓
2g1(j)

2 c3
↵j

+
2g2(j)2

j

◆
kxk2

◆
.

From the property of Gaussian random variable in Lemma 8, when u =
p

2 log(T 2K⌧), we have

 
|xT (✓̄j � ✓TS

j )| � u

s

2g1(j)2
c3
↵j

kxk2 + 2g2(j)2

j
kxk2

�����Fj⌧ , x

!
 1p

⇡
e�

u2

2  1

K⌧T 2
. (12)

We use the following property of conditional probability
Z

x
(E|X = x,F)f(X = x|F)dx = (E|F), (13)

where f(X = x|F) is the conditional p.d.f of a random variable X and E is an event. Combine Equation 12 and
Equation 13, we have for every a 2 [K] and j⌧ < t  (j + 1)⌧ ,

✓
|xT

t,a(✓̄j � ✓TS
j )| � u

r
2g1(j)2

c3
↵j

+ 2g2(j)2/jkxt,ak2
����Fj⌧

◆

=

Z

x

✓
|xT

t,a(✓̄j � ✓TS
j )| � u

r
2g1(j)2

c3
↵j

+ 2g2(j)2/jkxt,ak2
����Fj⌧ , xt,a = x

◆
f(xt,a = x|Fj⌧ )dx

 1

K⌧T 2

Z

x
f(xt,a = x|Fj⌧ )dx =

1

K⌧T 2

Applying a union bound, we get the conclusion.

8.5 Proof of Lemma 5

Proof. We still use Lemma 8 to show the result. For convenience, denote x := xt,⇤, �1 :=
q

c3
↵jt

kxk and �2 := kxkp
jt

.

Note that x is independent of ✓TS
jt , so

xT (✓̄jt � ✓TS
jt )|Fjt⌧ , x ⇠ N

�
0,
�
2g1(jt)

2�2
1 + 2g2(jt)

2�2
2

��
. (14)
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Therefore,

�
xT ✓TS

jt > xT ✓⇤
��Fjt⌧ , x

�
=

 
xT ✓TS

jt � xT ✓̄jtp
2g1(jt)2�2

1 + 2g2(jt)2�2
2

>
xT ✓⇤ � xT ✓̄jtp

2g1(jt)2�2
1 + 2g2(jt)2�2

2

�����Fjt⌧ , x

!

�

0

@ xT ✓TS
jt � xT ✓̄jtp

2g1(jt)2�2
1 + 2g2(jt)2�2

2

>
g1(jt)kxkV �1

jt⌧+1
+ g2(jt)

kxkp
jtp

2g1(jt)2�2
1 + 2g2(jt)2�2

2

������
Fjt⌧ , x

1

A

�

0

@ xT ✓TS
jt � xT ✓̄jtp

2g1(jt)2�2
1 + 2g2(jt)2�2

2

>
g1(jt)

q
c3
↵jt

kxk+ g2(j)
kxkp
jtp

2g1(jt)2�2
1 + 2g2(jt)2�2

2

������
Fjt⌧ , x

1

A

� 1

4
p
⇡
e�

z2

2 ,

where z := g1(jt)�1+g2(jt)�2p
2g1(jt)2�2

1+2g2(jt)2�2
2

. The first and second inequalities hold since Ft is a filtration such that E1(jt)

and �min(Vjt⌧+1) � ↵jt
c3

are true. Notice that we have 0 < z  1 since

2g1(jt)
2�2

1 + 2g2(jt)
2�2

2 � (g1(jt)�1 + g2(jt)�2)
2 = (g1(jt)�1 � g2(jt)�2)

2 � 0.

Therefore, we get
�
xT ✓TS

jt > xT ✓⇤
��Fjt⌧ , x

�
� 1

4
p
⇡
e�

z2

2 � 1

4
p
⇡e

.

Similarly, using Equation 13, we get

�
xT
t,⇤✓

TS
jt > xT

t,⇤✓
⇤��Fjt⌧

�
=

Z

x

�
xT
t,⇤✓

TS
jt > xT

t,⇤✓
⇤��Fjt⌧ , xt,⇤ = x

�
f(xt,⇤ = x|Fjt⌧ )dx � 1

4
p
⇡e

.

8.6 Proof of Lemma 6

The technique used in this proof is extracted from Agrawal and Goyal (2013); Kveton et al. (2019).

Proof. Denote t[·] := [·|Ft]. To prove the lemma, we prove the following Equation 15 holds for any possible
filtration Ft:

jt⌧ [�at(t) (E1(jt) \ E2(jt) \ E3(jt))] 
 
1 +

2
1

4
p
⇡e

� 1
T 2

!

jt⌧ [Hat(t) (E3(jt))] (15)

Denote the following set as the underesampled arms at round t,

SC
t = {i 2 [K] : Hi(t) � �i(t)}

Note that a⇤t 2 SC
t for all t. The set of sufficiently sampled arms is St = [K] \ SC

t . Let Jt = argmini2SC
t
Hi(t) be

the least uncertain undersampled arm at round t. At round t, denote jt = b t�1
⌧ c. In the steps below, we assume

that event E1(jt) \ E2(jt) occurs, then

�at(t) = �Jt(t) + (xt,Jt �Xt)
T ✓⇤

= �Jt(t) + xT
t,Jt

(✓⇤ � ✓TS
jt ) + (xt,Jt �Xt)

T ✓TS
jt +XT

t (✓
TS
jt � ✓⇤)

 �Jt(t) +HJt(t) +Hat(t) since (xt,Jt �Xt)
T ✓TS

jt  0

 2HJt(t) +Hat(t) since Jt 2 SC
t .

The left to do is to bound HJt(t) by Hat(t). Since Jt = argmini2SC
t
Hi(t), we have

jt⌧ [Hat(t)] � jt⌧

⇥
Hat(t)|at 2 SC

t

⇤ �
at 2 SC

t |Fjt⌧

�
� jt⌧ [HJt(t)]

�
at 2 SC

t |Fjt⌧

�
. (16)
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Therefore, we have

jt⌧ [�at(t) (E1(jt) \ E2(jt))] 
 
1 +

2

P
�
at 2 SC

t |Fjt⌧

�
!

jt⌧ [Hat(t)] (17)

Next, we bound P
�
at 2 SC

t |Fjt⌧

�
.

�
at 2 SC

t |Fjt⌧

�
�

✓
xT
t,⇤✓

TS
jt � max

i2St

xT
t,i✓

TS
jt

����Fjt⌧

◆
since a⇤t 2 SC

t

�
✓
xT
t,⇤✓

TS
jt � max

i2St

xT
t,i✓

TS
jt , E1(jt) \ E2(jt)

����Fjt⌧

◆

�
�
xT
t,⇤✓

TS
jt � xT

t,⇤✓
⇤, E1(jt) \ E2(jt)|Fjt⌧

�
(18)

�
�
xT
t,⇤✓

TS
jt � xT

t,⇤✓
⇤, E1(jt)|Fjt⌧

�
�

�
EC

2 (jt)|Fjt⌧

�

�
�
xT
t,⇤✓

TS
jt � xT

t,⇤✓
⇤, E1(jt)|Fjt⌧

�
� 1

T 2
. (19)

Inequality 18 holds because for all i 2 St, on event E1(jt) \ E2(jt),

xT
t,i✓

TS
jt  xT

t,i✓
⇤ +Hi(t) < xT

t,i✓
⇤ +�i(t) = xT

t,⇤✓
⇤.

Inequality 19 holds because of Lemma 4. When Ft is a filtration such that E1(jt) and E3(jt) are true, we have
from Lemma 5 that

�
at 2 SC

t |Fjt⌧

�
� 1

4
p
⇡e

� 1

T 2
.

So under such filtration, from Equation 17, we have

jt⌧ [�at(t) (E1(jt) \ E2(jt))] 
 
1 +

2
1

4
p
⇡e

� 1
T 2

!

jt⌧ [Hat(t)] .

Since E3(jt) is Fjt⌧ -measurable, we have under such filtration,

jt⌧ [�at(t) (E1(jt) \ E2(jt) \ E3(jt))] 
 
1 +

2
1

4
p
⇡e

� 1
T 2

!

jt⌧ [Hat(t) (E3(jt))] .

When Ft is a filtration such that E1(jt) \ E3(jt) is not true, the conclusion holds trivially. This finishes our
proof.

8.7 Proof of Theorem 1

Before proving the theorem, we show a lemma below.

Lemma 9. Let J = bT
⌧ c, then

"
TX

t=⌧+1

Hat(t) (E3(jt))

#


p
⌧T

✓
2g1(J)

r
c3
↵

+ 2g2(J) + u

r
2g1(J)2

c3
↵

+ 2g2(J)2
p
1 + log J

◆
.

Proof. We know Hat(t) = Hat,1(t) +Hat,2(t) +Hat,3(t) from definition, where

Hi,1(t) = g1(jt)kxt,ikV �1
jt⌧+1

, Hi,2(t) = g2(jt)
kxt,ikp

jt
,

Hi,3(t) = u

s

2g1(jt)2
c3
↵jt

kxt,ik2 + 2g2(jt)2
kxt,ik2

jt
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For all t, we have jt  bT
⌧ c and so g1(jt)  g1(J), and g2(jt)  g2(J). Since kXtk2V �1

j⌧+1

 �max(V
�1
j⌧+1)kXtk2  c3

↵j

when E3(j) holds, we have
"

TX

t=⌧+1

Hat,1(t) (E3(jt))

#
 2⌧g1(J)

r
c3
↵
J  2g1(J)

r
c3⌧

↵

p
T . (20)

We also have
TX

t=⌧+1

Hat,2(t)  g2(J)
TX

t=⌧+1

kXtkp
jt

 2g2(J)
p
⌧T . (21)

From Cauchy-Schwarz, we have

TX

t=⌧+1

Hat,3(t)  u
p
T

vuut
TX

t=⌧+1

2g1(jt)2
c3
↵jt

kXtk2 + 2g2(jt)2
kXtk2
jt

 u
p
T

r
2g1(J)2

c3⌧

↵
(1 + log J) + 2g2(J)2⌧(1 + log J). (22)

Combine Equation 20, 21, 22, we get the conclusion.

Now we formally prove Theorem 1.

Proof. Since

jt⌧

⇥
µ(xT

t,⇤✓
⇤)� µ(XT

t ✓
⇤)
⇤
 jt⌧

⇥�
µ(xT

t,⇤✓
⇤)� µ(XT

t ✓
⇤)
�

(E2(jt))
⇤
+ (EC

2 (jt)|Fjt⌧ )

 jt⌧

⇥�
µ(xT

t,⇤✓
⇤)� µ(XT

t ✓
⇤)
�

(E2(jt))
⇤
+

1

T 2
,

we have
⇥
µ(xT

t,⇤✓
⇤)� µ(XT

t ✓
⇤)
⇤


⇥�
µ(xT

t,⇤✓
⇤)� µ(XT

t ✓
⇤)
�

(E2(jt))
⇤
+

1

T 2

From Proposition 1, when ⌧ is chosen as in Equation 8, E3(jt) holds with probability with at least 1� 1
T 2 for

every t. From the above,

[R(T )] =
TX

t=1

⇥
µ(xT

t,⇤✓
⇤)� µ(XT

t ✓
⇤)
⇤


TX

t=1

⇥�
µ(xT

t,⇤✓
⇤)� µ(XT

t ✓
⇤)
�

(E2(jt))
⇤
+

1

T


"

TX

t=1

�
µ(xT

t,⇤✓
⇤)� µ(XT

t ✓
⇤)
�

(E1(jt) \ E2(jt) \ E3(jt))

#
+

TX

t=1

(EC
1 (jt) [ EC

3 (jt)) +
1

T

 ⌧ + Lµ

TX

t=⌧+1

[�at(t) (E1(jt) \ E2(jt) \ E3(jt))] +
7

T

 ⌧ + pLµ

TX

t=⌧+1

[Hat(t) (E3(jt))] +
7

T
from Lemma 6.

From Lemma 9, we have

[R(T )]  ⌧ + Lµp
p
⌧T

"
2

r
c3
↵
g1(J) + 2g2(J) + u

r
2c3g1(J)2

↵
+ 2g2(J)2

r
1 + logbT

⌧
c
#
+

7

T
.

This ends our proof.

8.8 Discussion

As pointed out by the reader, since kxt,ak  1, so �2
0 ,�f  O( 1d ). So a more realistic assumption should be

�2
0 ,�f ⇠ O( 1d ). However, we found that �2

0 ⇠ O(1) is an assumption that is widely used in literature (see Li et al.
(2017)). If we assume �2

0 ,�f ⇠ O(1/d), then the regret upper bound of our algorithm is [R(T )]  Õ(d
5
2

p
T )

and the regret upper bound of UCB-GLM (Li et al., 2017) is Õ(d3 + d
p
T ).
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