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8 SUPPLEMENTARY MATERIAL

8.1 Proof of Lemma [

The proof of Lemma [1|is an adaptation from the proof of Theorem 1 in |Li et al. (2017).

Proof. Define G(0) := S0 _ (u(XT0) — u(XT6%))X,. We have G(6*) = 0 and G(6;) = S._, e, X, where ¢, is

the sub-Gaussian noise at round s. For convenience, define Z := G(0;). From mean value theorem, for any 67, 0o,
there exists v € (0,1) and 6§ = v6; + (1 — v)f3 such that

G(0r) - G(02) = [zt: u’(XsTQ)XsXST] (61 — 62) == F(0)(61 — 02), (11)

s=1
where F(0) = Zi:l W (XT0)X,XT. Therefore, for any 6; # 65, we have
(61— 02)"(G(61) — G(682)) = (61 — 02)" F(0)(61 — 62) > O,
since g/ > 0 and Apmin(Vit1) > 0. So G(#) is an injection from R? to RY. Consider an n-neighborhood of 6*, B, =

{0 : 110 — 0*|| < n}, where 7 is a constant that will be specified later such that we have ¢, = infgep, p/(z76) > 0.
When 64,6, € B, from the property of convex set, we have § € B,,. From Equation we have when 0 € IB,,

IOy, = 1G6) = GOy = /(6 — )T FOV L F(@)(0 — 6%)

2 epV/ Amin (Vig1)[10 — 07|

The last inequality is due to
t

F(0) = ey > X XTI =c)Vipa.

s=1

From Lemma A in |Chen et al. (1999), we have that

{6:160) - GOy, < ey DanVirn) | € B,

Now from Lemma 7 in |Li et al.| (2017), we have with probability at least 1 — ¢,
A . 1
68 = GOy, = 1201 < 4Ry Jd+ log 5.

> 4R | d+log; ,
c’r] )\min(w-ﬁ—l)

Therefore, when

we have ét € B,,. Since ¢, > ¢1 > ¢3 > 0 when np < 1, we have

1
Hét_g*ngﬁ %_ ,
Cn )\min(‘/zf+1)

when Apin(Vig1) > 16R?[d+log(3)] ]

C2
1
8.2 Proof of Lemma 2]

Note that the condition of Lemma [I holds with high probability when 7 is chosen as Equation [8. This is a
consequence of Proposition 1 in |Li et al.| (2017, which is presented below for reader’s convenience.
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Proposition 1 (Proposition 1 in |Li et al. (2017)). Define V41 = Y1, X: X', where Xy is drawn IID from
some distribution in unit ball BY. Furthermore, let ¥ := E[X;X[] be the second moment matriz, let B,y > 0 be
two positive constants. Then there exists positive, universal constants Cy and Cy such that Amin(Vae1) > B with
probability at least 1 — 05, as long as

n >

O+ Colog(175)\" 2B
Nomin (%) @)

Now we formally prove Lemma

Proof. Note that from the definition of 0y in the algorithm, when j = 1, the conclusion holds trivially. When
7 is chosen as in Equation E we have from Lemma 1 and Proposition |1 E that |6 — 0*| < 1 for all ¢ > 7 with
probability at least 1 — =% . Therefore, HJT € C for all j > 1 with probability at least 1 — % . For the analysis

below, we assume éjT € C for all j > 1.

Since 0; € C, we have ||9 — 0*|| < 3. Denote B, := {0 : |0 — 6*|| < n}, we have 6;,6;, € Bs. For any v > 0,
define 0 = 119 +(1- y)ﬂﬁ, since Bj is convex, we have 0 € Bj. Therefore, we have from Assumptlon

JT T
Vi00)= > WXIOX X =es > XX!
s=(j—1)7+1 s=(j—1)7+1
Since we update 9~j every 7 rounds and 9;?3 only depends on 9~j. For the next 7 rounds, the pulled arms are only

dependent on 9}15 Therefore, the feature vectors of pulled arms among the next 7 rounds are IID. According to
G-ty XsXT) = 2 holds

for all j > 1 with probability at least 1 — ﬁ. This tells us that for all j, I, -(0) is a a-strongly convex function
when 0 € Bs. Therefore, we can apply (Theorem 3.3 of Section 3.3.1 in [Hazan et al.| (2016)) to get for all j > 1

Proposition E and EquatlonE and by applymg a union bound, we have Ay, (Zj i

2

zj:( qT(é )) ga(1+10gj)

q=

where G satisfies G* > F||Vl, ||?>. Note that G < 7 since u(z) € [0,1],Ys € [0,1] and || X,|| < 1. From Jensen’s
Inequality, we have

—

3 (1o @)~ 1y B) < S0 410 ),

=1

Q

Slnce 0;, 937 € B3, we have for any v > 0, if 0 = v0; + (1 — v)ﬂﬂ, then V21, - (0) = aly for all 1 < g < j. Since

_1 Vig-( JT) =0, we have
= A G [1+]1logj
b, — 0] < =) 281
165 - 05l < £ 1

By applying a union bound, we get the conclusion. O

8.3 Proof of Lemma [3

We utilize the concentration property of MLE. Here, we present the analysis of MLE in |Li et al.| (2017).
Lemma 7 (Lemma 3 in|Li et al.| (2017)). Suppose Apin(Vr+1) > 1. For any d3 € (0,1), the following event

N R /d 2t 1
= —_ * <i —
{9t 9||vf,+1cl\/210 (1+d)+10g53}

holds for all t > T with probability at least 1 — d3.

Proof. Note that from Proposition E, when a > ¢z, Amin(Vr+1) > 1 holds with probability at least 1 — % The
proof of Lemma [3is simply a combination of Lemma [2] and Lemma [7] by applying a union bound. O
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8.4 Proof of Lemma [

We use formula 7.1.13 in |Abramowitz and Stegun (1948) to help derive the concentration and anti-concentration
inequalities for Gaussian distributed random variables. Details are shown in Lemma

Lemma 8 (Formula 7. 1 13 in |Abramowitz and Stegun| (1948))). For a Gaussian distributed random variable with

mean m and variance o2, we have for z > 1 that

1 22
P(|Z —m| > z0) < e” 7.

=

For 0 < z <1, we have

Now we prove Lemma

Proof. Since 9;-fs|]:j7 ~N (éj, (2g1(j)2L3 + M) Id), and G;FS is independent of { G+1)r At} ={z44,0 €

t=j7+1
[K],j7 <t < (j+1)7}, we have for z € { tﬁji)IlAt}

_ 2
10— PN~ N (0 (20072 22 920) 2203 ).

From the property of Gaussian random variable in Lemma [8] when u = /2log(T?K ), we have

3 292( )? % 1
P <|x (0, 07%)| > u\/Qm 22 ol + 2 P 7 ) < Sze < (12)
We use the following property of conditional probability
/]P(E|X:z,]-")f(X::1:|]-')d:17:1P(E|}"), (13)

where f(X = z|F) is the conditional p.d.f of a random variable X and F is an event. Combine Equation [12 and
Equation [13] we have for every a € [K] and j7 <t < (j + 1)7,

= o C . .
P (|x33a(ej 4TS > u\/zglwaj. N 2gz<y>2/y|xt7a||2\fﬁ>

A o C .
[ (176 =691 > w20 7 2 2
1

1
< oo [ fa = alPinkde = g

2 Fjr, @0 = m) f(zt,0 = 2| Fjr)dz

Applying a union bound, we get the conclusion. O
8.5 Proof of Lemma [l
Proof. We still use Lemma 8| to show the result. For convenience, denote  := s, y1 := /33 ||| and 72 := I\l/”%l

Note that x is independent of GJTS, SO

2T (05, — 07°)|Fjryx ~ N (0, (201(51)*77 + 292(5¢)*73) ) - (14)
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Therefore,
2T9TS — 279, Tox _ T4,
IP(xTe’jl:S > 2 To* fjtr,l‘) —-P : ;z - Jt. > x — x J_ — Fiorr®
V2910029% + 292000293~ V291(0)%7F + 292(50)%73
STOTS — 4 Th, g(G)llally-1 |+ g20i0) 17
>P > 5 ]:jt,T? X
V29100298 + 2920023~ V2910097 + 292(3) 93
TOTS _aTh, 1)/ 2l + g2(5) 12
> ]:jtT7 X
V20100293 + 292030273~ V201(50)*7 + 292(j1)?
22
> -5
> 7 ﬁe :
where z 1= —2Un+9:Ge)y2  The first and second inequalities hold since F; is a filtration such that F1(j;)

V2002329206072
and Amin(Vj,r+1) > O‘” are true. Notice that we have 0 < z < 1 since

291(31)*71 + 292(5:)%vs — (91(Ge)n + 92(5e)v2)* = (91(Ge) 1 — 92(jie)72)? > 0.

Therefore, we get

P (J:TH;ES >zl o*

‘th‘l'7x) Z

Similarly, using Equation [13] we get

Fjr) = /IP (2/,07° > af 07| F

P (a:75 *HTS >z T o

o T = @) @ = | Fjp)da >

4/me’

8.6 Proof of Lemma [6]

The technique used in this proof is extracted from |Agrawal and Goyal| (2013)); Kveton et al. (2019).

Proof. Denote E;[-] := E[-|F;]. To prove the lemma, we prove the following Equation [I5 holds for any possible
filtration Fi:

%A%NW&@M%@M&MMSG+121>%AmﬁW&@m (15)
i/me T2

Denote the following set as the underesampled arms at round ¢,
SC = {i € [K]: Hi(t) = A1)}

Note that aj € S for all t. The set of sufficiently sampled arms is S; = [K]\ SC. Let J; = argmin, ¢ go H;(t) be

the least uncertain undersampled arm at round ¢. At round ¢, denote j; = L%J In the steps below, we assume
that event Ey(j:) N E2(j¢) occurs, then

Ao, () = Ay, (t) + (4.5, — X0)T0*
= Ay, (t) + 2], (07— 07%) + (2,5, — Xo)T0T5 + X7 (675 — 07)
<Ay, (t)+ Hy, (t)+ Hg, (t) since (x¢,g, — Xt)TH;‘CS <0
< 2H;,(t) + H,,(t) since J; € SC.

The left to do is to bound Hy, (t) by Hq,(t). Since J; = argmin,c go H;(t), we have

Ej,r [Ha, ()] 2 Ejir [Ha, (t)]ar € ST P (ar € ST Fjur) 2 Ejr[Hy, (1)]P (ar € S| F,r) - (16)
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Therefore, we have

Ej, - [Aa, 0)1(E1(j:) N B2 ()] < (1 + ( 2

P(a; € Sﬂfm)) ;.- [Ha, ()] (17)

Next, we bound P (a; € S| Fj,-).

P (a; € s¢ | Fjir) > P <xt *GTS > max r; ZGTS

1€ESy

‘th"') since aj € S¢

>P (a:t 057 2 maxa 075, B (je) 0 E2(j0) fjw)
> P («2.675 > o7.0°, B (o) N Baie)| Fr) (18)
>P ($t *9};8 z mZ*e*vEl(jt)LthT) -P (EQC(Jt)“F]’T)
* : 1
> P (2f,0)° >zl 0%, B (ji)| Fj.r) — Tz (19)

Inequality [18| holds because for all i € S;, on event E1(j;) N E2(j),
w005 < af 0"+ Hi(t) < al,0" + Ai(t) =z 0.
Inequality [19] holds because of Lemma[dl When F; is a filtration such that E1(j;) and E3(j;) are true, we have

from Lemma [5] that
1

(ateS |]:]t7—)_4\/7 T2

So under such filtration, from Equation [17] we have

@A&ﬁmmmm@@m<0+l2l>&Amﬁ»

Since Es3(j;) is Fj,,-measurable, we have under such filtration,

&AmﬁmwmmwMMm&@msQ+121>&Amﬁm&mm.
Iyme T2

When F; is a filtration such that E;(j:) N E5(j:) is not true, the conclusion holds trivially. This finishes our
proof. O

8.7 Proof of Theorem [1]

Before proving the theorem, we show a lemma below.

Lemma 9. Let J = [L], then

E| > H,(O)UEs(G))| < VT (2gl<J>\/§ +2(J) + u\/2gl<J)2fj +292(J)2/T + log J) .
t=7+1

Proof. We know H,, (t) = Hg, 1(t) + Hg, 2(t) + Hg, 3(t) from definition, where

i1 (

Goleedllys . Hia(t) = galio) 122
GeT+1

Vit

Hz,l t) =4 (
His(t) —U\/le(jt) *thz”? +292(j1)* ——
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For all t, we have j, < | L] and so g1(j¢) < g1(J), and g2(j;) < g2(J). Since ||XtH%/_,1+1 < )‘maX(VJTH)HXtHz

when Ej5(j) holds, we have

E Z Hat,1(t)]l(E3(jt))1 < 27’91(J)\/§S 2g1(J) %\/T

t=7+1

We also have
T T

X
> Hoolt) <oa(d) Y ”ft' < 2g5(J)VT.
t=T+1 t=rt1 VIt
From Cauchy-Schwarz, we have
S S ) 122
Y Has(t) <uVTy| Y 2g1(e)? IIX 12+ 292(je)* ———
t=7+1 t=7+1 Jt

< uﬁ\/Zgl(J)chT(l +log J) + 2g2(J)27(1 + log J).
Combine Equation we get the conclusion.
Now we formally prove Theorem

Proof. Since
Bj,r [ 07) — n(XT6)] < By [((eT0%) — w(XT6)) 1B (30))] + PUES ()l F,r)
< Bjr [(n(@f07) — p(X707)) 1(Ea(0)] + %,
we have

E [p(2.07) — n(X{09)] < B [(p(e].07) — p(X[07)) L(E2(50))] + %

From Proposition E, when 7 is chosen as in Equation E Es5(j¢) holds with probability with at least 1 —

every t. From the above,

T
ZIE HXT0] £ 3R —n(XT0) UEG))] + 7
<E Z (1 .07) = p(XT07) LB (Gr) 0 E2(3e) N B3 (i) | + Y PUET (o) U ES (51)) + %
<7t+1L, Z L(E1(jr) N E2(je) N E3(j:))] + ;
t=7+1

<7+pL, Z E[H,, (H)1(E5())] + % from Lemma [6l

t=7+1
2 J)? T
2, /%gl(J) +2ga(J) + U\/CB’Q;() n ng(J)z\/1 + log| |

From Lemma [9] we have

E[R(T)] <7+ LpV7TT + %

This ends our proof.

8.8 Discussion

€3

= aj

(20)

% for

As pointed out by the reader, since ||z,|| < 1, so 03, Ay < O(3). So a more realistic assumption should be
o¢, s ~ O(%). However, we found that o3 ~ O(1) is an assumption that is widely used in literature (see |Li et al.

(2017)). If we assume 02, Ay ~ O(1/d), then the regret upper bound of our algorithm is E[R(T)] < O(dz+/T)

and the regret upper bound of UCB-GLM (Li et al., 2017) is O(d® + dv/T).
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