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Abstract

We study the safe reinforcement learning
problem using the constrained Markov de-
cision processes in which an agent aims to
maximize the expected total reward sub-
ject to a safety constraint on the expected
total value of a utility function. We fo-
cus on an episodic setting with the func-
tion approximation where the Markov tran-
sition kernels have a linear structure but
do not impose any additional assumptions
on the sampling model. Designing safe re-
inforcement learning algorithms with prov-
able computational and statistical efficiency
is particularly challenging under this set-
ting because of the need to incorporate both
the safety constraint and the function ap-
proximation into the fundamental exploita-
tion/exploration tradeoff. To this end, we
present an Optimistic Primal-Dual Proxi-
mal Policy OPtimization (OPDOP) algo-
rithm where the value function is estimated
by combining the least-squares policy evalu-
ation and an additional bonus term for safe
exploration. We prove that the proposed al-
gorithm achieves an Õ(dH2.5

√
T ) regret and

an Õ(dH2.5
√
T ) constraint violation, where

d is the dimension of the feature mapping, H
is the horizon of each episode, and T is the
total number of steps. These bounds hold
when the reward/utility functions are fixed
but the feedback after each episode is ban-
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dit. Our bounds depend on the capacity of
the state-action space only through the di-
mension of the feature mapping and thus our
results hold even when the number of states
goes to infinity. To the best of our knowledge,
we provide the first provably efficient online
policy optimization algorithm for constrained
Markov decision processes in the function ap-
proximation setting, with safe exploration.

1 Introduction

Reinforcement Learning (RL) studies how an agent
learns to maximize its expected total reward by inter-
acting with an unknown environment over time [60].
Safe RL augments RL with a practical consideration
of safety to deal with restrictions/constraints arising
from real-world problems [33, 6, 28]. Examples include
collision-avoidance in autonomous robots [31, 32], cost
limitations in medical applications [34, 11], and legal
and business restrictions in financial management [2].
A standard environment model for safe RL is the
Constrained Markov Decision Processes (CMDPs) [5]
that generalize the classical MDPs to maximizing
the expected total reward under a safety-related con-
straint on the expected total utility [3, 65]. The
presence of constraints makes the fundamental explo-
ration/exploitation trade-off more challenging.

There is considerable growth in safe RL, especially
those studies on CMDPs, e.g., constrained policy gra-
dient [63, 59], Lagrangian-based actor-critic [15, 14,
61, 46, 74], constrained policy optimization [3, 72, 78],
primal-dual policy optimization [53, 52]. A key high-
light of their developments is the successful integration
of the constrained optimization and the policy-based
RL for addressing constraints. Notwithstanding many
successes, these safe RL algorithms either do not have
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a convergence theory or are limited to asymptotic con-
vergence. In practice, only a finite amount of data is
available. Hence, it is imperative to design safe RL al-
gorithms with computational and statistical efficiency
guarantees. For this purpose, we must address the ex-
ploration/exploitation trade-off under constraints.

In this work, we look at the challenging problem of
finding a sequence of policies in response to online
streaming samples of transition, reward functions, and
utility functions. We attempt to provide theoretical
guarantees on the regret of an algorithm approaching
the best policy in hindsight, and feasibility region de-
termined by constraints. The task of safe exploration
is to explore the unknown environment and learn to
adapt the policy to the constraint set. Our problem
setting deviates from existing scenarios, where good
priors on constraints or transition models are more fo-
cused, e.g., references [62, 13, 25, 66, 23, 24, 65]. Re-
cent policy-based safe RL algorithms for CMDPs, e.g.,
constrained policy optimization [3, 72, 78] and primal-
dual policy optimization [53, 52], seek a single safe
policy via the constrained policy optimization whose
sample efficiency guarantees do not have a theory.

In this paper, we aim to answer a theoretical question:

Can we design a provably sample efficient on-
line policy optimization algorithm for CMDPs
in the function approximation setting?

Contribution. We propose a provably efficient safe
RL algorithm for CMDPs with an unknown transition
model in the linear episodic setting – an Optimistic
Primal-Dual Proximal Policy OPtimization (OPDOP)
algorithm – where the value function is estimated by
combining the least-squares policy evaluation and an
additional bonus term for safe exploration. Theoret-
ically, we prove that the proposed algorithm achieves
an Õ(dH2.5

√
T ) regret and the same Õ(dH2.5

√
T ) con-

straint violation, where d is the dimension of the fea-
ture mapping, H is the horizon of each episode, and T
is the total number of steps. We establish these bounds
in the setting where the reward/utility functions are
fixed but the feedback after each episode is bandit.
Our bounds depend on the capacity of the state space
only through the dimension of the feature mapping and
thus hold even when the number of states goes to in-
finity. To the best of our knowledge, our result is the
first provably efficient online policy optimization for
CMDPs in the function approximation setting, with
safe exploration.

Related Work. Our work is related to a line of prov-
ably efficient RL algorithms based on the linear func-
tion approximation, e.g., references [70, 71, 37, 20, 76].
Using the optimism in the face of uncertainty [7, 19],
these references address the exploration/exploitation

trade-off by adding the Upper Confidence Bound
(UCB) bonus, and proposed algorithms are provably
sample-efficient. A closely-related reference [20] con-
nects policy-based RL with optimism, and proposes
an optimistic proximal policy optimization with UCB
exploration. However, all these references only study
some particular MDPs in unconstrained RL problems.
Additional efforts need to pay for making them work
for CMDPs. Our work seeks to design an optimistic
variant of proximal policy optimization for CMDPs.
For the large CMDPs with unknown transition mod-
els, there is a line of literature that is related to
the policy optimization under constraints, e.g., refer-
ences [63, 3, 72, 61, 48, 78]. However, the exploration
under constraints is less studied and their theoretical
guarantees are unknown. Our work fills in this gap.

The study of RL algorithms for CMDPs has re-
ceived growing attention, especially those on learning
CMDPs with unknown transitions and rewards. As we
know, most of them are model-based and only apply
to finite state-action spaces. References [58, 29] lever-
age upper confidence bound (UCB) on fixed reward,
utility, and transition probability to propose sample-
efficient algorithms for tabular CMDPs; reference [58]

establishes an Õ(
√
|A|T 1.5 log T ) regret and constraint

violation via linear program in the average-cost case
in time T ; reference [29] achieves an Õ(|S|

√
H3T ) re-

gret and constraint violation in the episodic setting via
linear program and primal-dual policy optimization,
where S is a state-space, A is an action space, and
H is a fixed horizon of episode. In reference [55], the
authors study an adversarial stochastic shortest path
problem under constraints and unknown transitions
with Õ(|S|

√
|A|H2T ) regret and constraint violation.

Reference [10] extends Q-learning with optimism for fi-
nite state-action CMDPs with peak constraints. Ref-
erence [18] proposes UCB-based convex planning for
episodic tabular CMDPs in dealing with convex or
hard constraints. References [40, 35] establish prob-
ably approximately correct (PAC) guarantees that en-
joy better problem-dependent sample-complexity. In
contrast, our proposed algorithm can potentially ap-
ply to scenarios with infinite state-space, and our pro-
vided sublinear regret and constraint violation bounds
only depend on the implicit dimension instead of the
true dimension of the state space. Compared to more
recent references [26, 69, 21, 77], our development at-
tacks the exploration directly and does not rely on any
policy ‘simulators’ (or generative models).

2 Problem Setup

We consider an episodic Markov decision process
(MDP) – MDP(S,A, H,P, r) – where S is a state
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space, A is an action space, H is a fixed length of
each episode, P = {Ph}Hh= 1 is a collection of transition
probability measures, and r = {rh}Hh= 1 is a collection
of reward functions. We assume that S is a measur-
able space with possibly infinite number of elements.
Moreover, for each step h ∈ [H], Ph( · |x, a) is a transi-
tion kernel over next state if action a is taken for state
x and rh: S × A → [0, 1] is a reward function. The
constrained MDP – CMDP(S,A, H,P, r, g) – addition-
ally contains utility functions g = {gh}Hh= 1 where gh:
S × A → [0, 1]. We assume that reward/utility func-
tions are deterministic. Our analysis readily general-
izes to the setting where reward/utility are random.

Let the policy space ∆(A |S, H) be {{πh( · | · )}Hh= 1:
πh( · |x) ∈ ∆(A), ∀x ∈ S and h ∈ [H]}, where ∆(A)
denotes a probability simplex over the action space.
Let πk ∈ ∆(A |S, H) be a policy taken by the agent
at episode k, where πkh( · |xkh): S → A is the action
that the agent takes at state xkh. For simplicity, we
assume the initial state xk1 to be fixed as x1 in dif-
ferent episodes for brevity. The agent interacts with
the environment in the kth episode as follows. At the
beginning, the agent determines a policy πk. Then, at
each step h ∈ [H], the agent observes the state xkh ∈ S,
determines an action akh following the policy πkh( · |xkh),
and receives a reward rh(xkh, a

k
h) together with an util-

ity gh(xkh, a
k
h). Meanwhile, the MDP evolves into next

state xkh+1 drawing from the probability Ph( · |xkh, akh).

The episode terminates at state xkH in which no con-
trol action is taken and both reward and utility func-
tions are equal to zero. In this paper, we focus a ban-
dit setting where the agent only observes the values
of reward/utility functions, rh(xkh, a

k
h), gh(xkh, a

k
h), at

visited state-action pair (xkh, a
k
h). We assume that re-

ward/utility functions are fixed over episodes.

Given a policy π ∈ ∆(A |S, H), the value function V πr,h
associated with the reward function r at each step h
are the expected values of total rewards,

V πr,h(x) = Eπ

[
H∑
i=h

ri(xi, ai)
∣∣xh = x

]

for all x ∈ S, h ∈ [H], where the expecta-
tion Eπ is taken over the random state-action se-
quence {(xh, ah)}Hh= i; the action ah follows the policy
πh( · |xh) at the state xh and the next state xh+1 fol-
lows the transition dynamics Ph( · |xh, ah). Thus, the
action-value function Qπr,h(x, a): S×A → R associated
with the reward function r is the expected value of to-
tal rewards when the agent starts from state-action
pair (x, a) at step h and follows policy π,

Qπr,h(x, a) = Eπ

[
H∑
i=h

ri(xi, ai)
∣∣xh = x, ah = a

]

for all (x, a) ∈ S × A and h ∈ [H]. Similarly, we
define the value function V πg,h: S → R and the action-
value function Qπg,h(x, a): S ×A → R associated with
the utility function g. Denote symbol � = r or g.
For brevity, we take the shorthand PhV π�,h+1(x, a) :=
Ex′∼Ph( · | x,a)V

π
�,h+1(x′). The Bellman equations asso-

ciated with a policy π are given by

Qπ�,h(x, a) =
(
�h +PhV π�,h+1

)
(x, a) (1)

where V π�,h(x) =
〈
Qπ�,h (x, · ), πh( · |x)

〉
A, for all

(x, a) ∈ S×A. Here, the inner product of a function f :
S × A → R with π( · |x) ∈ ∆(A) at fixed x ∈ S rep-
resents 〈f(x, · ), π( · |x)〉A :=

∑
a∈A〈f(x, a), π(a |x)〉.

2.1 Learning Performance

The learning agent aims to find a solution of a con-
strained problem in which the objective function is
the expected total rewards and the constraint is on
the expected total utilities,

maximize
π ∈∆(A |S,H)

V πr,1(x1) subject to V πg,1(x1) ≥ b (2)

where we take b ∈ (0, H] to avoid triviality. It is readily
generalized to the problem with multiple constraints.
Let π? ∈ ∆(A |S, H) be a solution to problem (2).
Since the policy π? is computed from knowing the
transition model and all reward and utility functions,
we refer it as an optimal policy in-hindsight.

The associated Lagrangian of problem (2) is given by

L(π, Y ) := V πr,1(x1) + Y (V πg,1(x1)− b)

where π is the primal variable and Y ≥ 0 is the dual
variable. We can cast (2) into a saddle-point problem,

maximize
π ∈∆(A |S,H)

minimize
Y ≥ 0

L(π, Y )

where L(π, Y ) is convex in Y and is non-concave in
π in general. To address the non-concavity, we will
exploit the structure of value functions to propose a
variant of Lagrange multipliers method for constrained
RL problems in Section 3, which warrants a new line
of primal-dual mirror descent type analysis in sequel.
This distinguishes from unconstrained RL, e.g., [4, 20].

Another key feature of constrained RL is the safe ex-
ploration under constraints [33]. Without any con-
straint information a priori, it is infeasible for each
policy to satisfy the constraint since utility informa-
tion on constraints is only revealed after a policy is
decided. Instead, we allow each policy to violate the
constraint in each episode and minimize regret while
minimizing total constraint violations for safe explo-
ration over K episodes. We define the regret as the
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difference between the total reward value of policy π?

in hindsight and that of the agent’s policy πk over K
episodes, and the constraint violation as a difference
between the offset Kb and the total utility value of the
agent’s policy πk over K episodes,

Regret(K) =

K∑
k= 1

(
V π

?

r,1 (x1)− V π
k

r,1 (x1)
)

Violation(K) =

K∑
k= 1

(
b− V π

k

g,1 (x1)
)
.

(3)

In this paper, we design algorithms, taking bandit
feedback of the reward/utility functions, with both re-
gret and constraint violation being sublinear in the
total number of steps T := HK. Put differently,
the algorithm should ensure that given ε > 0, if
T = O(1/ε2), then both Regret(K) = O(ε) and
Violation(K) = O(ε) hold with high probability.

Let D(Y ) := maximizeπ L(π, Y ) be the dual function
and Y ? := argminY ≥ 0D(Y ) be the optimal dual vari-
able. We assume feasibility for problem (2) in Assump-
tion 1 that is known as the Slater condition [53, 29, 55].
It is convenient to establish the strong duality [53] and
the boundedness of the optimal dual variable Y ? that
can be found in Appendix E.

Assumption 1 (Feasibility). There exists γ > 0 and
π̄ ∈ ∆(A |S, H) such that V π̄g,1(x1) ≥ b+ γ.

Lemma 1 (Strong Duality, Boundedness of Y ?). Let
Assumption 1 hold. Then V π

?

r,1 (x1) = D(Y ?). More-

over, 0 ≤ Y ? ≤ (V π
?

r,1 (x1)− V π̄r,1(x1))/γ.

Lemma 1 provides useful optimization properties of (2)
for our algorithm design and analysis.

2.2 Linear Function Approximation

We focus on a class of CMDPs, where transition ker-
nels are linear in feature maps.

Assumption 2. The CMDP(S,A, H,P, r, g) is a lin-
ear MDP with a kernel feature map ψ: S × A ×
S → Rd1 , if for any h ∈ [H], there exists a vec-
tor θh ∈ Rd1 with ‖θh‖2 ≤

√
d1 such that for any

(x, a, x′) ∈ S ×A× S,

Ph (x′ |x, a) = 〈ψ (x, a, x′) , θh〉;

there exists a feature map ϕ: S×A → Rd2 and vectors
θr,h, θg,h ∈ Rd2 such that for any (x, a) ∈ S ×A,

rh(x, a) = 〈ϕ(x, a), θr,h〉 and gh(x, a) = 〈ϕ(x, a), θg,h〉

where max(‖θr,h‖2 , ‖θg,h‖2) ≤
√
d2. Moreover, we

assume that for any function V : S → [0, H],∥∥∫
S ψ(x, a, x′)V (x′)dx′

∥∥
2
≤
√
d1H for all (x, a) ∈

S ×A, and max(d1, d2) ≤ d.

Assumption 2 adapts the definition of linear kernel
MDP [8, 79, 20] for CMDPs. Linear kernel MDP ex-
amples include tabular MDPs [79], feature embedded
transition models [71], and linear combinations of base
models [50]. We can construct related examples of
CMDPs with linear structure by adding adding proper
constraints. For usefulness of linear structure, see dis-
cussions in the literature [27, 64, 43]. For more general
transition dynamics, see factored MDPs [54].

Although our definition in Assumption 2 and linear
MDPs [70, 37] all contain tabular MDPs as special
cases, they define transition dynamics using different
feature maps. They are not comparable since one can-
not be implied by the other [79]. We provide more
details on the tabular case of Assumption 2 in Sec-
tion 5.

3 Proposed Algorithm

In Algorithm 1, we present a new variant of proxi-
mal policy optimization [57] – an Optimistic Primal-
Dual Proximal Policy OPtimization (OPDOP) algo-
rithm. We effectuate the optimism through the Upper-
Confidence Bounds (UCB) [70, 71, 37], and address the
constraints via the union of the Lagrange multipliers
method with the value function structure that is cap-
tured by the performance difference lemma [38, 20].

Lemma 2 (Performance Difference Lemma). For any
two policies π, π′ ∈ ∆(A |S, H), � = r or g,

V π
′

�,1(x1) − V π�,1(x1)

= Eπ′
[

H∑
h= 1

〈
Qπ�,h(xh, ·), π′h(· |xh)− πh(· |xh)

〉 ∣∣x1

]
.

In each episode, our algorithm consists of three main
stages. The first stage (lines 4–8) is Policy Improve-
ment : we receive a new policy πk by improving previ-
ous πk−1 via a mirror descent type optimization; The
second stage (line 9) is Dual Update: we update dual
variable Y k based on the constraint violation induced
by previous policy πk; The third stage (line 10) is Pol-
icy Evaluation: we optimistically evaluate newly ob-
tained policy via the least-squares policy evaluation
with an additional UCB bonus term for exploration.

3.1 Policy Improvement

In the k-th episode, a natural attempt of obtaining a
policy πk is to solve a Lagrangian-based policy opti-
mization problem,

maximize
π ∈∆(A|S,H)

L(π,Y k−1) := V πr,1(x1)−Y k−1(b−V πg,1(x1))

where L(π, Y ) is the Lagrangian and the dual variable
Y k−1 ≥ 0 is from the last episode; we show that Y k−1
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can be updated efficiently in Section 3.2. This type
update also finds in references [45, 53, 52, 61]. They
rely on an oracle solver, e.g., Q-learning [30], proximal
policy optimization [57], or trust region policy opti-
mization [56], to deliver a near-optimal policy, making
overall algorithmic complexity expensive. Hence, they
are not suitable for online use. In contrast, this work
utilizes RL problem structure and shows that only an
easily-computable proximal step is sufficient for effi-
ciently achieving near-optimal performance.

Recall symbol � = r or g. Via the performance differ-
ence lemma, we can expand value functions V π�,1(x1)

at the previously known policy πk−1,

V π�,1(x1) = V π
k−1

�,1 (xk1) +

Eπk−1

[
H∑
h= 1

〈
Qπ�,h(xh, · ), (πh − πk−1

h )( · |xh)
〉 ]

where Eπk−1 is taken over the random state-action
sequence {(xh, ah)}Hh= 1. Thus, we introduce an ap-
proximation of V π�,1(x1) for any state-action sequence

{(xh, ah)}Hh= 1 induced by π,

Lk−1
� (π) = V k−1

�,1 (x1) +

H∑
h= 1

〈
Qk−1
�,h (xh, · ), (πh − πk−1

h )( · |xh)
〉

where V k−1
�,h and Qk−1

�,h can be estimated from an opti-
mistic policy evaluation that will be discussed in Sec-
tion 3.3. With this notion, in each episode, instead
of solving a Lagrangian-based policy optimization, we
perform a simple policy update in online mirror de-
scent fashion,

maximize
π ∈∆(A|S,H)

Lk−1
r (π) − Y k−1

(
b− Lk−1

g (π)
)

− 1

α

H∑
h= 1

D
(
πh( · |xh) | π̃k−1

h ( · |xh)
)

where π̃k−1
h ( · |xh) = (1− θ)πk−1

h ( · |xh) + θUnif(A)
is a mixed policy of the previous one and the uni-
form distribution Unif(A) with θ ∈ (0, 1]. The con-
stant α > 0 is a trade-off parameter, D(π | π̃k−1) is
the KL divergence between π and π̃k−1 in which π
is absolutely continuous in π̃k−1. The policy mixing
step ensures such absolute continuity and implies uni-
formly bounded KL divergence; see Lemma 15 in Ap-
pendix F. Ignoring other π-irrelevant terms, we update
πk in terms of previous policy πk−1 by

argmax
π∈∆(A|S,H)

H∑
h= 1

〈
(Qk−1

r,h + Y k−1Qk−1
g,h )(xh, · ), πh( · |xh)

〉
− 1

α

H∑
h= 1

D
(
πh( · |xh) | π̃k−1

h ( · |xh)
)
.

Since the above update is separable over H steps, we
can update the policy πk as line 6 in Algorithm 1, a
closed-form solution for any step h ∈ [H]. If we set
Y k−1 = 0 and θ = 0, the above update reduces to
one step in an optimistic proximal policy optimiza-
tion [20]. The idea of KL-divergence regularization in
policy optimization has been widely used in many un-
constrained scenarios [39, 57, 56, 67, 47]. Our method
is distinct in that it is based on the performance dif-
ference lemma and the optimistically estimated value
functions.

Algorithm 1 Optimistic Primal-Dual Proximal Pol-
icy OPtimization (OPDOP)

1: Initialization: Let {Q0
r,h, Q

0
g,h}Hh= 1 be zero func-

tions, {π0
h}h∈ [H] be uniform distributions on A,

V 0
g,1 be b, Y 0 be 0, χ be 2H/γ, α, η > 0, θ ∈ (0, 1].

2: for episode k = 1, . . . ,K + 1 do
3: Set the initial state xk1 = x1.
4: for step h = 1, 2, . . . ,H do
5: Mix the policy

π̃k−1
h (·|·) = (1− θ)πk−1

h (·|·) + θUnif(A).

6: Update the policy

πkh(·|·) ∝ π̃k−1
h (·|·) e

(
α
(
Qk−1
r,h +Y k−1Qk−1

g,h

)
(·,·)

)
.

7: Take an action akh ∼ πkh( · |xkh ) and recieve

reward/utility, rh(xkh, a
k
h), gh(xkh, a

k
h).

8: Observe the next state xkh+1.

9: Update the dual variable Y k by

Y k = Proj[ 0, χ ]

(
Y k−1 + η (b− V k−1

g,1 (x1))
)
.

10: Estimate the action-value or value functions
{Qkr,h(·, ·), Qkg,h(·, ·), V kg,h(·)}Hh= 1 via

LSTD
(
{xτh, aτh, rh(xτh, a

τ
h), gh(xτh, a

τ
h)}H,kh,τ = 1

)
.

3.2 Dual Update

To infer the constraint violation for the dual update,

we estimate V π
k

g,1 (x1) via an optimistic policy evalua-

tion by V k−1
g,1 (x1) that is discussed in Section 3.3. We

update the Lagrange multiplier Y by moving Y k to the
direction of minimizing the Lagrangian L(π, Y ) over
Y ≥ 0 in line 9 of Algorithm 1, where η > 0 is a
stepsize and Proj[ 0, χ ] is a projection onto [0, χ] with

an upper bound χ on Y k. By Lemma 1, we choose
χ = 2H/γ ≥ 2Y ? so that projection interval [ 0, χ ] in-
cludes the optimal dual variable Y ?. This type design
also finds in references [29, 51].
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The dual update works as a trade-off between the re-
ward maximization and the constraint violation reduc-
tion. If the current policy πk satisfies the approxi-
mated constraint, i.e., b − Lk−1

g (πk) ≤ 0, we put less
weight on the action-value function associated with the
utility and maximize the reward; otherwise, we sacri-
fice the reward a bit to satisfy the constraint. The dual
update has a similar use in dealing with constraints in
CMDPs, e.g., Lagrangian-based actor-critic [22, 46],
and online constrained optimization [73, 68, 75]. In
contrast, we handle the dual update via the optimistic
policy evaluation, yielding a simple, but efficient esti-
mation on the constraint violation.

Algorithm 2 Least-Squares Temporal Difference
(LSTD) with UCB exploration

1: Input: {xτh, aτh, rh(xτh, a
τ
h), gh(xτh, a

τ
h)}H,kh,τ = 1.

2: Initialization: Set {V kr,H+1, V
k
g,H+1} be zero func-

tions and λ = 1, β = O(
√
dH2 log (dT/p)).

3: for step h = H,H − 1, · · · , 1 do . � = r, g

4: Λk�,h =

k−1∑
τ = 1

φτ�,h(xτh, a
τ
h)φτ�,h(xτh, a

τ
h)> + λI.

5: wk�,h = (Λk�,h)−1

k−1∑
τ = 1

φτ�,h(xτh, a
τ
h)V τ�,h+1(xτh+1).

6: φk�,h(·, ·) =
∫
S ψ(·, ·, x′)V k�,h+1(x′)dx′.

7: Γk�,h(·, ·) = β(φk�,h(·, ·)>(Λk�,h)−1φk�,h(·, ·))1/2.

8: Λkh =

k−1∑
τ = 1

ϕ(xτh, a
τ
h)ϕ(xτh, a

τ
h)> + λI.

9: uk�,h = (Λkh)−1

k−1∑
τ = 1

ϕ(xτh, a
τ
h) �h (xτh, a

τ
h).

10: Γkh(·, ·) = β(ϕ(·, ·)>(Λkh)−1ϕ(·, ·))1/2.

11: Qk�,h(·, ·) = min
(
H − h+ 1, ϕ(·, ·)>uk�,h +

φk�,h(·, ·)>wk�,h + (Γkh + Γk�,h)(·, ·)
)+
.

12: V k�,h(·) =
〈
Qk�,h(·, ·), πkh(·|·)

〉
A.

13: Return: {Qk�,h(·, ·), V k�,h(·, ·)}Hh= 1.

3.3 Policy Evaluation

The last stage of the kth episode takes the Least-
Squares Temporal Difference (LSTD) [17, 16, 44, 42] to
evaluate the policy πk based on previous k−1 historical

trajectories. For each step h ∈ [H], instead of PhV π
k

r,h+1

in the Bellman equations (1), we estimate PhV kr,h+1 by

(φkr,h)>wkr,h where wkr,h is updated by the minimizer of
the regularized least-squares problem over w,

k−1∑
τ = 1

(
V τr,h+1(xτh+1) − φτr,h(xτh, a

τ
h)
>
w
)2

+ λ ‖w‖22 (4)

where φτr,h( · , · ) :=
∫
S ψ( · , · , x′ )V τr,h+1(x′)dx′,

V τr,h+1(·) = 〈Qτr,h+1( · , · ), πτh+1( · | · )〉A for h ∈ [H − 1]
and V τH+1 = 0, and λ > 0 is the regularization param-

eter. Similarly, we estimate PhV kg,h+1 by (φkg,h)>wkg,h.
We display the least-squares solution in line 4–6 of Al-
gorithm 2, where symbol � = r or g. We also estimate
rh(·, ·) by ϕ>ukr,h, where ukr,h is updated by the mini-
mizer of another regularized least-squares problem,

k−1∑
τ = 1

(
rh(xτh, a

τ
h) − ϕ(xτh, a

τ
h)
>
u
)2

+ λ ‖u‖22 (5)

where λ > 0 is the regularization parameter. Similarly,
we estimate gh(·, ·) by ϕ>ukg,h. The least-squares so-
lutions lead to line 8–9 of Algorithm 2.

After obtaining estimates of PhV k�,h+1 and �h(·, ·) for
� = r or g, we update the estimated action-value func-
tion {Qk�,h}Hh= 1 iteratively in line 11 of Algorithm 2,

where ϕ>uk�,h is an estimate of �h and (φk�,h)>wk�,h is

an estimate of PhV k�,h+1; we add UCB bonus terms

Γkh( · , · ),Γk�,h( · , · ): S ×A → R+ so that

ϕ>uk�,h + Γkh and (φk�,h)>wk�,h + Γk�,h

all become their upper confidence bounds. Here, the
bonus terms take Γkh = β(ϕ>(Λkh)−1ϕ)1/2 and Γk�,h =

β((φk�,h)>(Λk�,h)−1φk�,h)1/2 and we leave the parame-
ter β > 0 to be tuned later. Moreover, the bounded
reward/utility �h ∈ [0, 1] implies Qk�,h ∈ [0, H −h+ 1].

We remark the computational efficiency of Algo-
rithm 1. For the time complexity, since line 6 is a
scalar update, they need O(d|A|T ) time. A dominat-
ing calculation is from lines 5/9 in Algorithm 2. If
we use the Sherman–Morrison formula for computing
(Λkh)−1, it takes O(d2T ) time. Another important cal-
culation is the integration from line 6 in Algorithm 2.
We can either compute it analytically if it is tractable
or approximate it via the Monte Carlo integration [79]
that assumes polynomial time. Therefore, the time
complexity is O(poly(d)|A|T ) in total. For the space
complexity, we don’t need to store policy since it is
recursively calculated via line 6 of Algorithm 1. By
updating Y k, Λkh, Λk�,h, wk�,h, uk�,h, and �h(xkh, a

k
h) re-

cursively, it takes O((d2 + |A|)H) space.

4 Regret and Constraint Violation
Analysis

We now prove that the regret and the constraint vio-
lation for Algorithm 1 are sublinear in T := KH, the
total number of steps taken by the algorithm, where
K is the total number of episodes and H is the episode
horizon. We recall that |A| is the cardinality of action
space A and d is the dimension of the feature map.
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Theorem 1 (Linear Kernal MDP: Regret and Con-
straint Violation). Let Assumptions 1 and 2 hold.
Fix p ∈ (0, 1). We set α =

√
log |A|/(H2K), β =

C1

√
dH2 log (dT/p), η = 1/

√
K, θ = 1/K, and λ = 1

in Algorithm 1, where C1 is an absolute constant. Sup-
pose log |A| = O

(
d2 log2 (dT/p)

)
. Then, with proba-

bility 1−p, the regret and the constraint violation in (3)
satisfy

Regret(K) ≤ C dH2.5
√
T log

(
dT
p

)
[Violation(K)]+ ≤ C ′ dH2.5

√
T log

(
dT
p

)
where C and C ′ are absolute constants.

The above result establishes that Algorithm 1 enjoys
an Õ(dH2.5

√
T ) regret and an Õ(dH2.5

√
T ) constraint

violation if we set algorithm parameters {α, β, η, θ, λ}
properly. Our results have the optimal dependence
on the total number of steps T up to some logarith-
mic factors. The d dependence occurs due to the uni-
form concentration for controlling the fluctuations in
the least-squares policy evaluation. This matches the
existing bounds in the linear MDP setting without any
constraints [20, 8, 79]. Our bounds differ from them
only by H dependence, which is a price introduced by
the uniform bound on the constraint violation. It is
noticed that our algorithm works for bandit feedback
of reward/utility functions after each episode.

Regarding safe exploration, our violation bound pro-
vides finite-time convergence to the feasibility region
defined by constraints. In the interaction with an un-
known environment, the UCB exploration in the util-
ity value function adds optimism towards constraint
satisfaction. The dual update regularizes the pol-
icy improvement for governing actual constraint viola-
tion. Our regret and violation bounds readily lead to
PAC guarantees [36]. Compared to most recent refer-
ences [26, 69, 21, 77], our algorithm is sample-efficient
in exploration and does not need simulations of policy.

We remark the tabular setting for Algorithm 1; see
Appendix C for details. The tabular CMDP is a spe-
cial case of Assumption 2 by taking canonical bases
as feature mappings; see them in Section 5. The fea-
ture map has dimension d = |S|2|A| and thus The-
orem 1 automatically provides O(|S|2|A|H2.5

√
T ) re-

gret and constraint violation for the tabular CMDPs.
The d = |S|2|A| dependence relies on the least-squares
policy evaluation and it can be improved via other op-
timistic policy evolution methods if we are limited to
the tabular case. We provide such results in Section 5.

4.1 Proof Outline of Theorem 1

We sketch the proof for Theorem 1. We state key
lemmas and delay their full versions and proofs to Ap-

pendix B. In what follows, we fix p ∈ (0, 1) and use
the shorthand w.p. for with probability.

Regret Analysis. We take a regret decomposition,

Regret(K) =

K∑
k= 1

(
V π

?

r,1 (x1)− V kr,1(x1)
)

︸ ︷︷ ︸
(R.I)

+

K∑
k= 1

(
V kr,1(x1)− V π

k

r,1 (x1)
)

︸ ︷︷ ︸
(R.II)

where π? is an optimal policy in hindsight, and
V kr,1(x1) is estimated via our optimistic policy eval-

uation given by Algorithm 2. Since we use V kr,h+1 to

estimate V π
k

r,h+1, it leads a model prediction error in

the Bellman equations, ιkr,h := rkh + PhV kr,h+1 − Qkr,h;

similarly define ιkg,h. In Appendix D.3, the UCB op-

timism of ιk�,h with � = r or g, shows that or any
(k, h) ∈ [K] × [H] and (x, a) ∈ S × A, w.p. 1 − p/2,
we have

−2(Γkh + Γk�,h)(x, a) ≤ ιk�,h(x, a) ≤ 0.

By assumptions of Theorem 1, the policy improve-
ment in line 6 of Algorithm 1 yields Lemma 1, de-
picting weighted total differences of estimates V kr,1(x1),

V kg,1(x1) to the optimal ones.

Lemma 1 (Policy Improvement: Primal-Dual Mirror
Descent Step). Let assumptions of Theorem 1 hold.
Then,

(R.I) ≤ −
K∑
k= 1

Y k
(
V π

?

g,1 (x1)− V kg,1(x1)
)

+
K∑
k= 1

H∑
h= 1

Eπ? [ιkr,h(xh, ah) + Y kιkg,h(xh, ah)]

+O
(
H2.5

√
T log |A|

)
.

Lemma 1 displays coupling between the regret (R.I)
and the constraint. This coupling also finds in online
convex optimization [49, 75, 68, 41] and CMDP prob-
lems [29]. The proof of Lemma 1 takes a primal-dual
mirror descent type analysis of line 6 of Algorithm 1,
using the performance difference lemma.

Via the dual update in line 9 of Algorithm 1,
we can verify that the second total differences
−
∑K
k= 1 Y

k
(
V π

?

g,1 (x1) − V kg,1(x1)
)

scales O(
√
K). To-

gether with a decomposition of (R.II),

(R.II) = −
K∑
k= 1

H∑
h= 1

ιkr,h(xkh, a
k
h) + MK

r,H,2

where MK
r,H,2 is a martingale, we now have Lemma 2.
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Lemma 2. Let assumptions of Theorem 1 hold. Then,

Regret(K) ≤
K∑
k= 1

H∑
h= 1

(
Eπ?[ιkr,h(xh, ah)]− ιkr,h(xkh, a

k
h)
)

+MK
r,H,2 + O

(
H2.5

√
T log |A|

)
.

Finally, we note that MK
r,H,2 is a martingale that scales

as O(H
√
T ) via the Azuma-Hoeffding inequality. For

the model prediction error, we use the UCB optimism
and apply the elliptical potential lemma.

Lemma 3. Let assumptions of Theorem 1 hold. Then,

K∑
k= 1

H∑
h= 1

(
Eπ? [ιkr,h(xh, ah)]− ιkr,h(xkh, a

k
h)
)

≤ O
(
dH1.5

√
T log (K) log (dT/p)

)
, w.p. 1− p/2.

Lemma 4. Let assumptions of Theorem 1 hold. Then,∣∣MK
r,H,2

∣∣ ≤ 4H
√
T log (4/p), w.p. 1− p/2.

Finally, we apply probability bounds from Lemmas 3
and 4 to Lemma 2 to get our regret bound.

Constraint Violation Analysis. We take a viola-
tion decomposition,

Violation(K) =

K∑
k= 1

(
b− V kg,1(x1)

)
+

K∑
k= 1

(
V kg,1(x1)− V π

k

g,1 (x1)
)

︸ ︷︷ ︸
(V.II)

.

We begin with the policy improvement in line 6 of
Algorithm 1 to refine Lemma 1 as Lemma 5.

Lemma 5 (Policy Improvement: Refined Primal-Dual
Mirror Descent Step). Let assumptions of Theorem 1
hold. Then, for any Y ∈ [0, χ],

(R.I) + Y

K∑
k= 1

(
b− V kg,1(x1)

)
≤ O

(
H2.5

√
T log |A|

)
.

Lemma 5 removes the dual update Y k in the second
total differences in Lemma 1. We prove Lemma 5 by
combining Lemma 1 with the UCB optimism and a
change of variable of Y k for the dual update.

Similar to (R.II), we also have

(V.II) = −
K∑
k= 1

H∑
h= 1

ιkg,h(xkh, a
k
h) + MK

g,H,2

where MK
g,H,2 is a martingale. By adding (V.II) to the

inequality in Lemma 5 with multiplier Y ≥ 0, and also

adding (R.II) to it,

K∑
k= 1

(
V π

?

r,1 (x1)− V π
k

r,1 (x1)
)

+ Y

K∑
k= 1

(
b− V π

k

g,1 (x1)
)

≤ −
K∑
k= 1

H∑
h= 1

(
ιkr,h(xkh, a

k
h) + Y ιkg,h(xkh, a

k
h)
)

+O
(
H2.5

√
T log |A|

)
+ MK

r,H,2 + YMK
g,H,2

Then, we take Y = 0 if
∑K
k= 1

(
b − V π

k

g,1 (x1)
)
≤ 0;

otherwise Y = χ, w.p. 1− p, we have,(
V π

?

r,1 (x1)− V π′r,1(x1)
)

+ χ
[
b− V π′g,1(x1)

]
+

≤ O
(
dH2.5

√
T log (dT/p) /K

)
where V π

′

r,1(x1) = 1
K

∑K
k= 1 V

πk

r,1 (x1) and V π
′

g,1(x1) =
1
K

∑K
k= 1 V

πk

g,1 (x1) for some existing policy π′. Here,

we bound Γkh + Γk�,h and MK
�,H,2 as done in Lemmas 3

and 4.

Last, by the strong duality in Lemma 1, we apply the
constraint violation bound from constrained optimiza-
tion that is stated in Lemma 10 in Appendix E,[
b− V π

′

g,1(x1)
]
+
≤ O

(
dH2.5

√
T log (dT/p) /(χK)

)
which gives our desired violation bound.

Algorithm 3 Optimistic Policy Evaluation (OPE)

1: Input: {xτh, aτh, rh(xτh, a
τ
h), gh(xτh, a

τ
h)}H,kh,τ = 1.

2: Initialization: Set {V kr,H+1, V
k
g,H+1} be zero func-

tions, and λ = 1, β = C1H
√
|S| log(|S||A|T/p).

3: for step h = H,H − 1, · · · , 1 do . � = r, g
4: Compute counters nkh(x, a, x′) and nkh(x, a)

via (7) for all (x, a, x′) ∈ S × A × S and (x, a) ∈
S ×A.

5: Estimate reward/utility functions r̂kh, ĝkh via (8)
for all (x, a) ∈ S ×A.

6: Estimate transition P̂kh via (9) for all
(x, a, x′) ∈ S × A × S, and take bonus Γkh =

β
(
nkh(x, a) + λ

)−1/2
for all (x, a) ∈ S ×A.

7: Qk�,h(·, ·) = min
(
H − h+ 1, �̂kh(·, ·) +∑

x′ ∈S P̂h(x′ | ·, ·)V k�,h+1(x′)+2Γkh(·, ·),
)+
.

8: V k�,h(·) =
〈
Qk�,h(·, ·), πkh(·|·)

〉
A.

9: Return: {Qkr,h(·, ·), Qkg,h(·, ·)}Hh= 1.

5 Further Results on Tabular Case

The tabular CMDP(S,A, H,P, r, g) is a special case
of Assumption 2 with |S| < ∞ and |A| < ∞. Let
d1 = |S|2|A| and d2 = |S||A|. We take the following
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feature maps ψ(x, a, x′) ∈ Rd1 , ϕ(x, a) ∈ Rd2 , and
parameter vectors,

ψ(x, a, x′) = e(x,a,x′), θh = Ph( · , · , · )

ϕ(x, a) = e(x,a), θr,h = rh( · , · ), θg,h = gh( · , · )
(6)

where e(x,a,x′) is a canonical basis of Rd1 associ-
ated with (x, a, x′) and θh = Ph( · , · , · ) reads that
for any (x, a, x′) ∈ S × A × S, the (x, a, x′)th en-
try of θh is P(x′ |x, a); similarly we define e(x,a),

θr,h, and θg,h. We can verify that ‖θh‖ ≤
√
d1,

‖θr,h‖ ≤
√
d2, ‖θg,h‖ ≤

√
d2, and for any V :

S → [0, H] and any (x, a) ∈ S × A, we have∥∥∑
x′ ∈S ψ(x, a, x′)V (x′)

∥∥ ≤ √|S|H ≤ √d1H. There-
fore, we take d := max (d1, d2) = |S|2|A| in Assump-
tion (2) for the tabular case.

The proof of Theorem 1 is generic, since it is ready
to achieve sublinear regret and constraint violation
bounds as long as the policy evaluation is sample-
efficient, e.g., the UCB design of ‘optimism in the face
of uncertainty.’ In what follows, we introduce another
efficient policy evaluation for line 10 of Algorithm 1 in
the tabular case. Let us first introduce some notation.
For any (h, k) ∈ [H]× [K], any (x, a, x′) ∈ S ×A×S,
and any (x, a) ∈ S ×A, we define two visitation coun-
ters nkh(x, a, x′) and nkh(x, a) at step h in episode k,

nkh(x, a, x′) =

k−1∑
τ = 1

1{(x, a, x′) = (xτh, a
τ
h, a

τ
h+1)}

nkh(x, a) =

k−1∑
τ = 1

1{(x, a) = (xτh, a
τ
h)}.

(7)

This allows us to estimate reward function r, utility
function g, and transition kernel Ph for episode k by

r̂kh(x, a) =
k−1∑
τ = 1

1{(x, a) = (xτh, a
τ
h)}rh(xτh, a

τ
h)

nkh(x, a) + λ

ĝkh(x, a) =

k−1∑
τ = 1

1{(x, a) = (xτh, a
τ
h)}gh(xτh, a

τ
h)

nkh(x, a) + λ

(8)

P̂kh(x′ |x, a) =
nkh(x, a, x′)

nkh(x, a) + λ
(9)

for all (x, a, x′) ∈ S × A × S, (x, a) ∈ S × A where
λ > 0 is the regularization parameter. Moreover, we
introduce the bonus term Γkh: S ×A → R, Γkh(x, a) =

β
(
nkh(x, a) + λ

)−1/2
which adapts the counter-based

bonus terms in the literature [9, 36], where β > 0 is to
be determined later.

Using the estimated transition kernels {P̂kh}Hh= 1, the
estimated reward/utility functions {r̂kh, ĝkh}Hh= 1, and
the bonus terms {Γkh}Hh= 1, we now can estimate the
action-value function via line 7 of Algorithm 3 for
any (x, a) ∈ S × A, where � = r or g. Thus,

V k�,h(x) = 〈Qk�,h(x, ·), πkh(· |x)〉A. We summarize the
above procedure in Algorithm 3. Using already esti-
mated {Qkr,h(·, ·), Qkg,h(·, ·)}Hh= 1, we execute the policy
improvement and the dual update in Algorithm 1.

As in Theorem 1, we provide theoretical guarantees
in Theorem 2; see Appendix C.2 for the proof. Theo-
rem 2 improves (|S|, |A|) dependence in Theorem 1 for
the tabular case and also matches |S| dependence in
references [29, 55]. It is worthy mentioning our Algo-
rithm 1 is generic in handling an infinite state space.

Theorem 2 (Tabular Case: Regret and Constraint
Violation). Let Assumption 1 hold and let Assump-
tion 2 hold with feature maps (6). Fix p ∈ (0, 1).
In Algorithm 1, we set α =

√
log |A|/(H2K), β =

C1H
√
|S| log(|S||A|T/p), η = 1/

√
K, θ = 1/K, and

λ = 1 where C1 is an absolute constant. Then, with
probability 1−p, the regret and the constraint violation
in (3) satisfy

Regret(K) ≤ C|S|
√
|A|H5T log

(
|S||A|T

p

)
[Violation(K)]+ ≤ C ′|S|

√
|A|H5T log

(
|S||A|T

p

)
where C and C ′ are absolute constants.

6 Concluding Remarks

We have developed a provably efficient safe reinforce-
ment learning algorithm in the linear MDP setting.
The algorithm extends the proximal policy optimiza-
tion to CMDPs by incorporating the UCB exploration.
We prove that the proposed algorithm achieves an
Õ(
√
T ) regret and an Õ(

√
T ) constraint violation un-

der mild conditions, where T is the total number of
steps taken by the algorithm. Our algorithm works
in the setting where reward/utility functions are given
by bandit feedback. To the best of our knowledge,
our algorithm is the first provably efficient online pol-
icy optimization algorithm for CMDPs in the function
approximation setting.

Mathematically, our algorithm framework allows re-
ward/utility functions to be adversarial. We believe
that approaches from the adversarial MDP literature
allow us to derive similar regret and constraint vio-
lation bounds, although we leave it as future work.
Beyond linear kernel MDPs, the UCB exploration has
previously been applied for other types of MDPs, e.g.,
factored MDPs, or infinite-horizon MDPs. It remains
to be seen if these are extendable for CMDPs in sim-
ilar settings. In practice, we often encounter general
function approximation beyond linear functions, e.g.,
neural nets. It would be useful to design provably effi-
cient exploration algorithms for CMDPs with general
function approximation.
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A Preliminaries

Our analysis begins with decomposition of the regret given in (3).

Regret(K) =

K∑
k= 1

(
V π

?

r,1 (x1)− V kr,1(x1)
)

︸ ︷︷ ︸
(R.I)

+

K∑
k= 1

(
V kr,1(x1)− V π

k

r,1 (x1)
)

︸ ︷︷ ︸
(R.II)

(10)

where we add and subtract the value V kr,1(x1) estimated from an optimistic policy evaluation by Algorithm 2;
the policy π? in hindsight is the best policy in hindsight for problem (2). To bound the total regret (10), we
would like to analyze (R.I) and (R.II) separately.

First, we define the model prediction error for the reward as

ιkr,h := rh + PhV kr,h+1 − Qkr,h (11)

for all (k, h) ∈ [K]× [H], which describes the prediction error in the Bellman equations (1) using V kr,h+1 instead

of V π
k

r,h+1. With this notation, we expand (R.I) into

K∑
k= 1

H∑
h= 1

Eπ?
[〈
Qkr,h(xh, · ), π?h( · |xh)− πkh( · |xh)

〉]
+

K∑
k= 1

H∑
h= 1

Eπ?
[
ιkr,h(xh, ah)

]
(12)

where the first double sum is linear in terms of the policy difference and the second one describes the total model
prediction error. The above expansion is based on the standard performance difference lemma (see Lemma 2)
and we provide a proof in Section D.1 for readers’ convenience. Meanwhile, if we define the model prediction
error for the utility as

ιkg,h := gh + PhV kg,h+1 − Qkg,h (13)

then, similarly, we can expand
∑K
k= 1

(
V π

?

g,1 (x1)− V kg,1(x1)
)

into

K∑
k= 1

H∑
h= 1

Eπ?
[〈
Qkg,h(xh, · ), π?h( · |xh)− πkh( · |xh)

〉]
+

K∑
k= 1

H∑
h= 1

Eπ?
[
ιkg,h(xh, ah)

]
. (14)

To analyze the constraint violation, we also introduce a useful decomposition,

Violation(K) =

K∑
k= 1

(
b− V kg,1(x1)

)
+

K∑
k= 1

(
V kg,1(x1)− V π

k

g,1 (x1)
)

︸ ︷︷ ︸
(V.II)

(15)

which the inserted value V kg,1(x1) is estimated from an optimistic policy evaluation by Algorithm 2.

For notational simplicity, we introduce the underlying probability structure as follows. For any (k, h) ∈ [K]×[H],
we define Fkh,1 as a σ-algebra generated by state-action sequences, reward and utility functions,

{(xτi , aτi )}(τ,i)∈ [k−1]×[H]

⋃
{(xki , aki )}i∈ [h].

Similarly, we define Fkh,2 as an σ-algebra generated by

{(xτi , aτi )}(τ,i)∈ [k−1]×[H]

⋃
{(xki , aki )}i∈ [h]

⋃
{xkh+1}.
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Here, xkH+1 is a null state for any k ∈ [K]. A filtration is a sequence of σ-algebras {Fkh,m}(k,h,m)∈ [K]×[H]×[2] in
terms of time index

t(k, h,m) := 2(k − 1)H + 2(h− 1) + m (16)

which holds that Fkh,m ⊂ Fk
′

h′,m′ for any t ≤ t′. The estimated reward/utility value functions, V kr,h, V
k
g,h, and

the associated Q-functions, Qkr,h, Q
k
g,h are Fk1,1-measurable since they are obtained from previous k− 1 historical

trajectories. With these notations, we can expand (R.II) in (10) into

(R.II) = −
K∑
k= 1

H∑
h= 1

ιkr,h(xkh, a
k
h) + MK

r,H,2 (17)

where {Mk
r,h,m}(k,h,m)∈[K]×[H]×[2] is a martingale adapted to the filtration {Fkh,m}(k,h,m)∈[K]×[H]×[2] in terms of

time index t. Similarly, we have it for (V.II),

(V.II) = −
K∑
k= 1

H∑
h= 1

ιkg,h(xkh, a
k
h) + MK

g,H,2 (18)

where {Mk
g,h,m}(k,h,m)∈[K]×[H]×[2] is a martingale adapted to the filtration {Fkh,m}(k,h,m)∈[K]×[H]×[2] in terms of

time index t. We prove (17) in Section D.2 for completeness (also see [20, Lemma 4.2]); (18) is similar.

We recall two UCB bonus terms Γk�,h := β((φk�,h)>(Λk�,h)−1φk�,h)1/2 and Γkh := β((ϕ)>(Λkh)−1ϕ)1/2 in the action-

value function estimation of Algorithm 2. By the UCB argument, if we set λ = 1 and β = C1

√
dH2 log(dT/p)

where C1 is an absolute constant, then for any (k, h) ∈ [K]× [H] and (x, a) ∈ S ×A, we have

− 2(Γkh + Γk�,h)(x, a) ≤ ιk�,h (x, a) ≤ 0 (19)

with probability 1− p/2 where the symbol � = r or g. We prove (19) in Section D.3 for completeness.

In what follows we delve into the analysis of the regret and the constraint violation.

B Proof of Regret and Constraint Violation

The goal is to prove that the regret and the constraint violation for Algorithm 1 are sublinear in the total number
of steps T := KH, taken by the algorithm. Here, K is the total number of episodes and H is the horizon length.
We recall that |A| is the size of action space A and d is the feature map’s dimension. We repeat Theorem 1 here
for readers’ convenience.

Theorem 1 (Linear Kernal MDP: Regret and Constraint Violation). Let Assumptions 1 and 2 hold. Fix p ∈
(0, 1). We set α =

√
log |A|/(H2K), β = C1

√
dH2 log (dT/p), η = 1/

√
K, θ = 1/K, and λ = 1 in Algorithm 1

with the full-information setting, where C1 is an absolute constant. Suppose log |A| = O
(
d2 log2 (dT/p)

)
. Then,

the regret and the constraint violation in (3) satisfy

Regret(K) ≤ C dH2.5
√
T log

(
dT

p

)
and [Violation(K)]+ ≤ C ′ dH2.5

√
T log

(
dT

p

)
with probability 1− p where C and C ′ are absolute constants.

We divide the proof into two parts for the regret bound and the constraint violation, respectively, in Section B.1
and Section B.2.

B.1 Proof of Regret Bound

Our analysis begins with a primal-dual mirror descent type analysis for the policy update in line 6 of Algorithm 1.
In Lemma 3, we present a key upper bound on the total differences of estimated values V kr,1(x1) and V kg,1(x1)
given by Algorithm 2 to the optimal ones.
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Lemma 3 (Policy Improvement: Primal-Dual Mirror Descent Step). Let Assumption 1 and Assumption 2 hold.
In Algorithm 1, if we set α =

√
log |A|/(H2

√
K) and θ = 1/K, then

K∑
k= 1

(
V π

?

r,1 (x1)− V kr,1(x1)
)

+

K∑
k= 1

Y k
(
V π

?

g,1 (x1)− V kg,1(x1)
)

≤ C2H
2.5
√
T log |A| +

K∑
k= 1

H∑
h= 1

Eπ?
[
ιkr,h(xh, ah)

]
+

K∑
k= 1

H∑
h= 1

Y kEπ?
[
ιkg,h(xh, ah)

]
.

(20)

where C2 is an absolute constant and T = HK.

Proof. We recall that line 6 of Algorithm 1 follows a solution πk to the following subproblem,

maximize
π ∈∆(A|S,H)

H∑
h= 1

〈
Qk−1
r,h + Y k−1Qk−1

g,h , πh
〉
− 1

α

H∑
h= 1

D
(
πh | π̃k−1

h

)
(21)

where we use the shorthand
〈
Qk−1
r,h + Y k−1Qk−1

g,h , πh
〉

for
〈
(Qk−1

r,h + Y k−1Qk−1
g,h )(xh, · ), πh( · |xh)

〉
and the short-

hand D(πh | π̃k−1
h ) for D(πh( · |xh) | π̃k−1

h ( · |xh)) if dependence on the state-action sequence {xh, ah}Hh= 1 is clear
from context. We note that (21) is in form of a mirror descent subproblem in Lemma 14. We can apply the
pushback property with x? = πkh, y = π̃k−1

h and z = π?h,

H∑
h= 1

〈
Qk−1
r,h + Y k−1Qk−1

g,h , π
k
h

〉
− 1

α

H∑
h= 1

D
(
πkh | π̃k−1

h

)
≥

H∑
h= 1

〈
Qk−1
r,h + Y k−1Qk−1

g,h , π
?
h

〉
− 1

α

H∑
h= 1

D
(
π?h | π̃k−1

h

)
+

1

α

H∑
h= 1

D
(
π?h |πkh

)
.

Equivalently, we write the above inequality as follows,

H∑
h= 1

〈
Qk−1
r,h , π

?
h − πk−1

h

〉
+ Y k−1

H∑
h= 1

〈
Qk−1
g,h , π

?
h − πk−1

h

〉
≤

H∑
h= 1

〈
Qk−1
r,h + Y k−1Qk−1

g,h , π
k
h − πk−1

h

〉
− 1

α

H∑
h= 1

D
(
πkh | π̃k−1

h

)
+

1

α

H∑
h= 1

D
(
π?h | π̃k−1

h

)
− 1

α

H∑
h= 1

D
(
π?h |πkh

)
.

(22)

By taking expectation Eπ? on both sides of (22) over the random state-action sequence {(xh, ah)}Hh= 1 starting
from x1, and applying decompositions (12) and (14), we have(

V π
?

r,1 (x1)− V k−1
r,1 (x1)

)
+ Y k−1

(
V π

?

g,1 (x1)− V k−1
g,1 (x1)

)
≤

H∑
h= 1

Eπ?
[〈
Qk−1
r,h + Y k−1Qk−1

g,h , π
k
h − πk−1

h

〉]
− 1

α

H∑
h= 1

Eπ?
[
D
(
πkh | π̃k−1

h

)]
+

1

α

H∑
h= 1

Eπ?
[
D
(
π?h | π̃k−1

h

)
−D

(
π?h |πkh

)]
+

H∑
h= 1

Eπ?
[
ιk−1
r,h (xh, ah)

]
+ Y k−1

H∑
h= 1

Eπ?
[
ιk−1
g,h (xh, ah)

]
(23)

The rest is to bound the right-hand side of the above inequality (23). By the Hölder’s inequality and the Pinsker’s
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inequality, we first have

H∑
h= 1

〈
Qk−1
r,h + Y k−1Qk−1

g,h , π
k
h − πk−1

h

〉
− 1

α

H∑
h= 1

D
(
πkh | π̃k−1

h

)
=

H∑
h= 1

〈
Qk−1
r,h + Y k−1Qk−1

g,h , π
k
h − π̃k−1

h

〉
− 1

α

H∑
h= 1

D
(
πkh | π̃k−1

h

)
+

H∑
h= 1

〈
Qk−1
r,h + Y k−1Qk−1

g,h , π̃
k−1
h − πk−1

h

〉
≤

H∑
h= 1

(∥∥Qk−1
r,h + Y k−1Qk−1

g,h

∥∥
∞

∥∥πkh − π̃k−1
h

∥∥
1
− 1

2α

∥∥πkh − π̃k−1
h

∥∥2

1

)
+

H∑
h= 1

∥∥Qk−1
r,h + Y k−1Qk−1

g,h

∥∥
∞

∥∥π̃k−1
h − πk−1

h

∥∥
1
.

Then, using the square completion,

∥∥Qk−1
r,h + Y k−1Qk−1

g,h

∥∥
∞

∥∥πkh − π̃k−1
h

∥∥
1
− 1

2α

∥∥πkh − π̃k−1
h

∥∥2

1

= − 1

2α

(
α
∥∥Qk−1

r,h + Y k−1Qk−1
g,h

∥∥
∞ −

∥∥πkh − π̃k−1
h

∥∥
1

)2

+
α

2

∥∥Qk−1
r,h + Y k−1Qk−1

g,h

∥∥2

∞

≤ α

2

∥∥Qk−1
r,h + Y k−1Qk−1

g,h

∥∥2

∞

where we dropoff the first quadratic term for the inequality, and
∥∥π̃k−1

h − πk−1
h

∥∥
1
≤ θ, we have

H∑
h= 1

〈
Qk−1
r,h + Y k−1Qk−1

g,h , π
k
h − πk−1

h

〉
− 1

α

H∑
h= 1

D
(
πkh | π̃k−1

h

)
≤ α

2

H∑
h= 1

∥∥Qk−1
r,h + Y k−1Qk−1

g,h

∥∥2

∞ + θ

H∑
h= 1

∥∥Qk−1
r,h + Y k−1Qk−1

g,h

∥∥
∞

≤ α(1 + χ)2H3

2
+ θ (1 + χ)H2

(24)

where the last inequality is due to
∥∥Qk−1

r,h

∥∥
∞ ≤ H, a fact from line 12 in Algorithm 2, and 0 ≤ Y k−1 ≤ χ. Taking

the same expectation Eπ? as previously on both sides of (24) and substituting it into the left-hand side of (23)
yield,

(
V π

?

r,1 (x1)− V k−1
r,1 (x1)

)
+ Y k−1

(
V π

?

g,1 (x1)− V k−1
g,1 (x1)

)
≤ α(1 + χ)2H3

2
+ θ (1 + χ)H2 +

1

α

H∑
h= 1

Eπ?
[
D
(
π?h | π̃k−1

h

)
−D

(
π?h |πkh

)]
+

H∑
h= 1

Eπ?
[
ιk−1
r,h (xh, ah)

]
+ Y k−1

H∑
h= 1

Eπ?
[
ιk−1
g,h (xh, ah)

]
≤ α(1 + χ)2H3

2
+ θ (1 + χ)H2 +

θH log |A|
α

+
1

α

H∑
h= 1

Eπ?
[
D
(
π?h |πk−1

h

)
−D

(
π?h |πkh

)]
+

H∑
h= 1

Eπ?
[
ιk−1
r,h (xh, ah)

]
+ Y k−1

H∑
h= 1

Eπ?
[
ιk−1
g,h (xh, ah)

]
.

(25)

where in the second inequality we note the fact that D(π?h | π̃
k−1
h )−D(π?h |π

k−1
h ) ≤ θ log |A| from Lemma 15.

We note that Y 0 is initialized to be zero. By taking a telescoping sum of both sides of (25) from k = 1 to
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k = K + 1 and shifting the index k by one, we have

K∑
k= 1

(
V π

?

r,1 (x1)− V kr,1(x1)
)

+

K∑
k= 1

Y k
(
V π

?

g,1 (x1)− V kg,1(x1)
)

≤ α(1 + χ)2H3(K + 1)

2
+ θ (1 + χ)H2(K + 1) +

θH(K + 1) log |A|
α

+
H log |A|

α

+

K∑
k= 1

H∑
h= 1

Eπ?
[
ιkr,h(xh, ah)

]
+

K∑
k= 1

H∑
h= 1

Y kEπ?
[
ιkg,h(xh, ah)

]
.

(26)

where we ignore −α−1
∑H
h= 1 Eπ? [D(π?h |π

K+1
h )] and utilize

D
(
π?h |π0

h

)
=
∑
a∈A

π?h(a |xh) log (|A|π?h(a |xh)) ≤ log |A|

where π0
h is uniform over A and we ignore

∑
a∈A π

?
h(a |xh) log (π?h(a |xh)) that is nonpositive.

Finally, we take χ := H/γ and α, θ in the lemma to complete the proof.

By the dual update of Algorithm 1, we can simplify the result in Lemma 3 and return back to the regret (10).

Lemma 4. Let Assumption 1 and Assumption 2 hold. In Algorithm 1, if we set α =
√

log |A|/(H2
√
K),

η = 1/
√
K, and θ = 1/K, then with probability 1− p/2 ,

Regret(K) = C3H
2.5
√
T log |A| +

K∑
k= 1

H∑
h= 1

(
Eπ?

[
ιkr,h(xh, ah)

]
− ιkr,h(xkh, a

k
h)
)

+ MK
r,H,2 (27)

where C3 is an absolute constant.

Proof. By the dual update in line 9 in Algorithm 1, we have

0 ≤
(
Y K+1

)2
=

K+1∑
k=1

((
Y k
)2 − (Y k−1

)2)
=

K+1∑
k=1

(
Proj[ 0, χ ]

(
Y k−1 + η(b− V k−1

g,1 (x1))
))2

−
(
Y k−1

)2
≤

K+1∑
k=1

(
Y k−1 + η(b− V k−1

g,1 (x1))
)2 − (Y k−1

)2
≤

K+1∑
k=1

2ηY k−1
(
V π

?

g,1 (x1)− V k−1
g,1 (x1)

)
+ η2

(
b− V k−1

g,1 (x1)
)2
.

where we use the feasibility of π? in the last inequality. Since Y 0 = 0 and |b − V k−1
g,1 (x1)| ≤ H, the above

inequality implies that

−
K∑
k=1

Y k
(
V π

?

g,1 (x1)− V kg,1(x1)
)
≤

K+1∑
k=1

η

2

(
b− V k−1

g,1 (x1)
)2 ≤ ηH2(K + 1)

2
. (28)

By noting the UCB result (19) and Y k ≥ 0, the inequality (20) implies that

K∑
k= 1

(
V π

?

r,1 (x1)− V kr,1(x1)
)

+

K∑
k= 1

Y k
(
V π

?

g,1 (x1)− V kg,1(x1)
)
≤ C2H

2.5
√
T log |A| +

K∑
k= 1

H∑
h= 1

Eπ?
[
ιkr,h(xh, ah)

]
.

If we add (28) to the above inequality and take η = 1/
√
K, then,

K∑
k= 1

(
V π

?

r,1 (x1)− V kr,1(x1)
)
≤ C3H

2.5
√
T log |A| +

K∑
k= 1

H∑
h= 1

Eπ?
[
ιkr,h(xh, ah)

]
(29)

where C3 is an absolute constant. Finally, we combine (17) and (29) to complete the proof.
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By Lemma 4, the rest is to bound the last two terms in the right-hand side of (27). We next show two probability
bounds for them in Lemma 5 and Lemma 6, separately.

Lemma 5 (Model Prediction Error Bound). Let Assumption 2 hold. Fix p ∈ (0, 1). If we set β =
C1

√
dH2 log (dT/p) in Algorithm 1, then with probability 1− p/2 it holds that

K∑
k= 1

H∑
h= 1

(
Eπ?

[
ιkr,h(xh, ah)

]
− ιkr,h(xkh, a

k
h)
)
≤ 4C1

√
2d2H3T log (K + 1) log

(
dT

p

)
(30)

where C1 is an absolute constant and T = HK.

Proof. By the UCB result (19), with probability 1− p/2 for any (k, h) ∈ [K]× [H] and (x, a) ∈ S ×A, we have

−2(Γkh + Γkr,h)(x, a) ≤ ιkr,h (x, a) ≤ 0.

By the definition of ιkr,h(x, a), |ιkr,h(x, a)| ≤ 2H. Hence, it holds with probability 1− p/2 that

−ιkr,h(x, a) ≤ 2 min
(
H, (Γkh + Γkr,h)(x, a)

)
for any (k, h) ∈ [K]× [H] and (x, a) ∈ S ×A. Therefore, we have

K∑
k= 1

H∑
h= 1

(
Eπ?

[
ιkr,h(xh, ah) |x1

]
− ιkr,h(xkh, a

k
h)
)
≤ 2

K∑
k= 1

H∑
h= 1

min
(
H, (Γkh + Γkr,h)(xkh, a

k
h)
)

where Γkh(·, ·) = β(ϕ(·, ·)>(Λkh)−1ϕ(·, ·))1/2 and Γkr,h(·, ·) = β(φkr,h(·, ·)>(Λkr,h)−1φkr,h(·, ·))1/2. Application of the
Cauchy-Schwartz inequality shows that

K∑
k= 1

H∑
h= 1

min
(
H, (Γkh + Γkr,h)(xkh, a

k
h)
)

≤ β

K∑
k= 1

H∑
h= 1

min
(
H/β,

(
ϕ(xkh, a

k
h)>(Λkh)−1ϕ(xkh, a

k
h)
)1/2

+
(
φkr,h(xkh, a

k
h)>(Λkr,h)−1φkr,h(xkh, a

k
h)
)1/2) (31)

Since we take β = C1

√
dH2 log (dT/p) with C1 > 1, we have H/β ≤ 1. The rest is to apply Lemma 13. First,

for any h ∈ [H] it holds that

K∑
k= 1

φkr,h
(
xkh, a

k
h

)>(
Λkr,h

)−1
φkr,h

(
xkh, a

k
h

)
≤ 2 log

(
det
(
ΛK+1
r,h

)
det
(
Λ1
r,h

) ) .
Due to ‖φkr,h‖ ≤

√
dH in Assumption 2 and Λ1

r,h = λI in Algorithm 2, it is clear that for any h ∈ [H],

ΛK+1
r,h =

K∑
k= 1

φkr,h
(
xkh, a

k
h

)
φkr,h

(
xkh, a

k
h

)>
+ λI � (dH2K + λ)I.

Thus,

log

(
det
(
ΛK+1
r,h

)
det
(
Λ1
r,h

) ) ≤ log

(
det
(
(dH2K + λ)I

)
det(λI)

)
≤ d log

(
dH2K + λ

λ

)
.

Therefore,
K∑
k= 1

φkr,h
(
xkh, a

k
h

)>(
Λkr,h

)−1
φkr,h

(
xkh, a

k
h

)
≤ 2d log

(
dH2K + λ

λ

)
. (32)

Similarly, we can show that

K∑
k= 1

ϕ
(
xkh, a

k
h

)>(
Λkh
)−1

ϕ
(
xkh, a

k
h

)
≤ 2d log

(
dK + λ

λ

)
. (33)
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Applying the above inequalities (32) and (33) to (31) leads to

K∑
k= 1

H∑
h= 1

min
(
H, (Γkh + Γkr,h)(xkh, a

k
h)
)

≤ β

H∑
h= 1

min

(
K,

K∑
k= 1

(
ϕ(xkh, a

k
h)>(Λkh)−1ϕ(xkh, a

k
h)
)1/2

+
(
φkr,h(xkh, a

k
h)>(Λkr,h)−1φkr,h(xkh, a

k
h)
)1/2)

≤ β

H∑
h= 1

(K K∑
k= 1

ϕ(xkh, a
k
h)>(Λkh)−1ϕ(xkh, a

k
h)

)1/2

+

(
K

K∑
k= 1

φkr,h(xkh, a
k
h)>(Λkr,h)−1φkr,h(xkh, a

k
h)

)1/2


≤ β

H∑
h= 1

√
K

((
2d log

(
dK + λ

λ

))1/2

+

(
2d log

(
dH2K + λ

λ

))1/2
)

Finally, we set β = C1

√
dH2 log (dT/p) and λ = 1 to obtain (30).

Lemma 6 (Matingale Bound). Fix p ∈ (0, 1). In Algorithm 1, it holds with probability 1− p/2 that

∣∣MK
r,H,2

∣∣ ≤ 4

√
H2T log

(
4

p

)
(34)

where T = HK.

Proof. In the verification of (17) (see Section D.2), we introduce the following martingale,

MK
r,H,2 =

K∑
k= 1

H∑
h= 1

(
Dk
r,h,1 +Dk

r,h,2

)
where

Dk
r,h,1 =

(
Ikh
(
Qkr,h −Q

πk,k
r,h

))
(xkh)−

(
Qkr,h −Q

πk,k
r,h

) (
xkh, a

k
h

)
Dk
r,h,2 =

(
PhV kr,h+1 − PhV π

k,k
r,h+1

) (
xkh, a

k
h

)
−
(
V kr,h+1 − V

πk,k
r,h+1

) (
xkh+1

)
where

(
Ikhf

)
(x) :=

〈
f(x, ·), πkh(·|x)

〉
.

Due to the truncation in line 11 of Algorithm 2, we know that Qkr,h, Q
πk

r,h, V
k
r,h+1, V

πk

r,h+1 ∈ [0, H]. This shows

that |Dk
r,h,1|, |Dk

r,h,2| ≤ 2H for all (k, h) ∈ [K]× [H]. Application of the Azuma-Hoeffding inequality yields,

P
( ∣∣MK

r,H,2

∣∣ ≥ s ) ≤ 2 exp

(
−s2

16H2T

)
.

For p ∈ (0, 1), if we set s = 4H
√
T log (4/p), then the inequality (34) holds with probability at least 1− p/2.

We now are ready to show the desired regret bound. Applying (30) and (34) to the right-hand side of the
inequality (27), we have

Regret(K) ≤ C3H
2.5
√
T log |A| + 2C1

√
2d2H3T log (K + 1) log

(
dT

p

)
+ 4

√
H2T log

(
4

p

)
with probability 1− p where C1, C3 are absolute constants. Then, with probability 1− p it holds that

Regret(K) ≤ CdH2.5
√
T log

(
dT

p

)
where C is an absolute constant.
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B.2 Proof of Constraint Violation

In Lemma 3, we have provided a useful upper bound on the total differences that are weighted by the dual
update Y k. To extract the constraint violation, we first refine Lemma 3 as follows.

Lemma 7 ([Policy Improvement: Refined Primal-Dual Mirror Descent Step). Let Assumptions 1 and 2 hold.
In Algorithm 1, if we set α =

√
log |A|/(H2

√
K), θ = 1/K, and η = 1/

√
K, then Then, for any Y ∈ [0, χ], with

probability 1− p/2 ,

K∑
k= 1

(
V π

?

r,1 (x1)− V kr,1(x1)
)

+ Y

K∑
k= 1

(
b− V kg,1(x1)

)
≤ C4H

2.5
√
T log |A| (35)

where C4 is an absolute constant, T = HK, and χ := H/γ.

Proof. By the dual update in line 9 in Algorithm 1, for any Y ∈ [0, χ] we have

|Y k+1 − Y |2 =
∣∣∣Proj[ 0, χ ]

(
Y k + η(b− V kg,1(x1))

)
− Proj[ 0, χ ](Y )

∣∣∣2
≤
∣∣Y k + η(b− V kg,1(x1))− Y

∣∣2
≤
(
Y k − Y

)2
+ 2η

(
b− V kg,1(x1)

)(
Y k − Y

)
+ η2H2

where we apply the non-expansiveness of projection in the first inequality and |b − V kg,1(x1)| ≤ H for the last
inequality. By summing the above inequality from k = 1 to k = K, we have

0 ≤ |Y K+1 − Y |2 = |Y 1 − Y |2 + 2η

K∑
k= 1

(
b− V kg,1(x1)

)(
Y k − Y

)
+ η2H2K

which implies that
K∑
k= 1

(
b− V kg,1(x1)

)(
Y − Y k

)
≤ 1

2η
|Y 1 − Y |2 +

η

2
H2K.

By adding the above inequality to (26) in Lemma 3 and noting that V π
?,k

g,1 (x1) ≥ b and the UCB result (19), we
have

K∑
k= 1

(
V π

?

r,1 (x1)− V kr,1(x1)
)

+ Y

K∑
k= 1

(
b− V kg,1(x1)

)
≤ α(1 + χ)2H3(K + 1)

2
+ θ (1 + χ)H2(K + 1) +

θH(K + 1) log |A|
α

+
H log |A|

α

+
1

2η
|Y 1 − Y |2 +

η

2
H2K.

By taking χ = H/γ, and α, θ, η in the lemma, we complete the proof.

According to Lemma 7, we can multiply (18) by Y ≥ 0 and add it, together with (17), to (35),

K∑
k= 1

(
V π

?

r,1 (x1)− V π
k

r,1 (x1)
)

+ Y

K∑
k= 1

(
b− V π

k

g,1 (x1)
)

≤ C4H
2.5
√
T log |A| −

K∑
k= 1

H∑
h= 1

ιkr,h(xkh, a
k
h) − Y

K∑
k= 1

H∑
h= 1

ιkg,h(xkh, a
k
h) + MK

r,H,2 + YMK
g,H,2.

(36)

We now are ready to show the desired constraint violation bound. We note that there exists a policy π′ such that

V π
′

r,1(x1) = 1
K

∑K
k= 1 V

πk

r,1 (x1) and V π
′

g,1(x1) = 1
K

∑K
k= 1 V

πk

g,1 (x1). By the occupancy measure method [5], V π
k

r,1 (x1)

and V π
k

g,1 (x1) are linear in terms of an occupancy measure induced by policy πk and initial state x1. Thus, an
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average of K occupancy measures is still an occupancy measure that produces policy π′ with values V π
′

r,1(x1) and

V π
′

g,1(x1). Particularly, we take Y = 0 when
∑K
k= 1

(
b− V πkg,1 (x1)

)
< 0; otherwise Y = χ. Therefore, we have

V π
?

r,1 (x1)− 1

K

K∑
k= 1

V π
k

r,1 (x1) + χ

[
b− 1

K

K∑
k= 1

V π
k

g,1 (x1)

]
+

= V π
?

r,1 (x1)− V π
′

r,1(x1) + χ
[
b− V π

′

g,1(x1)
]

+

≤
C4H

2.5
√
T log |A|

K
− 1

K

K∑
k= 1

H∑
h= 1

ιkr,h(xkh, a
k
h) − χ

K

K∑
k= 1

H∑
h= 1

ιkg,h(xkh, a
k
h)

+
1

K
MK
r,H,2 +

χ

K

∣∣MK
g,H,2

∣∣
≤

C4H
2.5
√
T log |A|

K
+

1

K

K∑
k= 1

H∑
h= 1

(Γkh + Γkr,h)(xkh, a
k
h) +

χ

K

K∑
k= 1

H∑
h= 1

(Γkh + Γkg,h)(xkh, a
k
h)

+
1

K
MK
r,H,2 +

χ

K

∣∣MK
g,H,2

∣∣

(37)

where we apply the UCB result (19) for the last inequality.

Finally, we recall two immediate results of Lemma 5 and Lemma 6. Fix p ∈ (0, 1), the proof of Lemma 5 also
shows that with probability 1− p/2,

K∑
k= 1

H∑
h= 1

(Γkh + Γk�,h)
(
xkh, a

k
h

)
≤ C1

√
2d2H3T log (K + 1) log

(
dT

p

)
(38)

and the proof of Lemma 6 shows that with probability 1− p/2,

∣∣MK
g,H,2

∣∣ ≤ 4

√
H2T log

(
4

p

)
.

If we take log |A| = O(d2 log2(dT/p)), (37) implies that with probability 1− p we have

V π
?

r,1 (x1)− V π
′

r,1(x1) + χ
[
b− V π

′

g,1(x1)
]

+
≤ C5 dH

2.5
√
T log

(
dT

p

)
.

where C5 is an absolute constant. Finally, by noting our choice of χ ≥ 2Y ?, we can apply Lemma 10 to conclude
that

[Violation(K)]+ ≤ C
′
dH2.5

√
T log

(
dT

p

)
.

with probability 1− p, where C
′

is an absolute constant.

C Further Results on Tabular Case

A special case of Assumption 2 is the tabular CMDP(S,A, H,P, r, g) with |S| < ∞ and |A| < ∞. We take the
following feature maps and parameter vectors,

d1 = |S|2|A|, ψ(x, a, x′) = e(x,a,x′) ∈ Rd1 , θh = Ph( · , · , · ) ∈ Rd1 (39a)

d2 = |S||A|, ϕ(x, a) = e(x,a) ∈ Rd2 , θr,h = rh( · , · ) ∈ Rd2 , θg,h = gh( · , · ) ∈ Rd2 . (39b)

where e(x,a,x′) is a canonical basis of Rd1 associated with (x, a, x′) and θh = Ph( · , · , · ) reads that for any
(x, a, x′) ∈ S × A × S, the (x, a, x′)th entry of θh is P(x′ |x, a); similarly we define e(x,a), θr,h, and θg,h. Thus,
we can see that

Ph (x′ |x, a) = 〈ψ (x, a, x′) , θh〉, for any (x, a, x′) ∈ S ×A× S

rh(x, a) = 〈ϕ(x, a), θr,h〉 and gh(x, a) = 〈ϕ(x, a), θg,h〉, for any (x, a) ∈ S ×A.
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We can also verify that

‖θh‖ =

 ∑
(x,a,x′)

|Ph(x′ |x, a)|2
1/2

≤
√
|S|2|A| =

√
d1

‖θr,h‖ =

∑
(x,a)

(rh(x, a))
2

1/2

≤
√
|S||A| =

√
d2

‖θg,h‖ =

∑
(x,a)

(gh(x, a))
2

1/2

≤
√
|S||A| =

√
d2

and for any V : S → [0, H] and any (x, a) ∈ S ×A, we have∥∥∥∥∥ ∑
x′ ∈S

ψ(x, a, x′)V (x′)

∥∥∥∥∥ =

(∑
x′ ∈S

(V (x′))
2

)1/2

≤
√
|S|H ≤

√
d1H.

Therefore, the tabular CMDP is a special case of Assumption (2) with d := max (d1, d2) = |S|2|A|.

C.1 Tabular Case of Algorithm 1

We now detail Algorithm 1 for the tabular case as follows. Our policy evaluation works with regression feature
φτ�,h: S ×A → Rd2 ,

φτ�,h(x, a) =
∑
x′

ψ(x, a, x′)V τ�,h+1(x′), for any (x, a) ∈ S ×A

where � = r or g. Thus, for any (x̄, ā, x̄′) ∈ S ×A× S, the (x̄, ā, x̄′)th entry of φτ�,h(x, a) is given by[
φτ�,h(x, a)

]
(x̄,ā,x̄′)

= 1{(x, a) = (x̄, ā)}V τ�,h+1(x̄′)

which shows that φτ�,h(x, a) is a sparse vector with |S| nonzero elements at {(x, a, x′), x′ ∈ S} and the (x, a, x′)th
entry of φτ�,h(x, a) is V τ�,h+1(x′). For instance of � = r, the regularized least-squares problem (4) becomes

k−1∑
τ = 1

(
V τr,h+1(xτh+1) −

∑
(x,a,x′)

1{(x, a) = (xτh, a
τ
h)}V τr,h+1(x′)[w](x,a,x′)

)2

+ λ ‖w‖22

where [w](x,a,x′) is the (x, a, x′)th entry of w, and the solution wkr,h serves as an estimator of the transition kernel
Ph(· | ·, ·). On the other hand, since ϕ(xτh, a

τ
h) = e(xτh,a

τ
h), the regularized least-squares problem (5) becomes

k−1∑
τ = 1

(
rh(xτh, a

τ
h) − [u](xτh,aτh)

)2
+ λ ‖u‖22

where [u](x,a) is the (x, a)th entry of u, the solution ukr,h gives an estimate of rh(x, a) as ϕ(x, a)>ukr,h. By adding

similar UCB bonus terms Γkh, Γkr,h: S × A → R given in Algorithm 2, we estimate the action-value function as
follows,

Qkr,h(x, a) = min
(

[ukr,h](x,a) + φkr,h(x, a)>wkr,h + (Γkh + Γkr,h)(x, a), H − h+ 1
)+

= min

(
[ukr,h](x,a) +

∑
x′ ∈S

V kr,h+1(x′)[wkr,h](x,a,x′) + (Γkh + Γkr,h)(x, a), H − h+ 1

)+

for any (x, a) ∈ S×A. Thus, V kr,h(x) = 〈Qkr,h(x, ·), πkh(· |x)〉A. Similarly, we estimate gh(x, a) and thus Qkg,h(x, a)

and V kg,h(x). Using already estimated {Qkr,h(·, ·), Qkg,h(·, ·), V kr,h(·), Qkg,h(·)}Hh= 1, we execute the policy improve-
ment and the dual update in Algorithm 1.

We restate the result of Theorem 1 for the tabular case as follows.
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Corollary 1 (Regret and Constraint Violation). For the tabular CMDP with feature maps (39), let Assumption 1
hold. Fix p ∈ (0, 1). In Algorithm 1, we set α =

√
log |A|/(H2K), β = C1

√
|S|2|A|H2 log (|S||A|T/p), η =

1/
√
K, θ = 1/K, and λ = 1 where C1 is an absolute constant. Then, the regret and the constraint violation

in (3) satisfy

Regret(K) ≤ C|S|2|A|H2.5
√
T log

(
|S||A|T

p

)
and Violation(K) ≤ C

′
|S|2|A|H2.5

√
T log

(
|S||A|T

p

)
with probability 1− p where C and C

′
are absolute constants.

Proof. It follows the proof of Theorem 1 by noting that the tabular CMDP is a special linear MDP in Assump-
tion 2, with d = |S|2|A|, and we have log |A| ≤ O

(
d2 log (dT/p)

)
automatically.

C.2 Further Results: Proof of Theorem 2

As we see in the proof of Theorem 1, our final regret or constraint violation bounds are dominated by the
accumulated bonus terms, which come from the design of ‘optimism in the face of uncertainty.’ This framework
provides a powerful flexibility for Algorithm 1 to incorporate other optimistic policy evaluation methods. In
what follows, we introduce Algorithm 1 with a variant of optimistic policy evaluation.

We repeat notation for readers’ convenience. For any (h, k) ∈ [H] × [K], any (x, a, x′) ∈ S × A × S, and any
(x, a) ∈ S ×A, we define two visitation counters nkh(x, a, x′) and nkh(x, a) at step h in episode k,

nkh(x, a, x′) =

k−1∑
τ = 1

1{(x, a, x′) = (xτh, a
τ
h, a

τ
h+1)} and nkh(x, a) =

k−1∑
τ = 1

1{(x, a) = (xτh, a
τ
h)}.

This allows us to estimate transition kernel Ph, reward function r, and utility function g for episode k by

P̂kh(x′ |x, a) =
nkh(x, a, x′)

nkh(x, a) + λ
, for all (x, a, x′) ∈ S ×A× S

r̂kh(x, a) =
1

nkh(x, a) + λ

k−1∑
τ = 1

1{(x, a) = (xτh, a
τ
h)}rh(xτh, a

τ
h), for all (x, a) ∈ S ×A.

ĝkh(x, a) =
1

nkh(x, a) + λ

k−1∑
τ = 1

1{(x, a) = (xτh, a
τ
h)}gh(xτh, a

τ
h), for all (x, a) ∈ S ×A.

where λ > 0 is the regularization parameter. Moreover, we introduce the bonus term Γkh: S ×A → R,

Γkh(x, a) = β
(
nkh(x, a) + λ

)−1/2

which adapts the counter-based bonus terms in the literature [9, 36], where β > 0 is to be determined later.

Using the estimated transition kernels {P̂kh}Hh= 1, the estimated reward/utility functions {r̂kh, ĝkh}Hh= 1, and the
bonus terms {Γkh}Hh= 1, we now can estimate the action-value function via

Qk�,h(x, a) = min
(
�̂kh(x, a) +

∑
x′ ∈S

P̂h(x′ |x, a)V k�,h+1(x′) + 2Γkh(x, a), H − h+ 1
)+

for any (x, a) ∈ S×A, where � = r or g. Thus, V k�,h(x) = 〈Qk�,h(x, ·), πkh(· |x)〉A. We summarize the above proce-

dure in Algorithm 3. Using already estimated {Qkr,h(·, ·), Qkg,h(·, ·)}Hh= 1, we can execute the policy improvement
and the dual update in Algorithm 1.

Similar to Theorem 1, we prove the following regret and constraint violation bounds.

Theorem 3 (Regret and Constraint Violation). For the tabular CMDP with feature maps (39), let Assumption 1
hold. Fix p ∈ (0, 1). In Algorithm 1, we set α =

√
log |A|/(H2K), β = C1H

√
|S| log(|S||A|T/p), η = 1/

√
K,

θ = 1/K, and λ = 1 where C1 is an absolute constant. Then, the regret and the constraint violation in (3) satisfy

Regret(K) ≤ C|S|
√
|A|H5T log

(
|S||A|T

p

)
and [Violation(K)]+ ≤ C

′|S|
√
|A|H5T log

(
|S||A|T

p

)
with probability 1− p where C and C ′ are absolute constants.
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Proof. The proof is similar to Theorem 1. Since we only change the policy evaluation, all previous policy
improvement results still hold. By Lemma 4, we have

Regret(K) = C3H
2.5
√
T log |A| +

K∑
k= 1

H∑
h= 1

(
Eπ?

[
ιkr,h(xh, ah)

]
− ιkr,h(xkh, a

k
h)
)

+ MK
r,H,2

where ιkr,h is the model prediction error given by (11) and {Mk
r,h,m}(k,h,m)∈[K]×[H]×[2] is a martingale adapted

to the filtration {Fkh,m}(k,h,m)∈[K]×[H]×[2] in terms of time index t defined in (16). By Lemma 6, it holds with

probability 1 − p/3 that |MK
r,H,2| ≤ 4

√
H2T log(4/p). The rest is to bound the double sum term. As shown in

Section D.4, with probability 1− p/2 it holds that for any (k, h) ∈ [K]× [H] and (x, a) ∈ S ×A,

− 4Γkh(x, a) ≤ ιkr,h(x, a) ≤ 0. (40)

Together with the choice of Γkh, we have

K∑
k= 1

H∑
h= 1

(
Eπ?

[
ιkr,h(xh, ah) |x1

]
− ιkr,h(xkh, a

k
h)
)
≤ 4

K∑
k= 1

H∑
h= 1

Γkh(xkh, a
k
h)

= 4β

K∑
k= 1

H∑
h= 1

(
nkh(xkh, a

k
h) + λ

)−1/2
.

Define mapping φ̄: S ×A → R|S||A| as φ̄(x, a) = e(x,a), we can utilize Lemma 13. For any (k, h) ∈ [K]× [H], we
have

Λ̄kh =

k−1∑
τ = 1

φ̄(xτh, a
τ
h)φ̄(xτh, a

τ
h)> + λI ∈ R|S||A|×|S||A|

Γkh(x, a) = β
(
nkh(x, a) + λ

)−1/2
= β

√
φ̄(x, a)(Λ̄kh)−1φ̄(x, a)>

where Λ̄kh is a diagonal matrix whose the (x, a)th diagonal entry is nkh(x, a) + λ. Therefore, we have

K∑
k= 1

H∑
h= 1

(
Eπ?

[
ιkr,h(xh, ah)

]
− ιkr,h(xkh, a

k
h)
)
≤ 4β

K∑
k= 1

H∑
h= 1

(
φ̄(xkh, a

k
h)(Λ̄kh)−1φ̄(xkh, a

k
h)>
)1/2

≤ 4β

H∑
h= 1

(
K

K∑
k= 1

φ̄(xkh, a
k
h)(Λ̄kh)−1φ̄(xkh, a

k
h)>

)1/2

≤ 4β
√

2K

H∑
h= 1

log1/2

(
det
(
Λ̄K+1
h

)
det Λ̄1

h

)
where we apply the Cauchy-Schwartz inequality for the second inequality and Lemma 13 for the third inequality.
Notice that (K + λ)I � Λ̄Kh and Λ̄1

h = λI. Hence,

Regret(K) = C3H
2.5
√
T log |A| + 4β

√
2|S||A|HT

√
log

(
K + λ

λ

)
+ 4

√
H2T log

(
6

p

)
.

Notice that log |A| ≤ O
(
|S|2|A| log2(|S||A|T/p)

)
. By setting λ = 1 and β = C1H

√
|S| log(|S||A|T/p), we

conclude the desired regret bound.

For the constraint violation analysis, Lemmas 7 still holds. Similar to (37), we have

V π
?

r,1 (x1)− V π
′

r,1(x1) + χ
[
b− V π

′

g,1(x1)
]

+

≤
C4H

2.5
√
T log |A|

K
+

4

K

K∑
k= 1

H∑
h= 1

Γkh(xkh, a
k
h) +

4χ

K

K∑
k= 1

H∑
h= 1

Γkh(xkh, a
k
h) +

1

K
MK
r,H,2 +

χ

K

∣∣MK
g,H,2

∣∣
where V π

′

r,1(x1) = 1
K

∑K
k= 1 V

πk

r,1 (x1) and V π
′

g,1(x1) = 1
K

∑K
k= 1 V

πk

g,1 (x1). Similar to Lemma 6, it holds with

probability 1− p/3 that |MK
g,H,2| ≤ 4

√
H2T log(6/p) for � = r or g. As shown in Section D.4, with probability
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1 − p/3 it holds that −4Γkh(x, a) ≤ ιk�,h(x, a) ≤ 0 for any (k, h) ∈ [K] × [H] and (x, a) ∈ S × A. Therefore, we
have

V π
?

r,1 (x1)− V π′r,1(x1) + χ
[
b− V π′g,1(x1)

]
+

≤
C4H

2.5
√
T log(A|)
K

+
4(1 + χ)β

√
2|S||A|HT

K

√
log

(
K + λ

λ

)
+

4(1 + χ)

K

√
H2T log

(
6

p

)
which leads to the desired constraint violation bound due to Lemma 10 and we set λ and β as previously.

D Other Verifications

In this section, we collect some verifications for readers’ convenience.

D.1 Proof of Formulas (12) and (14)

For any (k, h) ∈ [K]× [H], we recall the definitions of V π
?

r,h in the Bellman equations (1) and V kr,h from line 12 in
Algorithm 2,

V π
?

r,h (x) =
〈
Qπ

?

h (x, ·), π?h( · |x)
〉

and V kr,h(x) =
〈
Qkh(x, · ), πkh( · |x)

〉
.

We can expand the difference V π
?

r,h (x)− V kr,h(x) into

V π
?

r,h (x) − V kr,h(x) =
〈
Qπ

?

h (x, · ), π?h( · |x)
〉
−
〈
Qkh(x, · ), πkh( · |x)

〉
=
〈
Qπ

?

h (x, · )−Qkh(x, · ), π?h( · |x)
〉

+
〈
Qkh(x, · ), π?h( · |x)− πkh( · |x)

〉
=
〈
Qπ

?

h (x, · )−Qkh(x, · ), π?h( · |x)
〉

+ ξkh(x),

(41)

where ξkh(x) := 〈Qkh(x, · ), π?h( · |x)− πkh( · |x)〉.

Recall the equality in the Bellman equations (1) and the model prediction error,

Qπ
?

r,h = rkh + PhV π
?

r,h+1 and ιkr,h = rh + PhV kr,h+1 − Qkr,h.

As a result of the above two, it is easy to see that

Qπ
?

r,h − Qkr,h = Ph
(
V π

?

r,h+1 − V kr,h+1

)
+ ιkr,h.

Substituting the above difference into the right-hand side of (41) yields,

V π
?

r,h (x) − V kr,h(x) =
〈
Ph
(
V π

?

r,h+1 − V kr,h+1

)
(x, · ), π?h( · |x)

〉
+
〈
ιkr,h(x, · ), π?h( · |x)

〉
+ ξkh(x).

which displays a recursive formula over h. Thus, we expand V π
?

r,1 (x1)− V kr,1(x1) recursively with x = x1 as

V π
?

r,1 (x1) − V kr,1(x1) =
〈
P1

(
V π

?

r,2 − V kr,2
)

(x1, ·), π?1(·|x1)
〉

+
〈
ιkr,1(x1, ·), π?1(·|x1)〉 + ξk1 (x1)

=
〈
P1

〈
P2

(
V π

?

r,3 − V kr,3
)

(x2, ·), π?2(·|x2)
〉

(x1, ·) , π?1(·|x1)
〉

+
〈
P1

〈
ιkr,2(x2, ·), π?2(·|x2)

〉
(x1, ·) , π?1(·|x1)

〉
+
〈
ιkr,1(x1, ·), π?1(·|x1)

〉
+
〈
P1ξ

k
2 (x1, ·), π?1(·|x1)

〉
+ ξk1 (x1).

(42)

For notational simplicity, for any (k, h) ∈ [K]× [H], we define an operator Ih for function f : S ×A → R,

(Ihf) (x) =
〈
f(x, · ), π?h ( · |x)

〉
.

With this notation, repeating the above recursion (42) over h ∈ [H] yields

V π
?

r,1 (x1)− V kr,1(x1)

= I1P1I2P2

(
V π

?

r,3 − V kr,3
)

+ I1P1I2ι
k
r,2 + I1ι

k
r,1 + I1P1ξ

k
2 + ξk1

= I1P1I2P2I3P3

(
V π

?

r,4 − V kr,4
)

+ I1P1I2P2I3ι
k
r,3 + I1P1I2ι

k
r,2 + I1ι

k
r,1 + I1P1I2P2ξ

k
3 + I1P1ξ

k
2 + ξk1

...

=

(
H∏
h= 1

IhPh

)(
V π

?

r,H+1 − V kr,H+1

)
+

H∑
h= 1

(
h−1∏
i= 1

IiPi

)
Ihιkr,h +

H∑
h= 1

(
h−1∏
h= 1

IiPi

)
ξkh.
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Finally, notice that V π
?

r,H+1 = V kr,H+1 = 0, we use the definitions of Ph and Ih to conclude (12). Similarly, we can
also use the above argument to verify (14).

D.2 Proof of Formulas (17) and (18)

We recall the definition of V π
k

r,h and define an operator Ikh for function f : S ×A → R,

V π
k

r,h (x) =
〈
Qπ

k

h (x, · ), πkh( · |x)
〉

and
(
Ikhf

)
(x) =

〈
f(x, · ), πkh( · |x)

〉
.

We expand the model prediction error ιkr,h into,

ιkr,h(xkh, a
k
h) = rh(xkh, a

k
h) + (PhV kr,h+1)(xkh, a

k
h)−Qkr,h(xkh, a

k
h)

=
(
rh(xkh, a

k
h) + (PhV kr,h+1)(xkh, a

k
h)−Qπkr,h(xkh, a

k
h)
)

+
(
Qπ

k

r,h(xkh, a
k
h)−Qkr,h(xkh, a

k
h)
)

=
(
PhV kr,h+1 − PhV π

k

r,h+1

)
(xkh, a

k
h) +

(
Qπ

k

r,h(xkh, a
k
h)−Qkr,h(xkh, a

k
h)
)
,

where we use the Bellman equation Qπ
k

r,h(xkh, a
k
h) = rh(xkh, a

k
h) + (PhV π

k

r,h+1)(xkh, a
k
h) in the last equality. With the

above formula, we expand the difference V kr,1(x1)− V πkr,1 (x1) into

V kr,h(xkh)− V πkr,h (xkh) =
(
Ikh(Qkr,h −Qπ

k

r,h)
)

(xkh) − ιkr,h(xkh, a
k
h)

+
(
PhV kr,h+1 − PhV π

k

r,h+1

)
(xkh, a

k
h) +

(
Qπ

k

r,h −Qkr,h
)

(xkh, a
k
h).

Let

Dk
r,h,1 :=

(
Ikh(Qkr,h −Qπ

k

r,h)
)

(xkh) −
(
Qkr,h −Qπ

k

r,h

)
(xkh, a

k
h),

Dk
r,h,2 :=

(
PhV kr,h+1 − PhV π

k

r,h+1

)
(xkh, a

k
h) −

(
V kr,h+1 − V π

k

r,h+1

)
(xkh+1).

Therefore, we have the following recursive formula over h,

V kr,h(xkh)− V π
k

r,h (xkh) = Dk
r,h,1 + Dk

r,h,2 +
(
V kr,h+1 − V π

k

r,h+1

)
(xkh+1) − ιkr,h(xkh, a

k
h).

Notice that V π
k

r,H+1 = V kr,H+1 = 0. Summing the above equality over h ∈ [H] yields

V kr,1(x1) − V π
k

r,1 (x1) =

H∑
h= 1

(
Dk
r,h,1 +Dk

r,h,2

)
−

H∑
h= 1

ιkr,h(xkh, a
k
h). (43)

Following the definitions of Fkh,1 and Fkh,2, we know Dk
r,h,1 ∈ Fkh,1 and Dk

r,h,2 ∈ Fkh,2. Thus, for any (k, h) ∈
[K]× [H],

E
[
Dk
r,h,1 | Fkh−1,2

]
= 0 and E

[
Dk
r,h,2 | Fkh,1

]
= 0.

Notice that t(k, 0, 2) = t(k − 1, H, 2) = 2H(k − 1). Clearly, Fk0,2 = Fk−1
H,2 for any k ≥ 2. Let F1

0,2 be empty. We
define a martingale sequence,

Mk
r,h,m =

k−1∑
τ = 1

H∑
i= 1

(
Dτ
r,i,1 +Dτ

r,i,2

)
+

h−1∑
i= 1

(
Dk
r,i,1 +Dk

r,i,2

)
+

m∑
`= 1

Dk
r,h,`

=
∑

(τ,i,`)∈ [K]×[H]×[2], t(τ,i,`)≤ t(k,h,m)

Dτ
r,i,`,

where t(k, h,m) := 2(k−1)H+2(h−1)+m is the time index. Clearly, this martingale is adapted to the filtration
{Fkh,m}(k,h,m)∈[K]×[H]×[2], and particularly,

K∑
k= 1

H∑
h= 1

(Dk
r,h,1 +Dk

r,h,2) = MK
r,H,2.

Finally, we combine the above martingale with (43) to obtain (17). Similarly, we can show (18).
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D.3 Proof of Formula (19)

We recall the definition of the feature map φkr,h,

φkr,h(x, a) =

∫
S
ψ(x, a, x′)V kr,h+1(x′)dx′

for any (k, h) ∈ [K]× [H] and (x, a) ∈ S ×A. By Assumption 2, we have

(PhV kr,h+1) (x, a) =

∫
S
ψ (x, a, x′)

>
θh · V kr,h+1(x′)dx′

= φkr,h(x, a)>θh

= φkr,h(x, a)>(Λkr,h)−1Λkr,hθh

= φkr,h(x, a)>(Λkr,h)−1

(
k−1∑
τ = 1

φτr,h(xτh, a
τ
h)φτr,h(xτh, a

τ
h)>θh + λθh

)

= φkr,h(x, a)>(Λkr,h)−1

(
k−1∑
τ = 1

φτr,h(xτh, a
τ
h) · (PhV τr,h+1) (xτh, a

τ
h) + λθh

)

where the second equality is due to the definition of φkr,h, we exploit Λkr,h =
∑k−1
τ = 1 φ

τ
r,h(xτh, a

τ
h)φτr,h(xτh, a

τ
h)>+λI

from line 4 of Algorithm 2 in the fourth equality, and we recursively replace φτr,h(xτh, a
τ
h)>θh by (PhV τr,h+1) (xτh, a

τ
h)

for all τ ∈ [k − 1] in the last equality.

We recall the update wkr,h = (Λkr,h)−1
∑k−1
τ = 1 φ

τ
r,h(xτh, a

τ
h)V τr,h+1(xτh+1) from line 5 of Algorithm 2. Therefore,∣∣∣φkr,h(x, a)>wkr,h − (PhV kr,h+1) (x, a)

∣∣∣
=

∣∣∣∣∣φkr,h(x, a)>(Λkr,h)−1
k−1∑
τ = 1

φτr,h(xτh, a
τ
h) ·

(
V τr,h+1(xτh+1)− (PhV τr,h+1) (xτh, a

τ
h)
)∣∣∣∣∣

+
∣∣∣λ · φkr,h(x, a)>(Λkr,h)−1θh

∣∣∣
≤
(
φkr,h(x, a)>(Λkr,h)−1φkr,h(x, a)

)1/2 ∥∥∥∥∥
k−1∑
τ = 1

φτr,h(xτh, a
τ
h) ·

(
V τr,h+1(xτh+1)− (PhV τr,h+1) (xτh, a

τ
h)
)∥∥∥∥∥

(Λkr,h)−1

+λ
(
φkr,h(x, a)>(Λkr,h)−1φkr,h(x, a)

)1/2

‖θh‖(Λkr,h)−1

for any (k, h) ∈ [K] × [H] and (x, a) ∈ S × A, where we apply the Cauchy-Schwarz inequality twice in the
inequality. By Lemma 12, set λ = 1, with probability 1− p/2 it holds that∥∥∥∥∥

k−1∑
τ = 1

φτr,h(xτh, a
τ
h) ·

(
V τr,h+1(xτh+1)− (PhV τr,h+1) (xτh, a

τ
h)
)∥∥∥∥∥

(Λkr,h)−1

≤ C

√
dH2 log

(
dT

p

)
.

Also notice that Λkr,h � λI and ‖θh‖ ≤
√
d, thus ‖θh‖(Λkr,h)−1 ≤

√
λd. Thus, by taking an appropriate absolute

constant C, we obtain that

∣∣φkr,h(x, a)>wkr,h − (PhV kr,h+1) (x, a)
∣∣ ≤ C

(
φkr,h(x, a)>(Λkr,h)−1φkr,h(x, a)

)1/2√
dH2 log

(
dT

p

)
for any (k, h) ∈ [K]× [H] and (x, a) ∈ S ×A under the event of Lemma 12.

We now set C > 1 and β = C
√
dH2 log (dT/p). By the exploration bonus Γkr,h in line 7 of Algorithm 2, with

probability 1− p/2 it holds that∣∣φkr,h(x, a)>wkr,h − (PhV kr,h+1) (x, a)
∣∣ ≤ Γkr,h(x, a) (44)
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for any (k, h) ∈ [K]× [H] and (x, a) ∈ S ×A.

We note that reward/utility functions are fixed over episodes, rh(xτh, a
τ
h) := ϕ(xτh, a

τ
h)>θr,h For the difference

ϕ(x, a)>ukr,h − rh(x, a), we have∣∣∣ϕ(x, a)>ukr,h − rh(x, a)
∣∣∣

=
∣∣ϕ(x, a)>ukr,h − ϕ(x, a)>θr,h

∣∣
=

∣∣∣∣∣ϕ(x, a)>(Λkh)−1

(
k−1∑
τ = 1

ϕ(xτh, a
τ
h)rh(xτh, a

τ
h)− Λkh θr,h

)∣∣∣∣∣
=

∣∣∣∣∣ϕ(x, a)>(Λkh)−1

(
k−1∑
τ = 1

ϕ(xτh, a
τ
h)
(
rh(xτh, a

τ
h)− ϕ(xτh, a

τ
h)>θr,h

)
+ λθr,h

)∣∣∣∣∣
= λ

∣∣ϕ(x, a)>(Λkh)−1θr,h
∣∣

≤ λ
(
ϕ(x, a)>(Λkh)−1ϕ(x, a)

)1/2 ‖θr,h‖(Λkh)−1

where we apply the Cauchy-Schwartz inequality in the inequality. Notice that Λkh � λI and ‖θr,h‖ ≤
√
d, thus

‖θr,h‖(Λkh)−1 ≤
√
λd. Hence, if we set λ = 1 and β = C

√
dH2 log (dT/p), then any (k, h) ∈ [K] × [H] and

(x, a) ∈ S ×A, ∣∣ϕ(x, a)>ukr,h − rh(x, a)
∣∣ ≤ Γkh(x, a). (45)

We recall the model prediction error ιkr,h := rh + PhV kr,h+1 −Qkr,h and the estimated state-action value function

Qkr,h in line 11 of Algorithm 2,

Qkr,h(x, a) = min
(
ϕ(x, a)>ukr,h + φkr,h(x, a)>wkr,h + (Γkh + Γkr,h)(x, a), H − h+ 1

)+
for any (k, h) ∈ [K]× [H] and (x, a) ∈ S ×A. By (44) and (45), we first have

φkr,h(x, a)>wkr,h + Γkr,h(x, a) ≥ 0 and ϕ(x, a)>ukr,h + Γkh(x, a) ≥ 0.

Then, we can show that

− ιkr,h(x, a)

= Qkr,h(x, a) − (rh + PhV kr,h+1)(x, a)

≤ ϕ(x, a)>ukr,h + φkr,h(x, a)>wkr,h + (Γkh + Γkr,h)(x, a) − (rkh + PhV kr,h+1)(x, a)

≤ (ϕ(x, a)>ukr,h − rh(x, a)) + Γkh(x, a) + 2Γkr,h(x, a)

(46)

for any (k, h) ∈ [K]× [H] and (x, a) ∈ S ×A.

Therefore, (46) reduces to

− ιkr,h(x, a) ≤ 2Γkh(x, a) + 2Γkr,h(x, a) = 2(Γkh + Γkr,h)(x, a).

On the other hand, notice that (rkh + PhV kr,h+1)(x, a) ≤ H − h+ 1, thus

ιkr,h(x, a)

= (rh + PhV kr,h+1)(x, a) − Qkr,h(x, a)

≤ (rh + PhV kr,h+1)(x, a) − min
(
ϕ(x, a)>ukr,h + φkr,h(x, a)>wkr,h + (Γkh + Γkr,h)(x, a), H − h+ 1

)+
≤ max

(
rh(x, a)− ϕ(x, a)>ukr,h − Γkh(x, a) + (PhV kr,h+1)(x, a)− φkr,h(x, a)>wkr,h − Γkr,h(x, a), 0

)+
≤ 0

for any (k, h) ∈ [K]× [H] and (x, a) ∈ S ×A.
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Therefore, we have proved that with probability 1− p/2 it holds that

−2(Γkh + Γkr,h)(x, a) ≤ ιkr,h(x, a) ≤ 0

for any (k, h) ∈ [K]× [H] and (x, a) ∈ S ×A.

Similarly, we can show another inequality −2(Γkh + Γkg,h)(x, a) ≤ ιkg,h(x, a) ≤ 0.

D.4 Proof of Formula (40)

Let V = {V : S → [0, H]} be a set of bounded function on S. Fo any V ∈ V, we consider the difference between∑
x′ ∈S P̂kh(x′ | ·, ·)V (x′) and

∑
x′ ∈S Ph(x′ | ·, ·)V (x′) as follows,

(
nkh(x, a) + λ

)1/2 ∣∣∣∣∣ ∑
x′ ∈S

(
P̂kh(x′ |x, a)V (x′)− Ph(x′ |x, a)V (x′)

)∣∣∣∣∣
=
(
nkh(x, a) + λ

)−1/2

∣∣∣∣∣ ∑
x′ ∈S

nkh(x, a, x′)V (x′)− (nkh(x, a) + λ)(PhV )(x, a)

∣∣∣∣∣
≤
(
nkh(x, a) + λ

)−1/2

∣∣∣∣∣ ∑
x′ ∈S

nkh(x, a, x′)V (x′)− nkh(x, a)(PhV )(x, a)

∣∣∣∣∣
+
(
nkh(x, a) + λ

)−1/2 |λ(PhV )(x, a)|

=
(
nkh(x, a) + λ

)−1/2

∣∣∣∣∣
k−1∑
τ = 1

1{(x, a) = (xτh, a
τ
h)}
(
V (xτh+1)− (PhV )(x, a)

)∣∣∣∣∣
+
(
nkh(x, a) + λ

)−1/2 |λ(PhV )(x, a)|

(47)

for any (k, h) ∈ [K]× [H] and (x, a) ∈ S ×A, where we apply the triangle inequality for the inequality.

Let ητh := V (xτh+1)− (PhV )(xτh, a
τ
h). Conditioning on the filtration Fkh,1, ητh is a zero-mean and H/2-subGaussian

random variable. By Lemma 11, we use Y = λI and Xτ = 1{(x, a) = (xτh, a
τ
h)} and thus with probability at

least 1− δ it holds that(
nkh(x, a) + λ

)−1/2

∣∣∣∣∣
k−1∑
τ = 1

1{(x, a) = (xτh, a
τ
h)}
(
V (xτh+1)− (PhV )(x, a)

)∣∣∣∣∣
≤

√√√√H2

2
log

((
nkh(x, a) + λ

)1/2
λ−1/2

δ/H

)

≤

√
H2

2
log

(
T

δ

)
for any (k, h) ∈ [K]× [H]. Also, since 0 ≤ V ≤ H, we have(

nkh(x, a) + λ
)−1/2 |λ(PhV )(x, a)| ≤

√
λH.

By returning to (47) and setting λ = 1, with probability at least 1− δ it holds that

(
nkh(x, a) + λ

) ∣∣∣∣∣ ∑
x′ ∈S

(
P̂kh(x′ |x, a)V (x′)− Ph(x′ |x, a)V (x′)

)∣∣∣∣∣
2

≤ H2

(
log

(
T

δ

)
+ 2

)
(48)

for any k ≥ 1.

Let d(V, V ′) = maxx∈S |V (x)− V ′(x)| be a distance on V. For any ε, an ε-covering Vε of V with respect to
distance d(·, ·) satisfies

|Vε| ≤

(
1 +

2
√
|S|H
ε

)|S|
.
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Thus, for any V ∈ V, there exists V ′ ∈ Vε such that maxx∈S |V (x)− V ′(x)| ≤ ε. By the triangle inequality, we
have (

nkh(x, a) + λ
)1/2 ∣∣∣∣∣ ∑

x′ ∈S

(
P̂kh(x′ |x, a)V (x′)− Ph(x′ |x, a)V (x′)

)∣∣∣∣∣
=
(
nkh(x, a) + λ

)1/2 ∣∣∣∣∣ ∑
x′ ∈S

(
P̂kh(x′ |x, a)V ′(x′)− Ph(x′ |x, a)V ′(x′)

)∣∣∣∣∣
+
(
nkh(x, a) + λ

)1/2 ∣∣∣∣∣ ∑
x′ ∈S

(
P̂kh(x′ |x, a)(V (x′)− V ′(x′))− Ph(x′ |x, a)(V (x′)− V ′(x′))

)∣∣∣∣∣
≤
(
nkh(x, a) + λ

)1/2 ∣∣∣∣∣ ∑
x′ ∈S

(
P̂kh(x′ |x, a)V ′(x′)− Ph(x′ |x, a)V ′(x′)

)∣∣∣∣∣
+ 2

(
nkh(x, a) + λ

)−1/2
ε.

Furthermore, we choose δ = (p/3) / (|Vε||S||A|) and take a union bound over V ∈ Vε and (x, a) ∈ S×A. By (48),
with probability at least 1− p/2 it holds that

sup
V ∈V

{(
nkh(x, a) + λ

)1/2 ∣∣∣∣∣ ∑
x′ ∈S

(
P̂kh(x′ |x, a)V (x′)− Ph(x′ |x, a)V (x′)

)∣∣∣∣∣
}

≤

√
H2

(
log

(
T

δ

)
+ 2

)
+ 2

(
nkh(x, a) + λ

)−1/2 H

K

≤

√
2H2

(
log |Vε|+ log

(
2|S||A|T

p

)
+ 2

)
+ 2

(
nkh(x, a) + λ

)−1/2 H

K

≤ C1H

√
|S| log

(
|S||A|T

p

)
:= β

for all (k, h) and (x, a), where C1 is an absolute constant. We recall our choice of Γkh and β. Hence, with
probability at least 1− p/2 it holds that∣∣∣∣∣ ∑

x′ ∈S

(
P̂kh(x′ |x, a)V (x′)− Ph(x′ |x, a)V (x′)

)∣∣∣∣∣ ≤ β
(
nkh(x, a) + λ

)−1/2
:= Γkh(x, a)

for any (k, h) ∈ [K]× [H] and (x, a) ∈ |S| × |A|, where β := C1H
√
|S| log(|S||A|T/p).

We recall the definition rh(x, a) = e>(x,a)θr,h. By our estimation r̂kh(x, a) in Algorithm 3, we have

r̂kh(x, a) =
1

nkh(x, a) + λ

k−1∑
τ = 1

1{(x, a) = (xτh, a
τ
h)}[θr,h](xτh,aτh)

and thus ∣∣r̂kh(x, a)− rh(x, a)
∣∣

=
∣∣r̂kh(x, a)− [θr,h](x,a)

∣∣
=
(
nkh(x, a) + λ

)−1

∣∣∣∣∣
k−1∑
τ = 1

1{(x, a) = (xτh, a
τ
h)}
(

[θr,h](xτh,aτh) − [θr,h](x,a)

)
− λ[θr,h](x,a)

∣∣∣∣∣
=
(
nkh(x, a) + λ

)−1 ∣∣λ[θr,h](x,a)

∣∣
≤
(
nkh(x, a) + λ

)−1
λ

≤
(
nkh(x, a) + λ

)−1/2
λ

≤ Γkh(x, a)
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where we utilize λ = 1 and β ≥ 1 in the inequalities.

We now are ready to check the model prediction error ιkr,h defined by (11),

− ιkr,h(x, a)

= Qkr,h(x, a) − (rh + PhV kr,h+1)(x, a)

≤ r̂kh(x, a) +
∑
x′ ∈S P̂kh(x′ |x, a)V kr,h+1(x′) + 2Γkh(x, a) − (rh + PhV kr,h+1)(x, a)

≤ 4Γkh(x, a)

for any (x, a) ∈ S ×A. On the other hand, notice that (rh + PhV kr,h+1)(x, a) ≤ H − h+ 1, thus

ιkr,h(x, a)

= (rh + PhV kr,h+1)(x, a) − Qkr,h(x, a)

≤ (rh + PhV kr,h+1)(x, a) − min
(
r̂kh(x, a) +

∑
x′ ∈S P̂kh(x′ |x, a)V kr,h+1(x′) + 2Γkh(x, a), H − h+ 1

)+
≤ max

(
(rh − r̂h)(x, a)− Γkh(x, a) + (PhV kr,h+1)(x, a)−

∑
x′ ∈S P̂kh(x′ |x, a)V kr,h+1(x′)− Γkh(x, a), 0

)+
≤ 0

for any (k, h) ∈ [K]× [H] and (x, a) ∈ S ×A. Hence, we complete the proof of (40).

E Supporting Lemmas from Optimization

We collect some standard results from the literature for readers’ convenience. We rephrase them for our con-
strained problem (2),

maximize
π ∈∆(A |S,H)

V πr,1(x1) subject to V πg,1(x1) ≥ b

in which we maximize over all policies and b ∈ (0, H]. Let the optimal solution be π? such that

V π
?

r,1 (x1) = maximize
π ∈∆(A |S,H)

{V πr,1(x1) |V πg,1(x1) ≥ b }.

Let the Lagrangian be L(π, Y ) := V πr,1(x1) + Y (V πg,1(x1) − b), where Y ≥ 0 is the Lagrange multiplier or dual
variable. The associated dual function is defined as

D(Y ) := maximize
π ∈∆(A |S,H)

L(π, Y ) := V πr,1(x1) + Y (V πg,1(x1)− b)

and the optimal dual is Y ? := argminY ≥ 0D(Y ),

D(Y ?) := minimize
λ≥ 0

D(Y )

We recall that the problem (2) enjoys strong duality under the strict feasibility condition (also called Slater
condition). The proof follows [52, Proposition 1] in finite-horizon.

Assumption 3 (Slater Condition). There exists γ > 0 and π̄ such that V π̄g,1(x1)− b ≥ γ.

Lemma 8 (Strong Duality). [52, Proposition 1] If the Slater condition holds, then the strong duality holds,

V π
?

r,1 (x1) = D(Y ?).

It is implied by the strong duality that the optimal solution to the dual problem: minimizeY ≥ 0 D(Y ) is obtained
at Y ?. Denote the set of all optimal dual variables as Λ?.

Under the Slater condition, a useful property of the dual variable is that the sublevel sets are bounded [12,
Section 8.5].
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Lemma 9 (Boundedness of Sublevel Sets of the Dual Function). Let the Slater condition hold. Fix C ∈ R. For
any Y ∈ {Y ≥ 0 | D(Y ) ≤ C}, it holds that

Y ≤ 1

γ

(
C − V π̄r,1(x1)

)
.

Proof. By Y ∈ {Y ≥ 0 | D(Y ) ≤ C},

C ≥ D(Y ) ≥ V π̄r,1(x1) + Y (V π̄g,1(x1)− b) ≥ V π̄r (ρ) + Y γ

where we utilize the Slater point π̄ in the last inequality. We complete the proof by noting γ > 0.

Corollary 2 (Boundedness of Y ?). If we take C = V π
?

r,1 (x1) = D(Y ?), then Λ? = {Y ≥ 0 | D(Y ) ≤ C}. Thus,
for any Y ∈ Λ?,

Y ≤ 1

γ

(
V π

?

r,1 (x1)− V π̄r,1(x1)
)
.

Another useful theorem from the optimization [12, Section 3.5] is given as follows. It describes that the constraint
violation b − V πg,1(x1) can be bounded similarly even if we have some weak bound. We next state and prove it
for our problem, which is used in our constraint violation analysis in Section B.

Lemma 10 (Constraint Violation). Let the Slater condition hold and Y ? ∈ Λ?. Let C? ≥ 2Y ?. Assume that
π ∈ ∆(A |S, H) satisfies

V π
?

r,1 (x1) − V πr,1(x1) + C?
[
b− V πg,1(x1)

]
+
≤ δ.

Then, [
b− V πg,1(x1)

]
+
≤ 2δ

C?

where [x]+ = max(x, 0).

Proof. Let

v(τ) = maximize
π ∈∆(A |S,H)

{V πr,1(x1) |V πg,1(x1) ≥ b+ τ }.

By definition, v(0) = V π
?

r,1 (x1). It has been shown as a special case of [52, Proposition 1] that v(τ) is concave.
First, we show that −Y ? ∈ ∂v(0). By the Lagrangian and the strong duality,

L(π, Y ?) ≤ maximize
π ∈∆(A |S,H)

L(π, Y ?) = D(Y ?) = V π
?

r,1 (x1) = v(0), for all π ∈ ∆(A |S, H).

For any π ∈ {π ∈ ∆(A |S, H) |V πg,1(x1) ≥ b+ τ},

v(0)− τY ? ≥ L(π, Y ?)− τY ?

= V πr,1(x1) + Y ?(V πg,1(x1)− b)− τY ?

= V πr,1(x1) + Y ?(V πg,1(x1)− b− τ)

≥ V πr,1(x1).

If we maximize the right-hand side of above inequality over π ∈ {π ∈ ∆(A |S, H) |V πg,1(x1) ≥ b+ τ}, then

v(0)− τY ? ≥ v(τ)

which show that −Y ? ∈ ∂v(0). On the other hand, if we take τ = τ̄ := −(b− V π̄g,1(x1))+, then

V π̄r,1(x1) ≤ V π
?

r,1 (x1) = v(0) ≤ v(τ̄).

Combing the above two yields

V π̄r,1(x1)− V ?r,1(x1) ≤ −τ̄Y ?.
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Thus,

(C? − Y ?) |τ̄ | = −Y ? |τ̄ |+ C? |τ̄ |

= τ̄Y ? + C? |τ̄ |

≤ V π
?

r,1 (x1)− V π̄r,1(x1) + C? |τ̄ | .

By our assumption and τ̄ =
[
b− V π̄g (ρ)

]
+

,

[
b− V π̄g,1(x1)

]
+
≤ δ

C? − Y ?
≤ 2δ

C?
.

F Other Supporting Lemmas

First, we state a useful concentration inequality for the standard self-normalized processes.

Lemma 11 (Concentration of Self-normalized Processes). Let {Ft}∞t= 0 be a filtration and {ηt}∞t= 1 be a R-valued
stochastic process such that ηt is Ft-measurable for any t ≥ 0. Assume that for any t ≥ 0, conditioning on Ft, ηt
is a zero-mean and σ-subGaussian random variable with the variance proxy σ2 > 0, i.e., E

[
eληt | Ft

]
≤ eλ

2σ2/2

for any λ ∈ R. Let {Xt}∞t= 1 be an Rd-valued stochastic process such that Xt is Ft-measurable for any t ≥ 0. Let
Y ∈ Rd×d be a deterministic and positive-definite matrix. For any t ≥ 0, we define

Ȳt := Y +

t∑
τ = 1

XτX
>
τ and St =

t∑
τ = 1

ητXτ .

Then, for any fixed δ ∈ (0, 1), it holds with probability at least 1− δ that

‖St‖2(Ȳt)−1 ≤ 2σ2 log

(
det
(
Ȳt
)1/2

det (Y )
−1/2

δ

)

for any t ≥ 0.

Proof. See the proof of Theorem 1 in [1].

The above concentration inequality can be customized to our setting in the following form without using covering
number arguments as in [37].

Lemma 12. Let λ = 1 in Algorithm 2. Fix δ ∈ (0, 1). Then, for any (k, h) ∈ [K]× [H] it holds for � = r or g
that ∥∥∥∥∥

k−1∑
τ = 1

φτ�,h(xτh, a
τ
h)>

(
V k�,h+1(xτh+1)− (PhV k�,h+1)(xτh, a

τ
h)
)∥∥∥∥∥

(Λk�,h)−1

≤ C

√
dH2 log

(
dT

δ

)
with probability at least 1− δ/2 where C > 0 is an absolute constant.

Proof. See the proof of Lemma D.1 in [20].

Lemma 13 (Elliptical Potential Lemma). Let {φt}∞t=1 be a sequence of functions in Rd and Λ0 ∈ Rd×d be a

positive definite matrix. Let Λt = Λ0 +
∑t−1
i= 1 φiφ

>
i . Assume ‖φt‖2 ≤ 1 and λmin (Λ0) ≥ 1. Then for any t ≥ 1

it holds that

log

(
det (Λt+1)

det (Λ1)

)
≤

t∑
i= 1

φ>i Λ−1
i φi ≤ 2 log

(
det (Λt+1)

det (Λ1)

)
.

Proof. See the proof of Lemma D.2 in [37] or [20].
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Lemma 14 (Pushback Property of KL-divergence). Let f : ∆→ R be a concave function where ∆ is a probability
simplex in Rd. Let ∆o be the interior of ∆. Let x? = argmaxx∈∆ f(x) − α−1D(x, y) for a fixed y ∈ ∆o and
α > 0. Then, for any z ∈ ∆,

f(x?) − 1

α
D(x?, y) ≥ f(z) − 1

α
D(z, y) +

1

α
D(z, x?).

Proof. See the proof of Lemma 14 in [68].

Lemma 15 (Bounded KL-divergence Difference). Let π1, π2 be two probability distributions in ∆(A). Let π̃2 =
(1− θ)π2 + 1θ/|A| where θ ∈ (0, 1]. Then,

D (π1 | π̃2) − D (π1 |π2) ≤ θ log |A|.

Moreover, we have a uniform bound, D (π1 | π̃2) ≤ log(|A|/θ).

Proof. See the proof of Lemma 31 in [68].


