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Abstract

We study the safe reinforcement learning
problem using the constrained Markov de-
cision processes in which an agent aims to
maximize the expected total reward sub-
ject to a safety constraint on the expected
total value of a utility function. We fo-
cus on an episodic setting with the func-
tion approximation where the Markov tran-
sition kernels have a linear structure but
do not impose any additional assumptions
on the sampling model. Designing safe re-
inforcement learning algorithms with prov-
able computational and statistical e�ciency
is particularly challenging under this set-
ting because of the need to incorporate both
the safety constraint and the function ap-
proximation into the fundamental exploita-
tion/exploration tradeo↵. To this end, we
present an Optimistic Primal-Dual Proxi-
mal Policy OPtimization (OPDOP) algo-
rithm where the value function is estimated
by combining the least-squares policy evalu-
ation and an additional bonus term for safe
exploration. We prove that the proposed al-
gorithm achieves an eO(dH2.5

p
T ) regret and

an eO(dH2.5
p
T ) constraint violation, where

d is the dimension of the feature mapping, H
is the horizon of each episode, and T is the
total number of steps. These bounds hold
when the reward/utility functions are fixed
but the feedback after each episode is ban-
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dit. Our bounds depend on the capacity of
the state-action space only through the di-
mension of the feature mapping and thus our
results hold even when the number of states
goes to infinity. To the best of our knowledge,
we provide the first provably e�cient online
policy optimization algorithm for constrained
Markov decision processes in the function ap-
proximation setting, with safe exploration.

1 Introduction

Reinforcement Learning (RL) studies how an agent
learns to maximize its expected total reward by inter-
acting with an unknown environment over time [60].
Safe RL augments RL with a practical consideration
of safety to deal with restrictions/constraints arising
from real-world problems [33, 6, 28]. Examples include
collision-avoidance in autonomous robots [31, 32], cost
limitations in medical applications [34, 11], and legal
and business restrictions in financial management [2].
A standard environment model for safe RL is the
Constrained Markov Decision Processes (CMDPs) [5]
that generalize the classical MDPs to maximizing
the expected total reward under a safety-related con-
straint on the expected total utility [3, 65]. The
presence of constraints makes the fundamental explo-
ration/exploitation trade-o↵ more challenging.

There is considerable growth in safe RL, especially
those studies on CMDPs, e.g., constrained policy gra-
dient [63, 59], Lagrangian-based actor-critic [15, 14,
61, 46, 74], constrained policy optimization [3, 72, 78],
primal-dual policy optimization [53, 52]. A key high-
light of their developments is the successful integration
of the constrained optimization and the policy-based
RL for addressing constraints. Notwithstanding many
successes, these safe RL algorithms either do not have
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a convergence theory or are limited to asymptotic con-
vergence. In practice, only a finite amount of data is
available. Hence, it is imperative to design safe RL al-
gorithms with computational and statistical e�ciency
guarantees. For this purpose, we must address the ex-
ploration/exploitation trade-o↵ under constraints.

In this work, we look at the challenging problem of
finding a sequence of policies in response to online
streaming samples of transition, reward functions, and
utility functions. We attempt to provide theoretical
guarantees on the regret of an algorithm approaching
the best policy in hindsight, and feasibility region de-
termined by constraints. The task of safe exploration

is to explore the unknown environment and learn to
adapt the policy to the constraint set. Our problem
setting deviates from existing scenarios, where good
priors on constraints or transition models are more fo-
cused, e.g., references [62, 13, 25, 66, 23, 24, 65]. Re-
cent policy-based safe RL algorithms for CMDPs, e.g.,
constrained policy optimization [3, 72, 78] and primal-
dual policy optimization [53, 52], seek a single safe
policy via the constrained policy optimization whose
sample e�ciency guarantees do not have a theory.

In this paper, we aim to answer a theoretical question:

Can we design a provably sample e�cient on-

line policy optimization algorithm for CMDPs

in the function approximation setting?

Contribution. We propose a provably e�cient safe
RL algorithm for CMDPs with an unknown transition
model in the linear episodic setting – an Optimistic
Primal-Dual Proximal Policy OPtimization (OPDOP)
algorithm – where the value function is estimated by
combining the least-squares policy evaluation and an
additional bonus term for safe exploration. Theoret-
ically, we prove that the proposed algorithm achieves
an eO(dH2.5

p
T ) regret and the same eO(dH2.5

p
T ) con-

straint violation, where d is the dimension of the fea-
ture mapping, H is the horizon of each episode, and T
is the total number of steps. We establish these bounds
in the setting where the reward/utility functions are
fixed but the feedback after each episode is bandit.
Our bounds depend on the capacity of the state space
only through the dimension of the feature mapping and
thus hold even when the number of states goes to in-
finity. To the best of our knowledge, our result is the
first provably e�cient online policy optimization for
CMDPs in the function approximation setting, with
safe exploration.

Related Work. Our work is related to a line of prov-
ably e�cient RL algorithms based on the linear func-
tion approximation, e.g., references [70, 71, 37, 20, 76].
Using the optimism in the face of uncertainty [7, 19],
these references address the exploration/exploitation

trade-o↵ by adding the Upper Confidence Bound
(UCB) bonus, and proposed algorithms are provably
sample-e�cient. A closely-related reference [20] con-
nects policy-based RL with optimism, and proposes
an optimistic proximal policy optimization with UCB
exploration. However, all these references only study
some particular MDPs in unconstrained RL problems.
Additional e↵orts need to pay for making them work
for CMDPs. Our work seeks to design an optimistic
variant of proximal policy optimization for CMDPs.
For the large CMDPs with unknown transition mod-
els, there is a line of literature that is related to
the policy optimization under constraints, e.g., refer-
ences [63, 3, 72, 61, 48, 78]. However, the exploration
under constraints is less studied and their theoretical
guarantees are unknown. Our work fills in this gap.

The study of RL algorithms for CMDPs has re-
ceived growing attention, especially those on learning
CMDPs with unknown transitions and rewards. As we
know, most of them are model-based and only apply
to finite state-action spaces. References [58, 29] lever-
age upper confidence bound (UCB) on fixed reward,
utility, and transition probability to propose sample-
e�cient algorithms for tabular CMDPs; reference [58]
establishes an eO(

p
|A|T 1.5 log T ) regret and constraint

violation via linear program in the average-cost case
in time T ; reference [29] achieves an eO(|S|

p
H3T ) re-

gret and constraint violation in the episodic setting via
linear program and primal-dual policy optimization,
where S is a state-space, A is an action space, and
H is a fixed horizon of episode. In reference [55], the
authors study an adversarial stochastic shortest path
problem under constraints and unknown transitions
with eO(|S|

p
|A|H2T ) regret and constraint violation.

Reference [10] extends Q-learning with optimism for fi-
nite state-action CMDPs with peak constraints. Ref-
erence [18] proposes UCB-based convex planning for
episodic tabular CMDPs in dealing with convex or
hard constraints. References [40, 35] establish prob-
ably approximately correct (PAC) guarantees that en-
joy better problem-dependent sample-complexity. In
contrast, our proposed algorithm can potentially ap-
ply to scenarios with infinite state-space, and our pro-
vided sublinear regret and constraint violation bounds
only depend on the implicit dimension instead of the
true dimension of the state space. Compared to more
recent references [26, 69, 21, 77], our development at-
tacks the exploration directly and does not rely on any
policy ‘simulators’ (or generative models).

2 Problem Setup

We consider an episodic Markov decision process
(MDP) – MDP(S,A, H,P, r) – where S is a state
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space, A is an action space, H is a fixed length of
each episode, P = {Ph}Hh=1 is a collection of transition
probability measures, and r = {rh}Hh=1 is a collection
of reward functions. We assume that S is a measur-
able space with possibly infinite number of elements.
Moreover, for each step h 2 [H], Ph( · |x, a) is a transi-
tion kernel over next state if action a is taken for state
x and rh: S ⇥ A ! [0, 1] is a reward function. The
constrained MDP – CMDP(S,A, H,P, r, g) – addition-
ally contains utility functions g = {gh}Hh=1 where gh:
S ⇥ A ! [0, 1]. We assume that reward/utility func-
tions are deterministic. Our analysis readily general-
izes to the setting where reward/utility are random.

Let the policy space �(A |S, H) be {{⇡h( · | · )}Hh=1:
⇡h( · |x) 2 �(A), 8x 2 S and h 2 [H]}, where �(A)
denotes a probability simplex over the action space.
Let ⇡k 2 �(A |S, H) be a policy taken by the agent
at episode k, where ⇡k

h
( · |xk

h
): S ! A is the action

that the agent takes at state xk

h
. For simplicity, we

assume the initial state xk

1 to be fixed as x1 in dif-
ferent episodes for brevity. The agent interacts with
the environment in the kth episode as follows. At the
beginning, the agent determines a policy ⇡k. Then, at
each step h 2 [H], the agent observes the state xk

h
2 S,

determines an action ak
h
following the policy ⇡k

h
( · |xk

h
),

and receives a reward rh(xk

h
, ak

h
) together with an util-

ity gh(xk

h
, ak

h
). Meanwhile, the MDP evolves into next

state xk

h+1 drawing from the probability Ph( · |xk

h
, ak

h
).

The episode terminates at state xk

H
in which no con-

trol action is taken and both reward and utility func-
tions are equal to zero. In this paper, we focus a ban-
dit setting where the agent only observes the values
of reward/utility functions, rh(xk

h
, ak

h
), gh(xk

h
, ak

h
), at

visited state-action pair (xk

h
, ak

h
). We assume that re-

ward/utility functions are fixed over episodes.

Given a policy ⇡ 2 �(A |S, H), the value function V ⇡

r,h

associated with the reward function r at each step h
are the expected values of total rewards,

V ⇡

r,h
(x) = E⇡

"
HX

i=h

ri(xi, ai)
��xh = x

#

for all x 2 S, h 2 [H], where the expecta-
tion E⇡ is taken over the random state-action se-
quence {(xh, ah)}Hh= i

; the action ah follows the policy
⇡h( · |xh) at the state xh and the next state xh+1 fol-
lows the transition dynamics Ph( · |xh, ah). Thus, the
action-value function Q⇡

r,h
(x, a): S⇥A ! R associated

with the reward function r is the expected value of to-
tal rewards when the agent starts from state-action
pair (x, a) at step h and follows policy ⇡,

Q⇡

r,h
(x, a) = E⇡

"
HX

i=h

ri(xi, ai)
��xh = x, ah = a

#

for all (x, a) 2 S ⇥ A and h 2 [H]. Similarly, we
define the value function V ⇡

g,h
: S ! R and the action-

value function Q⇡

g,h
(x, a): S ⇥A ! R associated with

the utility function g. Denote symbol ⇧ = r or g.
For brevity, we take the shorthand PhV ⇡

⇧,h+1(x, a) :=
Ex0⇠Ph( · | x,a)V

⇡

⇧,h+1(x
0). The Bellman equations asso-

ciated with a policy ⇡ are given by

Q⇡

⇧,h(x, a) =
�
⇧h +PhV ⇡

⇧,h+1

�
(x, a) (1)

where V ⇡

⇧,h(x) =
⌦
Q⇡

⇧,h (x, · ),⇡h( · |x)
↵
A, for all

(x, a) 2 S⇥A. Here, the inner product of a function f :
S ⇥A ! R with ⇡( · |x) 2 �(A) at fixed x 2 S rep-
resents hf(x, · ),⇡( · |x)iA :=

P
a2Ahf(x, a),⇡(a |x)i.

2.1 Learning Performance

The learning agent aims to find a solution of a con-
strained problem in which the objective function is
the expected total rewards and the constraint is on
the expected total utilities,

maximize
⇡ 2�(A |S,H)

V ⇡

r,1(x1) subject to V ⇡

g,1(x1) � b (2)

where we take b 2 (0, H] to avoid triviality. It is readily
generalized to the problem with multiple constraints.
Let ⇡? 2 �(A |S, H) be a solution to problem (2).
Since the policy ⇡? is computed from knowing the
transition model and all reward and utility functions,
we refer it as an optimal policy in-hindsight.

The associated Lagrangian of problem (2) is given by

L(⇡, Y ) := V ⇡

r,1(x1) + Y (V ⇡

g,1(x1)� b)

where ⇡ is the primal variable and Y � 0 is the dual
variable. We can cast (2) into a saddle-point problem,

maximize
⇡ 2�(A |S,H)

minimize
Y � 0

L(⇡, Y )

where L(⇡, Y ) is convex in Y and is non-concave in
⇡ in general. To address the non-concavity, we will
exploit the structure of value functions to propose a
variant of Lagrange multipliers method for constrained
RL problems in Section 3, which warrants a new line
of primal-dual mirror descent type analysis in sequel.
This distinguishes from unconstrained RL, e.g., [4, 20].

Another key feature of constrained RL is the safe ex-
ploration under constraints [33]. Without any con-
straint information a priori, it is infeasible for each
policy to satisfy the constraint since utility informa-
tion on constraints is only revealed after a policy is
decided. Instead, we allow each policy to violate the
constraint in each episode and minimize regret while
minimizing total constraint violations for safe explo-
ration over K episodes. We define the regret as the
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di↵erence between the total reward value of policy ⇡?

in hindsight and that of the agent’s policy ⇡k over K
episodes, and the constraint violation as a di↵erence
between the o↵set Kb and the total utility value of the
agent’s policy ⇡k over K episodes,

Regret(K) =
KX

k=1

�
V ⇡

?

r,1 (x1)� V ⇡
k

r,1 (x1)
�

Violation(K) =
KX

k=1

�
b� V ⇡

k

g,1 (x1)
�
.

(3)

In this paper, we design algorithms, taking bandit
feedback of the reward/utility functions, with both re-
gret and constraint violation being sublinear in the
total number of steps T := HK. Put di↵erently,
the algorithm should ensure that given ✏ > 0, if
T = O(1/✏2), then both Regret(K) = O(✏) and
Violation(K) = O(✏) hold with high probability.

Let D(Y ) := maximize⇡ L(⇡, Y ) be the dual function
and Y ? := argmin

Y � 0 D(Y ) be the optimal dual vari-
able. We assume feasibility for problem (2) in Assump-
tion 1 that is known as the Slater condition [53, 29, 55].
It is convenient to establish the strong duality [53] and
the boundedness of the optimal dual variable Y ? that
can be found in Appendix E.

Assumption 1 (Feasibility). There exists � > 0 and

⇡̄ 2 �(A |S, H) such that V ⇡̄

g,1(x1) � b+ �.

Lemma 1 (Strong Duality, Boundedness of Y ?). Let

Assumption 1 hold. Then V ⇡
?

r,1 (x1) = D(Y ?). More-

over, 0  Y ?  (V ⇡
?

r,1 (x1)� V ⇡̄

r,1(x1))/�.

Lemma 1 provides useful optimization properties of (2)
for our algorithm design and analysis.

2.2 Linear Function Approximation

We focus on a class of CMDPs, where transition ker-
nels are linear in feature maps.

Assumption 2. The CMDP(S,A, H,P, r, g) is a lin-

ear MDP with a kernel feature map  : S ⇥ A ⇥
S ! Rd1 , if for any h 2 [H], there exists a vec-

tor ✓h 2 Rd1 with k✓hk2 
p
d1 such that for any

(x, a, x0) 2 S ⇥A⇥ S,

Ph (x
0 |x, a) = h (x, a, x0) , ✓hi;

there exists a feature map ': S⇥A ! Rd2 and vectors

✓r,h, ✓g,h 2 Rd2 such that for any (x, a) 2 S ⇥A,

rh(x, a) = h'(x, a), ✓r,hi and gh(x, a) = h'(x, a), ✓g,hi

where max(k✓r,hk2 , k✓g,hk2) 
p
d2. Moreover, we

assume that for any function V : S ! [0, H],��R
S  (x, a, x

0)V (x0)dx0
��
2


p
d1 H for all (x, a) 2

S ⇥A, and max(d1, d2)  d.

Assumption 2 adapts the definition of linear kernel
MDP [8, 79, 20] for CMDPs. Linear kernel MDP ex-
amples include tabular MDPs [79], feature embedded
transition models [71], and linear combinations of base
models [50]. We can construct related examples of
CMDPs with linear structure by adding adding proper
constraints. For usefulness of linear structure, see dis-
cussions in the literature [27, 64, 43]. For more general
transition dynamics, see factored MDPs [54].

Although our definition in Assumption 2 and linear
MDPs [70, 37] all contain tabular MDPs as special
cases, they define transition dynamics using di↵erent
feature maps. They are not comparable since one can-
not be implied by the other [79]. We provide more
details on the tabular case of Assumption 2 in Sec-
tion 5.

3 Proposed Algorithm

In Algorithm 1, we present a new variant of proxi-
mal policy optimization [57] – an Optimistic Primal-
Dual Proximal Policy OPtimization (OPDOP) algo-
rithm. We e↵ectuate the optimism through the Upper-
Confidence Bounds (UCB) [70, 71, 37], and address the
constraints via the union of the Lagrange multipliers
method with the value function structure that is cap-
tured by the performance di↵erence lemma [38, 20].

Lemma 2 (Performance Di↵erence Lemma). For any

two policies ⇡,⇡0 2 �(A |S, H), ⇧ = r or g,

V ⇡
0

⇧,1(x1) � V ⇡

⇧,1(x1)

= E⇡0

"
HX

h=1

⌦
Q⇡

⇧,h(xh, ·),⇡0
h
(· |xh)� ⇡h(· |xh)

↵ ��x1

#
.

In each episode, our algorithm consists of three main
stages. The first stage (lines 4–8) is Policy Improve-

ment : we receive a new policy ⇡k by improving previ-
ous ⇡k�1 via a mirror descent type optimization; The
second stage (line 9) is Dual Update: we update dual
variable Y k based on the constraint violation induced
by previous policy ⇡k; The third stage (line 10) is Pol-
icy Evaluation: we optimistically evaluate newly ob-
tained policy via the least-squares policy evaluation
with an additional UCB bonus term for exploration.

3.1 Policy Improvement

In the k-th episode, a natural attempt of obtaining a
policy ⇡k is to solve a Lagrangian-based policy opti-
mization problem,

maximize
⇡ 2�(A|S,H)

L(⇡,Y k�1) := V ⇡

r,1(x1)�Y k�1(b�V ⇡

g,1(x1))

where L(⇡, Y ) is the Lagrangian and the dual variable
Y k�1 � 0 is from the last episode; we show that Y k�1
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can be updated e�ciently in Section 3.2. This type
update also finds in references [45, 53, 52, 61]. They
rely on an oracle solver, e.g., Q-learning [30], proximal
policy optimization [57], or trust region policy opti-
mization [56], to deliver a near-optimal policy, making
overall algorithmic complexity expensive. Hence, they
are not suitable for online use. In contrast, this work
utilizes RL problem structure and shows that only an
easily-computable proximal step is su�cient for e�-
ciently achieving near-optimal performance.

Recall symbol ⇧ = r or g. Via the performance di↵er-
ence lemma, we can expand value functions V ⇡

⇧,1(x1)

at the previously known policy ⇡k�1,

V ⇡

⇧,1(x1) = V ⇡
k�1

⇧,1 (xk

1)+

E⇡k�1

"
HX

h=1

⌦
Q⇡

⇧,h(xh, · ), (⇡h � ⇡k�1
h

)( · |xh)
↵
#

where E⇡k�1 is taken over the random state-action
sequence {(xh, ah)}Hh=1. Thus, we introduce an ap-
proximation of V ⇡

⇧,1(x1) for any state-action sequence
{(xh, ah)}Hh=1 induced by ⇡,

Lk�1
⇧ (⇡) = V k�1

⇧,1 (x1)+

HX

h=1

⌦
Qk�1

⇧,h (xh, · ), (⇡h � ⇡k�1
h

)( · |xh)
↵

where V k�1
⇧,h and Qk�1

⇧,h can be estimated from an opti-
mistic policy evaluation that will be discussed in Sec-
tion 3.3. With this notion, in each episode, instead
of solving a Lagrangian-based policy optimization, we
perform a simple policy update in online mirror de-
scent fashion,

maximize
⇡ 2�(A|S,H)

Lk�1
r

(⇡) � Y k�1
�
b� Lk�1

g
(⇡)

�

� 1

↵

HX

h=1

D
�
⇡h( · |xh) | e⇡k�1

h
( · |xh)

�

where e⇡k�1
h

( · |xh) = (1� ✓)⇡k�1
h

( · |xh) + ✓Unif(A)
is a mixed policy of the previous one and the uni-
form distribution Unif(A) with ✓ 2 (0, 1]. The con-
stant ↵ > 0 is a trade-o↵ parameter, D(⇡ | e⇡k�1) is
the KL divergence between ⇡ and e⇡k�1 in which ⇡
is absolutely continuous in e⇡k�1. The policy mixing
step ensures such absolute continuity and implies uni-
formly bounded KL divergence; see Lemma 15 in Ap-
pendix F. Ignoring other ⇡-irrelevant terms, we update
⇡k in terms of previous policy ⇡k�1 by

argmax
⇡2�(A|S,H)

HX

h=1

⌦
(Qk�1

r,h
+ Y k�1Qk�1

g,h
)(xh, · ),⇡h( · |xh)

↵

� 1

↵

HX

h=1

D
�
⇡h( · |xh) | e⇡k�1

h
( · |xh)

�
.

Since the above update is separable over H steps, we
can update the policy ⇡k as line 6 in Algorithm 1, a
closed-form solution for any step h 2 [H]. If we set
Y k�1 = 0 and ✓ = 0, the above update reduces to
one step in an optimistic proximal policy optimiza-
tion [20]. The idea of KL-divergence regularization in
policy optimization has been widely used in many un-
constrained scenarios [39, 57, 56, 67, 47]. Our method
is distinct in that it is based on the performance dif-
ference lemma and the optimistically estimated value
functions.

Algorithm 1 Optimistic Primal-Dual Proximal Pol-
icy OPtimization (OPDOP)

1: Initialization: Let {Q0
r,h

, Q0
g,h

}H
h=1 be zero func-

tions, {⇡0
h
}h2 [H] be uniform distributions on A,

V 0
g,1 be b, Y 0 be 0, � be 2H/�, ↵, ⌘ > 0, ✓ 2 (0, 1].

2: for episode k = 1, . . . ,K + 1 do

3: Set the initial state xk

1 = x1.
4: for step h = 1, 2, . . . , H do

5: Mix the policy

e⇡k�1
h

(·|·) = (1� ✓)⇡k�1
h

(·|·) + ✓Unif(A).

6: Update the policy

⇡k

h
(·|·) / e⇡k�1

h
(·|·) e

⇣
↵

�
Q

k�1
r,h +Y

k�1
Q

k�1
g,h

�
(·,·)

⌘

.

7: Take an action ak
h
⇠ ⇡k

h
( · |xk

h
) and recieve

reward/utility, rh(x
k

h
, ak

h
), gh(x

k

h
, ak

h
).

8: Observe the next state xk

h+1.

9: Update the dual variable Y k by

Y k = Proj[ 0,� ]

�
Y k�1 + ⌘ (b� V k�1

g,1 (x1))
�
.

10: Estimate the action-value or value functions
{Qk

r,h
(·, ·), Qk

g,h
(·, ·), V k

g,h
(·)}H

h=1 via

LSTD
⇣
{x⌧

h
, a⌧

h
, rh(x

⌧

h
, a⌧

h
), gh(x

⌧

h
, a⌧

h
)}H,k

h,⌧ =1

⌘
.

3.2 Dual Update

To infer the constraint violation for the dual update,
we estimate V ⇡

k

g,1 (x1) via an optimistic policy evalua-

tion by V k�1
g,1 (x1) that is discussed in Section 3.3. We

update the Lagrange multiplier Y by moving Y k to the
direction of minimizing the Lagrangian L(⇡, Y ) over
Y � 0 in line 9 of Algorithm 1, where ⌘ > 0 is a
stepsize and Proj[ 0,� ] is a projection onto [0,�] with

an upper bound � on Y k. By Lemma 1, we choose
� = 2H/� � 2Y ? so that projection interval [ 0, � ] in-
cludes the optimal dual variable Y ?. This type design
also finds in references [29, 51].
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The dual update works as a trade-o↵ between the re-
ward maximization and the constraint violation reduc-
tion. If the current policy ⇡k satisfies the approxi-
mated constraint, i.e., b � Lk�1

g
(⇡k)  0, we put less

weight on the action-value function associated with the
utility and maximize the reward; otherwise, we sacri-
fice the reward a bit to satisfy the constraint. The dual
update has a similar use in dealing with constraints in
CMDPs, e.g., Lagrangian-based actor-critic [22, 46],
and online constrained optimization [73, 68, 75]. In
contrast, we handle the dual update via the optimistic
policy evaluation, yielding a simple, but e�cient esti-
mation on the constraint violation.

Algorithm 2 Least-Squares Temporal Di↵erence
(LSTD) with UCB exploration

1: Input: {x⌧

h
, a⌧

h
, rh(x⌧

h
, a⌧

h
), gh(x⌧

h
, a⌧

h
)}H,k

h,⌧ =1.

2: Initialization: Set {V k

r,H+1, V
k

g,H+1} be zero func-
tions and � = 1,� = O(

p
dH2 log (dT/p)).

3: for step h = H,H � 1, · · · , 1 do . ⇧ = r, g

4: ⇤k

⇧,h =
k�1X

⌧ =1

�⌧⇧,h(x
⌧

h
, a⌧

h
)�⌧⇧,h(x

⌧

h
, a⌧

h
)> + �I.

5: wk

⇧,h = (⇤k

⇧,h)
�1

k�1X

⌧ =1

�⌧⇧,h(x
⌧

h
, a⌧

h
)V ⌧

⇧,h+1(x
⌧

h+1).

6: �k⇧,h(·, ·) =
R
S  (·, ·, x

0)V k

⇧,h+1(x
0)dx0.

7: �k

⇧,h(·, ·) = �(�k⇧,h(·, ·)>(⇤k

⇧,h)
�1�k⇧,h(·, ·))1/2.

8: ⇤k

h
=

k�1X

⌧ =1

'(x⌧

h
, a⌧

h
)'(x⌧

h
, a⌧

h
)> + �I.

9: uk

⇧,h = (⇤k

h
)�1

k�1X

⌧ =1

'(x⌧

h
, a⌧

h
) ⇧h (x⌧

h
, a⌧

h
).

10: �k

h
(·, ·) = �('(·, ·)>(⇤k

h
)�1'(·, ·))1/2.

11: Qk

⇧,h(·, ·) = min
�
H � h+ 1, '(·, ·)>uk

⇧,h +

�k⇧,h(·, ·)>wk

⇧,h + (�k

h
+ �k

⇧,h)(·, ·)
�+
.

12: V k

⇧,h(·) =
⌦
Qk

⇧,h(·, ·),⇡k

h
(·|·)

↵
A.

13: Return: {Qk

⇧,h(·, ·), V k

⇧,h(·, ·)}Hh=1.

3.3 Policy Evaluation

The last stage of the kth episode takes the Least-
Squares Temporal Di↵erence (LSTD) [17, 16, 44, 42] to
evaluate the policy ⇡k based on previous k�1 historical
trajectories. For each step h 2 [H], instead of PhV ⇡

k

r,h+1

in the Bellman equations (1), we estimate PhV k

r,h+1 by

(�k
r,h

)>wk

r,h
where wk

r,h
is updated by the minimizer of

the regularized least-squares problem over w,

k�1X

⌧ =1

�
V ⌧

r,h+1(x
⌧

h+1) � �⌧
r,h

(x⌧

h
, a⌧

h
)>w

�2
+ � kwk22 (4)

where �⌧
r,h

( · , · ) :=
R
S  ( · , · , x

0 )V ⌧

r,h+1(x
0)dx0,

V ⌧

r,h+1(·) = hQ⌧

r,h+1( · , · ),⇡⌧

h+1( · | · )iA for h 2 [H � 1]
and V ⌧

H+1 = 0, and � > 0 is the regularization param-
eter. Similarly, we estimate PhV k

g,h+1 by (�k
g,h

)>wk

g,h
.

We display the least-squares solution in line 4–6 of Al-
gorithm 2, where symbol ⇧ = r or g. We also estimate
rh(·, ·) by '>uk

r,h
, where uk

r,h
is updated by the mini-

mizer of another regularized least-squares problem,

k�1X

⌧ =1

�
rh(x

⌧

h
, a⌧

h
) � '(x⌧

h
, a⌧

h
)>u

�2
+ � kuk22 (5)

where � > 0 is the regularization parameter. Similarly,
we estimate gh(·, ·) by '>uk

g,h
. The least-squares so-

lutions lead to line 8–9 of Algorithm 2.

After obtaining estimates of PhV k

⇧,h+1 and ⇧h(·, ·) for
⇧ = r or g, we update the estimated action-value func-
tion {Qk

⇧,h}Hh=1 iteratively in line 11 of Algorithm 2,

where '>uk

⇧,h is an estimate of ⇧h and (�k⇧,h)
>wk

⇧,h is

an estimate of PhV k

⇧,h+1; we add UCB bonus terms

�k

h
( · , · ),�k

⇧,h( · , · ): S ⇥A ! R+ so that

'>uk

⇧,h + �k

h
and (�k⇧,h)

>wk

⇧,h + �k

⇧,h

all become their upper confidence bounds. Here, the
bonus terms take �k

h
= �('>(⇤k

h
)�1')1/2 and �k

⇧,h =

�((�k⇧,h)
>(⇤k

⇧,h)
�1�k⇧,h)

1/2 and we leave the parame-
ter � > 0 to be tuned later. Moreover, the bounded
reward/utility ⇧h 2 [0, 1] implies Qk

⇧,h 2 [0, H �h+1].

We remark the computational e�ciency of Algo-
rithm 1. For the time complexity, since line 6 is a
scalar update, they need O(d|A|T ) time. A dominat-
ing calculation is from lines 5/9 in Algorithm 2. If
we use the Sherman–Morrison formula for computing
(⇤k

h
)�1, it takes O(d2T ) time. Another important cal-

culation is the integration from line 6 in Algorithm 2.
We can either compute it analytically if it is tractable
or approximate it via the Monte Carlo integration [79]
that assumes polynomial time. Therefore, the time
complexity is O(poly(d)|A|T ) in total. For the space
complexity, we don’t need to store policy since it is
recursively calculated via line 6 of Algorithm 1. By
updating Y k, ⇤k

h
, ⇤k

⇧,h, w
k

⇧,h, u
k

⇧,h, and ⇧h(xk

h
, ak

h
) re-

cursively, it takes O((d2 + |A|)H) space.

4 Regret and Constraint Violation

Analysis

We now prove that the regret and the constraint vio-
lation for Algorithm 1 are sublinear in T := KH, the
total number of steps taken by the algorithm, where
K is the total number of episodes and H is the episode
horizon. We recall that |A| is the cardinality of action
space A and d is the dimension of the feature map.
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Theorem 1 (Linear Kernal MDP: Regret and Con-
straint Violation). Let Assumptions 1 and 2 hold.

Fix p 2 (0, 1). We set ↵ =
p
log |A|/(H2K), � =

C1

p
dH2 log (dT/p), ⌘ = 1/

p
K, ✓ = 1/K, and � = 1

in Algorithm 1, where C1 is an absolute constant. Sup-

pose log |A| = O
�
d2 log2 (dT/p)

�
. Then, with proba-

bility 1�p, the regret and the constraint violation in (3)
satisfy

Regret(K)  C dH2.5
p
T log

⇣
dT

p

⌘

[Violation(K)]+  C 0 dH2.5
p
T log

⇣
dT

p

⌘

where C and C 0
are absolute constants.

The above result establishes that Algorithm 1 enjoys
an eO(dH2.5

p
T ) regret and an eO(dH2.5

p
T ) constraint

violation if we set algorithm parameters {↵,�, ⌘, ✓,�}
properly. Our results have the optimal dependence
on the total number of steps T up to some logarith-
mic factors. The d dependence occurs due to the uni-
form concentration for controlling the fluctuations in
the least-squares policy evaluation. This matches the
existing bounds in the linear MDP setting without any
constraints [20, 8, 79]. Our bounds di↵er from them
only by H dependence, which is a price introduced by
the uniform bound on the constraint violation. It is
noticed that our algorithm works for bandit feedback
of reward/utility functions after each episode.

Regarding safe exploration, our violation bound pro-
vides finite-time convergence to the feasibility region
defined by constraints. In the interaction with an un-
known environment, the UCB exploration in the util-
ity value function adds optimism towards constraint
satisfaction. The dual update regularizes the pol-
icy improvement for governing actual constraint viola-
tion. Our regret and violation bounds readily lead to
PAC guarantees [36]. Compared to most recent refer-
ences [26, 69, 21, 77], our algorithm is sample-e�cient
in exploration and does not need simulations of policy.

We remark the tabular setting for Algorithm 1; see
Appendix C for details. The tabular CMDP is a spe-
cial case of Assumption 2 by taking canonical bases
as feature mappings; see them in Section 5. The fea-
ture map has dimension d = |S|2|A| and thus The-
orem 1 automatically provides O(|S|2|A|H2.5

p
T ) re-

gret and constraint violation for the tabular CMDPs.
The d = |S|2|A| dependence relies on the least-squares
policy evaluation and it can be improved via other op-
timistic policy evolution methods if we are limited to
the tabular case. We provide such results in Section 5.

4.1 Proof Outline of Theorem 1

We sketch the proof for Theorem 1. We state key
lemmas and delay their full versions and proofs to Ap-

pendix B. In what follows, we fix p 2 (0, 1) and use
the shorthand w.p. for with probability.

Regret Analysis. We take a regret decomposition,

Regret(K) =
KX

k=1

�
V ⇡

?

r,1 (x1)� V k

r,1(x1)
�

| {z }
(R.I)

+
KX

k=1

�
V k

r,1(x1)� V ⇡
k

r,1 (x1)
�

| {z }
(R.II)

where ⇡? is an optimal policy in hindsight, and
V k

r,1(x1) is estimated via our optimistic policy eval-

uation given by Algorithm 2. Since we use V k

r,h+1 to

estimate V ⇡
k

r,h+1, it leads a model prediction error in

the Bellman equations, ◆k
r,h

:= rk
h
+ PhV k

r,h+1 � Qk

r,h
;

similarly define ◆k
g,h

. In Appendix D.3, the UCB op-

timism of ◆k⇧,h with ⇧ = r or g, shows that or any
(k, h) 2 [K] ⇥ [H] and (x, a) 2 S ⇥ A, w.p. 1 � p/2,
we have

�2(�k

h
+ �k

⇧,h)(x, a)  ◆k⇧,h(x, a)  0.

By assumptions of Theorem 1, the policy improve-
ment in line 6 of Algorithm 1 yields Lemma 1, de-
picting weighted total di↵erences of estimates V k

r,1(x1),

V k

g,1(x1) to the optimal ones.

Lemma 1 (Policy Improvement: Primal-Dual Mirror
Descent Step). Let assumptions of Theorem 1 hold.

Then,

(R.I)  �
KX

k=1

Y k
�
V ⇡

?

g,1 (x1)� V k

g,1(x1)
�

+
KX

k=1

HX

h=1

E⇡? [◆k
r,h

(xh, ah) + Y k◆k
g,h

(xh, ah)]

+O
�
H2.5

p
T log |A|

�
.

Lemma 1 displays coupling between the regret (R.I)
and the constraint. This coupling also finds in online
convex optimization [49, 75, 68, 41] and CMDP prob-
lems [29]. The proof of Lemma 1 takes a primal-dual
mirror descent type analysis of line 6 of Algorithm 1,
using the performance di↵erence lemma.

Via the dual update in line 9 of Algorithm 1,
we can verify that the second total di↵erences
�
P

K

k=1 Y
k
�
V ⇡

?

g,1 (x1) � V k

g,1(x1)
�
scales O(

p
K). To-

gether with a decomposition of (R.II),

(R.II) = �
KX

k=1

HX

h=1

◆k
r,h

(xk

h
, ak

h
) + MK

r,H,2

where MK

r,H,2 is a martingale, we now have Lemma 2.
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Lemma 2. Let assumptions of Theorem 1 hold. Then,

Regret(K) 
KX

k=1

HX

h=1

�
E⇡?[◆k

r,h
(xh, ah)]� ◆k

r,h
(xk

h
, ak

h
)
�

+MK

r,H,2 + O
�
H2.5

p
T log |A|

�
.

Finally, we note that MK

r,H,2 is a martingale that scales

as O(H
p
T ) via the Azuma-Hoe↵ding inequality. For

the model prediction error, we use the UCB optimism
and apply the elliptical potential lemma.

Lemma 3. Let assumptions of Theorem 1 hold. Then,

KX

k=1

HX

h=1

�
E⇡? [◆k

r,h
(xh, ah)]� ◆k

r,h
(xk

h
, ak

h
)
�

 O
�
dH1.5

p
T log (K) log (dT/p)

�
, w.p. 1� p/2.

Lemma 4. Let assumptions of Theorem 1 hold. Then,

��MK

r,H,2

��  4H
p
T log (4/p), w.p. 1� p/2.

Finally, we apply probability bounds from Lemmas 3
and 4 to Lemma 2 to get our regret bound.

Constraint Violation Analysis. We take a viola-
tion decomposition,

Violation(K) =
KX

k=1

�
b� V k

g,1(x1)
�

+
KX

k=1

�
V k

g,1(x1)� V ⇡
k

g,1 (x1)
�

| {z }
(V.II)

.

We begin with the policy improvement in line 6 of
Algorithm 1 to refine Lemma 1 as Lemma 5.

Lemma 5 (Policy Improvement: Refined Primal-Dual
Mirror Descent Step). Let assumptions of Theorem 1

hold. Then, for any Y 2 [0,�],

(R.I) + Y
KX

k=1

�
b� V k

g,1(x1)
�

 O
�
H2.5

p
T log |A|

�
.

Lemma 5 removes the dual update Y k in the second
total di↵erences in Lemma 1. We prove Lemma 5 by
combining Lemma 1 with the UCB optimism and a
change of variable of Y k for the dual update.

Similar to (R.II), we also have

(V.II) = �
KX

k=1

HX

h=1

◆k
g,h

(xk

h
, ak

h
) + MK

g,H,2

where MK

g,H,2 is a martingale. By adding (V.II) to the
inequality in Lemma 5 with multiplier Y � 0, and also

adding (R.II) to it,

KX

k=1

�
V ⇡

?

r,1 (x1)� V ⇡
k

r,1 (x1)
�
+ Y

KX

k=1

�
b� V ⇡

k

g,1 (x1)
�

 �
KX

k=1

HX

h=1

�
◆k
r,h

(xk

h
, ak

h
) + Y ◆k

g,h
(xk

h
, ak

h
)
�

+O
�
H2.5

p
T log |A|

�
+ MK

r,H,2 + YMK

g,H,2

Then, we take Y = 0 if
P

K

k=1

�
b � V ⇡

k

g,1 (x1)
�
 0;

otherwise Y = �, w.p. 1� p, we have,

�
V ⇡

?

r,1 (x1)� V ⇡
0

r,1(x1)
�
+ �

⇥
b� V ⇡

0

g,1(x1)
⇤
+

 O
�
dH2.5

p
T log (dT/p) /K

�

where V ⇡
0

r,1(x1) = 1
K

P
K

k=1 V
⇡
k

r,1 (x1) and V ⇡
0

g,1(x1) =
1
K

P
K

k=1 V
⇡
k

g,1 (x1) for some existing policy ⇡0. Here,

we bound �k

h
+ �k

⇧,h and MK

⇧,H,2 as done in Lemmas 3
and 4.

Last, by the strong duality in Lemma 1, we apply the
constraint violation bound from constrained optimiza-
tion that is stated in Lemma 10 in Appendix E,

⇥
b� V ⇡

0

g,1(x1)
⇤
+

 O
�
dH2.5

p
T log (dT/p) /(�K)

�

which gives our desired violation bound.

Algorithm 3 Optimistic Policy Evaluation (OPE)

1: Input: {x⌧

h
, a⌧

h
, rh(x⌧

h
, a⌧

h
), gh(x⌧

h
, a⌧

h
)}H,k

h,⌧ =1.

2: Initialization: Set {V k

r,H+1, V
k

g,H+1} be zero func-
tions, and � = 1, � = C1H

p
|S| log(|S||A|T/p).

3: for step h = H,H � 1, · · · , 1 do . ⇧ = r, g
4: Compute counters nk

h
(x, a, x0) and nk

h
(x, a)

via (7) for all (x, a, x0) 2 S ⇥ A ⇥ S and (x, a) 2
S ⇥A.

5: Estimate reward/utility functions brk
h
, bgk

h
via (8)

for all (x, a) 2 S ⇥A.

6: Estimate transition bPk

h
via (9) for all

(x, a, x0) 2 S ⇥ A ⇥ S, and take bonus �k

h
=

�
�
nk

h
(x, a) + �

��1/2
for all (x, a) 2 S ⇥A.

7: Qk

⇧,h(·, ·) = min
�
H � h+ 1, b⇧k

h
(·, ·)+

P
x0 2S

bPh(x0 | ·, ·)V k

⇧,h+1(x
0)+2�k

h
(·, ·),

�+
.

8: V k

⇧,h(·) =
⌦
Qk

⇧,h(·, ·),⇡k

h
(·|·)

↵
A.

9: Return: {Qk

r,h
(·, ·), Qk

g,h
(·, ·)}H

h=1.

5 Further Results on Tabular Case

The tabular CMDP(S,A, H,P, r, g) is a special case
of Assumption 2 with |S| < 1 and |A| < 1. Let
d1 = |S|2|A| and d2 = |S||A|. We take the following
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feature maps  (x, a, x0) 2 Rd1 , '(x, a) 2 Rd2 , and
parameter vectors,

 (x, a, x0) = e(x,a,x0), ✓h = Ph( · , · , · )

'(x, a) = e(x,a), ✓r,h = rh( · , · ), ✓g,h = gh( · , · )
(6)

where e(x,a,x0) is a canonical basis of Rd1 associ-
ated with (x, a, x0) and ✓h = Ph( · , · , · ) reads that
for any (x, a, x0) 2 S ⇥ A ⇥ S, the (x, a, x0)th en-
try of ✓h is P(x0 |x, a); similarly we define e(x,a),
✓r,h, and ✓g,h. We can verify that k✓hk 

p
d1,

k✓r,hk 
p
d2, k✓g,hk 

p
d2, and for any V :

S ! [0, H] and any (x, a) 2 S ⇥ A, we have��P
x0 2S  (x, a, x

0)V (x0)
�� 

p
|S|H 

p
d1H. There-

fore, we take d := max (d1, d2) = |S|2|A| in Assump-
tion (2) for the tabular case.

The proof of Theorem 1 is generic, since it is ready
to achieve sublinear regret and constraint violation
bounds as long as the policy evaluation is sample-
e�cient, e.g., the UCB design of ‘optimism in the face
of uncertainty.’ In what follows, we introduce another
e�cient policy evaluation for line 10 of Algorithm 1 in
the tabular case. Let us first introduce some notation.
For any (h, k) 2 [H]⇥ [K], any (x, a, x0) 2 S ⇥A⇥ S,
and any (x, a) 2 S ⇥A, we define two visitation coun-
ters nk

h
(x, a, x0) and nk

h
(x, a) at step h in episode k,

nk

h
(x, a, x0) =

k�1X

⌧ =1

1{(x, a, x0) = (x⌧

h
, a⌧

h
, a⌧

h+1)}

nk

h
(x, a) =

k�1X

⌧ =1

1{(x, a) = (x⌧

h
, a⌧

h
)}.

(7)

This allows us to estimate reward function r, utility
function g, and transition kernel Ph for episode k by

brk
h
(x, a) =

k�1X

⌧ =1

1{(x, a) = (x⌧

h
, a⌧

h
)}rh(x⌧

h
, a⌧

h
)

nk

h
(x, a) + �

bgk
h
(x, a) =

k�1X

⌧ =1

1{(x, a) = (x⌧

h
, a⌧

h
)}gh(x⌧

h
, a⌧

h
)

nk

h
(x, a) + �

(8)

bPk

h
(x0 |x, a) =

nk

h
(x, a, x0)

nk

h
(x, a) + �

(9)

for all (x, a, x0) 2 S ⇥ A ⇥ S, (x, a) 2 S ⇥ A where
� > 0 is the regularization parameter. Moreover, we
introduce the bonus term �k

h
: S ⇥A ! R, �k

h
(x, a) =

�
�
nk

h
(x, a) + �

��1/2
which adapts the counter-based

bonus terms in the literature [9, 36], where � > 0 is to
be determined later.

Using the estimated transition kernels {bPk

h
}H
h=1, the

estimated reward/utility functions {brk
h
, bgk

h
}H
h=1, and

the bonus terms {�k

h
}H
h=1, we now can estimate the

action-value function via line 7 of Algorithm 3 for
any (x, a) 2 S ⇥ A, where ⇧ = r or g. Thus,

V k

⇧,h(x) = hQk

⇧,h(x, ·),⇡k

h
(· |x)iA. We summarize the

above procedure in Algorithm 3. Using already esti-
mated {Qk

r,h
(·, ·), Qk

g,h
(·, ·)}H

h=1, we execute the policy
improvement and the dual update in Algorithm 1.

As in Theorem 1, we provide theoretical guarantees
in Theorem 2; see Appendix C.2 for the proof. Theo-
rem 2 improves (|S|, |A|) dependence in Theorem 1 for
the tabular case and also matches |S| dependence in
references [29, 55]. It is worthy mentioning our Algo-
rithm 1 is generic in handling an infinite state space.

Theorem 2 (Tabular Case: Regret and Constraint
Violation). Let Assumption 1 hold and let Assump-

tion 2 hold with feature maps (6). Fix p 2 (0, 1).
In Algorithm 1, we set ↵ =

p
log |A|/(H2K), � =

C1H
p
|S| log(|S||A|T/p), ⌘ = 1/

p
K, ✓ = 1/K, and

� = 1 where C1 is an absolute constant. Then, with

probability 1�p, the regret and the constraint violation

in (3) satisfy

Regret(K)  C|S|
p

|A|H5T log
⇣
|S||A|T

p

⌘

[Violation(K)]+  C 0|S|
p
|A|H5T log

⇣
|S||A|T

p

⌘

where C and C 0
are absolute constants.

6 Concluding Remarks

We have developed a provably e�cient safe reinforce-
ment learning algorithm in the linear MDP setting.
The algorithm extends the proximal policy optimiza-
tion to CMDPs by incorporating the UCB exploration.
We prove that the proposed algorithm achieves an
eO(
p
T ) regret and an eO(

p
T ) constraint violation un-

der mild conditions, where T is the total number of
steps taken by the algorithm. Our algorithm works
in the setting where reward/utility functions are given
by bandit feedback. To the best of our knowledge,
our algorithm is the first provably e�cient online pol-
icy optimization algorithm for CMDPs in the function
approximation setting.

Mathematically, our algorithm framework allows re-
ward/utility functions to be adversarial. We believe
that approaches from the adversarial MDP literature
allow us to derive similar regret and constraint vio-
lation bounds, although we leave it as future work.
Beyond linear kernel MDPs, the UCB exploration has
previously been applied for other types of MDPs, e.g.,
factored MDPs, or infinite-horizon MDPs. It remains
to be seen if these are extendable for CMDPs in sim-
ilar settings. In practice, we often encounter general
function approximation beyond linear functions, e.g.,
neural nets. It would be useful to design provably e�-
cient exploration algorithms for CMDPs with general
function approximation.
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