
Thang Doan 1 2, Mehdi Bennani 3, Bogdan Mazoure 1 2, Guillaume Rabusseau 2 4, Pierre Alquier 5

8 Appendix

8.1 Proof of Lemma 1

For this proof, we will use the result of Thm. 1 from [Bennani et al., 2020] (particularly Remark 1) and notice
that the expression of f?τT can be espressed recursively with respect to f?τS :

Proof.

f?τT (x) = f?τT−1(x) + 〈∇ωf?τT−1(x), ω?τT − ω
?
τT−1〉

= f?τT−k(x) + ...+ 〈∇ωf?τT−2(x), ω?τT−1 − ω
?
τT−2〉+ 〈∇ωf?τT−1(x), ω?τT − ω

?
τT−1〉

= f?τS (x) +

τT∑
k=τS+1

〈∇ωf?k (x), ω?k − ω?k−1〉

= f?τS (x) +

τT∑
k=τS+1

〈∇ωf0(x), ω?k − ω?k−1〉 (NTK constant)

= f?τS (x) + 〈∇ωf0(x), ω?τT − ω
?
τS 〉

where we used constant NTK assumption, i.e ∇ωf?τ (x) = ∇ω0f(x) , ∀τ ∈ [T].

Using the fact that the kernel is given by φ(x) = ∇w0f(x), we have that:

δτS→τT (XτS) = f?τT (XτS)− f?τS (XτS)

= 〈φ(XτS), ω?τT − ω
?
τS 〉

∆τS→τT (XτS) =
∥∥φ(XτS)(ω?τT − ω

?
τS)
∥∥2
2

This concludes the proof.

8.2 Proof of Theorem 1

For this proof, we will decompose the drift from task τS to τT into a telescopic sum. We will then use SVD to
factorize the expression of (ω?τ − ω?τ−1) and get the upper bound showed.

Proof.

∆τS→τT (XτS) =
∥∥φ(XτS)(ω?τT − ω

?
τS)
∥∥2
2

(Lemma 1) (13)

=

∥∥∥∥∥
τT∑

k=τS+1

φ(XτS)(ω?k − ω?k−1)

∥∥∥∥∥
2

2

(14)

=

∥∥∥∥∥∥∥
τT∑

k=τS+1

φ(XτS)φ(Xk)>[φ(Xk)φ(Xk)> + λInk]−1ỹk︸ ︷︷ ︸
from Thm. 1 of [Bennani et al., 2020]

∥∥∥∥∥∥∥
2

2

(15)

=

∥∥∥∥∥
τT∑

k=τS+1

UτSΣτSV
>
τSVkΣkU

>
k [UkΣ2

kU
>
k + λInk]−1ỹk

∥∥∥∥∥
2

2

(SVD) (16)

=

∥∥∥∥∥∥∥∥
τT∑

k=τS+1

UτSΣτS V
>
τSVk︸ ︷︷ ︸

O
τS→k
SGD

Σk[Σ2
k + λInk]−1U>k︸ ︷︷ ︸

Mk

ỹk

∥∥∥∥∥∥∥∥
2

2

(17)

(18)

Where we used the SVD φ(Xτ) = UτΣτV
T
τ ,∀τ ∈ [T]. This concludes the proof.

A Theoretical Analysis of Catastrophic Forgetting through the NTK Overlap Matrix

8.3 Proof of Corolary 1

For this proof, we will bound the Catastrophic Forgetting as a function of the principal angles between the source
and target subspaces. Indeed, given two subspace τS and τT represented by their orthonormal basis concatenated
respectively in VτS and VτT , the elements of the diagonal matrix ΘτS→τT resulting from the SVD of V >τSVτT are
the cosines of the principal angles between these two subspace [Wedin, 1983, Zhu and Knyazev, 2013].

Proof.

∆τS→τT (XτS) ≤
τT∑

k=τS+1

∥∥UτSΣτSV
>
τSVkΣk[Σ2

k + λInk]−1U>k ỹk
∥∥2
2

(19)

≤
τT∑

k=τS+1

‖UτSΣτS‖
2
2

∥∥V >τSVk∥∥22 ∥∥Σk[Σ2
k + λInk]−1U>k ỹk

∥∥2
2

(sub-multiplicativity of norm 2)

(20)

≤
τT∑

k=τS+1

‖ΣτS‖
2
2

∥∥V >τSVk∥∥22 ‖Mkỹk‖22 (UτS is an orthonormal matrix) (21)

≤ σ2
τS ,1

τT∑
k=τS+1

∥∥YΘτS→kZ>
∥∥2
2
‖Mkỹk‖22 (SVD) (22)

≤ σ2
τS ,1

τT∑
k=τS+1

∥∥ΘτS→k
∥∥2
2
‖Mkỹk‖22 (Y,Z are orthonormal matrices) (23)

(24)

where YΘτS→kZ> is the SVD of V >τSVk. This concludes the proof.

8.4 Proof of Corollary 2

We first need to prove a corollary that is exactly the same as Corollary 4 (shown below), the difference lies in the
kernel definition. Under the same notation as in Corollary 4, the solution after training on task τ for GEM-NT is
such that:

ω?τ − ω?τ−1 = φτ (Xτ)>(κτ (Xτ , Xτ) + λInτ)−1ỹτ (25)

where:

κτ (x, x′) = φτ (x)φτ (x′)>,

φτ (x) = φ(x)Tτ−1,

Tτ = Ip −Gτ (Gτ)>,

ỹτ = yτ − yτ−1→τ ,
yτ−1→τ = f?τ−1(Xτ),

Thang Doan 1 2, Mehdi Bennani 3, Bogdan Mazoure 1 2, Guillaume Rabusseau 2 4, Pierre Alquier 5

Proof. of Corollary 2 Similarly to Proof of Theorem 1:

∆τS→τT (XτS) =
∥∥φ(XτS)(ω?τT − ω

?
τS)
∥∥2
2

(Lemma 1) (26)

=

∥∥∥∥∥
τT∑

k=τS+1

φ(XτS)(ω?k − ω?k−1)

∥∥∥∥∥
2

2

(27)

=

∥∥∥∥∥∥
τT∑

k=τS+1

φ(XτS)φ(Xk)>[φ(Xk)φ(Xk)> + λInk]−1yk︸ ︷︷ ︸
as shown above

∥∥∥∥∥∥
2

2

(28)

=

∥∥∥∥∥
τT∑

k=τS+1

UτSΣτSV
>
τST

>
k−1VkΣkU

>
k [φ(Xk)φ(Xk)> + λInk]−1yk

∥∥∥∥∥
2

2

(SVD) (29)

=

∥∥∥∥∥∥∥∥
τT∑

k=τS+1

UτSΣτS V
>
τSTk−1T

>
k−1Vk︸ ︷︷ ︸

O
τS→k
GEM-NT

ΣkU
>
k [φ(Xk)φ(Xk)> + λInk]−1︸ ︷︷ ︸

Mk

yk

∥∥∥∥∥∥∥∥
2

2

(Tk−1)n = Tk−1,∀n ≥ 1

(30)

(31)

This concludes the proof.

8.5 Forgetting for PCA-OGD

To prove the forgetting expression for PCA-OGD, we will use a corollary arising naturally from Theorem 1 of
[Bennani et al., 2020] which extends the expression of the learned weights (ω?τ+1 − ω?τ) from the infinite to the
finite memory case. The proof will be shown after the proof of Corollary 3 for the flow of the understanding.

Corollary 4 (Convergence of PCA-OGD under finite memory).

Given T 1, ..., T T a sequence of tasks. If the learning rate satisfies: ητ < 1
‖κτ (Xτ ,Xτ)+λInτ ‖

, κτ ,∀τ ∈ [T] is
invertible with a weight decay regularizer λ > 0, the solution after training on task τ is such that:

ω?τ − ω?τ−1 = φ̃τ (Xτ)>(κτ (Xτ , Xτ) + λInτ)−1ỹτ (32)

where:

κτ (x, x′) = φ̃τ (x)φ̃τ (x′)>,

φ̃τ (x) = φ(x)Tτ−1,:d,

Tτ,:d = Ip − Pτ,:dP>τ,:d,
φ(x) = ∇ω0f

?
0 (x),

ỹτ = yτ − yτ−1→τ ,
yτ−1→τ = f?τ−1(Xτ),

where T0,:d = Ip since there are no previous task when training on task 1.

Proof. of Corollary 3

A Theoretical Analysis of Catastrophic Forgetting through the NTK Overlap Matrix

Similarly to Proof of Theorem 1:

∆τS→τT (XτS) =
∥∥φ(XτS)(ω?τT − ω

?
τS)
∥∥2
2

(Lemma 1) (33)

=

∥∥∥∥∥
τT∑

k=τS+1

φ(XτS)(ω?k − ω?k−1)

∥∥∥∥∥
2

2

(34)

=

∥∥∥∥∥∥∥
τT∑

k=τS+1

φ(XτS) φ̃(Xk)>[φ̃(Xk)φ̃(Xk)> + λInk]−1ỹk︸ ︷︷ ︸
from Corollary 4

∥∥∥∥∥∥∥
2

2

(35)

=

∥∥∥∥∥
τT∑

k=τS+1

UτSΣτSV
>
τST

>
k−1,:dVkΣkU

>
k [φ̃(Xk)φ̃(Xk)> + λInk]−1ỹk

∥∥∥∥∥
2

2

(SVD) (36)

=

∥∥∥∥∥∥∥∥
τT∑

k=τS+1

UτSΣτS V
>
τSRk−1,d:R

>
k−1,d:Vk︸ ︷︷ ︸

O
τS→k
PCA

Σk U
>
k [φ̃(Xk)φ̃(Xk)> + λInk]−1︸ ︷︷ ︸

Mk

ỹk

∥∥∥∥∥∥∥∥
2

2

(37)

Proof of Corollary 4.

In the same fashion as [Bennani et al., 2020], we prove Corollary 4 by induction. Our induction hypothesis Hτ is
the following : Hτ : For all k ≤ τ , Corollary 4 holds.

First, we prove that H1 holds.

The proof is straightforward. For the first task, since there were no previous tasks, PCA-OGD on this task is the
same as SGD.

Therefore, it is equivalent to minimising the following objective :

arg min
ω∈Rp

∥∥f0(X1) + φ(X1)(ω − ω?0)− y1
∥∥2
2

+
1

2
λ ‖ω − ω0‖22

where φ(x) = ∇ω?0 f
?
0 (x).

Substituing the residual term ỹ1 = y1 − f0(X1), we get:

arg min
ω∈Rp

∥∥φ(X1)(ω − ω?0)− ỹ1
∥∥2
2

+
1

2
λ ‖ω − ω0‖22

The objective is quadratic and the Hessian is positive definite, therefore the minimum exists and is unique

ω?1 − ω?0 = φ(X1)>(φ(X1)φ(X1)> + λIn1)−1ỹ1

Under the NTK regime assumption :

f?1 (x) = f?0 (x) +∇ω0
f?0 (x)>(ω?1 − ω?0)

Then, by replacing into ω?1 − ω?0 :

f?1 (x) = f?0 (x) +∇ω0
f?0 (x)φ(X1)>(φ(X1)φ(X1)> + λIn1

)−1ỹ1

f?1 (x) = f?0 (x) + κ1(x,X1)(κ1(X1, X1) + λIn1)−1ỹ1

Thang Doan 1 2, Mehdi Bennani 3, Bogdan Mazoure 1 2, Guillaume Rabusseau 2 4, Pierre Alquier 5

Finally :

f?1 (x)− f?0 (x) = κ1(x,X1)(κ1(X1, X1) + λIn1
)−1ỹ1

Where :

κ1(X1, X1) = φ̃1(X1)φ̃1(X1)>

= φ(X1)T0,:dT
>
0,:dφ(X1)>

= φ(X1)φ(X1)>

Since there is no previous task and T0,:d contains no eigenvectors yet, we have T0,:d = Ip and ỹ1 = y1.

This completes the proof of H1.

Let τ ∈ N ?, we assume that Hτ is true, then we show that Hτ+1 is true.

At the end of training of task τ , we add the first d eigenvectors of φ(Xτ)φ(Xτ)> to Pτ−1,:d ∈ Rp×(τ−1)·d to form
the matrix Pτ,:d ∈ Rp×τ ·d through PCA decomposition

.

The update during the training of task τ + 1 is projected orthogonally to the first d components of task 1 until τ
via the matrix Tτ,:d:

ωτ+1(t+ 1) = ω?τ − ηTτ,:d∇ωLτλ(ωτ+1(t))

ωτ+1(t+ 1)− ω?τ = −ηTτ,:d∇ωLτλ(ωτ+1(t))

ωτ+1(t+ 1)− ω?τ = Tτ,:dω̃τ+1

Where η is the learning rate and Tτ,:d = Ip − Pτ,:dP>τ,:d.

We rewrite the objective by plugging in the variables we just defined. The two objectives are equivalent :

arg min
ω̃τ+1∈Rp

∥∥∥∥∥∥∥φ(Xτ+1)Tτ,:d︸ ︷︷ ︸
φτ+1(Xτ+1)

w̃τ+1 − ỹτ+1

∥∥∥∥∥∥∥
2

2

The optimisation objective is quadratic, unconstrainted, with a positive definite hessian. Therefore, an optimum
exists and is unique :

ω̃?τ+1 = φτ+1(Xτ+1)>(φτ+1(Xτ+1)φτ+1(Xτ+1)>)−1ỹτ+1

ω?τ+1 − ω?τ = φτ+1(Xτ+1)>(φτ+1(Xτ+1)φτ+1(Xτ+1)>)−1ỹτ+1

ω?τ+1 − ω?τ = φτ+1(Xτ+1)>(κτ+1(Xτ+1, Xτ+1))−1ỹτ+1

Recall from the induction hypothesis of Hτ the general form of f?τ (x) :

f?τ (x) = f?τ−1(x) + 〈∇ω0f
?
0 (x), ω?τ+1 − ω?τ 〉

After training on task τ + 1 :

f?τ+1(x) = f?τ−1(x) + 〈∇ω0
f?0 (x), ω?τ+1 − ω?τ−1〉

f?τ+1(x) = f?τ−1(x) + 〈∇ω0
f?0 (x), ω?τ+1 − ω?τ−1 + ω?τ − ω?τ︸ ︷︷ ︸

=0

〉

f?τ+1(x) = f?τ−1(x) + 〈∇ω0
f?0 (x), ω?τ − ω?τ−1〉︸ ︷︷ ︸
f?τ (x)

+〈∇ω0
f?0 (x), ω?τ+1 − ω?τ 〉

f?τ+1(x) = f?τ (x) + 〈∇ω0f
?
0 (x), ω?τ+1 − ω?τ 〉

f?τ+1(x) = f?τ (x) + φ(x)φτ+1(Xτ+1)>(κτ+1(Xτ+1, Xτ+1))−1ỹτ+1

f?τ+1(x) = f?τ (x) + φ(x)T>τ,:dφτ+1(Xτ+1)>(κτ+1(Xτ+1, Xτ+1))−1ỹτ+1

f?τ+1(x) = f?τ (x) + φ(x)Tτ,:dT
>
τ,:dφτ+1(Xτ+1)>︸ ︷︷ ︸

κτ+1(x,Xτ+1)

(κτ+1(Xτ+1, Xτ+1))−1ỹτ+1 (since (Tτ,:d)
> = Tτ,:d)

f?τ+1(x) = f?τ (x) + κτ+1(x,Xτ+1)(κτ+1(Xτ+1, Xτ+1))−1ỹτ+1

A Theoretical Analysis of Catastrophic Forgetting through the NTK Overlap Matrix

We have proven Ht+1 and conclude the proof of Corollary 4.

8.6 Algorithms summary

Properties OτS→τTX X Elements stored Recompute
= V >τSXX>VτT contains in the memory NTK?

SGD X=IτS NA NA NA
GEM-NT X=GτT−1 samples of ∇L(Xτ) samples of Xτ Yes
OGD X=RτT−1 samples of ∇f(Xτ) samples of ∇f(Xτ) No

PCA-OGD X=RτT−1,:d top eigenvectors of ∇f(Xτ) top eigenvectors of ∇f(Xτ) No

Table 2: Property of the Overlap matrix for each method which is responsible for mitigating Catastrophic
Forgetting. NA: Not applicable

NTK overlap matrix First of all, the three methods GEM-NT, OGD, PCA-OGD differs from SGD by the
the matrix X (1st column) that contains either the features map ∇ωf(x) or the gradient loss function.

Elements stored GEM-NT and OGD both samples random elements at the end of each task τ to store in the
memory. For the sake of understanding, if we assume a mean square loss function, with a batch size equal to one,
the gradient loss function becomes: g(GEM-NT)

τ = ∇ωfτ (x)︸ ︷︷ ︸
g
(OGD)
τ

(fτ (x)− yτ). From here, we see that GEM-NT weights

the features maps by the residual of a given task k < τ when training on task τ .

Information compression PCA-OGD compresses the information contained in the data by storing the
principal components of ∇ωf(Xτ) through PCA. If the data has structure such as Rotated MNIST or Split
CIFAR (See Section 9), storing few components will explain a high percentage of variance of the data of component
in order to explain the dataset variance.

Accounting for the NTK variation The drawback OGD and PCA-OGD compared to GEM-NT is that the
NTK is assumed to be constant which is not always the case in practice (See Section 8.10). PCA-OGD and OGD
will then project orthogonally to a vector that is outdated.

Thang Doan 1 2, Mehdi Bennani 3, Bogdan Mazoure 1 2, Guillaume Rabusseau 2 4, Pierre Alquier 5

8.7 The counter-example of Permuted MNIST: no structure

We now examine the dataset Permuted MNIST and try to understand why PCA-OGD is not efficient in such
case. Each task is an MNIST dataset where a different and uniform permutation of pixels is applied. This has
the particularity of removing any extra-task correlations and patterns.

Eigenvalues of the NTK overlap matrix : Figure 5a shows the eigenvalues of the NTK overlap matrix
when increasing buffer size. First of all, we notice that the magnitude of the eigenvalues is very small compared
to Figure 3. This is explained by the fact that each task shares almost no correlations, meaning that the cosine
of angle of the two subspaces might be close to 0 (small eigenvalues). Additionally, we see that increasing the
memory size does not reduce much the eigenvalue magnitude. This is due to the distribution of eigenvalues
(See Figure 9) which are spread more uniformly than Permuted MNIST and Split CIFAR, meaning that more
components need to be kept in order to explain a high % of the variance. In this situation, PCA-OGD does not
have much advantage compared to OGD (See also toy example, Supplementary Material Section 8.12).

Final accuracy with OGD : We now compare final performance against OGD (See Figure 5b). PCA-OGD
does sensitively well compared to OGD (except for the first task where performance are much worse). This can be
explained by the fact that PCA-OGD needs to keep a lot of components to explain a high percentage of variance
such that selecting random element like OGD will results in comparable results. This is all the more confirmed by
Table 3, keeping 50 components only explains 50% of the variance while it respectively explains 81% for Rotated
MNIST and 72% for Split CIFAR. As mentionned by [Farquhar and Gal, 2018], even though such datasets meets
the definition of CL, it is an irrealistic setting since “new situations look confusingly similar to old ones’ ”. Hence
methods that leverage structure like PCA-OGD can be useful.

(a) Comparison of the eigenvalues of O1→2 on
Permuted MNIST with increasing memory size.

Lower values imply less forgetting.

(b) Final accuracy on Permuted MNIST for different
memory size (averaged over 5 seeds ±1 std). OGD and

PCA-OGD have comparable performance (except for the first
task).

A Theoretical Analysis of Catastrophic Forgetting through the NTK Overlap Matrix

8.8 Comparison PCA-OGD versus OGD

Figure 6: Final accuracy on Rotated MNIST for different memory size (averaged over 5 seeds ±1 std). OGD
needs twice as much memory as PCA-OGD in order to achieve the same performance (i.e compare OGD (200)

and PCA (100).

Figure 7: Final accuracy on Split CIFAR for different memory size (averaged over 5 seeds ±1 std). When
dataset is well structured PCA-OGD efficiently leverages the pattern (i.e compare OGD (200) and PCA (100).

Thang Doan 1 2, Mehdi Bennani 3, Bogdan Mazoure 1 2, Guillaume Rabusseau 2 4, Pierre Alquier 5

Figure 8: Final accuracy on Permuted MNIST for different memory size. When there is no structure,
information captured by PCA-OGD from previous tasks cannot be leveraged for future tasks. OGD and

PCA-OGD have comparable performance (except for the first task).

8.9 Structure in the data

We sample a subset of s = 3, 000 samples from different datasets xτj ,j = 1, ..., 3000 (Permuted and Rotated
MNIST), then we perform PCA on φ(xτj)φ(xτj)> and keep the d top components. Having a total memory size
of M = 200, 500, 1000, 2000, 3000 and training on 15 tasks means that each task will be allocated M/14 since
we omit the last task. As seen in Figure 9 for a total memory size of 200, we only keep 14 components which
corresponds to 38.84% of the variance explained in Permuted MNIST while it represents 71.06% for Rotated
MNIST. This is naturally explained by the fact that having random permutations breaks the structure of the
data and in order to keep the most information would we need to allocate a large amount of memory.

components kept Permuted MNIST Rotated MNIST Split CIFAR
10 35.13 68.52 58.87
25 45.14 75.54 65.99
50 53.33 81.09 72.27
100 62.37 86.23 79.19
200 71.65 90.71 85.99
500 83.20 94.42 93.24

Table 3: Percentage of variance explained with different memory size when performing PCA on s = 3, 000
samples (except for Split CIFAR where s = 1, 500).

A Theoretical Analysis of Catastrophic Forgetting through the NTK Overlap Matrix

Figure 9: Percentage of variance explained for different datasets. Verticale lines on the left represents the number
of components kept or the memory allocated per task. We have truncated the x-axis to focus on the interesting

part.

8.10 NTK changes

We measure the change in NTK of PCA-OGD from its initialization value for different dataset size for a fixed
architecture after each task (See Figure 10). The green curve shows the actual parameters used for the experiments.
Although, there is linear increase of the NTK for MNIST datasets, it is approximately constant (after the first
task) for Split CIFAR which validates the constant NTK assumption and explains the good result of PCA-OGD
for this dataset.

Thang Doan 1 2, Mehdi Bennani 3, Bogdan Mazoure 1 2, Guillaume Rabusseau 2 4, Pierre Alquier 5

Figure 10: Variation of the NTK for different datasets size (legend).

8.11 Experimental setup and general performance

Datasets We are considering four datasets Permuted MNIST [Kirkpatrick et al., 2017], Rotated MNIST
[Lopez-Paz and Ranzato, 2017], Split MNIST and Split CIFAR [Zenke et al., 2017]. For MNIST dataset,
we sampled 1, 000 examples from each task leading to a total training set size of 10, 000 as in [Lopez-Paz and
Ranzato, 2017, Aljundi et al., 2019a].

• Permuted MNIST is coming from the 0-9 digit dataset MNIST [LeCun et al., 1998] where each pixels have
been permuted randomly. Each task corresponds to a new permutation randomly generated (but fixed along
all the dataset samples).

• Rotated MNIST is the same MNIST dataset where each new task corresponds to a fixed rotation of each
digit by a fixed angle. Our 15 tasks correspond to a fixed rotation of 5 degres with respect to the previous
task.

• Split MNIST consists of 5 binary classification tasks where we split the digit such as: 0/1 , 2/3 , 4/5 , 6/7 ,
8/9.

• Split CIFAR comes from CIFAR-100 dataset [Krizhevsky et al., 2009] which contains 100 classes that can
be grouped again into 20 superclasses. Split CIFAR-100 [Lopez-Paz and Ranzato, 2017] is constructed by
splitting the dataset into 20 disjoincts classes sampled without replacement. The 20 tasks are then composed
of 5 classes.

Baselines We are comparing our method PCA-OGD along with SGD, A-GEM [Chaudhry et al., 2018] and OGD
[Farajtabar et al., 2020].

Optimizer We use Stochastic Gradient for each method and grid search to find hyperparameters that gave best
results: learning rate of 1e− 3, batch size of 32 and 10 epochs for each tasks.

A Theoretical Analysis of Catastrophic Forgetting through the NTK Overlap Matrix

Performance Metrics Following [Chaudhry et al., 2018] we report the Average Accuracy AT and the Forgetting
Measure FT :

AT =
1

T

T∑
τ=1

aT,τ

Where aτ,T represents the accuracy of task τ at the end of the training of task T ≥ τ .

Forgetting Measure [Lopez-Paz and Ranzato, 2017] used the average forgetting as the performance drop of
task τ over the training of later tasks:

FT =
1

T − 1

T−1∑
τ=1

fTτ

where fTτ is defined as the highest forgetting from task τ until T :

fTτ = max
l=τ,...,T

al,τ − aT,τ

Hyperparameters Split MNIST Rotated/Permuted MNIST CIFAR-100
Dataset size (per task) 2,000 10,000 2,500

Epochs 5 10 50
Architecture MLP MLP LeNet1

Hidden dimension 100 100 200
EWC regularizer 10 10 25

tasks 5 15 20
Optimizer SGD

Learning rate 1e-03
Batch size 32
Torch seeds 0 to 4
Memory size 100

PCA sample size s 3,000
samples used to compute OτS→τT (per task) 250

Table 4: Hyperparameters used across experiments.

1For this architecture, we observed better results when only projecting orthogonally to the fully connected layers.

Thang Doan 1 2, Mehdi Bennani 3, Bogdan Mazoure 1 2, Guillaume Rabusseau 2 4, Pierre Alquier 5

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7
SGD 25.55 ± 0.99 27.79 ± 0.85 33.39 ± 1.08 40.97 ± 0.92 49.05 ± 1.07 56.05 ± 0.95 64.48 ± 0.83
EWC 49.16 ± 1.54 52.58 ± 1.85 61.0 ± 1.81 67.77 ± 1.55 72.85 ± 1.18 76.8 ± 1.1 80.05 ± 0.76
AGEM 65.48 ± 1.38 65.93 ± 1.15 72.95 ± 0.65 77.23 ± 0.55 79.38 ± 0.32 81.9 ± 0.29 84.09 ± 0.25
OGD 44.16 ± 1.52 47.06 ± 1.26 55.75 ± 0.96 63.53 ± 1.37 69.75 ± 0.36 75.67 ± 0.44 80.86 ± 0.19

PCA-OGD 52.51 ± 2.3 55.81 ± 1.79 65.21 ± 1.76 72.79 ± 1.34 79.0 ± 0.8 83.34 ± 0.57 86.65 ± 0.31

Task 8 Task 9 Task 10 Task 11 Task 12 Task 13 Task 14 Task 15
SGD 72.75 ± 0.6 78.55 ± 0.43 84.4 ± 0.26 88.45 ± 0.27 91.08 ± 0.13 92.48 ± 0.09 93.28 ± 0.19 92.74 ± 0.15
EWC 82.71 ± 0.65 84.45 ± 0.37 86.32 ± 0.24 87.34 ± 0.31 87.47 ± 0.37 86.9 ± 0.38 85.23 ± 0.58 82.42 ± 0.65
AGEM 85.84 ± 0.12 87.47 ± 0.16 89.6 ± 0.18 91.28 ± 0.09 92.54 ± 0.18 93.13 ± 0.09 93.33 ± 0.11 92.71 ± 0.12
OGD 84.75 ± 0.41 87.39 ± 0.38 90.09 ± 0.5 91.7 ± 0.3 92.84 ± 0.28 93.03 ± 0.23 92.9 ± 0.22 91.86 ± 0.19

PCA-OGD 89.08 ± 0.1 90.62 ± 0.2 92.02 ± 0.3 92.87 ± 0.09 93.52 ± 0.17 93.18 ± 0.12 92.85 ± 0.14 91.3 ± 0.15

Table 5: Final Accuracy for Rotated MNIST (averaged over 5 seeds ±1 std).

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7
SGD 56.88 ± 2.85 62.18 ± 6.06 65.96 ± 2.87 66.62 ± 10.57 71.74 ± 3.0 70.86 ± 5.42 77.27 ± 1.69
EWC 77.5 ± 2.13 79.78 ± 1.63 81.91 ± 0.94 81.92 ± 0.63 81.26 ± 1.02 80.88 ± 0.89 80.91 ± 1.1
AGEM 75.34 ± 1.92 75.16 ± 1.37 79.41 ± 0.9 79.78 ± 3.22 79.87 ± 1.65 81.16 ± 1.88 82.48 ± 1.28
OGD 45.97 ± 3.6 63.25 ± 3.43 74.25 ± 2.8 78.9 ± 3.15 80.9 ± 1.42 81.99 ± 1.27 83.86 ± 0.61

PCA-OGD 35.47 ± 3.34 64.23 ± 2.05 77.98 ± 1.59 80.82 ± 1.98 83.21 ± 1.09 84.25 ± 1.39 85.89 ± 0.45

Task 8 Task 9 Task 10 Task 11 Task 12 Task 13 Task 14 Task 15
SGD 75.14 ± 2.34 81.54 ± 2.61 83.31 ± 1.17 85.27 ± 1.71 86.48 ± 0.49 88.34 ± 0.29 89.73 ± 0.48 90.85 ± 0.16
EWC 80.98 ± 0.94 80.4 ± 1.33 80.2 ± 1.18 79.77 ± 1.27 78.6 ± 0.91 77.92 ± 0.8 77.3 ± 0.58 76.28 ± 0.67
AGEM 82.81 ± 1.09 85.86 ± 0.67 85.56 ± 0.85 86.44 ± 1.22 87.65 ± 0.81 88.81 ± 0.34 89.91 ± 0.25 90.79 ± 0.21
OGD 85.42 ± 0.59 86.69 ± 0.5 86.84 ± 0.62 87.86 ± 0.65 88.68 ± 0.36 89.28 ± 0.31 89.88 ± 0.23 90.45 ± 0.16

PCA-OGD 87.08 ± 0.26 87.46 ± 0.77 87.9 ± 0.5 88.34 ± 0.44 89.16 ± 0.39 89.65 ± 0.14 89.93 ± 0.17 90.29 ± 0.2

Table 6: Final Accuracy for Permuted MNIST (averaged over 5 seeds ±1 std).

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10
SGD 48.92 ± 5.11 40.96 ± 2.7 46.52 ± 6.45 40.2 ± 7.27 56.36 ± 8.12 44.76 ± 6.08 54.32 ± 4.9 44.52 ± 5.41 46.24 ± 6.29 59.88 ± 7.56
EWC 63.28 ± 2.44 62.32 ± 7.5 57.36 ± 5.88 56.0 ± 6.39 73.56 ± 6.42 52.32 ± 5.96 64.92 ± 3.03 62.44 ± 2.89 53.04 ± 6.24 70.48 ± 5.09
AGEM 38.88 ± 2.81 37.0 ± 5.34 37.28 ± 5.62 32.44 ± 8.53 42.4 ± 12.14 36.72 ± 4.66 41.12 ± 5.16 39.36 ± 4.22 41.92 ± 6.3 47.08 ± 8.52
OGD 52.04 ± 2.92 57.84 ± 5.83 59.96 ± 3.77 56.32 ± 1.47 74.12 ± 2.25 58.04 ± 2.75 69.24 ± 1.18 66.36 ± 3.66 60.84 ± 2.17 77.84 ± 2.2

PCA-OGD 57.24 ± 2.55 63.08 ± 4.96 66.16 ± 0.83 61.52 ± 1.09 75.32 ± 6.88 62.88 ± 1.45 73.28 ± 1.06 70.48 ± 1.67 66.32 ± 1.14 80.28 ± 1.22

Task 11 Task 12 Task 13 Task 14 Task 15 Task 16 Task 17 Task 18 Task 19 Task 20
SGD 67.56 ± 4.21 49.64 ± 8.46 66.4 ± 4.6 58.68 ± 4.78 65.68 ± 5.11 54.8 ± 13.41 63.6 ± 3.84 57.84 ± 4.5 75.16 ± 2.54 80.12 ± 2.41
EWC 77.92 ± 2.36 67.4 ± 1.51 74.44 ± 1.83 68.28 ± 3.08 72.64 ± 1.87 67.88 ± 3.73 67.08 ± 3.67 53.08 ± 5.02 73.32 ± 1.18 71.32 ± 6.05
AGEM 54.68 ± 7.95 39.48 ± 11.16 52.52 ± 12.46 50.36 ± 7.41 55.4 ± 12.14 55.16 ± 1.8 54.92 ± 9.64 50.28 ± 10.96 65.56 ± 5.36 78.52 ± 1.01
OGD 80.44 ± 1.93 67.8 ± 2.99 80.4 ± 1.04 74.56 ± 0.8 77.92 ± 1.93 72.36 ± 0.82 75.0 ± 0.83 73.0 ± 1.48 79.52 ± 1.39 81.88 ± 1.73

PCA-OGD 82.56 ± 0.74 71.84 ± 1.81 81.88 ± 1.52 76.08 ± 1.51 80.4 ± 0.95 73.52 ± 1.39 76.52 ± 0.53 73.0 ± 1.63 80.36 ± 1.82 81.28 ± 0.72

Table 7: Final Accuracy for Split CIFAR (averaged over 5 seeds ±1 std).

Task 1 Task 2 Task 3 Task 4 Task 5
SGD 99.35 ± 0.2 88.62 ± 5.21 94.85 ± 1.69 98.1 ± 0.38 94.6 ± 0.4
EWC 99.34 ± 0.19 88.36 ± 5.38 94.96 ± 1.37 98.09 ± 0.39 94.56 ± 0.49
AGEM 99.5 ± 0.22 85.92 ± 7.36 93.31 ± 2.13 98.07 ± 0.42 94.44 ± 0.82
OGD 99.64 ± 0.09 92.24 ± 1.49 95.75 ± 0.4 98.22 ± 0.39 94.41 ± 0.4

PCA-OGD 99.67 ± 0.08 92.22 ± 1.67 95.37 ± 0.72 98.39 ± 0.28 94.14 ± 0.42

Table 8: Final Accuracy for Split MNIST (averaged over 5 seeds ±1 std).

A Theoretical Analysis of Catastrophic Forgetting through the NTK Overlap Matrix

8.12 Worst-case scenario for PCA-OGD: data spread uniformly along all directions

In this section, we present a toy example which highlights the drawbacks of PCA-OGD against Catastrophic
Forgetting in comparison with OGD, in the special case where magnitude of eigenvalues are spread out.

Experiments In this section, we build a worst case scneario where datapoints {Xτ}Tτ=1 are spread uniformly
across all directions. We consider a regression task with a linear model fτ (Xτ) = (Xτ)>(ωτ (t)− ω?τ−1) where
Xτ ∈ Rnτ×p, ω ∈ Rp, τ ∈ [T]. We generate the data as follows for all τ ∈ [T]:

Xτ ∼ N (µxτ ,σxτ)

ω?τ ∼ N (µωτ , σωτ)

yτ = (Xτ)>ω?τ + ετ

ετ ∼ N (0, σετ)

We are considering Mean Square Error (MSE) for the loss function: Lτ = 1
nτ

nτ∑
i=1

(yτi − fτ (xτi))2, ∀τ ∈ [T].

Note in this setting, the kernel is simply the which is simply the gradient kernel matrix of the dataset :

φ(Xτ)φ(Xτ)> = ∇ωfτ (Xτ)∇ωfτ (Xτ)> = Xτ (Xτ)> ∈ Rnτ×nτ

As shown below in Figure 11a the eigenvalues of the PCA decomposition of Xτ (Xτ)> are of the same magnitude
order and taking the first 25 components only represents 26% of the explained variance. We trained the model on
15 tasks with a total memory of 25 per tasks. We only show below the testing error and forgetting error of the
first 9 tasks. As expected, PCA-OGD incurs drastic variation of its loss function while OGD shows practically no
forgetting.

(a) Eigenvalues structure of the dataset. The first
eigenvalues are sensitively of the same magnitude

order (left) such that taking the first 25(5%)
only explains 26% of the data variance (right).

(b) Testing loss of OGD (left) versus
PCA-OGD (right). OGD incurs almost no forgetting
while PCA-OGD has drastic variation in the testing

loss over the time.

Thang Doan 1 2, Mehdi Bennani 3, Bogdan Mazoure 1 2, Guillaume Rabusseau 2 4, Pierre Alquier 5

8.13 Pseudo-code for GEM-NT

Algorithm 2: GEM-NT for Continual Learning
Input :A task sequence T 1, T 2, . . ., learning rate η, components to keep d

1. Initialize S1 ← {} ; ω ← ω0

2. for Task ID τ = 1, 2, 3, . . . do
repeat

g← Stochastic Batch Gradient for T τ at ω;

// Orthogonal updates

g̃ = g −
∑

(xk,yk)∈Sk,k=1,..,τ−1∇L
τ
λ(xk; yk));

ω ← ω − ηg̃
until convergence;

// Compute loss gradient

Sample d elements (xτ , yτ) from T τ
Sτ ← {(xτ , yτ)}
end for

8.14 Computational overhead of PCA-OGD

The only additional step of PCA-OGD over OGD is the PCA operation. The complexity of the Graham Schmidt
(GS) step is O(M2p) where M is the memory size and p the number of parameters. The PCA operation has
complexity O(n2p) where n � p are the first n components to keep. However, n = M/T with T being the
number of tasks hence there is no computational overhead for the PCA step: PCA-OGD and OGD have the
same asymptotic complexity.

A Theoretical Analysis of Catastrophic Forgetting through the NTK Overlap Matrix

8.15 Eigenvalues evolution of the NTK overlap matrix between the source and target task

Figure 12: Eigenvalues of the overlap matrix OτS→τT for different memozy size and methods. Increasing memory
gives better advantage to PCA-OGD.

Thang Doan 1 2, Mehdi Bennani 3, Bogdan Mazoure 1 2, Guillaume Rabusseau 2 4, Pierre Alquier 5

Figure 13: Eigenvalues of the overlap matrix OτS→τT for different memozy size and methods. Increasing memory
gives better advantage to PCA-OGD.

A Theoretical Analysis of Catastrophic Forgetting through the NTK Overlap Matrix

Figure 14: Eigenvalues of the overlap matrix OτS→τT for different memozy size and methods. Since there is no
Pattern accross task of Permuted MNIST, PCA-OGD does not take advantage of keeping principal eigenvalues

directions.

	Appendix
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Corolary 1
	Proof of Corollary 2
	Forgetting for PCA-OGD
	Algorithms summary
	The counter-example of Permuted MNIST: no structure
	Comparison PCA-OGD versus OGD
	Structure in the data
	NTK changes
	Experimental setup and general performance
	Worst-case scenario for PCA-OGD: data spread uniformly along all directions
	Pseudo-code for GEM-NT
	Computational overhead of PCA-OGD
	Eigenvalues evolution of the NTK overlap matrix between the source and target task

