
A The CMS

For any m ≥ 1 let X1:m = (X1, . . . , Xm) be a data stream of tokens taking values in a measurable space of
symbols V . A point query over X1:m asks for the estimation of the frequency fv of a token of type v ∈ V in X1:m,
i.e. fv =

∑
1≤i≤m 1Xi(v). The goal of CMS of (Cormode and Muthukrishnan, 2005b,a) consists in estimating

fv based on a compressed representation of X1:m by random hashing. In particular, let J and N be positive
integers such that [J ] = {1, . . . , J} and [N ] = {1, . . . , N}, and let h1, . . . , hN , with hn : V → [J ], be a collection
of hash functions drawn uniformly at random from a pairwise independent hash family H. That is, a random
hash function h ∈ H has the property that for all v1, v2 ∈ H such that v1 6= v2, the probability that v1 and v2

hash to values j1, j2 ∈ [J ], respectively, is

Pr[h(v1) = j1, h(v2) = j2] =
1

J2
.

Hashing X1:m through h1, . . . , hN creates N vectors of J buckets {(Cn,1, . . . , Cn,J )}n∈[N ], with Cn,j obtained by
aggregating the frequencies for all x where hn(x) = j. Every Cn,j is initialized at zero, and whenever a new token
Xi is observed we set Cn,hn(Xi) ← 1 + Cn,hn(Xi) for every n ∈ [N ]. After m tokens, Cn,j =

∑
1≤i≤m 1hn(Xi)(j)

and fv ≤ Cn,j for any v ∈ V . Under this setting, the CMS of (Cormode and Muthukrishnan, 2005a) estimates fv
with the smallest hashed frequency among {Cn,hn(v)}n∈[N ], i.e.,

f̂ (CMS)
v = min

n∈[N ]
{Cn,hn(v)}n∈[N ].

That is, f̂ (CMS)
v returns the count associated with the fewest collisions. This provides an upper bound on the true

count. For an arbitrary data stream with m tokens, the CMS satisfies the following guarantee.

Theorem 1. (Cormode and Muthukrishnan, 2005a) Let J = de/2e and let N = dlog 1/δe, with ε > 0 and δ > 0.
Then, the estimate f̂ (CMS)

v satisfies f̂ (CMS)
v ≥ fv and, with probability at least 1− δ, the estimate f̂ (CMS)

v satisfies
f̂ (CMS)
v ≤ fv + εm.

B CRMs and hNCRMs

Let V be a measurable space endowed with its Borel σ-field F . A CRM µ on V is defined as a random measure
such that for any A1, . . . , Ak in F , with Ai∩Aj = ∅ for i 6= j, the random variables µ(A1), . . . , µ(Ak) are mutually
independent (Kingman, 1993). Any CRM µ with no fixed point of discontinuity and no deterministic drift is
represented as µ =

∑
j≥1 ξjδvj , where the ξj ’s are positive random jumps and the vj ’s are V-valued random

locations. Then, µ is characterized by the Lévy–Khintchine representation

E
[
exp

{
−
∫
V
f(v)µ(dv)

}]
= exp

{
−
∫
R+×V

[1− e−ξf(v)]

}
ρ(dξ, dv),

where f : V → R is a measurable function such that
∫
|f |dµ < +∞ and ρ is a measure on R+ × V such

that
∫
B

∫
R+ min{ξ, 1}ρ(dξ, dv) < +∞ for any B ∈ F . The measure ρ, referred to as Lévy intensity measure,

characterizes µ: it contains all the information on the distributions of jumps and locations of µ. For our purposes
it will often be useful to separate the jump and location part of ρ by writing it as

γ(dξ, dv) = ρ(dξ; v)ν(dv),

where ν denotes a measure on (V,F) and ρ denotes a transition kernel on B(R+) × V, with B(R+) being the
Borel σ-field of R+, i.e. v 7→ ρ(A; v) is F -measurable for any A ∈ B(R+) and ρ(·; v) is a measure on (R+,B(R+))
for any v ∈ V . In particular, if ρ(·; v) = ρ(·) for any v then the jumps of µ is independent of their locations and γ
and µ are termed homogeneous. See (Kingman, 1993) and references therein.

CRMs are closely connected to Poisson processes. Indeed µ can be represented as a linear functional of a Poisson
process Π on R+ × V with mean measure γ. To stated this precisely, Π is a random subset of R+ × V and if
N(A) = card{Π ∩A} for any A ⊂ B(R+)⊗F such that γ(A) < +∞, then

Pr[N(A) = k] = e−γ(A) (γ(A))k

k!



for k ≥ 0. Then, for any A ∈ F
µ(A) =

∫
A

∫
R+

N(dv,dξ)

See (Kingman, 1993) and references therein. An important property of CRMs is their almost sure discreteness
(Kingman, 1993), which means that their realizations are discrete measures with probability 1. This fact essentially
entails discreteness of random probability measures obtained as transformations of CRMs, such as hNCRMs.

hNCRMs (James, 2002; Prünster, 2002; Regazzini et al., 2003; Pitman, 2006; Lijoi and Prünster, 2010) are defined
in terms of a suitable normalization of CRMs. Let µ be a homogeneous CRM on V such that 0 < µ(V) < +∞
almost surely. Then, the random probability measure

P =
µ

µ(V)
(1)

is termed hNCRM. Because of the almost sure discreteness of µ, the P is discrete almost surely. That is,

P =
∑
j≥1

pjδvj ,

where pj = ξj/µ(V) for j ≥ 1 are random probabilities such that pj ∈ (0, 1) for any j ≥ 1 and
∑
j≥1 pj = 1 almost

surely. Both the conditions of finiteness and positiveness of µ(V) are clearly required for the normalization (1) to
be well-defined, and it is natural to express these conditions in terms of the Lévy intensity measure γ of the CRM
µ. It is enough to have ρ = +∞ and 0 < µ(V) < +∞. In particular, the former is equivalent to requiring that
µ has infinitely many jumps on any bounded set: in this case µ is also called an infinite activity process. The
previous conditions can also be strengthened to necessary and sufficient conditions but we do not pursue this
here. See (Kingman, 1993).

C NGGP priors, and proof of Proposition 1

Let V be a measurable space endowed with its Borel σ-field F . For any m ≥ 1, let X1:m be a random sample of
tokens from P ∼ NGGP(α, σ, ν). Because of the discreteness of P , the random sample X1:m induces a random
partition of the set {1, . . . ,m} into Km = k ≤ m partition subsets, labelled by distinct symbols v = {v1, . . . , vKm}
in V , with frequenciesNn = (N1, . . . , NKm) = (n1, . . . , nk) such thatNi > 0 and

∑
1≤i≤Km Ni = m. Distributional

properties of the random partition induced by X1:m induced by X1:m have been investigated in, e.g., (James,
2002), Pitman (2003), (Lijoi et al., 2007), (De Blasi et al., 2013) and (Bacallado et al., 2017). In particular,

Pr[Km = k,Nm = (n1, . . . , nk)] =
1

k!

(
m

n1, . . . , nk

)
Vm,k

k∏
i=1

(1− σ)(ni−1), (2)

where

Vm,k =
(α2σ−1)k

Γ(m)

∫ +∞

0

xm−1

(2−1 + x)m−kσ
exp

{
−α2σ−1

σ
[(2−1 + x)σ − 2−σ]

}
dx. (3)

Now, let Pm,k = {(n1, . . . , nk) : ni ≥ 0 and
∑

1≤i≤k ni = m} denote the set of partitions of m into k ≤ m blocks.
Then, the distribution of Km follows my marginalizing (2) on the set Pm,k, that is

Pr[Km = k] =
∑

(n1,...,nk)∈Pm,k

1

k!

(
m

n1, . . . , nk

)
Vm,k

k∏
i=1

(1− σ)(ni−1)

=
Vm,k
σk

C(m, k;σ), (4)

where C(m, k;σ) denotes the (central) generalized factorial coefficient (Charalambides, 2005), which is defined
as C(m, k;σ) = (k! )−1

∑
1≤i≤k

(
k
i

)
(−1)i(iσ)(m), with the proviso C(0, 0;σ) = 1 and C(m, 0;σ) = 0 for any

m ≥ 1. For any 1 ≤ r ≤ m, let Mr,m ≥ 0 denote the number of distinct symbols with frequency r in X1:m, i.e.
Mr,m =

∑
1≤i≤Km 1Ni(r) such that

∑
1≤r≤mMr,m = Km and

∑
1≤r≤m rMr,m = m. Then, the distribution of

Mm = (M1,m, . . . ,Mm,m) follows directly form (2), i.e.

Pr[Mm = m] = Vm,km!

m∏
i=1

(
(1− σ)(i−1)

i!

)mi 1

mi!
1Mm,k

(m), (5)



whereMm,k = {(m1, . . . ,mn) : mi ≥ 0, and
∑

1≤i≤mmi = k,
∑

1≤i≤m imi = m}. The distribution (5) is the
referred to as the sampling formula of the random partition with distribution (2).

For any m ≥ 1, let X1:m be a random sample from P ∼ NGGP(α, σ, ν) featuring Km = k partition subsets,
labelled by distinct symbols v = {v1, . . . , vKm} in V, with frequencies Nn = (n1, . . . , nk). The predictive
distributions of P provides the conditional distribution of Xm+1 given X1:m. That is, for A ∈ F

Pr[Xm+1 ∈ A |X1:m] =
Vm+1,k+1

Vm,k
ν(A) +

Vm+1,k

Vm,k

k∑
i=1

(ni − σ)δvi(A) (6)

for any m ≥ 1. We refer to Bacallado et al. (2017) for a characterization of (6) in terms of a meaningful Pólya like
urn scheme. The predictive distributions (6) provides the fundamental ingredient of the proof of Proposition 1.

Proof of Proposition 1. The proof follows from the predictive distributions (6) by setting A = v0 and A = vr.

We conclude by showing that the distributional property of a random sample from P ∼ DP(α, ν) follows from
the distributional property of a random sample from P ∼ NGGP(α, σ, ν) by letting σ → 0. For any m ≥ 1, let
X1:m be a random sample from P ∼ DP(α/2, ν) featuring Km = k partition subsets, labelled by distinct symbols
v = {v1, . . . , vKm} in V, with frequencies Nn = (n1, . . . , nk). The distribution of the random partition induced
by X1:m follows from (2) by letting σ → 0. Indeed,

lim
σ→0

Vm,k = lim
σ→+0

(α2σ−1)k

Γ(m)

∫ +∞

0

xm−1

(2−1 + x)m−kσ
exp

{
−α2σ−1

σ
[(2−1 + x)σ − 2−σ]

}
dx

=
(α/2)k

Γ(m)
2−α/2

∫ +∞

0

xm−1

(2−1 + x)m+α/2
dx

=

(
α
2

)k(
α
2

)
(m)

. (7)

Therefore, by combining the distribution (2) with (7), and letting σ → 0, it follows directly the distribution of
the random partition induced by a random sample X1:m from P ∼ DP(α/2, ν). That is,

Pr[Km = k,Nm = (n1, . . . , nk)] =
1

k!

(
m

n1, . . . , nk

) (
α
2

)k(
α
2

)
(m)

k∏
i=1

(ni − 1)! .

The distribution of Km follows by combining the distribution (4) with (7), and from the fact that
limσ→0 σ

−kC(m, k;σ) = |s(m, k)|, where |s(m, k)| denotes the signless Stirling number of the first type (Char-
alambides, 2005). That is,

Pr[Km = k] =

(
α
2

)k(
α
2

)
(m)

|s(m, k)|.

In a similar manner, the distribution of Mm under the DP prior, which is referred to as Ewens sampling formula
Ewens (1972), follows by combining the sampling formula (5) with (7), and letting σ → 0.

Finally, the predictive distributions of P ∼ DP(α, ν). For any m ≥ 1, let X1:m be a random sample from
P ∼ DP(α/2, ν) featuring Km = k partition subsets, labelled by distinct symbols v = {v1, . . . , vKm} in V, with
frequencies Nn = (n1, . . . , nk). The predictive distributions of P follows by combining the predictive distributions
(6) with (7), and letting σ → 0. That is, for A ∈ F

Pr[Xm+1 ∈ A, |X1:m] =
α
2

α
2 +m

ν(A) +
1

α
2 +m

k∑
i=1

niδvi(A) (8)

for any m ≥ 1. The predictive distributions (8) is at the basis of the CMS-DP proposed in Cai et al. (2018). In
particular, Equation 4 in Cai et al. (2018) follows from the predictive distributions (8) by setting A = v0 and
A = vr.



D The NIGP prior

For σ = 1/2 the NGGP prior reduces to the NIGP prior (Prünster, 2002; Lijoi et al., 2005). Al alternative
definition of the NIGP prior is given through its family of finite-dimensional distributions. This alternative
definition relies on the IG distribution (Seshadri, 1993). In particular, a random variable W has IG distribution
with shape parameter a ≥ 0 and scale parameter b ≥ 0 if it has the density function, with respect to the Lebesgue
measure, given by

fW (w; a, b) =
aeab√

2π
w−

3
2 exp

{
−1

2

(
a2

w
+ b2w

)}
1R+(w).

Let (W1, . . . ,Wk) be a collection of independent random variables such that Wi is distributed according to the
IG distribution with shape parameter ai and scale parameter 1, for i = 1, . . . , k. The normalized IG distribution
with parameter (a1, . . . , ak) is the distribution of the following random variable

(P1, . . . , Pk) =

(
W1∑k
i=1Wi

, . . . ,
Wk∑k
i=1Wi

)
.

The distribution of the random variable (P1, . . . , Pk−1) is absolutely continuous with respect to the Lebesgue
measure on Rk−1, and its density function on the (k − 1)-dimensional simplex coincides with

f(P1,...,Pk−1)(p1, . . . , pk−1; a1, . . . , ak) (9)

=

(
k∏
i=1

aieai√
2π

)
k−1∏
i=1

p
−3/2
i

(
1−

k−1∑
i=1

pi

)−3/2

× 2

(
k−1∑
i=1

a2
i

pi
+

a2
k

1−
∑k−1
i=1 pi

)−k/4
K−k/2


√√√√k−1∑

i=1

a2
i

pi
+

a2
k

1−
∑k−1
i=1 pi

 ,

where K−k/2 denotes the modified Bessel function of the second type, or Macdonald function, with parameter
−k/2. If the random variable (P1, . . . , Pk) is distributed according to a normalized IG distribution with parameter
(a1, . . . , ak), and if m1 < m2 < · · · < mr < k are positive integers, thenm1∑

i=1

Pi,

m2∑
i=m1+1

Pi, . . . ,

k∑
i=mr−1+1

Wi


is a random variable distributed as a normalized inverse Gaussian distribution with parameter
(
∑

1≤i≤m1
ai,
∑
m1+1≤i≤m2

ai, . . . ,
∑k
mr−1+1≤i≤kWi). This projective property of the normalized inverse Gaussian

distribution follows from the additive property of the inverse Gaussian distribution (Seshadri, 1993).

To define the NIGP prior through its family of finite-dimensional distributions, let V be a measurable space
endowed with its Borel σ-field F . Let P = {QB1,...,Bk : B1, . . . , Bk ∈ F for k ≥ 1} be a family of probability
distributions, and let ν̃ = αν be a diffuse (base) measure on V with ν̃(V) = α. If {B1, . . . , Bk} denotes a
measurable k-partition of V and ∆k−1 is the (k − 1)-dimensional simplex, then set

QB1,...,Bk(C) =

∫
C∩∆k−1

f(P1,...,Pk−1)(p1, . . . , pk−1; a1, . . . , ak)dp1 · · · dpk−1

for any C in the Borel σ-field of Rk, where f(P1,...,Pk−1) is the normalized IG distribution with density function
(9) with ai = ν̃(Bi), for i = 1, . . . , k. According to Proposition 3.9.2 of Regazzini (2001), the NIGP is the unique
random probability measure admitting P as its family of finite-dimensional distributions.

The projective property of P ∼ NIGP(α, ν) follows directly from: i) the definition of P through its family of
finite-dimensional distributions; ii) the projective property of the normalized IG distribution. In particular, for
any finite family of sets {A1, . . . , Ak} in F , let {B1, . . . , Bh} be a measurable h-partition of V such that it is finer
then the partition generated by the family of sets {A1, . . . , Ak}. Then,

QA1,...,Ak(C) = QB1,...,Bh(C ′)

for any C in the Borel σ-field of Rk, with C ′ = {(x1, . . . , xh) ∈ [0, 1]h : (
∑
i xi, . . . ,

∑
i xi) ∈ C}. See (Lijoi et al.,

2005).



E Proof of Proposition 2, and proof of Theorem 3

To prove Proposition 2, we start with the following lemma under the assumption that X1:m is a random sample
from P ∼ NGGP(α, σ, ν). The proof of Proposition 2 then follows by setting σ = 1/2. Let

pfv (`;m,α, σ) =
∑

m∈Mk,m

Pr[Xm+1 ∈ v` |Mm = m]Pr[Mm = m], ` = 0, 1, . . . ,m,

where the predictive distributions Pr[Xm+1 ∈ v` |Mm = m] are displayed in Equation 5, and the distribution
Pr[Mm = m] is displayed in Equation 4. For σ ∈ (0, 1), let fσ denote the density function of the positive σ-stable
random variable Xσ, i.e. E[exp{−tXσ}] = exp{−tσ} for any t > 0.

Lemma 1. For any m ≥ 1, let X1:m be a random sample from P ∼ NGGP(α, σ, ν). Then, for ` = 0, 1, . . . ,m

pfv (`;m,α, σ)



σ(`−σ)(m` )(1−σ)(`−1)

Γ(1−σ+`)

×
∫ +∞

0

∫ 1

0
1
hσ fσ(hp)e−h

(
α2−1

σ

) 1
σ +α2−1

σ pm−`(1− p)1−σ+`−1dpdh ` < m

α2m(1−σ)(m)

Γ(m+1)

×
∫ +∞

0
xm

(1+2x)m+1−σ exp
{
−α2σ−1

σ [(2−1 + x)σ − 2−σ]
}

dx ` = m.

(10)

Proof. We start by considering the case ` = 0. The probability pfv (0;m,α, σ) follows by combining Proposition 1
with the distribution of Km displayed in (4). Indeed, we can write the following expression

pfv (0;m,α, σ) =
∑

m∈Mm,k

Pr[Xm+1 ∈ v0 |Mm = m]Pr[Mm = m] (11)

=
∑

m∈Mm,k

Vm+1,k+1

Vm,k
Pr[Mm = m]

=

m∑
k=1

Vm+1,k+1

σk
C(m, k;σ). (12)

Then, the expression of pfv (0;m,α, σ) in (10) follows by combining (11) with Vm+1,k+1 displayed in (3), i.e.,

pfv (0;m,α, σ) =
(α2σ−1)

Γ(m+ 1)

∫ +∞

0

um

(2−1 + u)m+1−σ exp

{
−α2σ−1

σ
[(2−1 + u)σ − 2−σ]

}
×

m∑
k=1

(
α2σ−1

σ(2−1 + u)−σ

)k
C(m, k;σ)du

[Equation 13 of Favaro et al. (2015)]

=
(α2σ−1)

Γ(m+ 1)

∫ +∞

0

um

(2−1 + u)m+1−σ exp

{
−α2σ−1

σ
[(2−1 + u)σ − 2−σ]

}
× exp

{
α2σ−1

σ(2−1 + u)−σ

}(
α2σ−1

σ(2−1 + u)−σ

)m/σ ∫ +∞

0

xm exp

{
−x
(

α2σ−1

σ(2−1 + u)−σ

)1/σ
}
fσ(x)dxdu

[Identity (2−1 + u)−1+σ =
1

Γ(1− σ)

∫ +∞

0

y1−σ−1 exp
{
−y(2−1 + u)

}
dy]

=
(α2σ−1)1+m/σ

σm/σΓ(m+ 1)

×
∫ +∞

0

um
(

1

Γ(1− σ)

∫ +∞

0

y1−σ−1 exp
{
−y(2−1 + u)

}
dy

)
×

(∫ +∞

0

xm exp

{
−x
(
α2σ−1

σ

) 1
σ

u

}
exp

{
−x
(
α2−1

σ

) 1
σ

+
α2−1

σ

}
fσ(x)dx

)
du



=
(α2σ−1)1+m/σ

σm/σΓ(1− σ)

×
∫ +∞

0

xmfσ(x) exp

{
−x
(
α2−1

σ

) 1
σ

+
α2−1

σ

}

×
∫ +∞

0

y1−σ−1 exp
{
−y2−1

}[
x

(
α2σ−1

σ

) 1
σ

+ y

]−n−1

dydx

[Change of variable p =
y

x
(
α2σ−1

σ

) 1
σ

+ y

]

=
(α2σ−1)1+m/σ

σm/σΓ(1− σ)

×
∫ +∞

0

xmfσ(x) exp

{
−x
(
α2−1

σ

) 1
σ

+
α2−1

σ

}

×
∫ 1

0


(
α2σ−1

σ

) 1
σ

xp

1− p


1−σ−1 (

α2σ−1

σ

) 1
σ

x

(1− p)2

× exp

−
(
α2σ−1

σ

) 1
σ

xp

1− p
2−1


x(α2σ−1

σ

) 1
σ

+

(
α2σ−1

σ

) 1
σ

xp

1− p


−m−1

dpdx

[Change of variable h = x/(1− p)]

=
(α2σ−1)1+m/σ

σm/σΓ(1− σ)

×
∫ +∞

0

∫ 1

0

(h(1− p))mfσ(h(1− p)) exp

{
−h(1− p)

(
α2−1

σ

) 1
σ

+
α2−1

σ

}

×

((
α2σ−1

σ

) 1
σ

hp

)1−σ−1(
α2σ−1

σ

) 1
σ

h

× exp

{
−
(
α2σ−1

σ

) 1
σ

hp2−1

}[
h(1− p)

(
α2σ−1

σ

) 1
σ

+

(
α2σ−1

σ

) 1
σ

hp

]−m−1

dpdh

=
(α2σ−1)1+m/σ

σm/σΓ(1− σ)

((
α2σ−1

σ

) 1
σ

)−σ−m

×
∫ +∞

0

∫ 1

0

(h(1− p))nfσ(h(1− p)) exp

{
−h
(
α2−1

σ

) 1
σ

+
α2−1

σ

}
p1−σ−1h−m−σdpdh

=
σ

Γ(1− σ)

∫ +∞

0

∫ 1

0

fσ(hp) exp

{
−h
(
α2−1

σ

) 1
σ

+
α2−1

σ

}
h−σpm(1− p)1−σ−1dpdh.

This complete the case ` = 0. Now, we consider ` > 0. The probability pfv(`;m,α, σ) follows by combining
Proposition 1 with the distribution of (Km,Nn) displayed in (2). In particular, we can write

pfv (`;m,α, σ) =
∑

m∈Mm,k

Pr[Xm+1 ∈ v` |Mm = m]Pr[Mm = m]

=
∑

m∈Mm,k

Vm+1,k

Vm,k
(`− σ)mlPr[Mm = m]



= (`− σ)

m∑
k=1

∑
(n1,...,nk)∈Pm,k

1

k!

(
m

n1, . . . , nk

)
Vm,k

k∏
i=1

(1− σ)(ni−1)
Vm+1,k

Vm,k

k∑
j=1

1nj (`)

= (`− σ)

m∑
k=1

Vm+1,k

Vm,k

k∑
j=1

Pr[Km = k,Nj = `]

= (`− σ)

m∑
k=1

Vm+1,k

Vm,k

k∑
j=1

Vm,k
k

(
n

`

)
(1− σ)(`−1)

C(m− `, k − 1;σ)

σk−1

= (`− σ)

(
m

`

)
(1− σ)(`−1)

m∑
k=1

Vm+1,k
C(m− `, k − 1;σ)

σk−1
. (13)

Then, the expression of pfv (`;m,α, σ) in (10) follows by combining (13) with Vm+1,k displayed in (3), i.e.,

pfv (`;m,α, σ) = (`− σ)

(
m

`

)
(1− σ)(`−1)

m∑
k=1

Vm+1,k
C(m− `, k − 1;σ)

σk−1

= (`− σ)

(
m

`

)
(1− σ)(`−1)

× σ

Γ(m+ 1)

∫ +∞

0

um exp

{
−α2σ−1

σ
[(2−1 + u)σ − 2−σ]

}
(2−1 + u)−m−1du

×
m∑
k=1

C(m− `, k − 1;σ)

(
α2σ−1

σ(2−1 + u)−σ

)k
.

If ` = m, then

pfv (m;m,α, σ) = (1− σ)(m)

m∑
k=1

Vm+1,k
C(0, k − 1;σ)

σk−1

= (1− σ)(m)Vm+1,1

= (1− σ)(m)
α2σ−1

Γ(m+ 1)

∫ +∞

0

xm

(2−1 + x)m+1−σ exp

{
−α2σ−1

σ
[(2−1 + x)σ − 2−σ]

}
dx.

If ` < m, then

pfv (`;m,α, σ) = (`− σ)

(
m

`

)
(1− σ)(`−1)

m∑
k=1

Vm+1,k
C(m− `, k − 1;σ)

σk−1

= (`− σ)

(
m

`

)
(1− σ)(`−1)

× α2σ−1

Γ(m+ 1)

∫ +∞

0

um exp

{
−α2σ−1

σ
[(2−1 + u)σ − 2−σ]

}
(2−1 + u)−m−1+σdu

×
m−∑̀
k=1

C(m− `, k;σ)

(
α2σ−1

σ(2−1 + u)−σ

)k
[Equation 13 of Favaro et al. (2015)]

= (`− σ)

(
m

`

)
(1− σ)(`−1)

× α2σ−1

Γ(m+ 1)

∫ +∞

0

um exp

{
−α2σ−1

σ
[(2−1 + u)σ − 2−σ]

}
(2−1 + u)−m−1+σ

× exp

{
α2σ−1

σ(2−1 + u)−σ

}(
α2σ−1

σ(2−1 + u)−σ

)m−`
σ

×
∫ +∞

0

xm−` exp

{
−x
(

α2σ−1

σ(2−1 + u)−σ

) 1
σ

}
fσ(x)dxdu



[Identity (2−1 + u)−1+σ =
1

Γ(1− σ + `)

∫ +∞

0

y1−σ+`−1 exp
{
−y(2−1 + u)

}
dy]

= (`− σ)

(
m

`

)
(1− σ)(`−1)

× (α2σ−1)(α2σ−1)
m−`
σ

σ
m−`
σ Γ(m+ 1)

∫ +∞

0

um
(

1

Γ(1− σ + `)

∫ +∞

0

y1−σ+`−1 exp{−y(2−1 + u)}dy
)

×
∫ +∞

0

xm−` exp

{
−xu

(
α2σ−1

σ

) 1
σ

}
exp

{
−x
(
α2−1

σ

) 1
σ

+
α2−1

σ

}
fσ(x)dxdu

= (`− σ)

(
m

`

)
(1− σ)(`−1)

× (α2σ−1)1+m−`
σ

σ
m−`
σ Γ(1− σ + `)

∫ +∞

0

xm−`fσ(x) exp

{
−x
(
α2−1

σ

) 1
σ

+
α2−1

σ

}

×
∫ +∞

0

y1−σ+`−1 exp{−y2−1}

[
x

(
α2σ−1

σ

) 1
σ

+ y

]−m−1

dydx

[Change of variable p =
y

x
(
α2σ−1

σ

) 1
σ

+ y

]

= (`− σ)

(
m

`

)
(1− σ)(`−1)

× (α2σ−1)1+m−`
σ

σ
m−`
σ Γ(1− σ + `)

∫ +∞

0

xm−`fσ(x) exp

{
−x
(
α2−1

σ

) 1
σ

+
α2−1

σ

}

×
∫ 1

0


(
α2σ−1

σ

) 1
σ

xp

1− p


1−σ+`−1 (

α2σ−1

σ

) 1
σ

x

(1− p)2

× exp

−
(
α2σ−1

σ

) 1
σ

xp

1− p
2−1


x(α2σ−1

σ

) 1
σ

+

(
α2σ−1

σ

) 1
σ

xp

1− p


−m−1

dpdx

[Change of variable h = x/(1− p)]

= (`− σ)

(
m

`

)
(1− σ)(`−1)

× (α2σ−1)1+m−`
σ

σ
m−`
σ Γ(1− σ + `)

∫ +∞

0

∫ 1

0

(h(1− p))m−`fσ(h(1− p)) exp

{
−h(1− p)

(
α2−1

σ

) 1
σ

+
α2−1

σ

}

×

((
α2σ−1

σ

) 1
σ

hp

)1−σ+`−1(
α2σ−1

σ

) 1
σ

h

× exp

{
−
(
α2σ−1

σ

) 1
σ

hp2−1

}[
h(1− p)

(
α2σ−1

σ

) 1
σ

+

(
α2σ−1

σ

) 1
σ

hp

]−m−1

dpdh

= (`− σ)

(
m

`

)
(1− σ)(`−1)

× (α2σ−1)1+m−`
σ

σ
m−`
σ Γ(1− σ + `)

((
α2σ−1

σ

) 1
σ

)−m−σ+`

×
∫ +∞

0

∫ 1

0

(h(1− p))m−`fσ(h(1− p)) exp

{
−h
(
α2−1

σ

) 1
σ

+
α2−1

σ

}
p1−σ+`−1h−m−σ+`dpdh



= (`− σ)

(
m

`

)
(1− σ)(`−1)

× σ

Γ(1− σ + `)

∫ +∞

0

∫ 1

0

fσ(hp) exp

{
−h
(
α2−1

σ

) 1
σ

+
α2−1

σ

}
h−σpm−`(1− p)1−σ+`−1dpdh.

Remark 2. Here we present an alternative representation of pfv (`;m,α, σ) in (10). It provides a useful tool for
implementing a straightforward Monte Carlo evaluation of pfv (`;m,α, σ). For ` = m,

pfv (m;m,α, σ) =
σ(`− σ)

(
m
`

)
(1− σ)(`−1)

Γ(1− σ + `)

×
∫ +∞

0

∫ 1

0

1

hσ
fσ(hp)e−h

(
α2−1

σ

) 1
σ +α2−1

σ pm−`(1− p)1−σ+`−1dpdh

=
1

Γ(m+ 1)

∫ +∞

0

exp

{
−h
( α

2σ

)1/σ

+
α

2σ

}
σΓ(m+ 1)

Γ(m+ 1− σ)
h−σ

×
∫ 1

0

(1− p)m+1−σ−1fσ(hp)dpdh

=
(1− σ)(m)

Γ(m+ 1)
E

[
exp

{
−X
Y

(
α2−1

σ

) 1
σ

+
α2−1

σ

}]
,

where Y is a Beta random variable with parameter (m− `+σ, 1−σ+ `) and X is a random variable, independent
of Y , distributed according to a polynomially tilted σ-stable distribution of order σ, i.e.

Pr[X ∈ dx] =
Γ(σ + 1)

Γ(2)
x−σfσ(x)dx.

For ` < m,

pfv (`;m,α, σ) =
σ(`− σ)

(
m
`

)
(1− σ)(`−1)

Γ(1− σ + `)

×
∫ +∞

0

∫ 1

0

1

hσ
fσ(hp)e−h

(
α2−1

σ

) 1
σ +α2−1

σ pm−`(1− p)1−σ+`−1dpdh

= (`− σ)

(
m

`

)
(1− σ)(`−1)

× Γ(m− `+ σ)

Γ(σ)Γ(m+ 1)

×
∫ +∞

0

fσ(hp) exp

{
−h
(
α2−1

σ

) 1
σ

+
α2−1

σ

}
Γ(σ + 1)

Γ(2)
h−σ

× Γ(m+ 1)

Γ(1− σ + `)Γ(m− `+ σ)

∫ 1

0

pm−`(1− p)1−σ+`−1dpdh

=
Γ(m− `+ σ)

Γ(σ)Γ(m+ 1)
E

[
exp

{
−X
Y

(
α2−1

σ

) 1
σ

+
α2−1

σ

}]
.

According to this alternative representation, pfv (`;m,α, σ) allows for a Monte Carlo evaluation by sampling from
a Beta random variable and from a polynomially tilted σ-stable random variable of order σ. See, e.g., (Devroye,
2009).

Proof of Proposition 2. The proof follows by a direct application of Lemma (1) by setting σ = 1/2. First, let
recall that the density function of the (1/2)-stable positive random variable coincides with the IG density function
(Seshadri, 1993) with shape parameter a = 2−1/2 and scale parameter b = 0. That is, we write

f1/2(x) =
1

2
√
π
w−

3
2 exp

{
− 1

4w

}
.



For ` = m,

pfv (m;m,α, σ) =
α2m

(
1
2

)
(m)

Γ(m+ 1)

×
∫ +∞

0

xm

(1 + 2x)m+ 1
2

exp
{
−α21/2[(2−1 + x)1/2 − 2−1/2]

}
dx.

For ` < m,

pfv (`;m,α, σ) =
2−1(`− 2−1)

(
m
`

) (
1
2

)
(`−1)

Γ(2−1 + `)

×
∫ +∞

0

∫ 1

0

1√
h
f1/2(hp)e−hα

2+αpm−`(1− p) 1
2 +`−1dpdh

= (`− 2−1)

(
m

`

)
(1− 2−1)(`−1)

× 2−1

2π1/2
eα
∫ 1

0

∫ +∞

0

h−1−1 exp

{
−hα2 −

1
4p

h

}

× 1

Γ(1− 2−1 + `)
pm−`−

1
2−1(1− p)1− 1

2 +`−1dpdh

[Equation 3.471.9 of Gradshteyn and Ryzhic (2007)]

= (`− 2−1)

(
m

`

)
(1− 2−1)(`−1)

× eαα
π1/2Γ(1− 2−1 + `)

∫ 1

0

K−1

(
α

p1/2

)
pm−`−1(1− p)1− 1

2 +`−1dp,

where K−1 is the modified Bessel function of the second type, or Macdonald function, with parameter −1.
Remark 3. Here we present an alternative representation of pfv (`;m,α, σ) in Proposition 2. It provides a useful
tool for implementing a straightforward Monte Carlo evaluation of pfv (`;m,α, σ). For ` = m,

pfv (m;m,α, σ) =
α2m

(
1
2

)
(m)

Γ(m+ 1)

×
∫ +∞

0

xm

(1 + 2x)m+ 1
2

exp
{
−α21/2[(2−1 + x)1/2 − 2−1/2]

}
dx

=
1

Γ(m+ 1)

∫ +∞

0

exp
{
−hα2 + α

} 2−1Γ(m+ 1)

Γ(m+ 1− 1/2)

1√
h

×
∫ 1

0

(1− p)m+1− 1
2−1 1

2
√
π

(hp)−
3
2 exp

{
− 1

4hp

}
dpdh

=

(
1
2

)
(m)

Γ(m+ 1)
E
[
exp

{
−X
Y
α2 + α

}]
,

where Y is a Beta random variable with parameter (1/2,m+ 1/2) and X is a random variable, independent of Y ,
distributed according to a polynomially tilted IG distribution of the order 1/2, that is

Pr[X ∈ dx] =
Γ(3/2)

Γ(2)
x−

1
2
x−

3
2

2
√
π

exp

{
− 1

4x

}
dx.

For ` < m,

pfv (`;m,α, σ) = (`− 2−1)

(
m

`

)
(1− 2−1)(`−1)

× eαα
π1/2Γ(1− 2−1 + `)

∫ 1

0

K−1

(
α

p1/2

)
pm−`−1(1− p)1− 1

2 +`−1dp



= (`− 2−1)

(
m

`

)
(1− 2−1)(`−1)

× Γ(m− `)
π1/2Γ(m+ 1− 2−1)

eαα

×
∫ 1

0

K−1

(
α

p1/2

)
Γ(m+ 1− 2−1)

Γ(1− 2−1 + `)Γ(m− `)
pm−`−1(1− p)1− 1

2 +`−1dp

= (l − 2−1)

(
n

l

)
(1− 2−1)(l−1)

× Γ(m− `)
π1/2Γ(m+ 1− 2−1)

eααE
[
K−1

( α

Y 1/2

)]
,

where Y is a Beta random variable with parameter (m− `, 1/2 + `). According to this alternative representation,
pfv (`;m,α, σ) allows for a straightforward Monte Carlo evaluation by sampling from a Beta random variable and
from a polynomially tilted IG random variable of order 1/2. See, e.g., (Devroye, 2009).

Proof of Theorem 3. Because of the assumption of independence of the hash family, we can factorize the marginal
likelihood of (c1, . . . , cN ), i.e. of hash functions h1, . . . , hN , into the product of the marginal likelihoods of
cn = (cn,1, . . . , cn,J), i.e. of each hash function. This, combined with Bayes theorem, leads to

Pr[fv = ` | {Cn,hn(v)}n∈[N ] = {cn,hn(v)}n∈[N ]]

[Bayes theorem and independence of the hash family]

=
1

Pr[{Cn,hn(v)}n∈[N ] = {cn,hn(v)}n∈[N ]]
Pr[fv = `]

N∏
n=1

Pr[Cn,hn(v) = cn,hn(v) | fv = `]

=
1

Pr[{Cn,hn(v)}n∈[N ] = {cn,hn(v)}n∈[N ]]
Pr[fv = `]

N∏
n=1

Pr[Cn,hn(v) = cn,hn(v), fv = `]

Pr[fv = `]

=
1

Pr[{Cn,hn(v)}n∈[N ] = {cn,hn(v)}n∈[N ]]
(Pr[fv = `])1−N

N∏
n=1

Pr[Cn,hn(v) = cn,hn(v)]Pr[fv = ` |Cn,hn(v) = cn,hn(v)]

= (Pr[fv = `])1−N
N∏
n=1

Pr[fv = ` |Cn,hn(v) = cn,hn(v)]

∝
N∏
n=1

Pr[fv = ` |Cn,hn(v) = cn,hn(v)]

[Proposition 2 and Equation 9]

=
∏
n∈[N ]


(
cn,hn(v)

`
)e
α
J α

Jπ

∫ 1

0
K−1

(
α

J
√
x

)
xcn,hn(v)−`−1(1− x)

1
2 +`−1dx ` = 0, 1, . . . , cn,hn(v) − 1

2
cn,hn(v)α( 1

2 )
(cn,hn(v))

JΓ(cn,hn(v)+1)

∫ +∞
0

x
cn,hn(v)

(1+2x)
cn,hn(v)+1/2 e

−αJ (
√

1+2x−1)dx ` = cn,hn(v),

where K−1(·) is the modified Bessel function of the second type, or Macdonald function, with parameter −1.

F Estimation of α

We start by deriving the marginal likelihood corresponding to the hashed frequencies (c1, . . . , cN ) induced
by the collection of hash functions h1, . . . , hN . In particular, according to the definition of P ∼ NIGP(α, ν)
through its family of finite-dimensional distributions, for a single hash function hn the marginal likelihood of
cn = (cn,1, . . . , cn,J) is obtained by integrating the normalized IG distribution with parameter (α/J, . . . , α/J)
against the multinomial counts cn. In particular, by means of the normalized IG distribution (9), the marginal
likelihood of cn has the following expression

p(cn;α)



=
m!∏J

i=1 cn,i!

×
∫
{(p1,...,pJ−1) : pi∈(0,1) and

∑J−1
i=1 pi≤1}

J−1∏
i=1

p
cn,i
i

(
1−

J−1∑
i=1

pi

)cn,J
f(P1,...,PJ−1)(p1, . . . , pJ−1)dp1 · · · dpJ−1

=
m!∏J

i=1 cn,i!

×
∫
{(p1,...,pJ−1) : pi∈(0,1) and

∑J−1
i=1 pi≤1}

(
J∏
i=1

(α/J)eα/J√
2π

)
J−1∏
i=1

p
cn,i−3/2
i

(
1−

J−1∑
i=1

pi

)cn,J−3/2

×
∫ +∞

0

z−3J/2+J−1 exp

{
− 1

2z

(
J−1∑
i=1

(α/J)2

pi
+

(α/J)2

1−
∑J−1
i=1 pi

)
− z

2

}
dzdp1 · · · dpJ−1

[Change of variable pi =
xi∑k
i=1 xi

, for i = 1, . . . , J − 1, and z =

J∑
i=1

xi]

=
m!∏J

i=1 cn,i!

×
(

(α/J)eα/J√
2π

)J ∫
(0,+∞)J

J∏
i=1

x
cn,i−3/2
i

(
J∑
i=1

xi

)−∑J
i=1 cn,i

exp

{
−1

2

J∑
i=1

(α/J)2

xi
− 1

2

J∑
i=1

xi

}
dx1 · · · dxJ

=
m!∏J

i=1 cn,i!

×
(

(α/J)eα/J√
2π

)J
1

Γ(m)

∫
(0,+∞)J

J∏
i=1

x
cn,i−3/2
i

(∫ +∞

0

ym−1 exp

{
−y

J∑
i=1

xi

}
dy

)

× exp

{
−1

2

J∑
i=1

(α/J)2

xi
− 1

2

J∑
i=1

xi

}
dx1 · · · dxJ

=
m!∏J

i=1 cn,i!

×
(

(α/J)eα/J√
2π

)J
1

Γ(m)

∫ +∞

0

ym−1

(
J∏
i=1

∫ +∞

0

x
cn,i−3/2
i exp

{
− (α/J)2

2xi
− xi

(
y +

1

2

)}
dxi

)
dy

[Equation 3.471.9 of Gradshteyn and Ryzhic (2007)]

=
m!∏J

i=1 cn,i!

×
(

(α/J)eα/J√
2π

)J
1

Γ(m)

∫ +∞

0

ym−1

(
J∏
i=1

2

(
(α/J)2

1 + 2y

)cn,i/2−1/4

Kcn,i−1/2

(√
c2n,i(1 + 2y)

))
dy

=
m
(
α
J

)m+ J
2 eα

(π/2)
J
2

∏J
j=1 cn,j !

∫ +∞

0

ym−1

(1 + 2y)m/2−J/4

(
J∏
i=1

Kcn,i−1/2

(√
(α/J)2

i (1 + 2y)

))
dy.

Because of the independence of the hash family, h1, . . . , hN leads to the following marginal likelihood of
{cn,j}n∈[N ] j∈[J]

p(c1, . . . , cN ;α) (14)

=
∏
n∈[N ]

m
(
α
J

)m+ J
2 eα

(π/2)
J
2

∏J
j=1 cn,j !

∫ +∞

0

xm−1

(1 + 2x)
m
2 −

J
4

 J∏
j=1

Kcn,j− 1
2

(√(α
J

)2

(1 + 2x)

) dx.



The marginal likelihood of {cn,j}n∈[N ] j∈[J] in (14) is applied to estimate the mass parameter α. This is the
empirical Bayes approach to the estimation of α. In particular, we consider the following problem

arg max
α

 ∏
n∈[N ]

Vn,m,α,J

∫ +∞

0

Fn,m,α,J(y)dy

 ,

where

Vn,m,α,J =
m
(
α
J

)m+ J
2 eα

(π/2)
J
2

∏J
j=1 cn,j !

and

Fn,m,α,J(y) =
ym−1

(1 + 2y)
m
2 −

J
4

 J∏
j=1

Kcn,j− 1
2

(√(α
J

)2

(1 + 2y)

)
under the constraint that α > 0. To avoid overflow/underflow issues in the above optimization problem, here we
work in log-space. That is, we consider the following equivalent optimization problem1

arg max
α

 ∑
n∈[N ]

log(Vn,m,α,J) + log

(∫ +∞

0

Fn,m,α,J(y)dy

)
= arg max

α

 ∑
n∈[N ]

vn,m,α,J + log

(∫ +∞

0

exp{fn,m,α,J(y)}dy
) ,

with vn,m,α,J = log(Vn,m,α,J) and fn,m,α,J(y) = log(Fn,m,α,J(y)). For the computation of the integral we use
double exponential quadrature (Takahasi and Mori, 1974), which approximates

∫ +1

−1
f(y)dy with

∑m
j=1 wjf(yj)

for appropriate weights wj ∈ W and coordinates yj ∈ Y . Integrals of the form
∫ b
a
f(y)dy for −∞ ≤ a ≤ b ≤ +∞

are handled via change of variable formulas. To avoid underflow/overflow issues it is necessary to apply the
"log-sum-exp" trick to the above integral. That is,

log

(∫ +∞

0

exp{fn,m,α,J(y)}dy
)

= f∗ + log

(∫ +∞

0

exp{fn,m,α,J(y)− f∗}dy
)

and

f∗ = arg max
y∈Y

{fn,m,α,J(y)} .

The computation of log(Kcn,j− 1
2
(x)) is performed via the following finite-sum representation of Kcn,j− 1

2
(x), which

holds for Kv(x) when v is an half-integer. Recall that Kv(x) is symmetric in v. In particular,

Kcn,i−1/2

(√
(α/J)(1 + 2y)

)
=

√
π

2

exp
{
−((α/J)(1 + 2y))1/2

}
((α/J)(1 + 2y))1/4

cn,i−1∑
j=0

(j + cn,i − 1)!

j! (cn,i − j − 1)!
(2((α/J)(1 + 2y))1/2)−j .

In order to increase efficiency in the our optimization, we cache the log-factorials and, anew for each α and y the
values of log(Kcn,j− 1

2
(
√

(α/J)2(1 + 2y))) across j. In particular, as the dependency on j goes through cn,j only
we can exploit the fact that many duplicates exists, i.e. the complexity scales in the number of unique cn,j . All
code is implemented in LuaJIT2 by using the scilua3 library.

1the computation of log-factorials is done via the specialized implementation of the log-gamma function
2https://luajit.org
3https://scilua.org

https://luajit.org
https://scilua.org


G Additional experiments

We present additional experiments on the application of the CMS-NIGP on synthetic and real data. First, we
recall the synthetic and real data to which the CMS-NIGP is applied. As regards synthetic data, we consider
datasets of m = 500.000 tokens from a Zipf’s distributions with parameter s = 1.3, 1.6, 1.9, 2, 2, 2.5. As regards
real data, we consider: i) the 20 Newsgroups dataset, which consists of m = 2.765.300 tokens with k = 53.975
distinct tokens; ii) the Enron dataset, which consists of m = 6412175 tokens with k = 28102 distinct tokens.
Tables 1, 2, 3 and 4 report the MAE (mean absolute error) between true frequencies and their corresponding
estimates via: i) the CMS-NIGP estimate f̂ (NIGP)

v ; ii) the CMS estimate f̂ (CMS)
v ; iii) the CMS-DP estimatef̂ (DP)

v ,
the CMM estimate f̂ (CMM)

v .
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Table 3: Real data (J = 12000 and N = 2): MAE for f̂(NIGP)
v , f̂(DP)

v and f̂(CMS)
v

20 Newsgroups Enron

Bins for true v f̂ (CMS)
v f̂ (DP)

v f̂ (NIGP)
v f̂ (CMS)

v f̂ (DP)
v f̂ (NIGP)

v

(0,1] 46.4 46.39 11.34 12.2 12.20 3.00
(1,2] 16.6 16.60 3.53 13.8 13.80 3.06
(2,4] 38.4 38.40 7.71 61.5 61.49 12.55
(4,8] 59.4 59.39 10.40 88.4 88.39 17.36
(8,16] 54.3 54.29 11.34 23.4 23.40 4.58
(16,32] 17.8 17.80 9.85 55.1 55.09 11.58
(32,64] 40.8 40.79 25.65 128.5 128.48 39.46
(64,128] 26.0 25.99 57.95 131.1 131.08 54.42
(128,256] 13.6 13.59 126.07 50.7 50.68 119.04

Table 4: Real data (J = 8000 and N = 4): MAE for f̂(NIGP)
v , f̂(DP)

v and f̂(CMS)
v

20 Newsgroups Enron

Bins for true v f̂ (CMS)
v f̂ (DP)

v f̂ (NIGP)
v f̂ (CMS)

v f̂ (DP)
v f̂ (NIGP)

v

(0,1] 53.4 53.39 0.39 71.0 70.98 0.41
(1,2] 30.5 30.49 1.40 47.4 47.38 1.47
(2,4] 32.5 32.49 2.70 52.5 52.49 3.25
(4,8] 38.7 38.69 5.97 53.1 53.08 6.17
(8,16] 25.3 25.29 11.97 57.0 56.98 11.28
(16,32] 25.0 24.99 21.25 90.0 89.98 19.82
(32,64] 39.7 39.69 42.81 108.4 108.37 47.07
(64,128] 22.1 22.09 91.06 55.7 55.67 87.32
(128,256] 25.8 25.79 205.58 80.8 80.76 178.23
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