A The CMS

For any m > 1 let Xy.,, = (X1,...,X,,) be a data stream of tokens taking values in a measurable space of
symbols V. A point query over Xi.,, asks for the estimation of the frequency f, of a token of type v € V in Xy.,,,
ie. fu=>1<;<m lx,(v). The goal of CMS of (Cormode and Muthukrishnan, 2005b,a) consists in estimating
fv based on a compressed representation of Xj.,, by random hashing. In particular, let J and N be positive
integers such that [J] = {1,...,J} and [N] ={1,..., N}, and let hy,...,hy, with h,, : V — [J], be a collection
of hash functions drawn uniformly at random from a pairwise independent hash family #. That is, a random
hash function h € H has the property that for all v1,vs € H such that v; # vy, the probability that v; and v
hash to values j1, jo € [J], respectively, is
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Hashing Xi.,, through hq,...,hy creates N vectors of J buckets {(Cp 1, ..., Cn”])}ne[]\[], with C,, ; obtained by
aggregating the frequencies for all z where hy,(z) = j. Every C, ; is initialized at zero, and whenever a new token
X is observed we set Cy, 4, (x,) < 1+ Cp p, (x,) for every n € [N]. After m tokens, Cy, j = > 1 ;< L, (x,)(J)
and f, < C),; for any v € V. Under this setting, the CMS of (Cormode and Muthukrishnan, 2005a) estimates f,
with the smallest hashed frequency among {C,, 1, (v) }ne[n], i-€-,

Pr[h(v1) = j1, h(ve) = j2] =
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That is, féCMS) returns the count associated with the fewest collisions. This provides an upper bound on the true
count. For an arbitrary data stream with m tokens, the CMS satisfies the following guarantee.

Theorem 1. (Cormode and Muthukrishnan, 2005a) Let J = [e/2] and let N = [log1/d], with e > 0 and § > 0.
Then, the estimate fU(CMS) satisfies fU(CMS) > fu and, with probability at least 1 — §, the estimate flfCMS) satisfies
f1§CMS) < fv +em.

B CRMs and hNCRMs

Let V be a measurable space endowed with its Borel o-field . A CRM g on V is defined as a random measure
such that for any Ay,..., Ay in F, with A;NA; =0 for ¢ # j, the random variables ;1(A1), ..., u(Ay) are mutually
independent (Kingman, 1993). Any CRM g with no fixed point of discontinuity and no deterministic drift is
represented as p = Y i>1 &0y, , where the §;’s are positive random jumps and the v;’s are V-valued random
locations. Then, yu is characterized by the Lévy—Khintchine representation
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where f : V — R is a measurable function such that [|f|dy < 400 and p is a measure on Rt x V such
that [, [pr min{¢,1}p(d¢,dv) < +oo for any B € F. The measure p, referred to as Lévy intensity measure,
characterizes u: it contains all the information on the distributions of jumps and locations of u. For our purposes
it will often be useful to separate the jump and location part of p by writing it as

y(d€, dv) = p(d&;v)v(dv),

where v denotes a measure on (V, F) and p denotes a transition kernel on B(R™) x V, with B(R") being the
Borel o-field of RT, i.e. v — p(A;v) is F-measurable for any A € B(R™) and p(-;v) is a measure on (RT, B(R™))
for any v € V. In particular, if p(-;v) = p(-) for any v then the jumps of y is independent of their locations and ~
and p are termed homogeneous. See (Kingman, 1993) and references therein.

CRMs are closely connected to Poisson processes. Indeed p can be represented as a linear functional of a Poisson
process I on Rt x V with mean measure v. To stated this precisely, II is a random subset of R*™ x V and if
N(A) = card{II N A} for any A C B(RT) ® F such that y(A) < +oo, then
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for £ > 0. Then, for any A € F
= / N(dvw,d¢)
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See (Kingman, 1993) and references therein. An important property of CRMs is their almost sure discreteness
(Kingman, 1993), which means that their realizations are discrete measures with probability 1. This fact essentially
entails discreteness of random probability measures obtained as transformations of CRMs, such as hNCRMs.

hNCRMs (James, 2002; Priinster, 2002; Regazzini et al., 2003; Pitman, 2006; Lijoi and Priinster, 2010) are defined
in terms of a suitable normalization of CRMs. Let p be a homogeneous CRM on V such that 0 < u(V) < 00
almost surely. Then, the random probability measure
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is termed hNCRM. Because of the almost sure discreteness of u, the P is discrete almost surely. That is,

P =Y "p;by,,

Jj=1

where p; = &;/u(V) for j > 1 are random probabilities such that p; € (0,1) for any j > 1 and Z <1 pj = 1 almost
surely. Both the conditions of finiteness and positiveness of ()) are clearly required for the normalization (1) to
be well-defined, and it is natural to express these conditions in terms of the Lévy intensity measure v of the CRM
. It is enough to have p = +00 and 0 < p(V) < +oo. In particular, the former is equivalent to requiring that
1 has infinitely many jumps on any bounded set: in this case pu is also called an infinite activity process. The
previous conditions can also be strengthened to necessary and sufficient conditions but we do not pursue this
here. See (Kingman, 1993).

C NGGP priors, and proof of Proposition 1

Let V be a measurable space endowed with its Borel o-field F. For any m > 1, let X;.,,, be a random sample of
tokens from P ~ NGGP(q,0,v). Because of the discreteness of P, the random sample Xj.,, induces a random
partition of the set {1,...,m} into K,, = k < m partition subsets, labelled by distinct symbols v = {vy,...,vk,, }
in V, with frequencies N,, = (Ny,..., Nk, ) = (n1,...,ng) such that N; > 0 and ZKKKm N; = m. Distributional
properties of the random partition induced by Xj.,, induced by Xi.,,, have been investigated in, e.g., (James,
2002), Pitman (2003), (Lijoi et al., 2007), (De Blasi et al., 2013) and (Bacallado et al., 2017). In particular,
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Now, let Py, 1 = {(n1,...,n%) : n; >0 and Zlgigk n; = m} denote the set of partitions of m into & < m blocks.

Then, the distribution of K, follows my marginalizing (2) on the set P, 1, that is
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where C(m, k; o) denotes the (central) generalized factorial coefficient (Charalambides, 2005), which is defined
as C(m,k;o) = (K1) Y e (’;)(—1)i(i0)(m), with the proviso C(0,0;0) = 1 and C(m,0;0) = 0 for any
m > 1. For any 1 <r <m, let M, ,,, > 0 denote the number of distinct symbols with frequency r in Xy..,, i.e.
Mym = 1 cick, 1n,(r) such that >, M, = Ky, and Y31, "My n = m. Then, the distribution of
M,, = (Mi,m, .-, My m) follows directly form (2), i.e. -

Pr[M,, = m] = V,, ym! H < (1 1)> " miille,k(m)y (5)



where M., i = {(m1,...,mp) : m; >0, and > ;... m; =k, Y, ;c,, im; = m}. The distribution (5) is the
referred to as the sampling formula of the random partition with distribution (2).

For any m > 1, let X1.,, be a random sample from P ~ NGGP(q, o, v) featuring K,, = k partition subsets,
labelled by distinct symbols v = {vy,...,vk, } in V, with frequencies N,, = (n1,...,n). The predictive
distributions of P provides the conditional distribution of X,,;1 given Xj.,,. That is, for A € F

k
Vin Vin
Pr[Xpi1 € A| Xign] = 20 (4) + 2EE N " (0 — 0)6,,,(A) (6)
Vm,k Vm,k: i—1
for any m > 1. We refer to Bacallado et al. (2017) for a characterization of (6) in terms of a meaningful Polya like
urn scheme. The predictive distributions (6) provides the fundamental ingredient of the proof of Proposition 1.

Proof of Proposition 1. The proof follows from the predictive distributions (6) by setting A = vg and A =v,. O

We conclude by showing that the distributional property of a random sample from P ~ DP(q,v) follows from
the distributional property of a random sample from P ~ NGGP(«,0,v) by letting o — 0. For any m > 1, let
X1.m be a random sample from P ~ DP(a/2,v) featuring K, = k partition subsets, labelled by distinct symbols

v ={v1,...,vk,, } in V, with frequencies N,, = (n1,...,ny). The distribution of the random partition induced
by X1., follows from (2) by letting ¢ — 0. Indeed,
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Therefore, by combining the distribution (2) with (7), and letting o — 0, it follows directly the distribution of
the random partition induced by a random sample X7, from P ~ DP(«/2,v). That is,
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The distribution of K, follows by combining the distribution (4) with (7), and from the fact that
lim, g0~ *C(m, k;0) = |s(m, k)|, where |s(m, k)| denotes the signless Stirling number of the first type (Char-
alambides, 2005). That is,

g)k
2 s(m, k)|.
At

In a similar manner, the distribution of M,, under the DP prior, which is referred to as Ewens sampling formula
Ewens (1972), follows by combining the sampling formula (5) with (7), and letting o — 0.
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Finally, the predictive distributions of P ~ DP(«,v). For any m > 1, let Xi., be a random sample from
P ~ DP(a/2,v) featuring K,, = k partition subsets, labelled by distinct symbols v = {v1,..., vk, } in V, with
frequencies N,, = (nq,...,ng). The predictive distributions of P follows by combining the predictive distributions
(6) with (7), and letting o — 0. That is, for A € F
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for any m > 1. The predictive distributions (8) is at the basis of the CMS-DP proposed in Cai et al. (2018). In
particular, Equation 4 in Cai et al. (2018) follows from the predictive distributions (8) by setting A = v and
A=v,.



D The NIGP prior

For o0 = 1/2 the NGGP prior reduces to the NIGP prior (Priinster, 2002; Lijoi et al., 2005). Al alternative
definition of the NIGP prior is given through its family of finite-dimensional distributions. This alternative
definition relies on the IG distribution (Seshadri, 1993). In particular, a random variable W has IG distribution
with shape parameter a > 0 and scale parameter b > 0 if it has the density function, with respect to the Lebesgue
measure, given by
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Let (Wy,..., W) be a collection of independent random variables such that W; is distributed according to the
IG distribution with shape parameter a; and scale parameter 1, for i = 1,..., k. The normalized IG distribution
with parameter (ay,...,ay) is the distribution of the following random variable
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The distribution of the random variable (Py, ..., Py_1) is absolutely continuous with respect to the Lebesgue
measure on R*~! and its density function on the (k — 1)-dimensional simplex coincides with
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where K_j, /o denotes the modified Bessel function of the second type, or Macdonald function, with parameter

—k/2. If the random variable (P, ..., Py) is distributed according to a normalized IG distribution with parameter
(a1,...,ax), and if my < mg < --- < m, < k are positive integers, then
k
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is a random variable distributed as a mnormalized inverse Gaussian distribution with parameter
k . L . .
(D i<icm, @is Dyt 1<i<my i+ -+ Dom, _+1<i<k Wi). This projective property of the normalized inverse Gaussian

distribution follows from the additive property of the inverse Gaussian distribution (Seshadri, 1993).

To define the NIGP prior through its family of finite-dimensional distributions, let ¥ be a measurable space
endowed with its Borel o-field F. Let P = {@p,,. B, : Bi1,...,Br € F for k > 1} be a family of probability
distributions, and let 7 = av be a diffuse (base) measure on V with #(V) = a. If {Bi,..., By} denotes a
measurable k-partition of V and Ajg_; is the (k — 1)-dimensional simplex, then set

QB,,...B,(C) = / fPrrPo_y(P1, -+ s PE—13 Q15 -+ ag)dpy - - - dpr—1
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for any C' in the Borel o-field of R*, where fp.,...,p._,) is the normalized IG distribution with density function
(9) with a; = 0(B;), for i = 1,..., k. According to Proposition 3.9.2 of Regazzini (2001), the NIGP is the unique
random probability measure adrnitting P as its family of finite-dimensional distributions.

The projective property of P ~ NIGP(«,v) follows directly from: i) the definition of P through its family of
finite-dimensional distributions; ii) the projective property of the normalized IG distribution. In particular, for
any finite family of sets {A1,..., Ax} in F, let {By,..., By} be a measurable h-partition of V such that it is finer
then the partition generated by the family of sets {A1,..., Ax}. Then,

QA];-~7Ak (C) = Qma,B;L (Cl)

for any C in the Borel o-field of R*, with €’ = {(z1,...,z) € [0, 1" : (3, @i,..., >, 2;) € C}. See (Lijoi et al.,
2005).



E Proof of Proposition 2, and proof of Theorem 3

To prove Proposition 2, we start with the following lemma under the assumption that Xj.,, is a random sample
from P ~ NGGP(«,o,v). The proof of Proposition 2 then follows by setting o = 1/2. Let

P, (m,a,0) = Z Pr[X;+1 € v | M, = m|Pr[M,, =m]|, ¢=0,1,...,m,
meMy, m

where the predictive distributions Pr[X,,+1 € vy | M,;, = m] are displayed in Equation 5, and the distribution
Pr[M,, = m] is displayed in Equation 4. For o € (0, 1), let f, denote the density function of the positive o-stable
random variable X,, i.e. Elexp{—tX,}] = exp{—t?} for any ¢ > 0.

Lemma 1. For any m > 1, let X1.,, be a random sample from P ~ NGGP(«,o,v). Then, for £ =0,1,...,m
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Proof. We start by considering the case £ = 0. The probability py, (0;m, «, o) follows by combining Proposition 1
with the distribution of K, displayed in (4). Indeed, we can write the following expression
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Then, the expression of py, (0;m, o, o) in (10) follows by combining (11) with V41 k41 displayed in (3), i.e.,
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[Equation 13 of Favaro et al. (2015)]
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This complete the case £ = 0. Now, we consider £ > 0. The probability py, (¢;m, «, o) follows by combining
Proposition 1 with the distribution of (K,,,N,,) displayed in (2). In particular, we can write
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Then, the expression of py, (¢;m, «,0) in (10) follows by combining (13) with V41, displayed in (3), i.e.,
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Remark 2. Here we present an alternative representation of py, (¢;m, o, o) in (10). It provides a useful tool for
implementing a straightforward Monte Carlo evaluation of pg, (¢;m,a,0). For { =m
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where Y is a Beta random variable with parameter (m —{+ 0,1 — o +¥¢) and X is a random variable, independent
of Y, distributed according to a polynomially tilted o-stable distribution of order o, i.e.
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According to this alternative representation, py, (6;m, «, o) allows for a Monte Carlo evaluation by sampling from
a Beta random variable and from a polynomially tilted o-stable random variable of order o. See, e.g., (Devroye,
2009).
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Proof of Proposition 2. The proof follows by a direct application of Lemma (1) by setting o = 1/2. First, let
recall that the density function of the (1/2)-stable positive random variable coincides with the IG density function
(Seshadri, 1993) with shape parameter a = 2-1/2 and scale parameter b = 0. That is, we write
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where K _1 is the modified Bessel function of the second type, or Macdonald function, with parameter —1. [

Remark 3. Here we present an alternative representation of py, (¢; m, o, ) in Proposition 2. It provides a useful
tool for implementing a straightforward Monte Carlo evaluation of py, (4;m,a,0). For { =m
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where Y is a Beta random variable with parameter (1/2,m + 1/2) and X is a random variable, independent of Y,
distributed according to a polynomially tilted IG distribution of the order 1/2, that is

PriX edz] = Fl(“izg?) 72 ;—/; exp {—413:} dz.
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where Y is a Beta random variable with parameter (m — £,1/2 + £). According to this alternative representation,
ps, (l;m, a,0) allows for a straightforward Monte Carlo evaluation by sampling from a Beta random variable and
from a polynomially tilted IG random variable of order 1/2. See, e.g., (Devroye, 2009).

Proof of Theorem 3. Because of the assumption of independence of the hash family, we can factorize the marginal
likelihood of (c1,...,cn), i.e. of hash functions hq,...,hy, into the product of the marginal likelihoods of
cp, = (Cn1,...,Cn,g), Le. of each hash function. This, combined with Bayes theorem, leads to

Pr(fy = €| {Cp n, () tnev) = {Cn,h, () ]
[Bayes theorem and independence of the hash family]
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[Proposition 2 and Equation 9]
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where K _1(+) is the modified Bessel function of the second type, or Macdonald function, with parameter —1.
F Estimation of «

We start by deriving the marginal likelihood corresponding to the hashed frequencies (cq,...,cy) induced
by the collection of hash functions hq,...,hy. In particular, according to the definition of P ~ NIGP(a,v)
through its family of finite-dimensional distributions, for a single hash function h,, the marginal likelihood of
¢, = (¢n1,...,Cn ) is obtained by integrating the normalized IG distribution with parameter (a/J, ..., a/J)
against the multinomial counts c,. In particular, by means of the normalized IG distribution (9), the marginal
likelihood of ¢,, has the following expression

pCp; )
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[Equation 3.471.9 of Gradshteyn and Ryzhic (2007)]
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Because of the independence of the hash family, hy,...,hy leads to the following marginal likelihood of
{cnjtnevijer

p(ey, ..., Cen; Q) (14)
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The marginal likelihood of {cp j}ne[nyjeps) in (14) is applied to estimate the mass parameter . This is the
empirical Bayes approach to the estimation of . In particular, we consider the following problem

[e3

+oo
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: 0

ne[N
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under the constraint that o > 0. To avoid overflow/underflow issues in the above optimization problem, here we
work in log-space. That is, we consider the following equivalent optimization problem®

+oo
argmax Z log(vn,m,a,J) =+ log </ Fn,m,a,J(y)dy)
@ n€([N] 0

+oo
=argmax{ Y Unma. +10g (/ exp{fn,m,a,J(y)}dy) 7
0

@ ne[N]

with vnm a7 = 108(Vam,a,7) and frn.ma,7(y) = 10g(Fpn m,a,7(y)). For the computation of the integral we use
double exponential quadrature (Takahasi and Mori, 1974), which approximates fjll f(y)dy with Z;nzl w; f(y;)

for appropriate weights w; € W and coordinates y; € V. Integrals of the form f: f(y)dy for —oo < a <b < 400
are handled via change of variable formulas. To avoid underflow/overflow issues it is necessary to apply the
"log-sum-exp" trick to the above integral. That is,

+oo +oo
log (/O eXp{fn,m,a,J(y)}dy) = f*+log (/0 exp{ frm.at (y) — f*}dy)

and

f*=argmax{fnma,s(¥)}.
yey

The computation of log(K,,  _1(z)) is performed via the following finite-sum representation of K, _1(x), which

1
iT2
holds for Kv (il?) when v is an half—integer. Recall that Kv (JJ) is symmelric inv. In parlicular,

Keyim1j2 (V)T +2))

— feXp{_((o‘/J)O*'zy))l/z} Cm_lw o 1/2y—j
\/g ((a/J)(1 + 2y))1/4 P j!(cn,i—j—l)!@(( [I)(1+2y))~ /=),

In order to increase efficiency in the our optimization, we cache the log-factorials and, anew for each o and y the
values of log(ch_%( (a/J)2(1 + 2y))) across j. In particular, as the dependency on j goes through ¢, ; only
we can exploit the fact that many duplicates exists, i.e. the complexity scales in the number of unique ¢, ;. All
code is implemented in LuaJIT? by using the scilua® library.

'the computation of log-factorials is done via the specialized implementation of the log-gamma function
https:/ /luajit.org
Shttps:/ /scilua.org


https://luajit.org
https://scilua.org

G Additional experiments

We present additional experiments on the application of the CMS-NIGP on synthetic and real data. First, we
recall the synthetic and real data to which the CMS-NIGP is applied. As regards synthetic data, we consider
datasets of m = 500.000 tokens from a Zipf’s distributions with parameter s = 1.3, 1.6, 1.9, 2,2, 2.5. As regards
real data, we consider: i) the 20 Newsgroups dataset, which consists of m = 2.765.300 tokens with k = 53.975
distinct tokens; ii) the Enron dataset, which consists of m = 6412175 tokens with k = 28102 distinct tokens.
Tables 1, 2, 3 and 4 report the MAE (mean absolute error) between true frequencies and their corresponding
estimates via: i) the CMS-NIGP estimate fl(,NIGP); ii) the CMS estimate ff,CMS); iii) the CMS-DP estimateff,Dm,
the CMM estimate ﬁ(,CMM>.
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Table 1: Synthetic data: MAE for %ﬂmZHOEQ NMOEZV and wmosz case J = 320, N =2

Z1.3 Z16 Z1.9 Z5.2 Zo5

Bins v \MmOva >~MOH<:<C .\MMZHOHVV MOEMV >~mO?E<C .\Mmzﬁﬂmvv MOZMV >~mOH<:<C .\Mmzﬁﬂhuv MOZMV >~mogzv MZHOGV MOZMV \MmOH/\:/\C MZHOTV

(0,1] 1,061.3 161.72  231.31 629.40 62.19 134.75 308.11 81.10 65.71 51.65 1.04 12.91 32.65 1.02 7.16
(1,2] 1,197.9  169.74  287.43 514.31 102.42  119.22 154.20 2.00 37.03  289.50 2.04 61.87  48.15 2.01 9.88
(2,4] 1,108.3 116.37  262.18 474.82 52.10 95.78 2,419.561 2215.85  353.73 134.05 3.40 26.90 54.34 10.50 10.09
(4,8] 1,275.9 378.04  302.89 786.73  214.46  175.10 460.13  258.90 83.30 118.40 6.44 21.58  69.85 6.03 14.28
(8,16] 1,236.1  230.32  257.08 719.84  232.24  136.66 380.05  139.50 66.44 413.13  129.03 77.39  80.80 13.10 20.15
(16,32] 1,256.8  221.98  248.41 831.70 79.73  190.05 288.59 23.90 41.99 503.60  364.30 90.29 9.86 22.39 15.36
(32,64] 1,312.8  235.87  284.12 783.90  184.99  139.52 415.58 54.82 67.30 217.81 82.92 48.00 10.22 30.90 28.90
(64,128] 1,721.7  766.29  312.59 950.31  304.36  125.07 1,875.50 1762.20 353.10  64.01 97.40 65.91 13.75 96.98 66.18
(128,256] 1,107.7  334.57 97.91 1,727.19 1488.38  273.50 202.09 163.61 110.32  46.80 156.71  130.94 1751 181.38 125.75
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Table 3: Real data (J = 12000 and N = 2): MAE for f(NIGP) f(DP) 5pq f(OMS)

20 Newsgroups Enron
Bins for true v AQSCMS) AISDP) “éNIGP) AQSCMS) AéDP) “?SNIGP)
(0,1] 46.4 46.39 11.34 12.2  12.20 3.00
(1,2] 16.6 16.60 3.53 13.8  13.80 3.06
(2,4] 38.4 38.40 7.71 61.5  61.49 12.55
(4,8] 59.4  59.39 10.40 88.4  88.39 17.36
(8,16] 54.3  54.29 11.34 23.4  23.40 4.58
(16,32] 17.8 17.80 9.85 55.1  55.09 11.58
(32,64] 40.8  40.79 25.65 128.5  128.48 39.46
(64,128] 26.0 25.99 57.95 131.1 131.08 54.42
(128,256] 13.6 13.59  126.07 50.7  50.68  119.04

Table 4: Real data (J = 8000 and N = 4): MAE for fA,l(,NIGP>, fngP) and fASCMS)

20 Newsgroups Enron

Bins for true v f{CMS)  fPP) FNIGP) - £(CMS) f(DP)  F(NIGP)

(0,1] 53.4  53.39 0.39 710  70.98 0.41
(1,2] 30.5  30.49 140 474  47.38 1.47
(2,4] 32.5 32.49 270 525  52.49 3.25
(4,8] 38.7  38.69 597  53.1  53.08 6.17
(8,16] 253 2529 1197  57.0 56.98  11.28
(16,32] 25.0 2499 2125  90.0 89.98  19.82
(32,64] 39.7 39.69 4281 1084 108.37  47.07
(64,128 221 2209  91.06  55.7 55.67  87.32
(128,256] 258 25.79 20558  80.8 80.76  178.23
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