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1 Additional simulation study for univariate case

In order to compare with the other conditional density estimation methods such as RFCDE (Pospisil and Lee,
2019) and take into account the influence of the propensity score function, we consider a slightly modified model:
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Basically, the distributions of - and . (0) remain the same, while the conditional distribution of . (1) given - is
replaced by a mixture of two Gaussians, which admits a density w.r.t. Lebesgue measure on R3 . The propensity
score function is also modified in order to model the complexity of observational studies.

First, to illustrate the good quality of the estimation provided by WRF, we randomly select an individual G∗ such

that the associated CATE function is 0 (i.e., G (2)
∗ G

(5)
∗ = 0), for which a CATE-based inference cannot provide

sufficient insight in the causality. The visualization can be found in Figure 1. Note that we add a standard
kernel smoothing since conditional density is assumed to exist in this case. It is clear that both !2

intra
-WRF and

!2
inter

-WRF can provide a good approximation of both c0(G∗, ·) and c1 (G∗, ·). A more detailed benchmark can be
found in Table 1. The setting of the experiment (for all considered forests) remains the same as in the main text:
The dataset is of size 1000 and the associated parameters for the forests are 0= = 500, " = 200 and nodesize

= 2.

Table 1: Estimation of c0 (i.e., L (. (0) | - = G)) and c1 (i.e., L (. (0) | - = G))

Methods c0-W1(1000) c0-W2 (1000) c1-W1 (1000) c1-W2 (1000)

!2
intra

-WRF 0.6967 0.8523 1.5406 2.2493
!2
inter

-WRF 0.6869 0.8403 1.3844 1.9881

!1
inter

-WRF 0.6915 0.8397 1.4210 2.0428
MF 2.0110 2.0321 2.3958 2.8991
ERT 0.7025 0.8961 1.6490 2.4223
RFCDE 0.7979 3.1471 0.9503 3.3630

It is clear that !2
inter

-WRF provides the overall most accurate prediction for this synthetic dataset. The difference
between intra-class and inter-class WRF are more noticeable in the estimation of c1, which provides more evidence
that inter-class variants of WRF are better suited for more complex situation (multimodality or large variance).
The fact that !2

inter
-WRF outperforms !1

inter
-WRF may be due to the existence of conditional density functions.

This case can be regarded as more “smooth” than the case considered in the main text, where conditional density
does not exist for c1.
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(a) c0 (G★, ·) estimated by !2
intra

-WRF (b) c0 (G★, ·) estimated by !2
inter

-WRF

(c) c1 (G★, ·) estimated by !2
intra

-WRF (d) c1 (G★, ·) estimated by !2
inter

-WRF

Figure 1: An illustration of estimated conditional distributions provided by different variants of WRF with the same
parameters: 0= = 500 (with repetition), " = 200, mtry = 50, nodesize = 2. In the legend, pred and ref denote
respectively the prediction given by WRF and reference values sampled directly from the true conditional distribution
with sample size fixed to be 2000. The acronyms kde-pred and kde-ref stand for the outputs of the kdeplot function of
seaborn package (Waskom et al., 2020), which provides a standard kernel smoothing. Finally, kde-Y denotes the kdeplot

of the . -population, i.e., all the .8 (1) or .8 (0) in the training dataset according to the treatment/control group.

2 On the parameter tuning of WRF

We discuss in this section the influence of the choice of parameters (i.e., mtry, 0= and nodesize) of the WRF
and try to provide some suggestions on the algorithm tuning. We stick to the model provided in Section 3.2 of
the main text and compare the cC -W? (5000) respectively for C ∈ {0, 1} and ? ∈ {1, 2} to illustrate the performance
of our method in unimodal and multimodal situations. Unlike the conditional expectation estimation, the cross
validation-based tuning strategy is not straightforward to implement for conditional distribution estimation.
Indeed, we have only a single sample at each point -8 , and it does not provide enough information for the
conditional distribution. Therefore, we also track the performance of the associated conditional expectation
estimations in terms of Mean Squared Error (MSE). The conditional expectation functions given - = G of
. (0) and . (1) are denoted respectively by `0 (G) and `1(G). Our goal is to illustrate whether the tuning for
the conditional expectation can be exploited to guide the tuning for the conditional distribution estimation
problem. We also note that since each tree is constructed using only part of the data, the out-of-bag errors for
the forest can thus be obtained by averaging the empirical error of each tree on the unused sub-dataset (see, e.g.,
Biau and Scornet, 2015, Section 2.4) in the case where an independent test dataset is not available.

First, it is well-known that in the classical RF context the number of trees " should be taken as large as possible,
according to the available computing budget, in order to reduce the variance of the forest. Although the goal in
the WRF framework is changed to the conditional distribution estimation, it is still suggested to use a large "
if possible.

Second, let us investigate the number of directions to be explored at each cell mtry. The result is illustrated in
Figure 2 ((a)-(d) for average Wasserstein loss and (e)-(f) for MSE of conditional expectation estimation). Roughly
speaking, the value of mtry reflects the strength of greedy optimization at each cell during the construction
of decision trees. A conservative approach is to choose mtry as large as possible according to the available
computing resources.

Then, let us see the influence brought by the change of nodesize. The illustration can be found in Figure 3
((a)-(d) for average Wasserstein loss and (e)-(f) for MSE of conditional expectation estimation). In the classical
RF context, the motivation of the choice nodesize > 2 can be interpreted as introducing some local averaging
procedure at each cell in order to deal with the variance or noise of the sample. Here, as discussed in the
main text, we are interested in the conditional distribution estimation in the HTE context, where the variance



(a) Comparison of c0-W1 (5000). (b) Comparison of c0-W2 (5000). (c) Comparison of c1-W1 (5000).

(d) Comparison of c1-W2 (5000). (e) Comparison of the estimation of `0. (f) Comparison of the estimation of `1.

Figure 2: An illustration of the performance of different variants of WRF (namely, !2
intra

-WRF and !1
inter

-WRF) with

mtry varying in {5, 15, 25, 35, 45, 50}, 0= = 500 (with repetition), " = 300 and nodesize = 3.

(a) Comparison of c0-W1 (5000). (b) Comparison of c0-W2 (5000). (c) Comparison of c1-W1 (5000).

(d) Comparison of c1-W2 (5000). (e) Comparison of the estimation of `0. (f) Comparison of the estimation of `1.

Figure 3: An illustration of the performance of different variants of WRF (namely, !2
intra

-WRF and !1
inter

-WRF) with

nodesize varying in {2, 5, 10, 20, 40, 80}, 0= = 500 (with repetition), " = 300 and mtry = 30.

or other fluctuation of the conditional distribution is part of the information to be estimated. Hence, the
interpretation of the choice nodesize > 2 should be adapted accordingly, as the minimum sample size that is
used to describe the conditional distribution at each cell. This interpretation is better suited when it comes to the
estimation of multimodal conditional distributions. As shown in Figure 3 (a)-(d), there are some optimal choices
of nodesize between 2 and 0=. In the simple cases, such as the estimation of c0 (unimodal), the MSE of the
associated conditional expectation (Figure 3 (e)) can be used, accordingly, to tune the algorithm for conditional
distribution estimation. However, in the more complex case such as the estimation of c1 (bi-modal), the MSE
of the conditional expectation estimation is no as stable (Figure 3 (f)). Nevertheless, it is also recommended to
use small nodesize in this situation as a conservative choice.

Finally, we discuss the size 0= of the sub-dataset used to construct each decision tree. Note that the choice of 0= is
still not well-understood even in the classical RF context (see, e.g., Biau and Scornet, 2015; Scornet et al., 2015).
When the computing budget allows to implement 0= = = (with replacement, which corresponds to the classical
Bootstrap), we recommend to use this choice. Otherwise, we recommend to fix the 0= from one fifth to one third
of the whole data size in order to maintain a reasonably good performance without heavy computations.
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(a) Comparison of c0-W1 (5000). (b) Comparison of c0-W2 (5000). (c) Comparison of c1-W1 (5000).

(d) Comparison of c1-W2 (5000). (e) Comparison of the estimation of `0. (f) Comparison of the estimation of `1.

Figure 4: An illustration of the performance of different variants of WRF (namely, !2
intra

-WRF and !1
inter

-WRF) with

0= varies in {50, 100, 200, 300, 500, 1000} (with repetition), nodesize = 5, " = 300 and mtry = 30.

Suggestions on the parameter tuning The take-home message for the parameter tuning of WRF is simple:
We recommend to use large " and mtry according to the available computing resources. The parameter node-

size can be tuned via a cross validation-based strategy using the MSE of the associated conditional expectation
estimation. In addition, we suggest to choose smaller nodesize when there is abnormal fluctuation of the MSE
score. It is also proposed to use classical bootstrap (i.e., 0= = = with replacement) when possible. Otherwise, we
suggest to fix a smaller 0= according to the computing budget. Finally, although there is no theoretical guarantee,
we advocate to use !1

inter
-WRF or !2

inter
-WRF for univariate objective, since it has a better overall accuracy with

a reasonable additional computational cost.

3 On the propensity score function

The propensity score function 4 (·) measures the probability that the treatment is assigned to a certain individual,
which basically determines the distribution of the available dataset for the estimation of c0 and c1 in the
population. More precisely, imagine that G is an individual such that in the neighbourhood of G , the value of
4 (·) is close to 0. Then, it is expected that only very few training data for the estimation of c1(G, ·) can be
collected during the observational study. As a consequence, it is expected that the estimation ĉ1 at such point
is of reasonably bad quality. For example, the propensity score function is

4 (G) =
1

2
sin(2G (1)G (2) + 6G (3) ) +

1

2
.

Denote by G★ an individual such that G (1)
★

=
c
4
, G (2)

★
= 1, and G

(6)
★

=
c
6
. It is readily checked that 4 (G★) = 0.

As shown in Figure 5, the estimation of c0 (G★, ·) is very accurate (see Figure 5 (a)-(b)), while the estimation of
c1 (G★, ·) is of poor quality (see Figure 5 (c)-(d)).

From a theoretical perspective, one may suppose that the propensity score function is bounded away from 0 and
1 uniformly for all G ∈ R3 (see, e.g., Künzel et al., 2019; Nie and Wager, 2017). However, it is, unfortunately,
not possible to control the propensity score during an observational study. As a consequence, it is usually very
difficult to verify such an assumption in practice. Therefore, a more meaningful question can be how to detect if
our estimation is reliable or not for a certain individual. A straightforward strategy is to estimate the propensity
score function independently, as done for example in (Athey and Wager, 2019), and to test whether the value of
this score is close to 0 and 1. Another approach is to exploit the information encoded in the splits/weights of
the forest to detect whether enough data is collected for the prediction at target individual. The details are left
for future research.

Finally, let us mention that if the goal is to estimate the function Λ? (·) defined in Section 3.1 of the main text, we
expect that more dedicated variants of WRF can be constructed, in the same spirit of Causal Forests introduced
in (Athey and Wager, 2019).



(a) c0 (G∗, ·) estimated by !2
intra

-WRF (b) c0 (G∗, ·) estimated by !1
inter

-WRF

(c) c1 (G∗, ·) estimated by !2
intra

-WRF (d) c1 (G∗, ·) estimated by !1
inter

-WRF

Figure 5: An illustration of estimated conditional distributions provided by different variants of WRF with the same
parameters: 0= = 500 (with repetition), " = 200, mtry = 50, nodesize = 2. In the legend, pred and ref denote
respectively the prediction given by WRF and reference values sampled directly from the true conditional distribution
with sample size fixed to be 2000. The acronyms kde-pred and kde-ref stand for the outputs of the kdeplot function of
seaborn package (Waskom et al., 2020), which provides a standard kernel smoothing. Finally, kde-Y denotes the kdeplot

of the . -population, i.e., all the .8 (1) or .8 (0) in the training dataset according to the treatment/control group.

4 Possible extensions

In this section, we discuss two natural extensions of WRF that we did not investigate in details.

First, inspired by the Random Rotation Ensembles introduced in (Blaser and Fryzlewicz, 2016), it is natural to
consider the implementation of oblique splits, i.e., the splits are not necessarily axis-aligned. More precisely, for
each tree, by sampling a uniformly distributed rotation matrix (e.g. Blaser and Fryzlewicz, 2016, Section 3), we
are able to construct the decision tree by using the rotated sub-dataset (or equivalently, one can also implement
randomly rotated cuts in the tree’s construction). Intuitively speaking, the rotation variants of WRF will be
more consistent when it comes to performance, while the additional computing resources are required for both
training and prediction.

Another direction is to replace the Dirac mass in the empirical measures by some kernel  (G, 3~), as proposed in
(Pospisil and Lee, 2019). For instance, the !

?

inter
-WRF can be modified by using the following splitting criteria:
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where the kernel  (·, ·) is chosen according to prior knowledge of the problem. At the same time, the final
prediction will be replaced by

c̃",= (G, 3~;Θ[" ],D=) =

=
∑

8=1

U8 (G) (.8 , 3~),

where U8 (·) remains the same as defined in Section 2.1 of the main text. When the associated W? -distance
is easy to compute, we expect that this extension will be more accurate for small datasets. Nevertheless, the
performances of these natural extensions are still not clear. The details are therefore left for future research.
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