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Abstract

We provide a general constrained risk in-
equality that applies to arbitrary non-
decreasing losses, extending a result of Brown
and Low [Ann. Stat. 1996 ]. Given two dis-
tributions P0 and P1, we find a lower bound
for the risk of estimating a parameter θ(P1)
under P1 given an upper bound on the risk
of estimating the parameter θ(P0) under P0.
The inequality is a useful tool, as its proof re-
lies only on the Cauchy-Schwartz inequality,
it applies to general losses, including optimal-
ity gaps in stochastic convex optimization,
and it transparently gives risk lower bounds
on super-efficient and adaptive estimators.

1 Introduction

In the theory of optimality for statistical estimators,
we wish to develop the tightest lower bounds on es-
timation error possible. With this in mind, Cai and
Low [4] highlight three desiderata make a completely
satisfying efficiency benchmark or lower bound: it is
distribution specific, in the sense that the lower bound
is a function of the specific distribution P generating
the data; the lower bound is uniformly achievable, in
that there exist estimators achieving the lower bound
uniformly over P in a class P of distributions; and
there is a super-efficiency result, so that if an estima-
tor θ̂ achieves better risk than that indicated by the
lower bound at a particular distribution P0, there exist
other distributions P1 where the estimator has worse
risk than the bound. While the Stein phenomenon [14]
shows that satisfying all three of these desiderata pre-
cisely is impossible when estimating three- or higher-
dimensional quantities, in the case of estimation of a
real-valued functional θ(P ) of a distribution P , one can
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often develop such results. Our purpose is to show a
transparent proof of such lower bounds via a “hard-
est one-dimensional subproblem” argument [15]. Our
hope is that this perspective is useful for explanation
of the failures of super-efficient estimators, such as the
Hodges’ estimator, which must achieve inflated error
away from points at which they are superefficient, or
for researchers who wish to develop lower bounds for
estimation.

In classical one-parameter families of distributions,
such as location families or exponential families, the
Fisher Information bounds satisfy our three desiderata
of locality, achievability, and impossibility of super-
efficiency, and in classical parametric problems, no es-
timator can be super-efficient on more than a set of
measure zero points [9, 17, 18]. Similarly satisfying
results hold in other problems. In the case of estima-
tion of the value of a convex function f in white noise,
for example, Cai and Low [4] provide precisely such
a result, characterizing a local modulus of continuity
with properties analogous to the Fisher information.
For certain optimization problems, Chatterjee, Duchi,
Lafferty, and Zhu [5] give a computational analogue of
the Fisher Information that governs the difficulty of
finding the minimizer of a function (though their tech-
niques cannot provide optimality bounds for function
values themselves).

Key to many of these results, and to understanding
nonparametric functional estimation more broadly, is
the constrained risk inequality of Brown and Low [3].
They develop a two-point inequality especially well-
suited to providing lower bounds for adaptive non-
parametric function estimation problems, and they
also show that it gives quantitative bounds on the
mean-squared error of super-efficient estimators for
one-parameter problems, such as Gaussian mean esti-
mation. Their work, however, relies strongly on using
the squared error loss—that is, the quality of an esti-
mator θ̂ for a parameter θ is measured by E[(θ̂ − θ)2].
In many applications, it is interesting to evaluate the
error in other metrics, such as absolute error or the
probability of deviation of the estimator θ̂ away from
the parameter θ by more than a specified amount. We
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extend Brown and Low’s work [3] by providing con-
strained risk inequalities that apply to general losses,
allowing quantitative super-efficiency bounds: an es-
timator that overperforms on one distribution must
necessarily suffer (much) worse loss on others. Our
proofs rely only on the Cauchy-Schwarz inequality, so
we can decouple the argument from the particular loss.
There are more general results on lower bounds that
demonstrate tradeoffs must exist, such as Lepskii’s
results on adaptivity in Gaussian white noise mod-
els [10] or [16, Theorem 6, App. A1]. While (simi-
lar to [3]) our approach does not always provide sharp
constants, the risk inequality allows us to provide fi-
nite sample lower bounds for estimation under gen-
eral losses, which brings us closer to the celebrated
local asymptotic minimax theorem of Le Cam and
Hájek [e.g. 9, 18, Ch. 8.7]. To illustrate our results, we
provide applications to estimation of a normal mean,
optimization of Lipschitz convex functions, and certain
nonparametric estimation problems, deferring proofs
to Section 5.

2 The constrained risk inequalities

We begin with the simplest version of our setting. Let
P be a distribution on a sample space Z, and let
θ(P ) ∈ Rk be a parameter of interest. For predict-
ing a point v ∈ Rk when the distribution is P , the
estimator suffers loss

L(v, P ) := `(‖v − θ(P )‖2), (1)

where ` : R+ → R+ is a non-decreasing scalar loss

function. For Z ∼ P and an estimator θ̂ of θ(P ) based

on Z, the risk of θ̂ is then

R(θ̂, P ) := EP
[
L(θ̂, P )

]
= EP

[
`(‖θ̂(Z)− θ(P )‖2)

]
.

The result to come relies on the similarity of two dis-
tributions to one another, and accordingly, we define
the χ2-affinity by

ρ (P1||P0) :=

∫
dP 2

1

dP0
= E0

[
dP 2

1

dP 2
0

]
= E1

[
dP1

dP0

]
.

Dχ2 (P1‖P0) := ρ (P1||P0)− 1.

where E0 and E1 denote expectation under P0 and P1,
respectively. Introduce the notation shorthand (x)+ =
max(x, 0) for any scalar x ∈ R. With these definitions,
we have the following theorem, which gives a lower
bound for the risk of the estimator θ̂ on a distribution
P1 given an upper bound for its risk under P0.

Theorem 1. Assume ` : R+ → R+ in the loss (1) is
convex. Let θ0 = θ(P0) and θ1 = θ(P1), and define
the separation ∆ = 2`( 1

2 ‖θ0 − θ1‖2). If the estimator

θ̂ satisfies R(θ̂, P0) ≤ δ, then

R(θ̂, P1) ≥
(

∆1/2 − (ρ(P1||P0) · δ)1/2
)2

+
. (2)

A few corollaries are possible. The first applies to more
general (non-convex) loss functions.

Corollary 1. Let the conditions of Theorem 1 hold,
except that ` : R+ → R+ is an arbitrary non-decreasing
function. Define ∆ = `( 1

2 ‖θ0 − θ1‖2). If the estimator

θ̂ satisfies R(θ̂, P0) ≤ δ, then

R(θ̂, P1) ≥
(

∆1/2 − (ρ (P1||P0) δ)1/2
)2

+
.

We can also give a corollary with slightly sharper con-
stants, which applies to the case that we measure error
using a power loss.

Corollary 2. In addition to the conditions of The-
orem 1, assume `(t) = tk for some k ∈ (0,∞), and

define ∆ = ‖θ0 − θ1‖2. If the estimator θ̂ satisfies

R(θ̂, P0) ≤ δk, then

R(θ̂, P1) ≥

{(
∆k/2 − (ρ(P1||P0) · δk)1/2

)2
+

if k ≤ 2(
∆− (ρ(P1||P0) · δ2)1/2

)k
+

if k ≥ 2.

(3)

An extension of Theorem 1 applies in somewhat more
general scenarios, which, for example, will be useful in
Section 3.2 when we consider stochastic convex opti-
mization. An extension of the loss (1) is to consider
any general loss L(v, P ) satisfying infv L(v, P ) = 0 for
all distributions P , and then define the loss distance
between distributions P0, P1 by

dL(P0, P1) := inf
v
{L(v, P0) + L(v, P1)} . (4)

For the risk R(θ̂, P ) = EP [L(θ̂, P )], we then have the
following theorem.

Theorem 2. Let the loss L : Rk × P → R+ be a
general loss with loss distance dL (4). If the estimator

θ̂ satisfies R(θ̂, P0) ≤ δ, then

R(θ̂, P1) ≥
(
dL(P0, P1)1/2 − (ρ (P1||P0) δ)

1/2
)2

+
.

3 Examples

We provide several examples that apply to estimation
of one-dimensional quantities to illustrate our results.
For the first two, we consider Gaussian mean estima-
tion, where the results are simplest and cleanest to
state, and which immediately demonstrate the failure
of the Hodges’ estimator. We also consider stochastic
convex optimization, where we give an example appli-
cation of the constrained risk inequality in Theorem 2.
For the last set of examples, we consider super-efficient
estimation in family of nonparametric models.
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3.1 Gaussian mean estimation

We begin with two examples on one-dimensional Gaus-
sian mean estimation to show the benefits of mov-
ing beyond squared error. For the first, we consider
a zero-one loss function indicating whether the esti-
mated mean is near the true mean. Fix σ2 > 0
and let X1, . . . , Xn be i.i.d. Pθ = N(θ, σ2), and let
`(t) = 1{|t| ≥ σ/

√
n}, so that

R(θ̂, Pnθ ) = Pnθ

(
|θ̂(X1, . . . , Xn)− θ| ≥ σ√

n

)
,

where Pnθ denotes the n-fold product of Xi
iid∼ N(θ, σ2).

Now, let δn ∈ [0, 1], δn → 0 be an otherwise arbitrary
sequence, and let 0 < c < 1 be a fixed constant. Define
the sequence of local alternative parameter spaces

Θn :=

{
θ ∈ R | 2 σ√

n
≤ |θ| ≤ σ√

n

√
c log

1

δn

}
.

We then have the following proposition.

Proposition 1. Let θ̂n : Rn → R be a sequence of
estimators satisfying R(θ̂n, P

n
0 ) ≤ δn for all n. Then

lim inf
n

inf
θ∈Θn

R(θ̂n, P
n
θ )

= lim inf
n

inf
θ∈Θn

Pnθ

(√
n|θ̂n(X1, . . . , Xn)− θ| ≥ σ

)
= 1.

Remark The Le Cam–Hájek asymptotic minimax
theorem (cf. [17, 9]) implies that for any symmetric,
quasiconvex loss ` : Rk → R+, if {Pθ}θ∈Θ is a suit-
ably regular family of distributions with Fisher infor-
mation matrices Iθ, then for any θ0 ∈ int Θ there
exist sequences of prior densities πn,c supported on
{θ ∈ Rk | ‖θ − θ0‖2 ≤ c/

√
n} such that

lim inf
c→∞

lim inf
n

inf
θ̂n

∫
Eθ[`(

√
n(θ̂n − θ))]dπn,c(θ)

≥ E[`(Z)] where Z ∼ N(0, I−1
θ0

)

(5)

(see [9, Lemma 6.6.5] and also [17, Eq. (9)]). This
in turn implies that for Lebesgue-almost-all θ, we
have lim supn Eθ[`(

√
n(θ̂n − θ))] ≥ E[`(Z)] for Z ∼

N(0, I−1
θ ). For the indicator loss `(t) = 1{|t| ≥ σ},

these results imply that lim supn Pθ(|
√
n(θ̂n − θ)| ≥

σ) ≥ 2Φ(−1) for almost all θ in our normal mean set-
ting, where Φ is the standard normal CDF. Proposi-
tion 1 strengthens this: if there exists a point of super-
efficiency with asymptotic probability of error 0, then
there exists a large set of points with asymptotic prob-
ability of error 1.

Proof. Assume that n is large enough that c log 1
δn
≥

2, and let θ ∈ Θn. A calculation then yields that

ρ(Pnθ ||Pn0 ) = exp

(
nθ2

σ2

)
≤ exp

(
cσ2n log 1

δn

σ2n

)
= δ−cn .

We also have that `( 1
2 |θ|) = 1{|θ| ≥ 2σ/

√
n} = 1,

and substituting this into Corollary 1, we obtain

R(θ̂, Pnθ ) ≥
(

1− δ(1−c)/2
n

)2

+
. As c < 1, this quantity

tends to 1 as n→∞.

Let us consider Corollary 2 for our second applica-
tion. In this case, we consider estimating a Gaussian

mean given Xi
iid∼ N(θ, 1), but we use the absolute er-

ror L(θ, P ) = |θ − θ(P )| as our loss as opposed to the
typical mean squared error.

Proposition 2. Let θ̂ : Rn → R be an estimator such
that R(θ̂, Pn0 ) ≤ ε√

n
. Then for all α ∈ [0, 1], there

exists θ such that

R(θ̂, Pnθ ) ≥
√
α

n

(
4

√
log

1

ε
− 4

√
ε2−2α

α

)2

+

.

In particular, if ε ≤ 10−2, then there exists θ with

R(θ̂, Pnθ ) ≥ 1
4

√
log 1

ε

n .

Proof. Let α ∈ [0, 1], to be chosen presently. Let
θ ≥ 0 with θ2 = α

n log 1
ε . Then we have ρ(Pnθ ||Pn0 ) =

exp(nθ2) = 1
εα and that ∆ = |θ| in the notation of

Corollary 2. The corollary then implies

R(θ̂, Pnθ ) ≥
(√

θ −
√
ε−αε/

√
n

)2

+

=

√
α√
n

(
4

√
log

1

ε
− 4

√
ε2−2α

α

)2

+

.

The second result of the proposition follows by tak-
ing α = 1/8 and using the numerical fact that that
4

√
log 1

ε −
4
√

8ε7/4 ≥ 4

√
log 1

ε /2 for ε ≤ 10−2.

As an example consequence of Proposition 2, consider
the Hodges’ estimator

θ̂Hodges
n :=

{
Xn if |Xn| ≥ n−1/4

0 otherwise,

where Xn := 1
n

∑n
i=1Xi. At θ = 0, this estimator

satisfies

E[|θ̂Hodges
n |] = E[|Xn|1{|Xn| ≥ n−1/4}]

≤
√

1

n
·
√
P0(|Xn| ≥ n−1/4)

≤

√
2

n
exp

(
−
√
n

2

)
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by the standard tail bound that P(|Z| ≥ t) ≤
2 exp(−t2/2σ2) for Z ∼ N(0, σ2). In particular, for
all large enough n, there is a θ ∈ [0, n−1/2] such that

Eθ[|θ̂Hodges
n − θ|] ≥ 1

8n1/4
� 1√

n
.

3.2 Stochastic convex optimization

The generality of Theorem 2 may at first glance be
opaque, but specializing it allows us to demonstrate
certain instance-specific bounds for stochastic convex
optimization, a building block of much of machine

learning [19, 2]. Here, we receive i.i.d. data Xi
iid∼ P ,

and wish to minimize fP (θ) := E[F (θ,X)] over θ ∈ Θ,
where F (·, x) is convex for each x and Θ is a closed
convex set, and the loss is the optimality gap

L(θ, P ) := fP (θ)− inf
θ?∈Θ

fP (θ?).

The loss distance (4), dL(P0, P1) = infθ∈Θ{f0(θ) +
f1(θ)−f?0 −f?1 } is then identical to a criterion Agarwal
et al. [1] develop for stochastic optimization.

We consider 1-Lipschitz-continuous objectives, which
are the “standard” for stochastic convex optimiza-
tion [12, 1, 7], where the minimax rate is 1/

√
n. Let

the data X ∈ {−1, 1} and let F (θ, x) = (1− xθ)+,
the hinge loss for support vector machines, setting
Pγ(X = x) = 1+xγ

2 , for γ ∈ (0, 2/5). Then for

ε ∈ [0, 1], ρ(Pγ−ε||Pγ) = 1 + 4ε2

1−γ2 ≤ exp(5ε2), and

dL(Pγ , Pγ−ε) =

{
0 if ε ≤ γ
2γ if ε > γ.

Now, suppose an estimator θ̂n given n i.i.d. observa-
tions Xi satisfies R(θ̂n, Pγ) ≤ δ√

n
, where δ < 1. Then

Theorem 2 implies that if γ < ε,

R(θ̂n, Pγ−ε) = Eγ−ε[fγ−ε(θ̂n)− f?γ−ε]

≥
(√

2γ −
√

exp(5nε2)δ/
√
n

)2

+

.

Choosing ε2n = log(1/δ)
5n then implies the next corollary.

Corollary 3. Let F be the hinge loss and Pγ be

as above, and let δ > 0. If γ2 ∈ [ 1
n ,

log(1/δ)
5n ] and

R(θ̂n, Pγ) ≤ δ√
n

, then

R(θ̂n, Pγ−εn) ≥ (
√

2− 1)2γ.

In particular, there are settings of P0 where achiev-
ing better than the minimax rate necessarily leads
to degraded convergence by a factor of

√
log(1/δ).

Nonetheless, other scenarios allow stronger con-
vergence guarantees: the empirical risk minimizer

θ̂n = argminθ
∑n
i=1 (1−Xiθ)+ always achieves

R(θ̂n, P ) ≤ O(1)/
√
n [13, Ch. 5]. Letting θγ =

argminθ EPγ [(1− θX)+] = sign(γ), Hoeffding’s in-

equality implies Pγ(θ̂n 6= sign(γ)) ≤ exp(−nγ2/2).
Moreover, R(θ, Pγ) ≤ 2γ for all θ ∈ [−1, 1], and so
we obtain

R(θ̂n, Pγ) ≤ O(1) min

{
γ,

1√
n
, exp(−nγ2/2)

}
.

In brief, while Corollary 3 shows that beating the ben-
chark minimax rate 1/

√
n implies efficiency losses for

some distributions, it also highlights the importance
of more nuanced notions of complexity: more local no-
tions are essential.

3.3 Super-efficient estimation in
nonparametric models

It is often interesting to derive efficiency lower bounds
outside of standard parametric models; it is our expe-
rience that students are frequently curious about such
quantities, especially when they have seen only Fisher-
information-based lower bounds. Conveniently, we can
also apply our results to estimation of functionals in
general non-parametric models. In this case, we focus
on quantities where the classical asymptotic normal-
ity results apply, so that there do indeed exist clas-
sically efficient estimators and an analogue of the Le
Cam–Hájek local asymptotic minimax theorems. We
first present a general result that applies to appropri-
ately smooth parameters of the underlying distribu-
tion, which we subsequently specialize to estimation of
the mean of an arbitrary distribution with finite vari-
ance. We adapt the classical idea of Stein [15], which
constructs hardest one-dimensional subproblems, fol-
lowing the treatment of van der Vaart [18, Chapter
25].

To set the stage, consider estimation of a parameter
θ(P0) ∈ R of a distribution P0 on the space Z. Let-
ting P denote the collection of all distributions on Z,
we consider sub-models P0 ⊂ P around P0 defined in
terms of local perturbations of P0. In particular, let
G ⊂ L2(P0) consist of those functions g : Z → R sat-
isfy E0[g(Z)] = 0 and E0[g(Z)2] < ∞. For bounded
functions g ∈ G, we may consider tilts of the distribu-
tion P0 of the form

dP (z) = (1 + tg(z))dP0(z)

for small t; however, as g may be unbounded, we re-
quire a bit more care. Following [18, Example 25.16],
we let φ : R → [0, 2] be any C3 function satisfying
φ(1) = 1, φ′(1) = 1, and for which both ‖φ′‖∞ ≤ K
and ‖φ′′‖∞ ≤ K for a constant K; for example,
φ(t) = 2/(1 + e−2t) suffices. For any g ∈ G, define
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the tilted distribution

dPt,g(z) :=
1

Ct
φ(tg(z))dP0(z)

where Ct =

∫
φ(tg(z))dP0(z).

(6)

The following lemma describes the divergence of Pt,g
from P0 (see Section 5.5 for proof).

Lemma 1. Let g ∈ G and P0 and Pt,g be as defined
in Eq. (6). Then

Dχ2 (Pt,g‖P0) = 1 + t2E0[g(Z)2] + o(t2)

and |Ct − 1| ≤ K

2
t2E0[g(Z)2].

With this setting, let us assume that our parameter
θ of interest is smooth in the underlying perturba-
tion (6), meaning that there exists an influence func-
tion θ̇0 : Z → R, θ̇0 ∈ L2(P0), with E0[θ̇0(Z)] = 0 such
that

θ(Pt,g) = θ(P0) + tE0[θ̇0(Z)g(Z)] + o(t) (7)

as t → 0, that is, θ(Pt,g) has a linear first-order ex-

pansion in L2 based on θ̇0. For example, the mean
θ(P ) = EP [Z] has the identity mapping θ̇0(Z) =
Z − EP [Z]. For more on such linear expansions and
their importance and existence, see [18, Chapter 25].
In short, however, the influence function allows ex-
tension of the Fisher Information from classical prob-
lems, and by defining I−1

0 := EP0
[θ̇0(Z)2], one has the

analogue of the local minimax lower bound (5) that
there exist sequences of prior densities πn supported
on {t ∈ R | |t| ≤ 1/

√
n} such that

sup
g∈G

lim inf
n

inf
θ̂n

∫
EPnt,g [`(

√
n(θ̂n − θ(Pt,g)))]dπn(t)

≥ E[`(Z)] where Z ∼ N(0, I−1
0 ). (8)

The supremum above may be taken to be over only
scalar multiples of the function θ̇0.

3.3.1 Non-convergence in probability: the
general case

We now come to our super-efficiency result, which we
will specialize to the nonparametric mean presently.
Essentially the weakest typical form of convergence of
estimators is convergence in probability, which is of
course implied by convergence in mean-square or ab-
solute error. As our general constrained risk inequality
(Corollary 1) handles this case without challenge, and
because lower bounds on the probability of error are
strong, we focus on the zero-one error. Let K <∞ be
an arbitrary constant, and for each n, define the loss
function `(t) = 1{

√
n|t| ≥ K}, so that

R(θ̂, Pn) = Pn
(√

n|θ̂(Z1, . . . , Zn)− θ(P )| ≥ K
)
.

Under the assumption that θ̂n is a super-efficient se-
quence of estimators under P0, we will show that for
essentially all non-trivial local alternatives, defined by
the tilting (6), the estimators θ̂n have probability of
error tending to 1.

Making this more precise, consider the subset

G0 := {g ∈ G | E0[θ̇0(Z)g(Z)] 6= 0,E0[g(Z)2] ≤ 1},
(9)

that is, those functions g ∈ G for which the pertur-
bation of θ(P0) to θ(Pt,g) is non-trivial as t → 0,
by the first-order expansion (7). Let us suppose that

R(θ̂n, P
n
0 ) ≤ δn for all n, where δn → 0 and 1

n log 1
δn
→

0 (this last assumption is simply to make our argument
simpler). Now, let B > 2 and c ∈ (0, 1) be otherwise
arbitrary constants, and for each g ∈ G0, define the set
of local alternative distributions

Pn,g :=

{
Pt,g ∈ P |

K2

n
· B2

E0[θ̇0(Z)g(Z)]2
≤ t2,

and t2 ≤ c

n
log

1

δn

}
.

(10)

We have the following proposition.

Proposition 3. Let θ̂n : Zn → R be a sequence of
estimators satisfying R(θ̂n, P

n
0 ) ≤ εn, where εn → 0.

Let δn ≥ εn be any sequence satisfying δn → 0 and
n−1 log δn → 0. Then

inf
g∈G0

lim inf
n

inf
P∈Pn,g

R(θ̂n, P
n)

= inf
g∈G0

lim inf
n

inf
P∈Pn,g

Pn
(√

n|θ̂n(Zn1 )− θ(P )| ≥ K
)

= 1.

Remark This result parallels Proposition 1, apply-
ing to nonparametric estimators. In comparison with
the local asymptotic minimax result (8), we see the
stronger result that super-efficiency at a single distri-
bution for the zero-one error implies that asymptoti-
cally, the loss is as large as possible for a wide range
of alternative distributions.

Proof. Fix g ∈ G0, and let θt = θ(Pt,g) and θ0 = θ(P0)
be parameters of interest. For shorthand, define ∆ =
E0[θ̇0(Z)g(Z)] 6= 0, so that θt = θ0 + (1 + o(1))t∆ as
t→ 0. By Lemma 1, we have that

ρ(Pnt,g||Pn0 ) =
(
1 + (1 + o(1))t2E0[g(Z)2]

)n
as t→ 0, so that if E0[g(Z)2] ≤ 1,

sup
t

{
ρ(Pnt,g||Pn0 ) | t2 ≤ c

n
log

1

δn

}
≤
(

1 + (1 + o(1))
c

n
log

1

δn

)n
≤ exp

(
(1 + o(1))c log

1

δn

)
= δ−c+o(1)

n (11)
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as n → ∞. Note that as B > 2, by the definition (7)
of an influence function, we have for all t satisfying
BK
|∆| ≤

√
n|t| ≤

√
c log 1

δn
that

`(|θt − θ0|/2)

= 1
{√

n|θt − θ0| ≥ 2K
}

= 1

{√
n

∣∣∣∣BK√n (1 + o(1))∆

∣∣∣∣ ≥ 2K

}
= 1{|BK ± o(1)| ≥ 2K} = 1 for large enough n,

where the final equality holds because B > 2. Apply-
ing Corollary 1 and inequality (11), we thus obtain for
large enough n, all P ∈ Pn,g satisfy

R(θ̂n, P
n) ≥

(
1−

√
δ
−c+o(1)
n δn

)2

+

,

which tends to 1 as n → ∞ whenever δn → 0 and
c < 1.

3.3.2 Non-convergence in probability for the
mean

Proposition 3 is abstract, so we make it more concrete
by considering mean estimation for distributions with
variance 1. Let P0 be a distribution on R with E0[Z] =
0 and Var0(Z) = 1. In this case, the influence function
is the identity mapping θ̇0(z) = z. Let 0 < K < ∞
be any constant. In this case, the family G0 of non-
trivial perturbations (9) is precisely those with non-
zero covariance with the random variable Z,

G0 =
{
g : R→ R | E0[g(Z)] = 0,E0[g(Z)2] ≤ 1,

and E0[Zg(Z)] 6= 0
}
.

We thus have the following corollary, which applies to
the tilted families Pn,g as above (10).

Corollary 4. Let θ̂n : Zn → R be any sequence of
estimators such that Pn0 (

√
n|θ̂n| ≥ K) ≤ εn, where

εn → 0. Let δn ≥ εn be any sequence satisfying δn → 0
and n−1 log δn → 0. Then

inf
g∈G0

lim inf
n

inf
P∈Pn,g

Pn
(√

n|θ̂n − EP [Z]| ≥ K
)

= 1.

In short, we see the expected result: if any esti-
mator achieves even the in-probability convergence
θ̂n = oP (1/

√
n) at θ = 0, then there must be a large

collection of distributions where the best performance
of the estimator across the entire collection must be
worse than the typical

√
n-rate of convergence.

4 Discussion

We have provided an extension of Brown and Low’s
constrained risk inequality [3], showing how to pro-
vide risk inequalities for general losses. Our results
on efficient non-parametric estimators in Section 3.3
immediately extend beyond 0-1 losses. For example,
consider estimating a parameter θ(P0) of a distribu-
tion P0 where θ has influence function θ̇0 : R → R,
and assume the estimator sequence θ̂n : Rn → R sat-
isfies

EPn0
[
|θ̂n − θ(P0)|

]
≤
√
δn
n

where δn → 0. Then for the family G0 consisting of
g : R → R with E0[g(Z)] = 0, E0[g(Z)2] ≤ 1, and
E0[θ̇0(Z)g(Z)] 6= 0, we can consider an analogue of
the tilted family (10) where for 0 < c0 < c1 < 1 we
define

Pn,g =

{
Pt,g | c0

log 1
δn

n
≤ t2 ≤ c1

log 1
δn

n

}
.

Then by Corollary 2 and an argument analogous to
that for Proposition 2, there exists a numerical con-
stant K > 0 such that for all g ∈ G0,

lim inf
n

inf
P∈Pn,g

√
n

log 1
δn

EPn
[
|θ̂n − θ(P )|

]
≥ K|E0[θ̇0(Z)g(Z)]| > 0.

The one-dimensional lower bounds we have pro-
vided are, we hope, transparent—relying only on the
Cauchy-Schwarz inequality—and easy to apply to a
range of estimation settings, making them well-suited
to pedagogical situations. It is possible to follow
Brown and Low’s work [3] to give non-adaptivity re-
sults in nonparametric function estimation [cf. 6, 10,
11, 3, 16], with relatively straightforward derivations
(though of course, these results are known). We hope
that our constrained risk inequalities for general losses
may lead to easier understanding of such issues in other
areas as well.

5 Proofs

5.1 Proof of Theorem 1

It is no loss of generality to assume that θ̂(z) ∈
[θ0, θ1] = {tθ0 + (1 − t)θ1 | t ∈ [0, 1]} for all z: let-
ting proj(θ) = argminθ′{‖θ − θ′‖2 | θ′ ∈ [θ0, θ1]} be
the projection of θ onto the segment [θ0, θ1], then
‖proj(θ)− θi‖2 ≤ ‖θ − θi‖2 for i ∈ {0, 1} by standard
properties of convex projections [8].



John Duchi, Feng Ruan

For any θ ∈ [θ0, θ1], which must satisfy θ = tθ0 + (1−
t)θ1, we have√

`(‖θ − θ0‖2) +
√
`(‖θ − θ1‖2)

=
√
`((1− t) ‖θ0 − θ1‖2) +

√
`(t ‖θ0 − θ1‖2)

≥
√
`((1− t) ‖θ0 − θ1‖2) + `(t ‖θ0 − θ1‖2)

≥

√
2`

(
1

2
‖θ0 − θ1‖2

)
(12)

as `(ta) + `((1 − t)a) is minimized by t = 1
2 for any

a ≥ 0 (by convexity of `). Using the majorization
inequality (12) and our without loss of generality as-

sumption that θ̂(z) ∈ [θ0, θ1] for all z ∈ Z, we thus
have

E1

[
`(‖θ̂ − θ0‖2)1/2

]
+ E1

[
`(‖θ̂ − θ1‖2)1/2

]
≥

√
2`

(
1

2
‖θ0 − θ1‖2

)
= ∆1/2.

(13)

Now, using the Cauchy–Schwarz inequality and rear-
ranging inequality (13), we have

R(θ̂, P1) = E1

[
`(‖θ̂ − θ1‖2)

]
≥ E1

[
`(‖θ̂ − θ1‖2)1/2

]2
≥
(

∆1/2 − E1

[
`(‖θ̂ − θ0‖2)1/2

])2

+
.

Finally, a likelihood ratio change of measure yields
that

E1

[
`(‖θ̂ − θ0‖2)1/2

]
= E0

[
dP1

dP0
`(‖θ̂ − θ0‖2)1/2

]
≤ E0

[
dP 2

1

dP 2
0

]1/2

E0

[
`(‖θ̂ − θ0‖2)

]1/2
=
(
ρ (P1||P0)R(θ̂, P0)

)1/2

.

This gives the lower bound (2) once we use that

R(θ̂, P0) ≤ δ.

5.2 Proof of Corollary 1

The proof is nearly identical to that of Theorem 1,
with one minor change. Instead of the majorization
inequality (12), we have for all t ∈ [0, 1] that

`(t ‖θ0 − θ1‖2) + `((1− t) ‖θ0 − θ1‖2)

≥ `
(

1

2
‖θ0 − θ1‖2

)
.

Substituting this and the definition ∆ =
`( 1

2 ‖θ0 − θ1‖2), then following the proof of The-
orem 1, mutatis mutandis, gives the corollary.

5.3 Proof of Corollary 2

The proof is again identical to Theorem 1, except that
we consider separately the cases k ∈ (0, 2] and k >
2. In the first case that 0 < k ≤ 2, we replace the
majorization inequality (12) for θ = tθ0 + (1 − t)θ1,
where t ∈ [0, 1], with the inequality

L(θ, P0)1/2 + L(θ, P1)1/2

=
[
(1− t)k/2 + tk/2

]
‖θ0 − θ1‖k/22 ≥ ‖θ0 − θ1‖k/22 .

Using ∆ = ‖θ0 − θ1‖2 and tracing the proof of Theo-
rem 1 then gives the first inequality (3). For the second
inequality, the case k ∈ (2,∞), we may apply the first
case that k ≤ 2 and Hölder’s inequality. Indeed, by
the assumption that R(θ̂, P0) ≤ δk, we have

E0

[
‖θ̂ − θ0‖22

]
≤ E0

[
‖θ̂ − θ0‖k2

]2/k
≤ δ2.

Applying the result for k = 2 in the first case of in-
equality (3) yields

R(θ̂, P1) ≥ E1

[
‖θ̂ − θ1‖22

]k/2
≥
(

∆− (ρ(P1||P0)δ2)1/2
)k

+
.

5.4 Proof of Theorem 2

By analogy with inequality (12) in the proof of Theo-
rem 1, for any v we have√

L(v, P0) +
√
L(v, P1) ≥

√
L(v, P0) + L(v, P1)

≥
√
dL(P0, P1),

and so (analogizing inequality (13)) we have

E1

[
L(θ̂, P0)1/2

]
+ E1

[
L(θ̂, P1)1/2

]
≥
√
dL(P0, P1).

Then using Cauchy-Schwarz and a likelihood ratio
change of measure exactly as in the proof of Theo-
rem 1 yields

R(θ̂, P1) ≥ E1

[
L(θ̂, P1)

]
≥ E1

[
L(θ̂, P1)1/2

]2
≥
(
dL(P0, P1)1/2 − E1

[
L(θ̂, P0)1/2

])2

+

≥
(
dL(P0, P1)1/2 −

(
ρ (P1||P0)R(θ̂, P0)

)1/2
)2

+

.

5.5 Proof of Lemma 1

By the boundedness assumptions on φ′ and φ′′, Tay-
lor’s theorem implies that

|φ(t)− 1| ≤ ‖φ′‖∞ |t| ≤ K|t|

and |φ(t)− 1− t| ≤ 1

2
‖φ′′‖∞ t2 ≤ 1

2
Kt2
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for all t ∈ R. Thus we have

Ct =

∫
φ(tg(z))dP0(z)

≤
∫

(1 + tg(z))dP0(z) +
K

2

∫
t2g(z)2dP0(z)

≤ 1 +
Kt2

2
E0[g(Z)2],

and similarly

Ct =

∫
φ(tg(z))dP0(z)

≥
∫

(1 + tg(z))dP0(z)− K

2

∫
t2g(z)2dP0(z)

≥ 1− Kt2

2
E0[g(Z)2].

Let σ2 = E0[g(Z)2] for shorthand. Considering the
χ2-divergence, we have

Dχ2 (Pt,g‖P0) =

∫
(φ(tg(z))/Ct − 1)2dP0(z),

and the integrand has the bound(
φ(tg(z))

Ct
− 1

)2

≤
(

1 +K|tg(z)|
1−Kt2σ2

− 1

)2

≤ 2K2t2

(1−Kt2σ2)2
(g(z)2 + t2σ4),

and

lim
t→0

1

t2

(
φ(tg(z))

Ct
− 1

)2

= lim
t→0

1

t2

(
1 + tg(z) +O(t2)

1−O(t2)
− 1

)2

= g(z)2.

Lebesgue’s dominated convergence theorem implies
that

lim
t→0

1

t2
Dχ2 (Pt,g‖P0) = E0[g(Z)2].
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Lectures on Stochastic Programming: Modeling
and Theory. SIAM and Mathematical Program-
ming Society, 2009.

[14] C. Stein. Inadmissibility of the usual estimator for
the mean of a multivariate normal distribution.
In Proceedings of the Third Berkeley Symposium
on Mathematical Statistics and Probability, pages
197–206, 1956.

[15] C. Stein. Efficient nonparametric testing and es-
timation. In Proceedings of the Third Berkeley
Symposium on Mathematical Statistics and Prob-
ability, pages 187–195, 1956.

[16] A. Tsybakov. Pointwise and sup-norm sharp
adaptive estimation of functions on the Sobolev
classes. Annals of Statistics, 26(6):2420–2469,
1998.

[17] A. W. van der Vaart. Superefficiency. In
D. Pollard, E. Torgersen, and G. Yang, edi-
tors, Festschrift for Lucien Le Cam, chapter 27.
Springer, 1997.

[18] A. W. van der Vaart. Asymptotic Statistics.
Cambridge Series in Statistical and Probabilistic



John Duchi, Feng Ruan

Mathematics. Cambridge University Press, 1998.

[19] M. Zinkevich. Online convex programming and
generalized infinitesimal gradient ascent. In Pro-
ceedings of the Twentieth International Confer-
ence on Machine Learning, 2003.


	Introduction
	The constrained risk inequalities
	Examples
	Gaussian mean estimation
	Stochastic convex optimization
	Super-efficient estimation in nonparametric models
	Non-convergence in probability: the general case
	Non-convergence in probability for the mean


	Discussion
	Proofs
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Corollary 2
	Proof of Theorem 2
	Proof of Lemma 1


