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S1 Assumptions

On the manifold

A1l. Assume one of the following conditions.

(i) © is a Hadamard manifold, i.e. a complete, simply connected Riemannian manifold with non-positive sectional
curvature. In addition, S is a closed geodesically convex subset of © with non-empty interior.
(ii) © is a complete, connected Riemannian manifold and S = ©.

A2. O is a Hadamard manifold. In addition, there exists k > 0 such that the sectional curvature of © is bounded
below by —rk2.

On the distribution of the data

MD1. The sequence (Xp)nen+ is independent and identically distributed (i.i.d.). In addition, for any 6 € ©,
Eleg(X1)] =0 and there exist 03,07 > 0 such that for any 0 € S, E[|leq (X1) ||2] < 08 + 07 Hh(6‘)||3
MD2. (i) P-almost surely, the vector field 0 — ep(X1) is continuous on ©.
(i) For any § € ©, Leby and the distribution of eg(X1) are mutually absolutely continuous.
MD3. X is a continuous tensor field of type (2,0) on O.
MD4. There ezist . > 0, 63,53 > 0 such that for any 0 € O, E[H@g(Xl)||3+EE] < G2+ a2V ().
MD5. There exists 8 € © such that
/@p%(@7 v)m(dv) < 400 .

On the Lyapunov function V' and the mean field function A

H1. (i) For any 6 € ©, V oprojs(0) < V(0).
(ii) V is continuously differentiable on © and its Riemannian gradient gradV is geodesically L-Lipschitz, i.e.,
there exists L > 0 such that for any 6,01 € ©, and geodesic curve y : [0,1] — © such that y(0) = 6y and
Y(1) = 61,

lerad V(61) — Therad V(éo),, < LAY |

where £(y) = ||[Y(0)|lg, is the length of the geodesic.

(1ii) V is proper on S, i.e., for any M > 0, there exists a compact set K C S such that for any 6 € S\ K,
V(o) > M.

H2. There exist C; > 0 and Cy > 0 such that for any 6 € S, ||h(t9)||§ + Cy (grad V(0),h(0)), < Ci.

H3 (K*). There exists X > 0 such that for any 6 € S, (grad V' (), h(0))y < —AV(0)1s\k+(0).

H4. There exists 0* € S such that for any r > 0, H3(B(6*,r)) holds and that there exists ¢, > 0 satisfying for
any 0 € S\ B(0*,r), ¢, <V(0).

H5. There exist a linear mapping A : Tp-© — Ty«O and a map F : © — Ty«O, such that for any 0 € O,
h(0) = T3, (AExpg.' (6) + () ,

where 0* is defined in H/, T}, denotes parallel transport along the geodesic vy : [0,1] — © with y(0) = 6* and
Y(1) =0, and limg_,¢-{||7(0)||y. /po(6*,0)} = 0. In addition, the eigenvalues of the matriz A all have strictly
negative real parts. Finally, there exists C3 > 0 such that for any 6 € ©, ||h(0)]|, < C3pe(0*,0).

H 6. There exists 0% such that H 3({0*}) holds and there exists ¢ : Ry — Ry such that for any 0 € O,
V(0) > ¢(pe(0*,0)) and for any v > 0, inf;, oy ¢ > 0. In addition, there exists @ > 0, such that

lim, 4 o SUP, <5 a/é(a'?r) = 0.
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On the objective function f in the gradient case

F1l. f:0© — R is twice continuously differentiable and grad f is geodesically L-Lipschitz, see (3).

F 2. is \f-strongly geodesically convex, for some Ay > 0, i.e. for any 01,00 € O, f(62) > f(61) +
(Expy.' (62), grad f£(61))e, + Afpd(61,602)/2.

F 3. f is twice continuously differentiable. There exists 5\f > 0 such that for any 6 € 0O,
—(Exp, ' (6%), grad £(8))g > A;Vi(6), where Vi is defined by (9) with § = 1. In addition, there exists Cy > 0 such
that for any 6 € ©, ||grad f(0)]7 < Cf(p3(0*,6) A 1).

S2 Supplementary notation

Denote the unit tangent space Ug® = {u € Ty© : |lu|l¢ = 1}. The cut-locus of 8, Cut(f) C © [1, p. 308] and
the injectivity domain ID(0) C Ty®O [1, p. 310] are two notions that inform us about the length-minimizing
properties of geodesics, and therefore provide the domain of definition of the Riemannian exponential. On a
complete and connected manifold, [1, Theorem 10.34] holds, meaning the restriction (Expg)|ip(g) : ID() — © is

a diffeomorphism onto its image © \ Cut(f). We simply denote Exp, ' : © \ Cut(d) — ID(#) its inverse. Under
the assumption that © is complete, simply connected and of non-positive sectional curvature, i.e. a Hadamard
manifold, [1, Proposition 12.9] proves that Cut(f) = () and ID(6) = Ty© for any 6 € ©.

For a measure p on a measurable space (Y,)), denote by p(g) the integral of a measurable function g : Y — R
with respect to u, when it exists.

S3 Proofs of Section 2

Under Al and MD1, for any n > 0, we denote by @, the Markov kernel associated with (6,,)nen defined by (2)
given for any A € B(S) and 6 € S by

@n(0,A) = E[La (Expy {nHp(X1)})] - (S1)
Useful notions, definitions and results relative to Markov chain theory are given in Section S6.1.
Lemma S1. Assume A1, MD1, HI1-(i)-(ii). Then for anym > 0 and 6y € S,

QuV (80) < V(Bo) + 1 (grad V (60), h(B0), + In® [[1(60)I13, + 03 + % [n(60)I2, ] - (52)

Proof. Let 6y € S, and 1 > 0. Consider

01/2 = EXpHO [T]Hgo (Xl)} 5 61 = pI‘OjS (91/2) . (S?))
First, by definition of @ and H1-(i), we have
QnV(6o) =E[V(61)] <E [V(61/2)] - (S4)

Second, using A1, H1-(ii), [2, Lemma 1] and (S3), we obtain
V(61/2) < V(60) +n (grad V(6o), Ho, (X1))g, + (L/2)0* | Hoy (X1)]5, -
Plugging this result in (S4) and using MD1 completes the proof of (52). O
S3.1 Proof of Theorem 1
(a) Using Lemma S1 and H2 we have for any 6y € S and n > 0,
@nV(00) < V(0o) +n{l — CoLn(1 +07)} (grad V(60), h(6o))y, + In*log + C1 (1 + 07)] .

Letting 1 = [2C2L(1 + 0%)] 71, then for any n € (0,7], we have 1 — CoLn(1 + ¢7) > 1/2. Therefore, using also
that (grad V' (6o),h(0o)),, < 0, we obtain,

QnV(00) < V(bo) + (n/2) (grad V(o) h(bo)) g, + Ln*[og + C1(1 +01)] - (S5)
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Therefore, by the Markov property, for any k € N*, n € (0,7] and 0y € S we get,
~(0/2) [ {erad V(6).h(6)), Q4 (80, d6) < QK 'V (80) ~ QY (60) + Ln’lof + C1(1+ o).
e

Summing these inequalities for k& € {1,...,n} concludes the proof of (a) upon using that V is a non-negative
function.

(b) We prove (5) by using H3(K*) in (4) and dividing both sides by A > 0.

(¢) We start by using H3(K*) in (S5). For any n € (0,1] and 6y € S, we have

QnV(00) < V(00) [1 = (Wn/2)Is\k- (60)] +17b/2, (S6)

where b = 2L[02 + C1(1 + 0%)]. By adding and subtracting V (6p)(An/2)1k=(6o) in the right-hand side of (S6),
we have,

@V (0o) < V(0o)[1 —na] +n(n/2+a|V]x.) (S7)
where a = A\/2. Therefore, by a straightforward induction on n € N, using the Markov property, we get, for any
n €N, n € (0,7] and 6y € S,

n—1

E[V(0,)] < {1 —na}"V (o) +n(bn/2 + a|[V]|x.) D[l —na)*

< {1 na}"V(0) + (V] + (n/20)} .

which concludes the proof of (¢) and Theorem 1.

S3.2 An alternative to Theorem 1-(b)

Consider the following condition for some compact set K* C S.
HS1 (K*). There exists X\ > 0 such that for any 0 € S, (grad V(0), h(0)), < —X Hh(ﬂ)”g Ts\k+(0).

Theorem S2. Assume A1, MD 1, HIi-(i)-(ii) and HS1(K*) hold for some compact set K* C S, and define
Pl = sup{[|h(0)|l, : 6 € K*} if K* # 0 and ||h||x. = O otherwise. Then for anyn € (0,1] and 6y € S, and

n € N¥,
n—1

n=t Y Ellsik- (0x) [A(61)llg, ) < V(80)/(anm) +nb/a,
k=0

where (0, )nen is defined by (2) starting from 0y, § = A/[2(1 + 03)L], a = A/2 and b= L((1 + o3) ||h]lx. + 03).
Proof. By Lemma S1 and HS1(K*), for any n € (0,7] and 6, € S, we have
QuV(680) < V(60) = [1h(00) 15, Lo\ (60) + Ln? [I1a(00) 5, + o8 + o3 1A(60) 7,

Therefore, by the Markov property, for any k € N*; n € (0,1] and 6y € S, we get

(/2) [ (L5 0) I1O)I;Q5 " (00,00
< Qy'V(00) = QyV (80) + In*((L+ 07) [[hll. +03)
Summing these inequalities for k € {1,...,n} concludes the proof upon using that V' is a non-negative function. O
S3.3 Proof of Theorem 2

Lemma S3. Assume A1, MD1 and MDZ2-(i). Then the Markov kernel Qy on S x B(S) is Feller, i.e. for any
measurable bounded function f:S — R, Qnf is continuous from S to R.

Proof. The proof is an easy consequence of the Lebesgue dominated convergence theorem, since h is continuous
and MD2-(i) holds. O
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For the next lemma, we introduce us, the restriction to S of the Riemannian measure pug associated with the
volume form on ©.

Lemma S4. Assume A1, MD1 and MD2-(i1). Then Qy is pus-irreducible and aperiodic.

Proof. We consider first the case A1-(i), where © is a Hadamard manifold. Let A € B(S) be a Borel set of S, such
that us(A) > 0. We only need to show that for any 6y € ©, Q (6o, A) > 0. Indeed, this gives ps-irreducibility by
definition and implies that the chain is aperiodic by [3, Theorem 5.4.4| since for any A € B(S), us(A) >0, 0 € A,
we have Qy(6,A) > 0.

Let 0y € S. By definition of the scheme (2) and projs, Qy(6o,A) = P(projs oExpgs (M{h(0o) + €s,(X1)}) €
A) > P(Expg,(M{h(0o) + eq,(X1)}) € A). However, using MD2-(ii), the law of eg,(X1) has a positive density
¢ : Tg,© — (0,+00) with respect to Lebesgue’s measure Lebg,. Denote (g;;(6))1<i,j<a the matrix representing
the Riemannian metric at § € © in normal global coordinates at 6y. Expressing us in these coordinates and using
[1, p.404 and Proposition 2.41],

P A(80) + €a, (X1)} € Bxpy! (W) = [ o (171 ) Ay, 0

- /A 6 (1 Expy. (0) — h(60)) {det(gi;(0))} /> dpus(0) > 0,

since all quantities in the integral are positive and ps(A) > 0.
Now assume Al-(ii) and keep the notations of the first case. Then Expy : Tg,© — © is no longer a diffeomorphism.
However, (Expy, )p(6,) : ID(6o) — © \ Cut(fy) is a diffeomorphism, see [1, Theorem 10.34]. Moreover, as Cut(fy)

is a set of measure zero, see again [1, Theorem 10.34]|, considering A=A \ Cut(fy) allows the previous proof to
give the desired result. O

Proof of Theorem 2. First, we prove that the chain is Harris-recurrent. For that, we start by proving, for any
0y € S7 .
P (Ugen+ Nven Un>n {0, € B(0*,k)}) =1, (S8)

where (6, )nen is defined by (2) and with initial condition 6.

Theorem 1-(6) implies that for any 6y € ©, sup,,cy QnV (0o) < +o0; since ||[V|. = supk. V' < 400 because V is
assumed to be continuous. Therefore liminf, 1, V(6,,) is integrable by Fatou’s lemma. Thus, for any k € N*,
using Markov’s inequality,

P (limian(On) > k) <E {limian(Gn)} /k .

n——+oo n—-+oo

However, {liminf, oo V(6,) <k} = Nnen Un>n {0, € V7([0,k])}. Thus, for any k € N*,

P(NnenUn>n {0, € VTI([0,K])}) > 1 - E {liminf V(Gn)] /k: .

n—-+4oo
Now, taking the union of these events for any k € N* gives
P (UkeN* NNeNn Up>N {9n € Vﬁl([o, k])}) =1. (S9)

Nonetheless, using H1-(iii), for any k € N*, V=1([0,k]) is a subset of a compact set, therefore it is bounded.
Thus, for any k € N*, there exists k' € N* such that V=1([0, k]) € B(6*,%’). This gives the following,

UkEN* mNEN UnZN {en S V_l([ovk])} - UkEN* ﬁNEN UnzN {9n S E(e*7k)} .
Combining this with (S9) gives (S8).

Equation (S8) gives that the chain is non-evanescent [3, Section 9.2.1]|. Since @y, is Feller (see Lemma S3), this
result and [3, Theorem 9.2.2] imply that @, is Harris recurrent.

We now show that @y, is V-uniformly geometrically ergodic (see Section S6.1) setting V =1+ V. First, by
Theorem 1 and (S7) obtained in the proof above, we have that for any 6y € S,n € (0,7],

QnV(0o) < (1 —ma)V(6o) +nmb/2+ a(l + [[V|.)) ,
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where a,b,7 and ||V|«. are defined in Theorem 1. Then, by HI-(iii) there exists 7 > 0, such that for any 6, € S,
QnV(00) < (1 —an/2)V (o) +n(nb/2 + a(l + |V || ) I+ 7 (6o) -

Then, since @y, is Feller by Lemma S3 and ps-irreducible by Lemma S4, using [3, Proposition 6.2.8 (ii)], B(6*,r)
is petite since it is compact by the Hopf-Rinow theorem [4, Theorem 1.7.1] and S has non-empty interior by A1l.
Therefore, an application of [3, Theorem 16.0.1| proves that the chain is V-uniformly geometrically ergodic. O

S3.4 Proof of Theorem 3

Lemma S5. Assume A1, MD1 MD2, Hi, H? and H3(K*) hold for some compact set K* CS. Then for any
n e (0,7,
pMVIs\k-] < 20L{og + C1(1+07)}/A

where 7 = [2C2L(1 + 0%)] 71,

Proof. For any n € (0,7] and M > 0, setting Vay = M AV, (S6) implies using Jensen inequality, for any 6y € ©,

QnVir (60) < (1 —nals\k-(60))Var (60) +1°b/2

where 1 = [2C2L(1 + 03)]71 , b = 2L{o3 + C1(1 + 0})} and a = A/2. Using that u" is invariant for Q, by
Theorem 2 and V) is bounded, we get p[Vas1s\k+] <nb/(2a). By the monotone convergence theorem, taking
M — +o0, we have u"[V1s\k+] <nb/(2a), which concludes the proof. O

Proof of Theorem 3. (a) Using Lemma S5 and V(0) > ¢ > 0 for any 0 € S\ K*, we obtain

e {S\ K*} <nb/(2ac) ,

which concludes the proof of (a) taking the limit 1 — 0.

(b) Let (Nn)nen be a sequence converging to zero such that for any n € N, n,, € (0,7]. We start by proving that
(" )nen is tight. Let € > 0. On one hand, let 7 > 0 and Ko = B(6*, 7). Then, using Theorem 3-(a), there exists
N € N such that for any n > N, " (Kgy) > 1 —e. On the other hand, (Mn")ne{o ,,,,, N1} is tight, i.e. there exists

a compact set K C © such that for any n € {1,..., N —1}, " (K) > 1 — . Finally, taking K = Ko UK gives the
tightness of (u""),en. Now, let p be a limit point of (u""),en. Using Theorem 3-(a), and Lebesgue’s dominated
convergence theorem letting r — 0, gives u({0*}) = 1, i.e. u = dp«. In conclusion, for any (N, )nen converging to
zero, (u),cn converges weakly to the Dirac at 6*.

O

S3.5 Proof of Proposition 4

First, we check H1-(i). Using [5, Proposition 2.6|, projg is a contraction w.r.t. pg, which implies that for any
0 ec 0o,

P60, projs(0)) = pg (projs(6*), projs(0)) < pg (6%, 0) .
This implies, since S C H, that
Va(projs(0)) = pg (6", projs(6)) < xu(8)p& (6", 6) + (1 — xu(6)) diam*(H) = V5(6) ,
which gives H1-(i).

To prove H1-(ii), we calculate the operator norm of the Hessian of V3 and conclude by [2, Lemma 10]. Using A2
and [4, Theorem 5.6.1], 6 — p2 (0*,6) is smooth and its gradient on © is given by 6 — —2Exp, ' (*). Therefore,
for any 0 € O,

grad Vo () = [p3 (6%, 0) — Di]grad xu(6) — 2xn(0)Exp, ' (6%) .

Using now A2, [4, Theorem 5.6.1] and Cauchy-Schwarz’s inequality brings, for any 6 € ©,v € Ty0O,

| (Eess Va)o(w, v)lly < 266 (6*,0) coth(rpe(6*, ) xu(8) [[0]2 + 4pe (6", 6) erad xu()]l [lo]l3
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+ H(HeSSXH)G(vaU)HQ ‘pé(9*79) - D|2-|’ :

However, one can choose yy such that for any 6 € © satisfying infg ey po(6’,60) > 1, it holds that yn(6) = 0.
Therefore, for any 6 € ©, pe(6*,0)xn(f) < Dy + 1. Since xny is smooth with compact support, there exists a
constant M > 0 such that for any § € © and v € TyO,

lgrad xu(6)llp < M and ||(Hess xu)o (v, v)llo < M o]l -
Therefore, combining these expressions brings for any 8 € © and v € TyO,
|(Hess Va)g (v, v)[|y < 6(M +1)(Dy + 1)[1 + s coth(xDp)] [|v][5 ,

thus proving by [2, Lemma 10] and setting C, = 6(M +1), that HI-(ii) holds with L <+ C\ (1+Dy)[14£ coth(kDy)].

We now turn on checking H3(B(6*,7)). Since grad xn(¢) = 0 for any 6 € S, we get that V5 is smooth and for any
0 €S, grad Va(f) = —2Exp, *(6*) Therefore H3(B(6*,7)) holds by (8).

S3.6 Proof of Proposition 5
First, we check H1-(i). Using [5, Proposition 2.6], projg is a contraction w.r.t. pg, which implies that 6 € ©,
po (6", projs (6)) = pe (projs ("), projs(6)) < pe(6*,6)

Then the proof of H1-(i) is completed using that = +— 62{(z/8)? + 1}'/2 — 2 is increasing.
Next, using A2, [2, Lemma 16], we have for any § € ©,v € Ty© \ {0},

0 < Hess V1(0)(v,v) < (1 + K9) ||U||§ .

Therefore, using [2, Lemma 10], H1-(ii) holds for L = 1+kx4¢. It is easy to see that as pg(6*,6) — oo, V1(0) — +o0,
meaning H1-(iii) holds by the Hopf-Rinow theorem [4, Theorem 1.7.1].

Regarding H3(B(6*,r)), using [2, Lemma 16|, we have for any 0 € ©,

grad V() = — Expgl(ﬂ*)/{(p@(ﬁ*, 0)/6)° + 1}1/2 , (S10)

Therefore for any 6 € O, we get

(grad Va(0), h6)), =~ (Bxwy (010D}, / {po(6".0)/6" + 1} "

Then, under the condition (8), we obtain
2 (p* * 2 1/2
(grad Vi(6), h(6))g < ~App (0", 0) 15500 () / { (00 (67,6)/0) + 1}

< =XAVi(0)1g\5(px 1 (0)

where we used that
i) < 2(0%0) / {00007 + 1}
since for any @ > 0 and & > 0, (a2 + 1)V/2 — 1 =a [ t{at® + 1}71/2dt < aa?/{aa® + 1}1/2.
S4 Proofs of Section 3
For any K € R, consider a smooth function with compact support xx : Ry — [0, 1] such that xx(¢) =1 for any

t <K and xk(t) =0 for any t > K + 1.
Lemma S6. Assume A 1-(ii) and MD 1.
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(a) Then, for any smooth function with compact support g : © = R, anyn > 0 and 6, € O,

Qng(00) = g(00) +m (grad g(0o), h(6o))g, + (*/2) [Hess g : X+ h @ h] (60) + (*/6)Zgn (o) , (S11)

where for any K > 0,

[y.0(60)| < SNE || VHess glly,ooLag [ Hiclly, | + 16/ Hess glloE [[¥icl7, | - (812)
Hi = h(0o) + eay (X1)xx (lleas (X1)llo) » Yic = a0 (X){1 = xre(lleas (X1)l05)} (S13)
|Hess g|loco = sup{|Hess gg(u, u)| : 0 € ©,u € UpO}
[VHess g0 = sup{|VHess gy )(u,u,u)| : t € [0,1],u € Uy4)O},

Ao, = {I|Hkll6, < Yk oo} andy :[0,1] = © is defined for any t € [0,1] by y(t) = Expy, (tnHy,(X1)).

(b) Assume in addition that there exist Cs > 0 and 60* € © such that for any 6 € O, |h(8)]ls < Cspe(0*,0).

Then, for any smooth function with compact support g : © — R, anyn € (0, (4C3)~ ] and 0y € ©, (S11) holds,
with for any K > 0,

B0 (00)| < STk, (00)E [[VHess gl T g [1Hcl5, | + 16 Hess gl [, ] (s14)
where we take the notation of (a) and Ki is a compact subset of ©.

Proof. (a) Let g : © — R be a smooth function with compact support and 0y € ©. Using (2), A1-(ii) and the
definition of @y (S1), we have

@Qng(0o) = E [g {Expy, MHo, (X1)]}] - (S15)

Consider the geodesic v : [0,1] — © defined for any t € [0, 1] by y(t) = Expy, (tnHg,(X1)). For any ¢ € [0,1], let
g(t) = (gov)(t). We compute now its derivatives to derive a Taylor expansion. Using [1, Proposition 4.15-(ii)
and Theorem 4.24-(iii)], we have for any ¢ € [0, 1],

4'(t) =Di(goy)(t) = (grad g(v (1)), V())y () -

By definition of the Hessian [1, Example 4.22] and using D;V(t) = 0, Proposition S14-(S72)-(iv), we get for any
t€0,1],
5" (t) = [Dig)(t) = Hess gy (1 (¥(£), V(1)) ,

In addition, using Dyy(¢) = 0 and Proposition S14-(S72)-(iv), we obtain for any ¢ € [0, 1],

g (t) = [Dig](t) = VHess gy () (Y (1), (1), V(1)) ,

where VHess g is the total covariant derivative of Hess g [1, Proposition 4.17]. Finally, for any K > 0, consider the
two random tangent vectors at 6y defined in (S13). Now, writing the first-order Taylor expansion of 4 : [0,1] — R,
at t =1 on the event Ag, = {||Hxkllo, < ||Yk |6, }, the second-order one on the complement, and summing both
expansions, we get

9 (Expy, (nHy, (X1))) = 9(0) +n{grad g(6o), Ho, (X1))s,

2 (S16)
+ (n°/2)Hess g, (He, (X1), Hp, (X1)) + Ry (00, X1)/6 ,

where the remainder term is given by
1
(B0, X0) = Lpg [ VHess g0 (F10). 700 YD)
0

1
+ 1a,, [/ Hess g 1) (v(t), v(t))dt — 3n2Hess 900 (Hoo (X1), Hoy (X1))
0

We bound the remainder as follows. Since g has compact support, Hess g and VHess g have an operator norm
uniformly bounded over ©, which we express in the following way. For any 6 € ©, consider the unit tangent
space at 0, Up©® = {v € TyO : |jv|]lp = 1}, let |Hessg|loc = sup{|Hessgo(v,v)| : 6 € O,v € UypO} and
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VHess g||y.co = sup{|VHess g, (v,v,v)| : t € [0,1],v € U, (»nO}. Then, using [1, Corollary 5.6-(b)], and
v, v (1) v(t)
Y(0) = nHg, (X1),

1
00, 30)| < 1pg [VHessilly [ 19O

1
. 2 2
+ Ta,, [[Hess glloo [/0 V()15 ) At + 30 [ He, (X1) 5,

3 2
= g [IVHess glly oot [ Ho, (X2) 5, + 41, [Hess gllcn? [[Hay (X0)13, -
Moreover, using that Hx + Yx = Hp,(X1) and the definition of Ag,,
(BB, X1)| < 815 [ VHess glly,en® | Hic [}, + 16{Hess gllcn [ Yicl 7, - (517)

Now, using MD/1,
E [(grad g(0o), Hg, (X1))e, | = (grad g(6o), h(6o))o, - (S18)

In addition, since
Hess gg, (Ho, (X1), Ho,(X1)) = [Hess g : Hp,(X1) ® Hg, (X1)] ,

it follows by a further application of MD1, that
E [Hess 96, (H90 (X1), Hgo (Xl))] = [Hessg th®h+ E] (90) s (819)

where X(6p) is defined in (10). Using that |Hglle, < K + [|h(60)]l6,, and MD1 in (S17), we obtain that for any
0o € ©,E[| %y (00, X1)|] < +o0. Then, by (S16), (S18) and (S19), it follows from (S15),

@Qng(6o) = g(60) +nlgrad g(6o), h(60))a, + (n*/2) [Hessg : h @ h+ X] (60) +1°Rgn (60)/6

where we define %Z,.,(6p) = N ?E[%4 (60, X1)]. The desired bound on the remainder in (S12), is a simple
consequence of (S17).

(b) In addition to the results of (a) and specifically (S12), we need to prove that, since g has compact support,
there exists a compact set Kx C © such that ||VHessg||y’oo]1Ag0 =0 for any 6y & Kg.

Using that ||h(0)]|, < Cspe(6*,0), we obtain that on AEO, | Ho(X1)|l, < 2(C3pe(6*,0) + K). In addition, by [1,
Corollary 6.12|, pe(6,v(t)) = tn | Hg(X1)||, for any t € [0, 1], therefore for any ¢ € [0,1] and n € (0, (4C3) ']

pe(0%,v(t)) > pe(6*,0) — pe(8,v(t)) > (1 — 2tCs)pe(6*,0) — 20K > pe(0*,6)/2 — K/(2C3) .

Consider now R > 0 such that for any 6 ¢ B(6*, R), g(§) = 0. Then, setting Kx = B(6*,2(R + K/(2C3))),
we obtain that for any 6y ¢ Kx and ¢ € [0,1], y(t) € B(6*, R) and therefore, VHess gy ) = 0, which yields
||VHessg||y7oo]1Ag =0 for any 0y € K. Finally Ki is a compact subset of © by [4, Theorem 1.7.1].

0

O

S4.1 Proof of Theorem 6

Let g : © — R be a smooth function. Since we assume that © is compact, g is smooth with compact support.
Therefore, using Lemma S6-(a) for any 8 € © and 11 > 0, we have,

Qng(9) = g(0) +n (grad g(6), h(6))s + (n*/2)[Hess g : B+ h @ h](0) + (n°/6) g0 (0) . (520)

where using (S12), Holder inequality and MD1 gives,

|Zgm(0)] < 32n(||h(9)||3 + KB) sup{|VHess go(u,u,u)| : 0 € ©,u € Uy©O}
+16[Hess gl (o7 + 2 RO ) -
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Next, let 1 € (0,7, where 1 = [2C5L(1 + 02)]7!. Note that since © is compact, g is smooth, h and ¥ are
continuous, all the functions appearing in (S20) are bounded. Therefore, integrating (S20) with respect to p"
given by Theorem 2 and using that p" is invariant w.r.t. @y, we obtain,

— [ {eradg(6). h0))y " (06) = (1/2) [ [Hessg s X+ b HO)"(06) + (0/6) [ Fyn(O)"(e6)
e (C] (C]

Using that 6 — [Hess g : ¥ 4+ h ® h](6) is bounded and continuous over ©, Theorem 3-(b) and that h(6*) = 0, by
weak convergence of u" to dg» when n — 0, we have,

lin}J [Hessg: X+ h® h](0)u"(df) = [Hessg : X+ h Q@ h](0*) = [Hess g : X](6%) .
n—-Vje

Equivalently, there exists Zuess 4 : (0,7 — R such that for any n € (0,7], we have
/ [Hessg : X4+ h @ h](0)u"(d0) = [Hess g : X](0*) + Zriess g(M) »
)

where limy, 0 |Zess g(M)| = 0.

To conclude, we prove that limsup, o | [o %y (0)u"(d0)| = 0. Let K > 0. By (S12), since 6 — ]E[IlAg0 | Hkll3,]

is uniformly bounded over © by definition (S13) and since h is continuous, we have that

lim sup
n—0

/ %,n(em“(de)‘ < 16]|Hess g]|o lim sup / E {llea(X0) I {1 = xxc(6)}] u"(a0)
(S] n—0 S}
< 16][Hess gl|ocE [fleo- (X0)[5. {1 = xxc(07)}]

using Theorem 3-(b), that 6 — ]E[||69(X1)||3] and xg are continuous and bounded by MD3 since E[||eg (X1)||3] =
Tr(X(0)) for any 6§ € © and © is compact. Taking K — 400 completes the proof.

S4.2 Proof of Theorem 7

We introduce an auxiliary chain (U, ),en as an intermediate step between (6,,)nen and (U, )nen for which we
recall the definition below. Define for any n > 0,n € N,

U, = Exp,l(6,) and U, =n"Y2Exp,l(0,) =n~ YU, , (S21)
where (0,,)nen is defined by (2) with S = © i.e. projs = Id. Note that (U,)nen and (U, )nen are Markov chains
with state space Ty 0O, as Expy. is a bijection. Conversely, since Exp(g_*1 and n-Y 2Expg_*1 are bijections from ©
to T+ O under Al-(i), (0)nen is a deterministic function of (U )nen or (Up)nen. Therefore, the convergence of
these three processes is expected to be the same. This is the content of the following result. Denote by R, and

R,, the Markov kernels on Ty- O x B(Ty«0©), associated with (Up)nen and (U, )nen respectively.

Lemma S7. Assume A1-(i)-(ii), MD1, MD2, H1, H2 and H3(K*) for some compact set K* CS. Letn € (0,7]
where N = [2C5L(1 + 03)]~ L. For any measurable and bounded function g : T¢+© — R and any ug, Uy € Tg+O,
Ry, and Ry, satisfy

Rug(uo) = Qng (Bxpy.(ug))  and  Ryg (tio) = Rngn(n'/*T) , (522)

where g : 0 — g[Exp(,_*1 (0)] and gn : u — g(m~Y2u) are defined over © and Tg-© respectively, and Qy is the
Markov kernel associated with (0,)nen. In addition, Ry and R, both admit a unique stationary distribution v"
and 7" respectively, defined for any A € B(Ty-O) by

V(A) = p" (Expy. (A))  and  TV(A) =" (n'/2A) . (523)

Finally, both Ry and En are Harris-recurrent and geometrically ergodic, i.e. there exist C,C : Tg+© — R and
p,p € R such that for any u,u € Ty O,

18Ry — v lvv < Clu)p™  and |8z Ry — 7" ||rv < C(@)p™ .
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Proof. Let g: T9-© — R be a measurable and bounded function and ug € Ty«©. Consider (U, ),en defined by
(S21) with 6y = Expg. (ug). Using (S21), we have by definition

E[g(U1)] =E [g (Expy. (61))] = Qn (g0 Expp.t) (Expy. (uo)) -

Moreover, let Ty € Tg«© and consider (U, )nen defined by (S21) with Uy = n'/?%,. Using (S21), we have by

definition
E [g(U1)] :E[g (ﬂ_l/ZUl)] Rngy ( 12, ) ,

where g, : u > g(n~!/2u) is defined over T ©, therefore proving (S22).

We show that v" and 7" are invariant for Ry, and R, respectively. Indeed, for any A € B(Ty-0), we have by
(S21), (S22) and (S23)

VR, (A) :[F edZ/T‘( (u, A) / dp"( Expe* (6),A)
= [ i (0)Q0 0. Expy. (A)) = " (Bxpg. () = 27 (4).

Therefore v" is invariant for R,,. Similarly, we show that 7" is invariant for R,,. Using again (S21), (S22) and
(523), for any A € B(Ty-0O) we have,

TRy (A) = /T @duﬂ(u)ﬁn (nfl/%,A): /T )Ry (u,n1/2A>:ﬁ“(A).
0% 0%

Finally, since (6,)nen, (Un)nen and (Uy )nen are deterministic functions of each other and since Theorem 2 proves
that (0,,)nen is geometrically ergodic and Harris-recurrent, the same holds for (U, )nen and (U, )nen and their
invariant distributions are unique. O

For any smooth function with compact support g : T9-© — R, Ty € Tp«O and n > 0 consider the 2-tensor
(C*(g.T0,M)ij)i,jef1,....ay defined by, for any i,j € {1,...,d},

d
C*(g,0,M)i; = 0;;8(To) —-n'/? ZFZ (EXpe* (Tll/Qﬂo)) Ing(to) (S24)

and, similarly consider the 3-tensor (C*(g, %o, M)ijk)i jkef1,....ap defined by, for any 4,5,k € {1,...,d},

CS(gyﬂ(Ja )ljk‘_ ”kg(ﬂo)

d
1/2 Z [ (Expg* ﬁo)) 3§lg(ﬂo) + Fﬁm. (Expg* (Tll/Qﬂo)) 6]2'zg(ﬂo)

=1

d
B B - B B (S25)
+T%; (Expo* (ﬂl/zuo)) 531%(%)} - Z oI (EXPG*(ﬂl/zuo)) Im (o)

m=1

d
1 Y0 T4 + Ty (Bxpg (0%T0) ) O (o) |

I,m=1

where (Fi'cj)i,j,ke{l,...,d} are the Christoffel symbols of the Levi-Civita connection V. We derive the following
Taylor formulas.

Lemma S8. Assume A 1-(i)-(ii), MD1, MD2, H1, H2 and H3(K*) for some compact set K* C S. Suppose
in addition that there exists C3 > 0 such that for any 0 € O, ||h(0)], < Cspe(0*,0) and let 1 = [2C2L(1
)} LA (4C3)~t. Consider normal coordinates (u )ze{l .dy centered at 0* and define for any i,j € {1,...,d},
:0 =R, 5, :0 = R by =du'(h) and X;; = [dul ® dw [{X}. For any smooth function with compact
support g:Tp:O = R, anyn € (0,1] and Ty € Ty+O, we have

d
Ryg(to) = g(to) +n'/? Z dig (o) h’ (EXPO* (Tll/zﬂo)> (526)

i=1
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d d
ﬂ _ _ i1 d _
5 Z { ”g UO 1/2 Z F%(Expg* (1']1/2U0))6’fg (uo)} [Eij +h hj] (Expe* (n1/2u0)>
j=1 k=1
(n/6)7g,n (o) ,
where, setting 0y = Expg. M/ 7o),
[Bain (0)] < 80211 (0)E [IIC* (g )lly Lag. I1Hcl3, | + 1612 (e m)IE (1Y, ] - (527)

using the definitions of Hx, Yk, Ag,, K andy in Lemma S6-(S13),

IC*(g,)ll = sup{|C*(g, @ n)[v**]| : @ € Tp-O,v € RY, |[ufl, =1}
I1C% (g, m)lly = sup{|C® (g, @, m)[v™’]| : we n~*Expy. (v([0,1]),v € R ||vll, =1},

where C2(g,w,m) and C3(g,w,m) are defined in (S24) and (S25).

(S28)

Proof. Using A1-(i) and [1, Proposition 12.9], (ui)i€{17.__,d} are global coordinates on the Hadamard manifold
O. Let g: Tg+©® — R be a smooth function with compact support and g : © — R defined for any 8 € © by
g(0) = g(Exp,.' (9)). Note that since |[Expy.' (8)|l¢ = po(6*,6), for any 6 € © by [1, Corollary 6.12], g is a smooth
function with compact support as well. In addition, by definition of the normal coordinates, g : u — g(Expgs (u))
is the expression of g in this coordinate system. Using this fact and the definitions of the Riemannian gradient
and Hessian [1, Equation 2.14, Example 4.22], we have, for any 6, € O,

grad g(6y) = 26‘ g(ug)Ou; ,

d d
Hess g(6p) = Z { 8(uo) ZF (Expg- (uo )8kg(u0)}dui ® du’ | (529)
ij=1 k=1

where ug = Expy.' (fy) and (T'¥ " )igke(1,...qy are the Christoffel symbols. Combining these expressions with
Lemma S7-(522) and Lemma S6 (b)- (Sll) gives

d
Ryg(u) = g(ug) +1 Y _ dig(uo)h' (Expy. (uo))
i=1
d d
+(n?/2) Z { =e(uo) Zl" (Expg« (uo) )8kg(u0)} [ (Expgs (u0)) + h*h? (Expgs (uo))]
Q=1 k=1

+ (1°/6) %y (uo) |

where %, 1 (ug) = %y (0o) is bounded using (S14), for 6y = Expy. (ug) and g : 6 — g(Exp,. (0)).
Replacing g with g, : u > g(n~'/2u) defined over Ty.O and using that for any i,5 € {1,...,d} and uy € Tp-0©,

Oign (uo) =n~ 20,8~ ?ug)  and  9Zgq(uo) =108 uo) , (S30)

we have for any ug € Ty«O,

d
Rugn(uo) = g™ ?ug) +n'/? Z dig(m ™ ?uo)h’ (Expg. (uo))

d
+(n/2) Z {E)ljg < 1/2> 1/2ZI‘ (Expg+ (ug))Okg <ﬂ ? )} [Eij + hihj] (Expg» (uo))

+ (112/6)*@7&1 n(uo) . (S31)



Durmus, Jiménez, Moulines, Said

Expressing '@gn n(up) using partial derivatives shows explicitly the dependency on n. Using (S30) and the
equivalent formula for the third order derivative, we have for any K > 0,

N B (0)] < 81"k (00)E [ | VHess gy oo Lag [l | +16n% [Hessgn o E [I¥icl, | . (532)

where 0y = Expy.(uo), v : [0,1] — © is defined by y(t) = Expy, (inHe,(X1)), Hx,Yrx and Ay, are defined
in (S13). Using (S29) and Proposition S17, we have Hessg,(u) = n7'C?(g,n"%up,n) and VHess gy (u) =
n3/2C%(g,n~"ug,mn), where C? and C? are defined in (S24) and (S25) respectively. This gives

|VHessgoll, . =n [ C*(g,m)l, and [Hessgnll. =n~"C(z.m)] . (533)

where [|C2(g,n)| and ||C3(g,m)|y are defined in (S28). Setting uo = n'/7 in (S31), we get

d
Ragn('/?10) = g(tio) +1'/*>_ dig(to) 1’ (EXPG* (111/250))

i=1

d d
+(M/2) Z {@%g () —n'/? Z I} (Expg. (n'/*10))Ohg (Uo)} [Sij + h'h7] (Expe* (ﬂl/Qﬂo))

i,j=1 k=1

+ 12 %, (MY ?00) . (S34)

Therefore, letting Zg (o) = nﬂgn 1(MY?%), and combining Lemma S7-(S22), (S32), (S33) and (S34) gives the
desired result. O

Lemma S9. Assume A 1-(i)-(ii) and H5. Consider normal coordinates (Ui)ie{17...,d} centered at 0* with respect
to the orthonormal basis (€;)ieq1,....ay of To-©. Then h can be expressed in this chart as, for anym >0, u € Ty O,

d d
h (Expe* (nl/Za)) = ; {n1/2 ; ALt + 7 (nl/Qa) } du; | (935)

where A is defined in H 5, a* are the components of T in (€i)ieq1,...qy and for any i €
{L,....d}, limy o {| 2], (u) |/ [|ullo~ } = 0.

Proof. Since © is a Hadamard manifold, these normal coordinates are defined throughout ©. Thus, for any 6 € ©,
it is possible to write,

d
h(0) = hi(0)0u;(0) . (S36)
j=1

Recall the definition of the metric coefficients in the coordinates (ui)ie{l ay at 0 € ©, for any 4,5 € {1,...,d},

,,,,,

9:5(0) = (9ui(0), 0u;(0))o - (S37)

Then, taking the scalar product of (S36) with each du;, we have for any i € {1,...,d},
d .
> 0ii(0) W (6) = (h(6), Dui(6))o - ($38)
j=1

From the Taylor expansion formula for vector fields given by Theorem S16 for the geodesic vy : [0,1] — O given by
v(0) = 0* and ¥(0) = Exp,. (0), it follows that,

Au; (0) = Ty, e + V(9u)e- (Expyl(0))] + Zou, (0) . (S39)

where the remainder is given by

1
B, (6) = / (1= Y THV2(Ous)y 0 (F(0), V()
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Let [[V20ulloo,y = sup{|V2(du;)y(v,v)| : t € [0,1],v € Uy O} which is finite as y[0,1] is compact. Then
using that for any ¢ € [0, 1], ||V (?)|ly) = pe(6*,0) by [1, Corollary 5.6] and that geodesics are length-minimizing
curves by A1-(i); and that the parallel transport map is an isometry [1, p.108], we have

| Zou, (0)] < (1/2)||V0us]| 0y 0 (0%, 6) -

This proves that limg_,g« |Zau, (0)/pe(0*,0)] = 0. By the definition of normal coordinates centered at 6*, for
any i,7 € {1,...,d}, Vo, 0u; = 22:1 I%0uy, and (T'%,); j keq1,....ay vanishes at 0% [1, Proposition 5.24] so (S39)
becomes

Ou;(0) = TY,(e;) + Zou, (0) - (540)
Taking the scalar product of (12) and (S40), it follows that
(h(0), 0ui(0))o = (AExDy.! (6), ei)o- + 23,(6) (S41)

since parallel transport preserves scalar products, where limg g+ {|%: (0)|/pe(6*,0)} = 0. On the other hand,
from (S37) and (S40), since the (e;);eq1,...,a) are orthonormal,

9i(0) = i + % (0) , (542)

where 0;; = 1 if i = j and &;; = 0 otherwise and limg_,¢-{|2¢ (8)|/pe (6*,6)} = 0. Plugging (S41) and (S42) in
(S38), we obtain

.....

d
h(0) = Al (0) + Z;,(0) , (S43)

where limg_, g+ %ﬁ(@)‘ = 0. Finally, (S35) is obtained from (S36)-(S43), by setting § = Expy. (n'/?%), for
u € Ty+©, and noting that

w? (Expg. ('/%0)) = (Expy.t (Expg. ('/%0)), €;)9- =127 |
po (Expy. (n'/22),6*) =n'/2 ]y, .
which follow from [1, Corollary 5.6 and the definition of the coordinates (u');e(1,... ay- O
Lemma S10. Assume A 1-(i)-(ii), MD 1, MD 2, MD 3, MD/, Hi1, H2, H5 and H0 hold. Letnq =
[2C2L(1 4 o)t A (4C3) ™. Then the family of distributions (V" )neo ), defined by (11), is tight.

Proof. For any n € (0,7, the conditions of Lemma S7 hold, thus the Markov chain (U )nen is ergodic and its
invariant distribution 7" is given by (11). For any r > 0, let B, = {u € Tp-© : |lul]|g» < r} be the tangent closed
ball at 8* of center 0 and radius r. Then, by (S23) and [1, Corollary 6.13], for any » > 0 and n € (0,7], we have

7 (T O\ B,) = 1" (T 0 \ Byuye,) = " (e \E(@*,nl/%)) . (S44)

However, by HG6,
p (ONBE" i 2n) <6 ) [ dlpa(s”.6)du(6)
O\{6+}

<o [ vOwno). (515)

Now, using H6 and Lemma S5 taking K* = {6*}, we have,
/ V(@)du"(0) < 2nL {02 + C1(1+ 02)} /A
o\{o*}

Combining this result and (S45) in (S44) implies that for any r > 0,
7" (Tp-O\B,) < 2nL {of + C1(1 +07)} /Ao ?r)]
< sup{n/o(n'*r)}(2L/N) {of + C1(1 +07)} |

n<

where lim, 4 {supngﬁn/¢(n1/2r)} = 0 using HG. Therefore, for any € > 0, there exists » > 0 such that for any
n € (0,7], 7"(Ty+O \ B,) < e. This concludes the proof that (7"),e (o, is tight. O
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Proof of Theorem 7. Consider normal coordinates (ui)ie{l _____ 4y centered at 0* with respect to the orthonormal
basis (€i)icf1,....ay of To-©. Define for any 4,5 € {1,...,d}, ht:© = R, ¥ : © > R by bt = du’(h) and
¥i; = [du’ ® du/]{Z}. Let g: Tp-© — R be a smooth function with compact support. Applying Lemma S8 to g
gives (526). Using MD3, ¥ is continuous, which implies that for any uy € Tp«O,

5 (Bxpy (0/230)) = 3° {59 + 8 (n275) Y s .00, (s16)

ij=1

where for any 4,5 € {1,...,d}, Y = ,;(6%), %’g is continuous over Ty-© and %ZEJ (0) = 0. Using Lemma S9,
replacing ¥;; and h' in (S26) with (S35) and (S46) gives for any uy € Tp+O,

d d
Rng(o) = g(Wo) +nY_ dig(o) Y | At + (n/2) Z 9%8(t0) Y + NPy 5,1 (o)

i=1 k=1 ij=1

(S47)
+ (H/G)gg,n (o) ,

where 75 are the components of g in (€i)ieq,....d}s

Ky m,x.n(To) 1/22%1 ( 125, ) 0;g(to)

+(1/2) zd: {@jg(uo UQZFk (Expe*( Y 2%)) akg(uo)} [%’S (HI/Q%)}

i,j=1 k=1
LY {%g(uo) ST (Expy. (n'20) ) akgwo)} [ (Expg. (') |
i,j=1 k=1

(n'/?/2) Z Iy (Expo /2%)) O (o) %Y

i,J,k=1

By Lemma S10, (7")qe(oq is tight and therefore relatively compact. Therefore, it is enough that for any limit
point 7*, 7* = N(0, V) where V € R%*? is the solution of the Lyapunov equation AV + VAT = X(6*). Let
(Mn)nen= be a sequence with values in (0,7], such that lim,, o1, = 0, and (7" ),en+ weakly converges to 7*.

First by (S47), we have

/ v (dug) / R, (g, duy )g(ur)
Tpr© Tps©

d d
- / D7 (o) g(Tio) + T / o (i) S Dug(mo) 3 A
Tpx© i=1 k=1

T+ ©

d
- (Mn/2) / o (diy) S GBS + 1, / T (dT0) B, ()
T+ ©

= Tyx©
+ (1/6) / o (dTi0) Zo m, (To) -
T+ ©

Therefore using that 7 is stationary with respect to Ry, , we obtain that

lim sup / 7" (dg) Z@lg o ZAkuo + Z aug ) Z”
Tye©

n—-+0oo
+ 1,j=1

< limsup +

n—-+o0o

[ o ) B, @) | [ ) B, (@) (549
T+ © Ty+©
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Consider a sequence of independent random variables (Y, )nen such that for any n € N, the law of Y,, is 7.

By Slutsky’s theorem, since (Y, )nen converges in distribution and lim, oM, = 0, we obtain that nl/QYn
converges in distribution towards 0. Moreover, using the continuous mapping theorem, we have

limsup [E[Zg n,, 5,1(Yn)]| = 0. (549)

n——+oo

Similarly, we use (S27) to obtain, for any n € N and K > 0,

[P (Ya)| < 80121, (0 [ICH g ma)lyLag IHKIIG, |0

+ 16| C2 (g ma)IE [V, [6n] -

where for any n € N, 0,, = Expy. (n}/ ®Y,,) are independent random variables and by (S23), the distribution of ,, is
p"m. Thus we obtain for any K > 0, using 1k, (6,) | Hk ¢, is almost surely bounded by 4[K? +suppek,. |h(0) Hg],
Markov’s inequality and MD4,

limsup [E[Zy n, (Yn)]| < 1i§§rup 16/1C* (g ) [ Elllee, (X1)llg, {1 = xx (lleo, (X1)]l0,)}]

n—-+o0o

< 16[C*(g, 0)[[ K~{55 + GYE[V (67)]} (S50)

using that (0,,),en converges in distribution to 6*. For any smooth function with compact support g : Tg«© — R,
combining (548)-(S49)-(S50), taking K — +o0o and using the weak convergence of (7" ), ey to 7* when n — 400
shows that

d
/ 7* (diio) Z@Zg ) Y A}, Z 2 8(@o)Sd =0 (S51)
Te*@ i1 1

1,0=1

Finally, by [6, Theorem 2.2.1], there exists a unique matrix V € R*¢ solution to the Lyapunov equation
AV + VAT = %(6*). By [7, Theorem 10.1], N(0, V) is the unique probability distribution on Ty.© satisfying
(S51). This concludes the proof. O

S5 Proofs for Section 4

S5.1 Proof of Lemma 8
Recall that f is Ag-strongly geodesically convex, if and only if for any 6,6, € ©,
F(82) = f(61) + (Expy,' (62), grad f(61)), + Apd (61, 62) - (S52)
Put 6; = 6* and 6, = 6. Since 6* is a stationary point of f, so grad f(6*) = 0, it follows from (S52) that
F(O) = £(6%) > Xppg(67,6)
which is the second identity in (13). To obtain the first identity, put ; = 6 and 6 = 6*, in (S52), so
F(67) = f(8) > (Bxpy ' (67), grad f(6)), + Aspd (67,6) - (S53)
Since f(6*) < f(0), this implies
— (Exp, '(6%),grad f(0)), > Aspd(0%,60) = Af ||Exp, ' (6%) He .
Or, after using the Cauchy-Schwarz inequality,
ngadf( )||9 > Ay ||EXP0 9* Hg : <S54)
Finally, using once more the Cauchy-Schwarz inequality, and (S53) and (S54),
F(0) = f(0) < — (Expy ' (0%), grad f(0)), < (1/X) llgrad £(0)]]5

which is equivalent to the first identity in (13).
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S5.2 Proof of Lemma 10
Without loss of generality, we assume that f(6*) = 0. First, we show that for any 6 € O,
F(0) < Myp$(67,0) . (S55)

Let 6 € © and v : [0,1] — © the unique geodesic such that y(0) = 6* and y(1) = 6. Then since f is continuously
differentiable using [1, Proposition 4.15-(ii) and Theorem 4.24-(iii)], we get that f(0) = f01 (grad f(v (1)), V(t))y () dt-
Therefore, using the Cauchy-Schwarz inequality and for any ¢ € [0,1], [[y(?)[|,) = pe(6*,0) we obtain that
LF(0)] < pe(6%,0) [lgrad f(v(t))|l, ) which shows that (S55) holds by assumption.

We now proceed with the proof of the main statement. Since f is twice continuously differentiable, f has this
same property. In addition, for any 6 € O,

grad f(0) = grad £(0)/[2(f(0) + 1)*/?] . (S56)

Therefore, using the assumption that for any 6 € O, ||grad f (9)||3 < Myp%(0*,0) and the second inequality of
Lemma 8, we get that

lgrad f(0)]lo = llerad F(O)5 /[2(F(8) + 1)*/%] < M}2pe (67, 0)/[2(\ 103 (6%, 6) +1)'/?]
< CY?[Apo(07,0)]
with C}/% « (M}/?/2)[1 A XS],

It remains to show that for any 6 € ©, —(Exp, *(6*), grad f(6))s > A;Vi(6), where Vi is defined by (9) with § = 1
and Ay )\}/2/2. Using (S56) again, F2 and (S55), we obtain that for any 6 € ©,

— (Exp (0%), g1ad f(6)) = — (Exp; ' (0%), grad £(0)), /[2((6) + 1)/
> Aspd (6%, 6)/12(£(6) +1)'7%) 2 X1 pd (6%, 6)/2(Mpp3(6°,6) +1)'/7]

Using that for any 6 € ©, V;(0) = {p3(6*,0) + 1}/2 — 1 < pg(6*,0), we get that

— (Bxpy (6),21ad F(0)) = ApVi(0)po (6%, 0)/[2(0M 5B (6%,0) + 1)V/%] = \Va(6)/(2M11/%)

S5.3 Proof of Proposition 11

The proof consists in an application of Theorem 1-(b). First, by Proposition 5, V; defined by (9) with 6 = 1,
satisfies H1. In addition, by [2, Lemma 16], V; is continuously differentiable with gradient given for any 6 € © by

grad V1(0) = —Exp, ' (0%)/{1 + p3(6*,0)}"/* .

Therefore, for any 6 € ©, by F3 we get

(grad V1 (6), grad f(6)), = — (Exp, ' (0%), grad f(6)), /{1 + p3 (6", 0)}'/2
> AVi(0)/{1+ pd(67,0)}'/* . (S57)

In addition, > A 1 — ab{(t> + 1)1/2 — 1}/(1 +t*)/2 < 0 for any t > 0, b > 0 and a = 4b~' using that
(2 +1)Y2 — 1> ¢2/[2(1 + t?)*/?]. As a result, using F3 for any t > 0, b > 0 and a = 4b~', it follows that H2 is
satisfied with Cy < 0,C% 4C’f/5\f for h = —grad f and V <« V;. Therefore, we obtain using Theorem 1-(b)
that for any 1 € (0,7,

n—1

n ! kg: E [(grad V4 (6},), grad f(Gk)>9k] < 2V1(0o)/(nm) + 2n(1 + K)oj ,
=0
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where 7 = [(8C/Af)(1 + k)(1 + 07)]~ 1. Using (S57), we have

n—1

(\s/n) Y2 E [VAO)/{1 + 0367, 00)} 2] < 2V (00)/(nm) + 2n(1 + m)od
k=0

which concludes the proof since (£2+1)/2 —1 > t2/[2(1+t2)/?] for any ¢ > 0 implying V3 (0)/{1 4 pZ (6*,6)}"/? >
D%(0%,6)/2 for any 6 € ©.

S5.4 Proof of Proposition 12

Define X = {6; : i € {1,..., M,}} and recall that D = sup{pe(#o,0) : 0 € X}. Set S = B(6p, D). Note that the
closed ball S, is compact by [4, Theorem 1.7.1], geodesically convex, and X C S, as well as 6y € S. We consider in
this section, for any 6 € © and x € X, Hp(x) = Exp, ' (2).

First note that 6,, € S, for all n € N by a straightforward induction using that S is geodesically convex and 6y € S.
Indeed, 0y € S, and, if §,, € S, then 6,1, lies on the geodesic segment connecting #,, and X,,;1, two points which
belong to S, and therefore 6,11 € S. This means that the SGD scheme used here is equivalent to

0n+1 = pProjs (EXPQH (TlHan (Xn-i-l))) :

Define H and V5 as in Proposition 4. It is possible to show that H = S. Indeed, for § € S, and = € X, since z € S,
and S is convex, the geodesic segment connecting 6 to z is entirely contained in S. However, by definition, this
geodesic segment is the set of points Exp,(tHy(x)), where ¢ € [0,1]. Now, since 1 <7 < 1, Proposition 4 implies
that V5 verifies H1-(i)-(ii) where L <~ CL,, Ly = (D 4+ 1)(1 + s coth(kD)) and C' is a universal constant.

The objective function f satisfies F2 with A\y = 1/2 (that is, f is 1/2-strongly convex), since by [4, Theorem
5.6.1] f:(0) = p3(0,0,)/2 is 1-strongly geodesically convex for any i € {1,..., M, }. Thus, by (S52) for all § € S

(Expy '(6%), grad f(0)), < —(1/2)p%(6*,0) . (S58)
Now, for any 6 € S, v € TyO, using [4, Theorem 5.6.1], we have,

My
[Hess fo(v,v)]lg < MY |[(Hess fi)o(v,0)]

=1
1 L — = 9 _ = 2
<MY kpe(6,6:) coth(kpe(6,6,)) vl < Lr ||vllg

i=1

where L, = 2Dk coth(2xD), since ¢ > t coth(t) is non-decreasing over R . Therefore, by [2, Lemma 10], grad f is
geodesically L,-Lipschitz continuous on S.In particular, for any 6 € S,

lerad £(0)lly < Lrpe(6”,6) - (S59)

By (558) and (S59), it is straightforward that V = V, and h = —grad f satisfy H2, with C; = 0 and
Co = 2L2 < 2°L2. In addition, by Proposition 4, (S58) implies Va verifies H3-((), with A\ = 1/2.

Finally, MD1 holds with 0 = D? and 0% = 0 since for any § € S and z € X,

| Ho()]|, = ||EXP51($)||0 <2D.

Therefore, we can apply Theorem 1-(c¢) which implies that for any n <7,
E[V2(6n)] < {1 —n/4}" Va(bo) + 4n LrD* .

To conclude, it only remains to note that Va(6,,) = p3(6*,6,) and Va(6y) = p3 (6*,6), since (0,,)nen and 6*
belong to H=S.
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S5.5 Proof of Theorem 13

We consider in this section the recursion
On+1 = Expy, MHo, (Xnt1)] (S60)
Hp, (Xnq1) = EXPe_nl (Xﬁl)/@{p%(@n,Xffﬁl)/? + 1}1/2) )
where X,,11 = (Xﬁbl_zl, Xﬁzl and (Xfll), X,(LQ))neN* is an i.i.d. sequence of pairs of independent random variables
with distribution 7. Denote by (), the Markov kernel corresponding to (S60).

We give first some additional intuition and motivation behind the scheme (S60). It can be interpreted as a
stochastic optimization method to minimize

fﬂ = (f‘n' + 1)1/2 )

in place of fr. First note that fr and fw have the same minimizer, but compared to f; it may be shown that
grad f, given for any 6 € © by

grad fﬂ(e) = (1/2)grad f=(0)(f=(0) + 1)71/2 )

is geodesically Lipschitz. However, note that (S60) is not an unbiased stochastic optimization scheme for the
function f since

E [Hp, (Xn41)] = (1/2){grad f2(0)}E [{pd(0n, X 21)/2 + 1} 7/

The proof of Theorem 13 then consists in adapting the proof of Theorem 1 to deal with this additional difficulty
taking for the Lyapunov function V, V; defined by (9) with § = 1. A general theory could be derived but we
believe that this is out the scope of the present document and leave it for future work. We start by preliminary
technical results which are needed to establish Theorem 13.

Lemma S11. Assume A2 and MD 5. Let 0% be the Riemannian barycenter of the probability measure ,
i.e. 0% = argming fr where f is defined by (16). Then, for any 6 € ©,

= [ {0y ). By 00) ) < ~(0.03)/2.

Proof. Using A2 and [4, Theorem 5.6.1], we have that for any v € ©, the operator norm of the Riemannian
Hessian of 6 — p2 (6,v)/2 is lower bounded by 1. Therefore, by |8, Theorem 11.19], 6 — pZ (6,v)/2 is 1/2-strongly
convex. Applying this to § and 8% € ©, we have for any v € O,

o (05,v)/2 = p&(0,v)/2 > — (Expy  (65), Expy (1)), + 03 (60,65)/2 .
Using MDJ5, we can integrate this inequality w.r.t. 7, bringing
fx(07) = fx(0) > —L(Expe_l(%),EXpEl(V)% (dv) + p5(0.65)/2 -

Since by definition of 0%, 0 > f(0%) — fz(0), this completes the proof. O

Lemma S12. Assume A2 and MD 5. Let 0% be the Riemannian barycenter of the probability measure ,
i.e. 0% = argming fr where f is defined by (16). Then, for any 6 € ©,

[ (0024 1 2n(an) > ((0.02) + 2502 + 1)
e
Proof. Let # € ©. Using Jensen’s inequality with the convex function ¢ +— (¢ +1)~/2 on R, we have

[ o002+ 1) on(a) = (7.0) + 172 (s61)
©

However, using the triangle and Hélder’s inequalities, we have for any § and v € O, p3(0,v)/2 < p&(0,0%) +
p& (0%, v). Taking the integral with respect to m, by MD5 we get f(0) < p3(0,0%) + 2f,(0%). Lastly, combining
this result with (S61) and using that the function ¢ — (¢+1)71/2 is non-increasing on R’ completes the proof. [J
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Lemma S13. Assume A2 and MD 5. Let 0% be the Riemannian barycenter of the probability measure m,
i.e. 0% = argming fr where f is defined by (16). Then, for any 6y € ©,

@nVi(80) < Vi(B0) — n/(4C7/*)1D% (00, 603) +20* (1 + w){1 + fr(63)} (f(65) +2)

where Vi is defined in (9) with § < 1, 0* < 0%, Cr = 1+ 2f(0%) and DE : ©% — [0, 1] is defined by (14).

Proof. Let 6y € ©, and consider

Hy, (X) = (1/2)Expg,| (X“))/{p% (90,X<2>)/2+ 1}1/2 :

where XM, X2 are independent random variables with distribution 7.

Let v : [0,1] — © be the geodesic curve defined by vy : ¢ — Expy, [tnHg,(X)]. Using [2, Lemma 1| with y and V1,
we get

Vi(y(1)) < Vi(8) + (grad Vi (60), ¥(0))g, + (L/2) [[7(0)]5,
= Vi(6o) + 1 {grad Vi(60), Ho, (X)), + (1 + x)n*/2) | Hoo (X5, - (S62)

by Proposition 5. We now compute the expectation of the terms in (S62). Using that (X, X(?)) are independent,
we obtain

—1/2
E [(grad V1(90),H90(X)>90} =(1/2) <grad Vi(6o),E [EXp;ol (X(l)ﬂ E [{p% (GO,X(2)>/2 + 1} }> .
0o
Moreover, using (S10) and Lemmas S11 and S12 yields
E [(grad V1(6o), Ho, (X)), ]

~(1/2) {03 (60,02) +1} " °E [<EXpe‘£<92>7EXpa‘ﬂX(”)%JE{{”3(907’“%/”1}1/2}

—1/2

IN

—(1/4)p& (00,03) [{p8(60,0%) + 1} {p& (00, 05) + 2fx(03) + 1}]
—(16C) 2D (6o, 0%) | (S63)

IN

where Cr = 1+ 2f,(6%) and D : ©2 — [0,1] is defined by (14). Looking to bound the expectation of the last
term in (S62), we use that HExpgol(X(l))Hgo = pe(fy, X)) and that X() has distribution 7 to obtain,

B (1410, X015, ] = (/08 [ 00, X)) £ [ {00, X2 1} ]
— (o (00)/2 | {00, X241} | (564

Denote by M = pe (6%, 60)/2. We bound the expectation in (S64) using the event {pg (82, X?)) > M} and its
complement. On {pg (0%, X?) > M}, we use Markov’s inequality with the increasing map t — t2/2 4 1,

A [H[M,+oo)(ﬂ@(9:nX(Q)))/[P?a(%,X(Q))/Q + 1]} <P (P@(Q* X®) > M)
< ( [ (67, X®) ]/2+1)/ (M2/2+1) . (S65)
On {pe (0, X)) < M}, using the triangle inequality, we have
po(o, X)) > |pe (00, 0%) — pe (05, X )| > pe(bo,05) — M = M .

Then, we obtain
E 10,00 (p0 (6, XP))/ {4 (00, X) 2+ 1}] < 1/[M?/241] . (366)
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——Monte-Carlo estimation at convergence
0.505F | linearfity =0.11*x + 0.49
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step-size

Figure S1: Monte Carlo approximations of the mean distance at convergence in Theorem 13

Adding (S65) and (S66) together and using the definition of M we obtain,

E |:{p% (90,X<2>)/2+1}1} < (f2(05) +2)/ [pB (05, 00) /8 + 1] . (S67)
Plugging (S67) in (S64), we get
& [ Hoy (X)) < (£+(00)/2) (£2(63) +2) / [52 (62, 60)/8 +1] . (569)

Using the triangle and Holder’s inequalities, we have for any 6 and v E O, pd(0,v)/2 < p&(0,0%) + p& (0%, v).
Taking the integral with respect to m, by MD5 we get f(0) < p2,(0,0%) + 2f-(0%). Combining this result and
(S68), we obtain

B [|Hoy (XI5, ] < {03(05,00)/2+ £ (03)} (£2(03) +2) / [03(03,00)/8 +1] < 4{1+ fr(03)} (/x(03) +2) -

Combining this result and (S63) in (S62) concludes the proof. O

Proof of Theorem 15. Let 6y € ©,m > 0 and n € N. Then, for any k € {1,...,n}, using Markov’s property and
Lemma S13 we have,

[n/(4C2/2)|E [DB (61, 0%)] = [n/(4C2/?) / D3(0,02)Q" (6, d0)

< QnVi(00) — QuVa(00) + 2n° (1 + k) (1 + fx(07))(F(07) +2) -

Summing these inequalities for k € {1,...,n} implies that
/(4C3/%)] SE [DZ(0x,05)] < Vi(b0) — QnVi(6o) + 20m* (1 + k) (1 + fr(07))(f=(65) +2) -
k=0
Finally, dividing both sides by [nn/(4C+/?)] and using that V; is a non-negative function, we obtain
n! ZE D (0x,07)] < 2V1(9o)01/2/(11n) +2n(1 4 8)(f2(03) + D (fx(05) +2)(2f(05) + 1)71/2

Which concludes the proof by setting By = (1 + &)(f(0%) + 1)(fr(05) + 2)(2f-(6%) + 1)~ /2. O

Similarly to Figure 2, Figure S1 illustrates Theorem 7. To this end, 1000 replications of the experiment derived for
Figure 3 are performed, obtaining {(6%) : i € {1,...,1000}} for n = [50/n] and 1 € {1,2.8,4.6,6.4,8.2,10} x
10~2. We estimate, with these samples, the mean and the variance of D% (0,0%), for 0 following the stationary
distribution p". We observe that the mean and variance are both linear w.r.t. the step-size n, indicating that the
iterates of the SA scheme remain in a neighborhood of diameter O(n'/2) to the ground truth.

Even though the setting of this experiment goes beyond the assumptions of Theorem 7, it suggests that such a
result may be applicable also in the setting of Theorem 13. The proof of such a result is left for future work.
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S6 Background on Markov chain theory and Riemannian geometry

We give here some useful definitions and results that are used throughout the paper.

S6.1 Markov chain notions

We refer to [3] for a general introduction to Markov chains in general state space. Let (Y,)) be a measurable
state space and P be a Markov kernel on Y x ). Consider for any y € Y, the distribution P, of the canonical
Markov chain (Y;,)nen corresponding to P and starting from y on the canonical space (YN, Y®N). Denote by E,
the corresponding expectation.

Denote for any A € Y, 7a =inf{l > 1 : Y; € A} and Na = Z?:f Tiay (V7).

We say that (Y;,)nen is ¢-irreducible if there exists a measure ¥ on ) such that whenever ¥(A) > 0, we have
P,(Ta < 00) > 0 for any y € Y. Moreover, a set A € Y is called Harris-recurrent if P, (Na = 0co0) = 1 for any y € A.
Finally, a chain (Y},),en is called Harris-recurrent if it is ¢-irreducible and every set A € ) such that ¥(A) > 0 is
Harris-recurrent.

Let V : Y — [1,+00). We say that P is V-uniformly geometrically ergodic if there exist p € [0,1) and C' > 0
such that for any y € Y and k € N, ||5, P* — “HV < Cp*V (y), where ||-||37 is defined for two probability measures

v, vz on (Y, D) by [[v1 — el = sup{lvi(g) — v2(g)| : supy{lg| /V} < 1}.
S6.2 Useful results from Riemannian geometry

We now give definitions and auxiliary results related to tensor fields along curves, their derivatives, and Taylor
expansions on Riemannian manifolds.

Let M be a smooth manifold with or without boundary. Given a smooth curve vy : I — M defined on an
interval I, and any k,I € N, a (k,[)-tensor field along y is a continuous map F : I — T"DTM, such that
F(t) € TED(T, M) for any ¢t € I, where T*:VTM is the bundle of (k,)-tensors on M, see e.g. [1, Appendix BJ.
A vector field Y along vy is a (1,0)-tensor field, in which case for any ¢ € I, Y () is just a tangent vector in T, ;)M.
We say that a tensor field F along vy is extendible if there exists a tensor field F defined on a neighborhood of
v(I) such that F = Fovy.

We let X*!(y) denote the set of smooth (k,l)-tensor fields along vy, and X(y) = X19(y) denote the set of smooth
vector fields along y. In particular, X%0(y) is the set of smooth functions g : I — y(I) x R such that for any t € I,
g(t) = (v(t), f(t)) for some smooth function f : I — R and therefore can be identified with the set of smooth
functions f : I — R. In the sequel, we adopt if no confusion is possible this identification. We extend to tensor
fields along y the following definition of the trace on tensors. For any (k,[)-tensor T', we denote by Tr A (T) the

lel7--~7jA71»m7jA7~--,jl—1

h ’ ; . In
11550110205k —1

(k—1,1 — 1)-tensor with component of index (i1,...,4k—-1,J1,---,ji—1), given by anzl
particular, for any w € X%1(y),Y € X(y),

Trqn(weY)=w(Y).

Also, for any F € XPl(y), any w!,... ,wko € X01(y) and Y1,...,Y;, € X(y), with kg < k,ly < [, denote by
[F:o'@  @uveY, ®- - ®Y,], the (k— ko, I — ly) smooth tensor field along y defined by the induction:

[F: w®¥] = Trq ) ([F - w®tD] g ) (S69)
[F : w®1:k° X Y®1;j] = Tr(k_k0+171)([F . w®1:k° ® Y@l:(j—l)} X }/J) 5 (870)

setting w® = W' ® - @ W', Yg1; = Y1 ® --- ® Y;. Note that for any wh=kotl Wk e X%1(y) and
}/lfl(rkla ey }/l S x(’Y)>

[F @ w®Lko ®Y®1:lo}(wk*k°+1, s, V) = P 0 Y, ) (S71)

Proposition S14. Let M be a smooth manifold with or without border, V be a connection on TM andy : I — M
a smooth curve defined on an interval I. Then, for any k,l € N, V determines an operator Dy : X% (y) — XFl(y),
satisfying the following conditions.
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(a) On X(yv), Dy is the usual covariant derivative along vy, see [1, Theorem 4.24].
(b) On X°O(y), Dy is the usual derivative for real functions, i.e. for any f € X%0(y), Dy f = df/dt.
(c) For any F € X%\ (y), any w',... ,w* € X0(y) and any Y1,...,Y; € X(vy),

d

(DeF) (' Vi Vi) = 2 [F (@ 0h i V)
k
7;F(wl,...,wlil,thl,w%‘»l,...,wk,Yl,-wa}fl) (S72>

7ZF(W17"‘?wk?Y17"'>Yj—1aDtY"j,}/‘—j+1""7)/2) .
j=1

In particular, Dy satisfies these additional properties.

(i) Dy satisfies the product rule, i.e. for any f € X00(y), F € XF!(y),

d

D (fF) = (dtf>F+thF~

(i) For any ki,l1,ko,lo € N, and any F € Xkl (y), G € XFl2(y),
Di(F®G)=DF @G+ F®D,G .
(iii) For any positive integers ko < k,lo <1, F € X*!(y),
D {Tr(kg 10) (F) } = Tr(r 1) (DeF)

(iv) Let F € X*! be an eatendible tensor field, i.e., such that there exists a (k,l)-tensor field F defined on a
neighborhood of y(I) satisfying for any t € I, F(t) = F(y(t)). Then, for anyt € I,

D, F(t) = Vi F(y(t)) .

Finally, if D; : X51(y) — X*!(y) is another operator satisfying (a),(b),(i),(ii) and (iii), then D; = Dy.

Proof. Let k,1 € N. Note first that (a)-(b) and (S72) define D, F for any F € X¥(y), setting for any w € X%1(y)
and Y € X(y),
Duw] (¥) = d[w(Y)] /dt — w(D,Y) (573)

We now show that D;F € X*! which will imply that D; : X%/ — X*¥!. Second, we establish that (i)-(ii)-(iii)-(iv)
are satisfied. We conclude the proof by proving uniqueness of Dy.

Using [1, Lemma B.6], to show that D;F € X*! it is enough to prove that D;F is multilinear over X%°(y). For
that, we start proving (i) on X%!(y). Let w € X% (y), f € X°%(y) and Y € X(y), then by (S73),
[D:(fw)] (V) = d[fw(Y)] /dt — fw (DY) = [df/dt]w(Y) + f [Dew] (V) , (S74)

which proves (i) on X%!(y). Now, let k,l € N, F € Xkl(y),wl,... ,wF € X% (y),Y1,...,V] € X(y). Let
fex%0(y) and kg € N*, kg < k. We have, using the multilinearity of F over X%°(y), the definition of D; (S72),
and (S74)

[D.F] (wl,...7wk°_1,fwk°,wk°+1,...7wk,Y1,...,Yl)
d
=3 [F (wl,...,wko*l,fwkf’,wk°+1,...,wk,Yl,...,Yl)]
k
— Z fF (wl,...,wz_l,thz,wz+17...wk,Yl,...,Yl)
i=1,iko

- F (wl, WP D (fwh), Wkt Wk v 7Yl)
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_ZfF(w17"'awkaylv"'7yj—1’Dt}/jan+17"-7}/l)

= L?tf} {F (W' wf V1, V) — F (WL wf Y, ) )

+ fDeF] (', ..., 0F 1, )
:f[DtF] (wla"'vwkayla"'a}/l) .

The same arguments apply if we replace Y}, with fY;,, for some Iy < I. Thus, using [1, Lemma B.6], D, F € X*!.
Next, regarding (i), using the definition of Dy,

d
[thF} (wl,_..’wk,yl7._.,}/l) = |37
dt

+ f[DeF) (wh,...,0F 1, 1)

f} F (' 0", 0)

thus proving (i). Moreover, we prove (ii). Let ki,l1,k2,l» € Nand F € X¥h (y), G € xb2l2(y), wl, ... whith: €
x071(Y)) Yl) PR }/l1+l2 S -%(’Y) Settlng

1 k k141 k1+k
f=Fw', ..., 0" Y,....Y)and g = Gt .o W tR2 Y Y ),

we have

Di(F ® Q)] (w',..., 0 T* v Y 4,)

1
1 i—1 i, it k
g F(w,...,w , Diw’®, w ,...,wl,Yl,...,Yll)

+ ZF(w17"'awklvylv"'7}/jfl7DtY'jv)/j+17"'aY—l1) g

2
ki+1 k1+i—1 ki+i  ki4i+l ki+k
—f E G(w CRE RN LR D WAL L L 2,}/}1+1,...,Yl1+l2)
l2
E k1+1 k1+k:
+ G(W ! yeee W ! 27}/11-"-17"'7%1+j—17DtY21+j7}/l1+j+17'"7}/ll+l2)
i=1

= [D¢F (wl,...,wkl,Yh...,Yll)g—l—f[DtG} (wk1+17...,wk1+k2,)ﬁ1+1,...7Yll+l2)
=[DiF @ G+ F DG (w', ..., T v1, . Y 40,)

which proves (ii). Furthermore, to prove (iii), let to € I and (b;);e(1,....ay be a basis of T ,)©. Using (a) and |1,
Theorem 4.32], define for any i € {1,...,d} and ¢t € I,

€i(t) = Tz),tbi s

where Ttyo’t denotes the parallel transport map along y from T (;,)© to T, ;)©. As the parallel transport map is
an isomorphism, (e;(t))icq1,...,.q} is a basis of Ty, (4O, for any ¢ € I. Therefore the family of smooth vector fields
(€i)ieq1,...,ay is a parallel frame along y (with respect to V). Denote (¢7);¢q1,... 4y its dual coframe. Using (S73)
onY =e;,w=2¢’, for any i,j € {1,...,d}, shows that the coframe (£’);c(1,....ay is parallel along y. Note that for
(ei)ieq,....ay and (e7)eq1,...ay to be well defined, we have used V, as well as the operator Dy on X(y) and X% (y).

Let k,I € N* such that kg < k,lp <[, and let F' € X*!(y). There exist a family of functions {FZJIIZJK’ € X%0(y) :
i1y 0k 155 01 € {1 d}} such that

= Z Z 31117 ik ® ®5JD ’

Sie=1j1,...,51=1 A=1
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Since the frame and its dual coframe are parallel along v, for any i € {1,...,d} Dye; = 0 and Dye* = 0. Combining
this fact with (i) and (ii) gives

d d k
ore Sy A @@ 5

i1 emip=1j1,0 51 =1 A=1  O=1
Let ko, lo € N* such that ko < k,lp < I, then by definition of Tr(y, ), for any 41,...,ix_1,51,...,51-1 € {1,...,d},

d
Tr(ko,lo)(F)j‘l ----- Ji-1 _ Z Fljly-~~7‘]l071amvjlov--~7?l71 ) (876)

215005k —1 L1yeeslg —1,MM 0k 50yl —1
m=1

We remind the reader that Tr(x, ;,)(F') does not depend on the choice of coordinates [1, Appendix B|. Thus, using
(S75) and (S76), we have

e

d d ) ) -1 -1
> g @] @e. @e
-

d

Mg

Dy [Ty, 10 (F)] =

>
Il

i1, ik—1=1J1,.. 1 O=1

d d k—1 -1
_ Z Z Z 11, S Flo =11 s Jl—1 ®€i ®Em
dt 7417~~a7fk0 1,My0kg eyl —1 L
i1, ig—1=1J1,...,7 1m=1 A=1 O=1
= Tr(k‘(),lo) (DtF) )
thus proving (iii).

To prove (iv), first for any f € X9 (y), extendible in f, we have by composition and definition of the covariant
derivative, that for any ¢ € [0, 1],

(df/dt)(t) = dfy (V) = Vi F(v() - (S77)

Also, using [1, Theorem 4.24-(iii)] gives (iv) for any Y € X(y). Combining (S77), (S73), its counterpart for tensor
fields defined over a manifold [1, Proposition 4.15-(a)] and (iv) over X(y), proves (iv) over X(®1(y). Now, for
any k,l € N, using (iv) over X(y) and X(%D(y) combined with (S72) and its counterpart for tensor fields defined
over a manifold [1, Equation (4.12)] gives (iv) over X(®1 (y),

Finally, we address uniqueness. Suppose now that D, is an operator on ¥%!(y) that satisfies (a),(b),(i),(ii) and
(iii). First, (a) and (b) show that Dy and D; coincide on X°°(y) and X(y). Second, for any Y € X(y),w € X%!(y),
writing w(Y) = Tr(1,1)(Y ® w) and using (iii) gives

Dyw = d[w(Y)]/dt — w(D;Y) = Dyw ,

using (S73). Thus, D; and D, also agree on X%!(y). Therefore, the frame (€i)iequ,....ay and its dual coframe
(5j)j€{1w,d} are also parallel with respect to D; along y. Let F € X*!(y), then using (i) and (ii) shows that
(S75) holds for the operator D,, proving that D,F = D,F. This concludes the proof.

O

Lemma S15. Let M be a smooth manifold and V be a connection on TM. Lety : [0,1] — M be a smooth
curve and denote Dy the covariant derivative operator along 'y associated with V, defined in Proposition S1j. Let
F e xbl(y), w ... ,wh € X0 (y) and Y1,...,Y;, € X(y), with kg < k,ly < 1. Then, we have

D, ([F . w®1:kg ® Y®1:lo]) — [DtF . w@l:ko ® Y®1‘l0]

+ ®1 (i—1) ®th ®w(z+1)k0®y®1l }
Z ’ (S78)

+ Z wB*0 @ Y1 1) @ DeY; @ Y (it1yio) -
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Proof. Let F be a smooth (k,l)-tensor field along y. We show (S78) by induction. Following the recursive
definition of the contraction in (S69), we prove it by induction on kg € N*, ko < k, for any w?, ... wko € X01(y).

The case kg = 1 follows from Proposition S14-(ii) and (iii), combined with the definition in (S69),
Dy [F:w'] =Dy Tr(y 141y (F @ w')

= Tr(l’lJrl)(Dt[F X wl])

— Tr(l,l—i—l)(DtF &® wl —+ F [ thl)

= [DtF : wl] + [F : thl} ,
where we have used the linearity of Tr. Now assume there exists kg € {1,...,k — 1} such that (S78) holds for any
smooth 1 forms w?, ..., w* and Iy = 0. Moreover, consider any smooth 1 forms w?, ..., w**! Then, using the
same arguments as for the case kg = 1 and the induction hypothesis, we obtain

D, |F: w®11(k0+1)} =Dy Tr1p41) ([ w®V0] @ whot?)

= Tr1,141) (Dt [F : w®1‘k°] ®wk°+1) + Tre141) ([F : w®1:k°] ® thk°+1)
= Tr(1,141) ([DtF : w®1:k0] ® wk‘)“) + [F : wBlko thk“l]

ko
4 ZTr(l,l-H) ({F LWL @ Dyt @ w®(i+1):ko} ® wk0+1>
i=1

ko+1
= [DtF : W®1:(k°+1)} + Z {F : w®L0—D @ Dy ®w®(i+1)i(ko+1)} .
i=1

Subsequently, using the recursive definition of the contraction in (S70), we prove (S78) by induction on Iy € N* Iy <
[ for any ko < k and any w?,...,w" € X%!(y). Let Y; € X(y). Then, using once again Proposition S14-(ii) and
(iii), (S70), and (S78) in the case Iy = 0 justified above, the case Iy = 1 is proven as follows,

D, [F  w®ko Yﬂ = Tr(k—ko+1,1) (Dt { [F : w®1:k°} ® Yl})

= Tr(k,k0+1)1) ([DtF : w®1:k0:| ® Yl) + [F : w®1:k° ® DtY1]
ko

—+ ZTr(k—ko"rLl) ([F N w®1:(i71) ® thi ®w®(i+1):k°] ® Yl)
i=1
ko
_ [DtF L W®lko Yﬂ 4 Z {F L WBLED) @ Dyt @ WPtk g YJ
=1

+ [F:w®* @ DY) .

Furthermore, assume there exists lo € {1, ..., —1} such that (S78) holds for any ko < k, any w?, ..., wko € X01(y)
and any Y1,...,Y;, € X(y). Let Y1,...,Y; 41 € X(y). Then using the same arguments as for the case [y = 1 and
the induction hypothesis, we obtain

D, [F . w®1:ko ® Y®1:(l0+1)]
= Tr(r—ko+1,1) (Dt {[F : 0¥ © Y1) ® Vig41})

= Tr(—ko+1,1) ([DeF 1 w0 @ Yigr,] @ Yigs1)
ko

+ ZTr(kfkoJrl,l) ([F : w0 @ Dyt @ WP H g Y®1iloj| ® Ylo+1)
=1
lo
D Trge—korry ([F w0 @ Yor,-1) @ DY @ Yaia1)a,] @ Yigs1)
J=1

+ Tr (o t1,1) ([F 1w @ Vigra,] @ DeYig41)

ko
= [DiF : w0 @ Yor.q04m)] + [F WY @ D' @ WP g Y®1=(lo+1)}
i=1
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lo+1

+ 3 [F w0 @ Y121y @ DiY @ Yais)to+)) »
j=1

which concludes the proof. U

Theorem S16. Let M be a smooth manifold and V be a connection on TM. Lety : [0,1] — M be a geodesic and
Y : M — TM a smooth vector field. Then, for any t € [0,1],n € N,

n

TRY (v(8) = > (#* /ko!) VY3 0) (7(0), ..., ¥(0))
ko=0 (S79)

+ /0 [(t — s)"/n!]TZOV"HYY(S) (v(s),...,v(s)) ds,

where T} : TyyM = Ty ()M is the parallel transport map along v, and the (1, ko)-tensor field VFoY is the total
derivative of order ko of the (1,0)-tensor field Y.

For a definition of the total covariant derivative, see [1, Proposition 4.15]. Also, in (S79), remark that even though
v is only a vector field along vy, and not a vector field, the value of a vector field VxY evaluated at 6§ € M only
depends on X () and on values of Y along smooth curves c : [0,1] — M satisfying ¢(0) = 6 and ¢(0) = X (0); by
[1, Proposition 4.26]. Therefore the expression V*o Yy (Y(t),...,¥(t)) in Theorem S16 is well defined for any
ko e Nyt e [0, 1]

Proof. Consider 9 : [0,1] — M the smooth vector field along y and the function ¢ : [0,1] — T, )M defined by
V=Yovyand ¢:t— T} V(t).
Then we check by induction on n € N* that ¢ is n-times differentiable with derivative of order n given for any

t €[0,1] by ™ (t) = T)y[DF¥(t)] and DPV(t) = V"Yy ) (Y(t), - .., ¥(t)), where Dy is the covariant derivative
operator along y with respect to the connection V, defined in Proposition S14.

First, the case n = 1 is a direct application of [1, Theorem 4.34, Theorem 4.24| since Y is an extension of V.
Assume now that the property holds for n € N*. Then, for any ty,t € [0,1],t # to, we have

[0 (1) = " (t0)] /(= t0) = TYq [T3, D v(t) = DFw(t0)] /(t — to) -
Now [1, Theorem 4.34] ensures that the limit of the quantity above exists when ¢ — ¢y and in addition this limit is
e (to) = Ty, oDy (1)

which shows that ¢ is n 4 1 times differentiable on [0,1]. We now show that for any ¢ € [0,1], DI ™ o/(t) =
V'Y, (4 (V(¢), ..., ¥(t)). Using Lemma S15 on the smooth (1,n)-tensor field along y F = (V"Y) oy, taking
ko = 0 and n times the vector field v, we have
Di[F:y®-- @y =D :y®--- 07|,
since Dyy = 0 because v is a geodesic. Also, by (S71), [DiF : vV ®---®Y] = D¢F(V,...,7). Finally, as VY is an
extension of F, using the induction hypothesis and the definition of the total derivative give for any ¢ € [0, 1],
DI (1) = DoF (¥, -, 7) (1) = Vi (V'Y )y iy (V(E), -, V(1))

= (V"+1Y)y(t) (Y(t), cee aY(t)) ;

concluding the induction.

Finally, (S79) is simply a consequence of Taylor’s formula with integral remainder of the vectorial valued function
¢ identifying T )M with R, O
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Proposition S17. Let M be a smooth manifold, V be a symmetric connection defined over the smooth vector
fields of M. For any smooth function f: M — R and any local coordinates (u;)icqu,....ay, we have

d d
VHess f = ) {a;jijf =[O0 + T3 f +T,00f] Z O O f
i,j,k=1 =1
d . .
+ ) O T 4TI O f p du’ @ du? ® duf
l,m=1

where (Ffj)i)j7ke{17,,,)d} are the Christqﬁel symbols in these local coordinates, the local frame and its dual coframe
are denoted by (8Ui)ie{1,.i.,d} and (duj)je{l,..i,d}-

Proof. Let (u;)ieq1,....qy be local coordinates. By [1, Example 4.22], in this chart, we have

Hess f = Z Fijdui ® du’ , where for any i,j € {1,...,d}, F;; = 82 f- Z L7 O0m f (S80)

ij=1

Applying [1, Proposition 4.18] on Hess f, we obtain that VHess f = Z?j ey Gijrdu' ® du? @ du, where for any
i’j7k€{1""’d}7
d

Giji = OpFij — Z (Fgngil +ThFy) -
=1

Expanding the expression above using (S80) gives for any i,7,k € {1,...,d},
d d
G =0l = 3 (OG0 4 50k1) - 31 (7 3o )
=1 m=1
d d
DWHCTED LTS
=1 m=1

The desired result is obtained by reordering this equation, which concludes the proof. O

References

[1] J. M. Lee. Introduction to Riemannian Manifolds. Springer International Publishing, 2019.

[2] A. Durmus, P. Jiménez, E. Moulines, S. Said, and H. T. Wai. Convergence analysis of Riemannian stochastic
approximation schemes. arXiv preprint arXiv:2005.1328/, 2020.

[3] S. Meyn and R. Tweedie. Markov Chains and Stochastic Stability. Cambridge University Press, New York,
NY, USA, 2nd edition, 2009.

[4] J. Jost. Riemannian Geometry and Geometric Analysis. Springer Universitat texts. Springer, 2005.

[5] K. T. Sturm. Probability Measures on Metric Spaces of Nonpositive Curvature. Contemporary Mathematics,
338, 01 2003.

[6] R. A. Horn and C. R. Johnson. Topics in matriz analysis. Cambridge university press, 1994.
[7] J. Kent. Time-reversible diffusions. Adv. in Appl. Probab., 10(4):819-835, 1978.

[8] Nicolas Boumal. An introduction to optimization on smooth manifolds. Available online, Aug 2020.



	Assumptions
	Supplementary notation
	Proofs of sec:constantstep
	Proof of theo:driftlyap
	An alternative to theo:driftlyap-(b)
	Proof of thm:recurrentergodic
	Proof of cor:balldirac
	Proof of prop:sqdistance
	Proof of prop:huber

	Proofs of sec:unconstrained
	Proof of prop:bounderrormoment
	Proof of thm:centrallimit

	Proofs for sec:appsgd
	Proof of lem:strconv
	Proof of lem:strhuberized
	Proof of propsgdconstrained
	Proof of prop:br1
	Proof of theo:driftbary

	Background on Markov chain theory and Riemannian geometry
	Markov chain notions
	Useful results from Riemannian geometry


