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S1 Assumptions

On the manifold

A1. Assume one of the following conditions.

(i) Θ is a Hadamard manifold, i.e. a complete, simply connected Riemannian manifold with non-positive sectional
curvature. In addition, S is a closed geodesically convex subset of Θ with non-empty interior.
(ii) Θ is a complete, connected Riemannian manifold and S = Θ.

A2. Θ is a Hadamard manifold. In addition, there exists κ > 0 such that the sectional curvature of Θ is bounded
below by −κ2.

On the distribution of the data

MD1. The sequence (Xn)n∈N∗ is independent and identically distributed (i.i.d.). In addition, for any θ ∈ Θ,
E [eθ(X1)] = 0 and there exist σ2

0 , σ
2
1 > 0 such that for any θ ∈ S, E[‖eθ (X1) ‖2θ] ≤ σ2

0 + σ2
1 ‖h(θ)‖2θ.

MD2. (i) P-almost surely, the vector field θ 7→ eθ(X1) is continuous on Θ.
(ii) For any θ ∈ Θ, Lebθ and the distribution of eθ(X1) are mutually absolutely continuous.

MD3. Σ is a continuous tensor field of type (2, 0) on Θ.

MD4. There exist εe > 0, σ̃2
0 , σ̃

2
1 ≥ 0 such that for any θ ∈ Θ, E[‖eθ(X1)‖2+εe

θ ] ≤ σ̃2
0 + σ̃2

1V (θ).

MD5. There exists θ ∈ Θ such that ∫
Θ

ρ2
Θ(θ, ν)π(dν) < +∞ .

On the Lyapunov function V and the mean field function h

H1. (i) For any θ ∈ Θ, V ◦ projS(θ) ≤ V (θ).
(ii) V is continuously differentiable on Θ and its Riemannian gradient gradV is geodesically L-Lipschitz, i.e.,
there exists L ≥ 0 such that for any θ0, θ1 ∈ Θ, and geodesic curve γ : [0, 1] → Θ such that γ(0) = θ0 and
γ(1) = θ1,

‖gradV (θ1)− Tγ
01gradV (θ0)‖θ1 ≤ L`(γ) ,

where `(γ) = ‖γ̇(0)‖θ0 is the length of the geodesic.
(iii) V is proper on S, i.e., for any M ≥ 0, there exists a compact set K ⊂ S such that for any θ ∈ S \ K,
V (θ) > M .

H2. There exist C1 ≥ 0 and C2 > 0 such that for any θ ∈ S, ‖h(θ)‖2θ + C2 〈gradV (θ), h(θ)〉θ ≤ C1.

H3 (K?). There exists λ > 0 such that for any θ ∈ S, 〈gradV (θ), h(θ)〉θ ≤ −λV (θ)1S\K?(θ).

H4. There exists θ? ∈ S such that for any r > 0, H3(B(θ?, r)) holds and that there exists cr > 0 satisfying for
any θ ∈ S \ B(θ?, r), cr ≤ V (θ).

H5. There exist a linear mapping A : Tθ∗Θ→ Tθ∗Θ and a map H : Θ→ Tθ∗Θ, such that for any θ ∈ Θ,

h(θ) = Tγ
01

(
AExp−1

θ? (θ) + H (θ)
)
,

where θ? is defined in H4, Tγ
01 denotes parallel transport along the geodesic γ : [0, 1]→ Θ with γ(0) = θ? and

γ(1) = θ, and limθ→θ?{‖H (θ)‖θ? /ρΘ(θ?, θ)} = 0. In addition, the eigenvalues of the matrix A all have strictly
negative real parts. Finally, there exists C3 > 0 such that for any θ ∈ Θ, ‖h(θ)‖θ ≤ C3ρΘ(θ?, θ).

H 6. There exists θ? such that H 3({θ?}) holds and there exists φ : R+ → R+ such that for any θ ∈ Θ,
V (θ) ≥ φ(ρΘ(θ?, θ)) and for any r > 0, inf [r,+∞) φ > 0. In addition, there exists a > 0, such that
limr→+∞ supa≤a a/φ(a1/2r) = 0.
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On the objective function f in the gradient case

F1. f : Θ→ R is twice continuously differentiable and grad f is geodesically Lf -Lipschitz, see (3).
F 2. f is λf -strongly geodesically convex, for some λf > 0, i.e. for any θ1, θ2 ∈ Θ, f(θ2) ≥ f(θ1) +
〈Exp−1

θ1
(θ2), grad f(θ1)〉θ1 + λfρ

2
Θ(θ1, θ2)/2.

F 3. f is twice continuously differentiable. There exists λ̃f > 0 such that for any θ ∈ Θ,
−〈Exp−1

θ (θ?), grad f(θ)〉θ ≥ λ̃fV1(θ), where V1 is defined by (9) with δ = 1. In addition, there exists Cf > 0 such
that for any θ ∈ Θ, ‖grad f(θ)‖2θ ≤ Cf (ρ2

Θ(θ?, θ) ∧ 1).

S2 Supplementary notation

Denote the unit tangent space UθΘ = {u ∈ TθΘ : ‖u‖θ = 1}. The cut-locus of θ, Cut(θ) ⊂ Θ [1, p. 308] and
the injectivity domain ID(θ) ⊂ TθΘ [1, p. 310] are two notions that inform us about the length-minimizing
properties of geodesics, and therefore provide the domain of definition of the Riemannian exponential. On a
complete and connected manifold, [1, Theorem 10.34] holds, meaning the restriction (Expθ)|ID(θ) : ID(θ)→ Θ is
a diffeomorphism onto its image Θ \ Cut(θ). We simply denote Exp−1

θ : Θ \ Cut(θ)→ ID(θ) its inverse. Under
the assumption that Θ is complete, simply connected and of non-positive sectional curvature, i.e. a Hadamard
manifold, [1, Proposition 12.9] proves that Cut(θ) = ∅ and ID(θ) = TθΘ for any θ ∈ Θ.

For a measure µ on a measurable space (Y,Y), denote by µ(g) the integral of a measurable function g : Y → R
with respect to µ, when it exists.

S3 Proofs of Section 2

Under A1 and MD1, for any η > 0, we denote by Qη the Markov kernel associated with (θn)n∈N defined by (2)
given for any A ∈ B(S) and θ ∈ S by

Qη(θ,A) = E [1A (Expθ {ηHθ(X1)})] . (S1)

Useful notions, definitions and results relative to Markov chain theory are given in Section S6.1.
Lemma S1. Assume A1, MD1, H1-(i)-(ii). Then for any η > 0 and θ0 ∈ S,

QηV (θ0) ≤ V (θ0) + η 〈gradV (θ0), h(θ0)〉θ0 + Lη2
[
‖h(θ0)‖2θ0 + σ2

0 + σ2
1 ‖h(θ0)‖2θ0

]
. (S2)

Proof. Let θ0 ∈ S, and η > 0. Consider

θ1/2 = Expθ0 [ηHθ0(X1)] , θ1 = projS
(
θ1/2

)
. (S3)

First, by definition of Qη and H1-(i), we have

QηV (θ0) = E [V (θ1)] ≤ E
[
V (θ1/2)

]
. (S4)

Second, using A1, H1-(ii), [2, Lemma 1] and (S3), we obtain

V (θ1/2) ≤ V (θ0) + η 〈gradV (θ0), Hθ0(X1)〉θ0 + (L/2)η2 ‖Hθ0(X1)‖2θ0 .

Plugging this result in (S4) and using MD1 completes the proof of (S2).

S3.1 Proof of Theorem 1

(a) Using Lemma S1 and H2 we have for any θ0 ∈ S and η > 0,

QηV (θ0) ≤ V (θ0) + η{1− C2Lη(1 + σ2
1)} 〈gradV (θ0), h(θ0)〉θ0 + Lη2[σ2

0 + C1(1 + σ2
1)] .

Letting η = [2C2L(1 + σ2
1)]−1, then for any η ∈ (0,η], we have 1− C2Lη(1 + σ2

1) ≥ 1/2. Therefore, using also
that 〈gradV (θ0), h(θ0)〉θ0 ≤ 0, we obtain,

QηV (θ0) ≤ V (θ0) + (η/2) 〈gradV (θ0), h(θ0)〉θ0 + Lη2[σ2
0 + C1(1 + σ2

1)] . (S5)
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Therefore, by the Markov property, for any k ∈ N∗, η ∈ (0,η] and θ0 ∈ S we get,

− (η/2)

∫
Θ

〈gradV (θ), h(θ)〉θ Q
k−1
η (θ0,dθ) ≤ Qk−1

η V (θ0)−QkηV (θ0) + Lη2[σ2
0 + C1(1 + σ2

1)] .

Summing these inequalities for k ∈ {1, . . . , n} concludes the proof of (a) upon using that V is a non-negative
function.
(b) We prove (5) by using H3(K?) in (4) and dividing both sides by λ > 0.
(c) We start by using H3(K?) in (S5). For any η ∈ (0,η] and θ0 ∈ S, we have

QηV (θ0) ≤ V (θ0)
[
1− (λη/2)1S\K?(θ0)

]
+ η2b/2 , (S6)

where b = 2L[σ2
0 + C1(1 + σ2

1)]. By adding and subtracting V (θ0)(λη/2)1K?(θ0) in the right-hand side of (S6),
we have,

QηV (θ0) ≤ V (θ0)[1− ηa] + η(bη/2 + a ‖V ‖K?) , (S7)

where a = λ/2. Therefore, by a straightforward induction on n ∈ N, using the Markov property, we get, for any
n ∈ N, η ∈ (0,η] and θ0 ∈ S,

E [V (θn)] ≤ {1− ηa}nV (θ0) + η(bη/2 + a ‖V ‖K?)

n−1∑
k=0

[1− ηa]k

≤ {1− ηa}nV (θ0) + {‖V ‖K? + (bη/2a)} ,

which concludes the proof of (c) and Theorem 1.

S3.2 An alternative to Theorem 1-(b)

Consider the following condition for some compact set K? ⊂ S.

HS1 (K?). There exists λ > 0 such that for any θ ∈ S, 〈gradV (θ), h(θ)〉θ ≤ −λ ‖h(θ)‖2θ 1S\K?(θ).

Theorem S2. Assume A1, MD1, H1-(i)-(ii) and HS1(K?) hold for some compact set K? ⊂ S, and define
‖h‖K? = sup{‖h(θ)‖θ : θ ∈ K?} if K? 6= ∅ and ‖h‖K? = 0 otherwise. Then for any η ∈ (0, η̌] and θ0 ∈ S, and
n ∈ N∗,

n−1
n−1∑
k=0

E[1S\K?(θk) ‖h(θk)‖2θk ] ≤ V (θ0)/(anη) + ηb̃/a ,

where (θn)n∈N is defined by (2) starting from θ0, η̌ = λ/[2(1 + σ2
1)L], a = λ/2 and b̃ = L((1 + σ2

1) ‖h‖K? + σ2
0).

Proof. By Lemma S1 and HS1(K?), for any η ∈ (0,η] and θ0 ∈ S, we have

QηV (θ0) ≤ V (θ0)− ηλ ‖h(θ0)‖2θ0 1S\K?(θ0) + Lη2
[
‖h(θ0)‖2θ0 + σ2

0 + σ2
1 ‖h(θ0)‖2θ0

]
.

Therefore, by the Markov property, for any k ∈ N∗, η ∈ (0,η] and θ0 ∈ S, we get

(ηλ/2)

∫
Θ

{1S\K?(θ) ‖h(θ)‖2θ}Q
k−1
η (θ0,dθ)

≤ Qk−1
η V (θ0)−QkηV (θ0) + Lη2((1 + σ2

1) ‖h‖K? + σ2
0) .

Summing these inequalities for k ∈ {1, . . . , n} concludes the proof upon using that V is a non-negative function.

S3.3 Proof of Theorem 2

Lemma S3. Assume A1, MD1 and MD2-(i). Then the Markov kernel Qη on S× B(S) is Feller, i.e. for any
measurable bounded function f : S→ R, Qηf is continuous from S to R.

Proof. The proof is an easy consequence of the Lebesgue dominated convergence theorem, since h is continuous
and MD2-(i) holds.



Durmus, Jiménez, Moulines, Said

For the next lemma, we introduce µS, the restriction to S of the Riemannian measure µΘ associated with the
volume form on Θ.
Lemma S4. Assume A1, MD1 and MD2-(ii). Then Qη is µS-irreducible and aperiodic.

Proof. We consider first the case A1-(i), where Θ is a Hadamard manifold. Let A ∈ B(S) be a Borel set of S, such
that µS(A) > 0. We only need to show that for any θ0 ∈ Θ, Qη(θ0,A) > 0. Indeed, this gives µS-irreducibility by
definition and implies that the chain is aperiodic by [3, Theorem 5.4.4] since for any A ∈ B(S), µS(A) > 0, θ ∈ A,
we have Qη(θ,A) > 0.

Let θ0 ∈ S. By definition of the scheme (2) and projS, Qη(θ0,A) = P(projS ◦Expθ0(η{h(θ0) + eθ0(X1)}) ∈
A) ≥ P(Expθ0(η{h(θ0) + eθ0(X1)}) ∈ A). However, using MD2-(ii), the law of eθ0(X1) has a positive density
φ : Tθ0Θ→ (0,+∞) with respect to Lebesgue’s measure Lebθ0 . Denote (gij(θ))1≤i,j≤d the matrix representing
the Riemannian metric at θ ∈ Θ in normal global coordinates at θ0. Expressing µS in these coordinates and using
[1, p.404 and Proposition 2.41],

P(η{h(θ0) + eθ0(X1)} ∈ Exp−1
θ0

(A)) =

∫
Exp−1

θ0
(A)

φ
(
η−1v − h(θ0)

)
dLebθ0(v)

=

∫
A

φ
(
η−1Exp−1

θ0
(θ)− h(θ0)

)
{det(gij(θ))}−1/2

dµS(θ) > 0 ,

since all quantities in the integral are positive and µS(A) > 0.

Now assumeA1-(ii) and keep the notations of the first case. Then Expθ0 : Tθ0Θ→ Θ is no longer a diffeomorphism.
However, (Expθ0)|ID(θ0) : ID(θ0)→ Θ \Cut(θ0) is a diffeomorphism, see [1, Theorem 10.34]. Moreover, as Cut(θ0)

is a set of measure zero, see again [1, Theorem 10.34], considering Ã = A \ Cut(θ0) allows the previous proof to
give the desired result.

Proof of Theorem 2. First, we prove that the chain is Harris-recurrent. For that, we start by proving, for any
θ0 ∈ S,

P
(
∪k∈N∗ ∩N∈N ∪n≥N{θn ∈ B(θ?, k)}

)
= 1 , (S8)

where (θn)n∈N is defined by (2) and with initial condition θ0.

Theorem 1-(6) implies that for any θ0 ∈ Θ, supn∈NQ
n
ηV (θ0) < +∞; since ‖V ‖K? = supK? V < +∞ because V is

assumed to be continuous. Therefore lim infn→+∞ V (θn) is integrable by Fatou’s lemma. Thus, for any k ∈ N∗,
using Markov’s inequality,

P
(

lim inf
n→+∞

V (θn) > k

)
≤ E

[
lim inf
n→+∞

V (θn)

]/
k .

However, {lim infn→+∞ V (θn) ≤ k} = ∩N∈N ∪n≥N {θn ∈ V −1([0, k])}. Thus, for any k ∈ N∗,

P
(
∩N∈N ∪n≥N

{
θn ∈ V −1([0, k])

})
≥ 1− E

[
lim inf
n→+∞

V (θn)

]/
k .

Now, taking the union of these events for any k ∈ N∗ gives

P
(
∪k∈N∗ ∩N∈N ∪n≥N

{
θn ∈ V −1([0, k])

})
= 1 . (S9)

Nonetheless, using H1-(iii), for any k ∈ N∗, V −1([0, k]) is a subset of a compact set, therefore it is bounded.
Thus, for any k ∈ N∗, there exists k′ ∈ N∗ such that V −1([0, k]) ⊂ B(θ?, k′). This gives the following,

∪k∈N∗ ∩N∈N ∪n≥N
{
θn ∈ V −1([0, k])

}
⊂ ∪k∈N∗ ∩N∈N ∪n≥N

{
θn ∈ B(θ?, k)

}
.

Combining this with (S9) gives (S8).

Equation (S8) gives that the chain is non-evanescent [3, Section 9.2.1]. Since Qη is Feller (see Lemma S3), this
result and [3, Theorem 9.2.2] imply that Qη is Harris recurrent.

We now show that Qη is Ṽ -uniformly geometrically ergodic (see Section S6.1) setting Ṽ = 1 + V . First, by
Theorem 1 and (S7) obtained in the proof above, we have that for any θ0 ∈ S,η ∈ (0,η],

QηṼ (θ0) ≤ (1− ηa)Ṽ (θ0) + η(ηb/2 + a(1 + ‖V ‖K?)) ,
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where a, b,η and ‖V ‖K? are defined in Theorem 1. Then, by H1-(iii) there exists r̃ > 0, such that for any θ0 ∈ S,

QηṼ (θ0) ≤ (1− aη/2)Ṽ (θ0) + η(ηb/2 + a(1 + ‖V ‖K?))1B(θ?,r̃)(θ0) .

Then, since Qη is Feller by Lemma S3 and µS-irreducible by Lemma S4, using [3, Proposition 6.2.8 (ii)], B(θ?, r)
is petite since it is compact by the Hopf-Rinow theorem [4, Theorem 1.7.1] and S has non-empty interior by A1.
Therefore, an application of [3, Theorem 16.0.1] proves that the chain is Ṽ -uniformly geometrically ergodic.

S3.4 Proof of Theorem 3

Lemma S5. Assume A1, MD1 MD2, H1, H2 and H3(K?) hold for some compact set K? ⊂ S. Then for any
η ∈ (0,η],

µη[V 1S\K? ] ≤ 2ηL{σ2
0 + C1(1 + σ2

1)}/λ ,

where η = [2C2L(1 + σ2
1)]−1.

Proof. For any η ∈ (0,η] and M ≥ 0, setting VM = M ∧ V , (S6) implies using Jensen inequality, for any θ0 ∈ Θ,

QηVM (θ0) ≤ (1− ηa1S\K?(θ0))VM (θ0) + η2b/2 ,

where η = [2C2L(1 + σ2
1)]−1 , b = 2L{σ2

0 + C1(1 + σ2
1)} and a = λ/2. Using that µη is invariant for Qη by

Theorem 2 and VM is bounded, we get µη[VM1S\K? ] ≤ ηb/(2a). By the monotone convergence theorem, taking
M → +∞, we have µη[V 1S\K? ] ≤ ηb/(2a), which concludes the proof.

Proof of Theorem 3. (a) Using Lemma S5 and V (θ) ≥ c > 0 for any θ ∈ S \ K?, we obtain

µη {S \ K?} ≤ ηb/(2ac) ,

which concludes the proof of (a) taking the limit η→ 0.
(b) Let (ηn)n∈N be a sequence converging to zero such that for any n ∈ N, ηn ∈ (0,η]. We start by proving that
(µηn)n∈N is tight. Let ε > 0. On one hand, let r > 0 and K0 = B(θ?, r). Then, using Theorem 3-(a), there exists
N ∈ N such that for any n ≥ N , µηn(K0) ≥ 1− ε. On the other hand, (µηn)n∈{0,...,N−1} is tight, i.e. there exists
a compact set K̃ ⊂ Θ such that for any n ∈ {1, . . . , N − 1}, µηn(K̃) ≥ 1− ε. Finally, taking K = K0 ∪ K̃ gives the
tightness of (µηn)n∈N. Now, let µ be a limit point of (µηn)n∈N. Using Theorem 3-(a), and Lebesgue’s dominated
convergence theorem letting r → 0, gives µ({θ?}) = 1, i.e. µ = δθ? . In conclusion, for any (ηn)n∈N converging to
zero, (µηn)n∈N converges weakly to the Dirac at θ?.

S3.5 Proof of Proposition 4

First, we check H1-(i). Using [5, Proposition 2.6], projS is a contraction w.r.t. ρΘ, which implies that for any
θ ∈ Θ,

ρ2
Θ(θ?,projS(θ)) = ρ2

Θ(projS(θ?),projS(θ)) ≤ ρ2
Θ(θ?, θ) .

This implies, since S ⊂ H, that

V2(projS(θ)) = ρ2
Θ(θ?,projS(θ)) ≤ χH(θ)ρ2

Θ(θ?, θ) + (1− χH(θ)) diam2(H) = V2(θ) ,

which gives H1-(i).

To prove H1-(ii), we calculate the operator norm of the Hessian of V2 and conclude by [2, Lemma 10]. Using A2
and [4, Theorem 5.6.1], θ 7→ ρ2

Θ(θ?, θ) is smooth and its gradient on Θ is given by θ 7→ −2Exp−1
θ (θ?). Therefore,

for any θ ∈ Θ,
gradV2(θ) = [ρ2

Θ(θ?, θ)−D2
H]gradχH(θ)− 2χH(θ)Exp−1

θ (θ?) .

Using now A2, [4, Theorem 5.6.1] and Cauchy-Schwarz’s inequality brings, for any θ ∈ Θ, v ∈ TθΘ,

‖(HessV2)θ(v, v)‖θ ≤ 2κρΘ(θ?, θ) coth(κρΘ(θ?, θ))χH(θ) ‖v‖2θ + 4ρΘ(θ?, θ) ‖gradχH(θ)‖θ ‖v‖
2
θ
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+ ‖(HessχH)θ(v, v)‖θ
∣∣ρ2

Θ(θ?, θ)−D2
H

∣∣ .
However, one can choose χH such that for any θ ∈ Θ satisfying infθ′∈H ρΘ(θ′, θ) ≥ 1, it holds that χH(θ) = 0.
Therefore, for any θ ∈ Θ, ρΘ(θ?, θ)χH(θ) ≤ DH + 1. Since χH is smooth with compact support, there exists a
constant M > 0 such that for any θ ∈ Θ and v ∈ TθΘ,

‖gradχH(θ)‖θ ≤M and ‖(HessχH)θ(v, v)‖θ ≤M ‖v‖2θ .

Therefore, combining these expressions brings for any θ ∈ Θ and v ∈ TθΘ,

‖(HessV2)θ(v, v)‖θ ≤ 6(M + 1)(DH + 1)[1 + κ coth(κDH)] ‖v‖2θ ,

thus proving by [2, Lemma 10] and setting Cχ = 6(M+1), thatH1-(ii) holds with L← Cχ(1+DH)[1+κ coth(κDH)].

We now turn on checking H3(B(θ?, r)). Since gradχH(θ) = 0 for any θ ∈ S, we get that V2 is smooth and for any
θ ∈ S, gradV2(θ) = −2Exp−1

θ (θ?) Therefore H3(B(θ?, r)) holds by (8).

S3.6 Proof of Proposition 5

First, we check H1-(i). Using [5, Proposition 2.6], projS is a contraction w.r.t. ρΘ, which implies that θ ∈ Θ,

ρΘ(θ?,projS(θ)) = ρΘ(projS(θ?),projS(θ)) ≤ ρΘ(θ?, θ) .

Then the proof of H1-(i) is completed using that x 7→ δ2{(x/δ)2 + 1}1/2 − δ2 is increasing.

Next, using A2, [2, Lemma 16], we have for any θ ∈ Θ, v ∈ TθΘ \ {0},

0 < HessV1(θ)(v, v) ≤ (1 + κδ) ‖v‖2θ .

Therefore, using [2, Lemma 10], H1-(ii) holds for L = 1+κδ. It is easy to see that as ρΘ(θ?, θ)→∞, V1(θ)→ +∞,
meaning H1-(iii) holds by the Hopf-Rinow theorem [4, Theorem 1.7.1].

Regarding H3(B(θ?, r)), using [2, Lemma 16], we have for any θ ∈ Θ,

gradV1(θ) = − Exp−1
θ (θ?)

/{
(ρΘ(θ?, θ)/δ)

2
+ 1
}1/2

, (S10)

Therefore for any θ ∈ Θ, we get

〈gradV1(θ), h(θ)〉θ = −
〈
Exp−1

θ (θ?), h(θ)
〉
θ

/{
(ρΘ(θ?, θ)/δ)

2
+ 1
}1/2

.

Then, under the condition (8), we obtain

〈gradV1(θ), h(θ)〉θ ≤ −λρρ
2
Θ(θ?, θ)1S\B(θ?,r)(θ)

/{
(ρΘ(θ?, θ)/δ)

2
+ 1
}1/2

≤ −λρV1(θ)1S\B(θ?,r)(θ) ,

where we used that

V1(θ) ≤ ρ2
Θ(θ?, θ)

/{
(ρΘ(θ?, θ)/δ)

2
+ 1
}1/2

,

since for any a > 0 and x ≥ 0, (ax2 + 1)1/2 − 1 = a
∫ x

0
t{at2 + 1}−1/2dt ≤ ax2/{ax2 + 1}1/2.

S4 Proofs of Section 3

For any K ∈ R+, consider a smooth function with compact support χK : R+ → [0, 1] such that χK(t) = 1 for any
t ≤ K and χK(t) = 0 for any t ≥ K + 1.

Lemma S6. Assume A1-(ii) and MD1.
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(a) Then, for any smooth function with compact support g : Θ→ R, any η > 0 and θ0 ∈ Θ,

Qηg(θ0) = g(θ0) + η 〈grad g(θ0), h(θ0)〉θ0 + (η2/2) [Hess g : Σ + h⊗ h] (θ0) + (η2/6)Rg,η(θ0) , (S11)

where for any K > 0,

|Rg,η(θ0)| ≤ 8ηE
[
‖∇Hess g‖γ,∞1A{θ0

‖HK‖3θ0
]

+ 16‖Hess g‖∞E
[
‖YK‖2θ0

]
, (S12)

HK = h(θ0) + eθ0(X1)χK(‖eθ0(X1)‖θ0) , YK = eθ0(X1){1− χK(‖eθ0(X1)‖θ0)} , (S13)
‖Hess g‖∞ = sup{|Hess gθ(u, u)| : θ ∈ Θ, u ∈ UθΘ} ,
‖∇Hess g‖γ,∞ = sup{|∇Hess gγ(t)(u, u, u)| : t ∈ [0, 1], u ∈ Uγ(t)Θ} ,

Aθ0 = {‖HK‖θ0 ≤ ‖YK‖θ0} and γ : [0, 1]→ Θ is defined for any t ∈ [0, 1] by γ(t) = Expθ0(tηHθ0(X1)).
(b) Assume in addition that there exist C3 > 0 and θ? ∈ Θ such that for any θ ∈ Θ, ‖h(θ)‖θ ≤ C3ρΘ(θ?, θ).
Then, for any smooth function with compact support g : Θ→ R, any η ∈ (0, (4C3)−1] and θ0 ∈ Θ, (S11) holds,
with for any K > 0,

|Rg,η(θ0)| ≤ 8η1KK (θ0)E
[
‖∇Hess g‖γ,∞1A{θ0

‖HK‖3θ0
]

+ 16‖Hess g‖∞E
[
‖YK‖2θ0

]
, (S14)

where we take the notation of (a) and KK is a compact subset of Θ.

Proof. (a) Let g : Θ→ R be a smooth function with compact support and θ0 ∈ Θ. Using (2), A1-(ii) and the
definition of Qη (S1), we have

Qηg(θ0) = E
[
g
{

Expθ0 [ηHθ0(X1)]
}]

. (S15)

Consider the geodesic γ : [0, 1]→ Θ defined for any t ∈ [0, 1] by γ(t) = Expθ0(tηHθ0(X1)). For any t ∈ [0, 1], let
g(t) = (g ◦ γ)(t). We compute now its derivatives to derive a Taylor expansion. Using [1, Proposition 4.15-(ii)
and Theorem 4.24-(iii)], we have for any t ∈ [0, 1],

g ′(t) = Dt(g ◦ γ)(t) = 〈grad g(γ(t)), γ̇(t)〉γ(t) .

By definition of the Hessian [1, Example 4.22] and using Dtγ̇(t) = 0, Proposition S14-(S72)-(iv), we get for any
t ∈ [0, 1],

g ′′(t) = [D2
t g ](t) = Hess gγ(t)(γ̇(t), γ̇(t)) ,

In addition, using Dtγ̇(t) = 0 and Proposition S14-(S72)-(iv), we obtain for any t ∈ [0, 1],

g (3)(t) = [D3
t g ](t) = ∇Hess gγ(t)(γ̇(t), γ̇(t), γ̇(t)) ,

where ∇Hess g is the total covariant derivative of Hess g [1, Proposition 4.17]. Finally, for any K > 0, consider the
two random tangent vectors at θ0 defined in (S13). Now, writing the first-order Taylor expansion of g : [0, 1]→ R,
at t = 1 on the event Aθ0 = {‖HK‖θ0 ≤ ‖YK‖θ0}, the second-order one on the complement, and summing both
expansions, we get

g
(
Expθ0(ηHθ0(X1))

)
= g(θ0) + η〈grad g(θ0), Hθ0(X1)〉θ0

+ (η2/2)Hess gθ0(Hθ0(X1), Hθ0(X1)) + Rg,η(θ0, X1)/6 ,
(S16)

where the remainder term is given by

Rg,η(θ0, X1) = 1A{θ0

∫ 1

0

∇Hess gγ(t)(γ̇(t), γ̇(t), γ̇(t))dt

+ 1Aθ0

[∫ 1

0

Hess gγ(t)(γ̇(t), γ̇(t))dt− 3η2Hess gθ0(Hθ0(X1), Hθ0(X1))

]
.

We bound the remainder as follows. Since g has compact support, Hess g and ∇Hess g have an operator norm
uniformly bounded over Θ, which we express in the following way. For any θ ∈ Θ, consider the unit tangent
space at θ, UθΘ = {v ∈ TθΘ : ‖v‖θ = 1}, let ‖Hess g‖∞ = sup{|Hess gθ(v, v)| : θ ∈ Θ, v ∈ UθΘ} and
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‖∇Hess g‖γ,∞ = sup{|∇Hess gγ(t)(v, v, v)| : t ∈ [0, 1], v ∈ Uγ(t)Θ}. Then, using [1, Corollary 5.6-(b)], and
γ̇(0) = ηHθ0(X1),

|Rg,η(θ0, X1)| ≤ 1A{θ0
‖∇Hess g‖γ,∞

∫ 1

0

‖γ̇(t)‖3γ(t) dt

+ 1Aθ0
‖Hess g‖∞

[∫ 1

0

‖γ̇(t)‖2γ(t) dt+ 3η2 ‖Hθ0(X1)‖2θ0

]
= 1A{θ0

‖∇Hess g‖γ,∞η3 ‖Hθ0(X1)‖3θ0 + 41Aθ0
‖Hess g‖∞η2 ‖Hθ0(X1)‖2θ0 .

Moreover, using that HK + YK = Hθ0(X1) and the definition of Aθ0 ,

|Rg,η(θ0, X1)| ≤ 81A{θ0
‖∇Hess g‖γ,∞η3 ‖HK‖3θ0 + 16‖Hess g‖∞η2 ‖YK‖2θ0 . (S17)

Now, using MD1,
E [〈grad g(θ0), Hθ0(X1)〉θ0 ] = 〈grad g(θ0), h(θ0)〉θ0 . (S18)

In addition, since
Hess gθ0(Hθ0(X1), Hθ0(X1)) = [Hess g : Hθ0(X1)⊗Hθ0(X1)] ,

it follows by a further application of MD1, that

E [Hess gθ0(Hθ0(X1), Hθ0(X1))] = [Hess g : h⊗ h+ Σ] (θ0) , (S19)

where Σ(θ0) is defined in (10). Using that ‖HK‖θ0 ≤ K + ‖h(θ0)‖θ0 , and MD1 in (S17), we obtain that for any
θ0 ∈ Θ,E[|Rg,η(θ0, X1)|] < +∞. Then, by (S16), (S18) and (S19), it follows from (S15),

Qηg(θ0) = g(θ0) + η〈grad g(θ0), h(θ0)〉θ0 + (η2/2) [Hess g : h⊗ h+ Σ] (θ0) + η2Rg,η(θ0)/6 ,

where we define Rg,η(θ0) = η−2E[Rg,η(θ0, X1)]. The desired bound on the remainder in (S12), is a simple
consequence of (S17).
(b) In addition to the results of (a) and specifically (S12), we need to prove that, since g has compact support,
there exists a compact set KK ⊂ Θ such that ‖∇Hess g‖γ,∞1A{θ0

= 0 for any θ0 6∈ KK .

Using that ‖h(θ)‖θ ≤ C3ρΘ(θ?, θ), we obtain that on A{θ0 , ‖Hθ(X1)‖θ ≤ 2(C3ρΘ(θ?, θ) +K). In addition, by [1,
Corollary 6.12], ρΘ(θ,γ(t)) = tη ‖Hθ(X1)‖θ for any t ∈ [0, 1], therefore for any t ∈ [0, 1] and η ∈ (0, (4C3)−1]

ρΘ(θ?,γ(t)) ≥ ρΘ(θ?, θ)− ρΘ(θ,γ(t)) ≥ (1− 2ηtC3)ρΘ(θ?, θ)− 2ηK ≥ ρΘ(θ?, θ)/2−K/(2C3) .

Consider now R ≥ 0 such that for any θ 6∈ B(θ?, R), g(θ) = 0. Then, setting KK = B(θ?, 2(R + K/(2C3))),
we obtain that for any θ0 6∈ KK and t ∈ [0, 1], γ(t) 6∈ B(θ?, R) and therefore, ∇Hess gγ(t) = 0, which yields
‖∇Hess g‖γ,∞1A{θ0

= 0 for any θ0 6∈ KK . Finally KK is a compact subset of Θ by [4, Theorem 1.7.1].

S4.1 Proof of Theorem 6

Let g : Θ→ R be a smooth function. Since we assume that Θ is compact, g is smooth with compact support.
Therefore, using Lemma S6-(a) for any θ ∈ Θ and η > 0, we have,

Qηg(θ) = g(θ) + η 〈grad g(θ), h(θ)〉θ + (η2/2)[Hess g : Σ + h⊗ h](θ) + (η2/6)Rg,η(θ) , (S20)

where using (S12), Hölder inequality and MD1 gives,

|Rg,η(θ)| ≤ 32η(‖h(θ)‖3θ +K3) sup{|∇Hess gθ(u, u, u)| : θ ∈ Θ, u ∈ UθΘ}

+ 16 ‖Hess g‖∞
(
σ2

0 + σ2
1 ‖h(θ)‖2θ

)
.
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Next, let η ∈ (0,η], where η = [2C2L(1 + σ2
1)]−1. Note that since Θ is compact, g is smooth, h and Σ are

continuous, all the functions appearing in (S20) are bounded. Therefore, integrating (S20) with respect to µη

given by Theorem 2 and using that µη is invariant w.r.t. Qη, we obtain,

−
∫

Θ

〈grad g(θ), h(θ)〉θ µ
η(dθ) = (η/2)

∫
Θ

[Hess g : Σ + h⊗ h](θ)µη(dθ) + (η/6)

∫
Θ

Rg,η(θ)µη(dθ) .

Using that θ 7→ [Hess g : Σ + h⊗ h](θ) is bounded and continuous over Θ, Theorem 3-(b) and that h(θ?) = 0, by
weak convergence of µη to δθ? when η→ 0, we have,

lim
η→0

∫
Θ

[Hess g : Σ + h⊗ h](θ)µη(dθ) = [Hess g : Σ + h⊗ h](θ?) = [Hess g : Σ](θ?) .

Equivalently, there exists RHess g : (0,η]→ R such that for any η ∈ (0,η], we have∫
Θ

[Hess g : Σ + h⊗ h](θ)µη(dθ) = [Hess g : Σ](θ?) + RHess g(η) ,

where limη→0 |RHess g(η)| = 0.

To conclude, we prove that lim supη→0 |
∫

Θ
Rg,η(θ)µη(dθ)| = 0. Let K ≥ 0. By (S12), since θ0 7→ E[1A{θ0

‖HK‖3θ0 ]

is uniformly bounded over Θ by definition (S13) and since h is continuous, we have that

lim sup
η→0

∣∣∣∣∫
Θ

Rg,η(θ)µη(dθ)

∣∣∣∣ ≤ 16‖Hess g‖∞ lim sup
η→0

∫
Θ

E
[
‖eθ(X1)‖2θ {1− χK(θ)}

]
µη(dθ)

≤ 16‖Hess g‖∞E
[
‖eθ?(X1)‖2θ? {1− χK(θ?)}

]
,

using Theorem 3-(b), that θ 7→ E[‖eθ(X1)‖2θ] and χK are continuous and bounded by MD3 since E[‖eθ(X1)‖2θ] =
Tr(Σ(θ)) for any θ ∈ Θ and Θ is compact. Taking K → +∞ completes the proof.

S4.2 Proof of Theorem 7

We introduce an auxiliary chain (Un)n∈N as an intermediate step between (θn)n∈N and (Un)n∈N for which we
recall the definition below. Define for any η > 0, n ∈ N,

Un = Exp−1
θ? (θn) and Un = η−1/2Exp−1

θ? (θn) = η−1/2Un , (S21)

where (θn)n∈N is defined by (2) with S = Θ i.e.projS = Id. Note that (Un)n∈N and (Un)n∈N are Markov chains
with state space Tθ?Θ, as Expθ? is a bijection. Conversely, since Exp−1

θ? and η−1/2Exp−1
θ? are bijections from Θ

to Tθ?Θ under A1-(i), (θn)n∈N is a deterministic function of (Un)n∈N or (Un)n∈N. Therefore, the convergence of
these three processes is expected to be the same. This is the content of the following result. Denote by Rη and
Rη the Markov kernels on Tθ?Θ× B(Tθ?Θ), associated with (Un)n∈N and (Un)n∈N respectively.

Lemma S7. Assume A1-(i)-(ii), MD1, MD2, H1, H2 and H3(K?) for some compact set K? ⊂ S. Let η ∈ (0,η]
where η = [2C2L(1 + σ2

1)]−1. For any measurable and bounded function g : Tθ?Θ→ R and any u0, u0 ∈ Tθ?Θ,
Rη and Rη satisfy

Rηg(u0) = Qηg (Expθ?(u0)) and Rηg (u0) = Rηgη(η1/2u0) , (S22)

where g : θ 7→ g[Exp−1
θ? (θ)] and gη : u 7→ g(η−1/2u) are defined over Θ and Tθ?Θ respectively, and Qη is the

Markov kernel associated with (θn)n∈N. In addition, Rη and Rη both admit a unique stationary distribution νη
and νη respectively, defined for any A ∈ B(Tθ?Θ) by

νη(A) = µη (Expθ?(A)) and νη(A) = νη(η1/2A) . (S23)

Finally, both Rη and Rη are Harris-recurrent and geometrically ergodic, i.e. there exist C,C : Tθ?Θ→ R and
ρ, ρ ∈ R∗+ such that for any u, u ∈ Tθ?Θ,

‖δuRη − νη‖TV ≤ C(u)ρn and ‖δuRη − νη‖TV ≤ C(u)ρn .
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Proof. Let g : Tθ?Θ→ R be a measurable and bounded function and u0 ∈ Tθ?Θ. Consider (Un)n∈N defined by
(S21) with θ0 = Expθ?(u0). Using (S21), we have by definition

E [g(U1)] = E
[
g
(
Exp−1

θ? (θ1)
)]

= Qη

(
g ◦ Exp−1

θ?

)
(Expθ?(u0)) .

Moreover, let u0 ∈ Tθ?Θ and consider (Un)n∈N defined by (S21) with U0 = η1/2u0. Using (S21), we have by
definition

E
[
g(U1)

]
= E

[
g
(
η−1/2U1

)]
= Rηgη

(
η1/2u0

)
,

where gη : u 7→ g(η−1/2u) is defined over Tθ?Θ, therefore proving (S22).

We show that νη and νη are invariant for Rη and Rη respectively. Indeed, for any A ∈ B(Tθ?Θ), we have by
(S21), (S22) and (S23)

νηRη(A) =

∫
Tθ?Θ

dνη(u)Rη (u,A) =

∫
Θ

dµη(θ)Rη

(
Exp−1

θ? (θ),A
)

=

∫
Θ

dµη(θ)Qη (θ,Expθ?(A)) = µη (Expθ?(A)) = νη(A) .

Therefore νη is invariant for Rη. Similarly, we show that νη is invariant for Rη. Using again (S21), (S22) and
(S23), for any A ∈ B(Tθ?Θ) we have,

νηRη(A) =

∫
Tθ?Θ

dνη(u)Rη

(
η−1/2u,A

)
=

∫
Tθ?Θ

dνη(u)Rη

(
u,η1/2A

)
= νη(A) .

Finally, since (θn)n∈N, (Un)n∈N and (Un)n∈N are deterministic functions of each other and since Theorem 2 proves
that (θn)n∈N is geometrically ergodic and Harris-recurrent, the same holds for (Un)n∈N and (Un)n∈N and their
invariant distributions are unique.

For any smooth function with compact support g : Tθ?Θ → R, u0 ∈ Tθ?Θ and η > 0 consider the 2-tensor
(C2(g, u0,η)ij)i,j∈{1,...,d} defined by, for any i, j ∈ {1, . . . , d},

C2(g, u0,η)ij = ∂2
ijg(u0)− η1/2

d∑
k=1

Γkij

(
Expθ?(η1/2u0)

)
∂kg(u0) , (S24)

and, similarly consider the 3-tensor (C3(g, u0,η)ijk)i,j,k∈{1,...,d} defined by, for any i, j, k ∈ {1, . . . , d},

C3(g, u0,η)ijk = ∂3
ijkg(u0)

− η1/2
d∑
l=1

[
Γlij

(
Expθ?(η1/2u0)

)
∂2
klg(u0) + Γlki

(
Expθ?(η1/2u0)

)
∂2
jlg(u0)

+Γlkj

(
Expθ?(η1/2u0)

)
∂2
ilg(u0)

]
− η

d∑
m=1

∂kΓmij

(
Expθ?(η1/2u0)

)
∂mg(u0)

+ η

d∑
l,m=1

[
ΓlkjΓ

m
il + ΓlkiΓ

m
lj

] (
Expθ?(η1/2u0)

)
∂mg(u0) ,

(S25)

where (Γkij)i,j,k∈{1,...,d} are the Christoffel symbols of the Levi-Civita connection ∇. We derive the following
Taylor formulas.
Lemma S8. Assume A1-(i)-(ii), MD1, MD2, H1, H2 and H3(K?) for some compact set K? ⊂ S. Suppose
in addition that there exists C3 > 0 such that for any θ ∈ Θ, ‖h(θ)‖θ ≤ C3ρΘ(θ?, θ) and let η = [2C2L(1 +
σ2

1)]−1 ∧ (4C3)−1. Consider normal coordinates (ui)i∈{1,...,d} centered at θ? and define for any i, j ∈ {1, . . . , d},
hi : Θ → R, Σij : Θ → R by hi = dui(h) and Σij = [dui ⊗ duj ]{Σ}. For any smooth function with compact
support g : Tθ?Θ→ R, any η ∈ (0,η] and u0 ∈ Tθ?Θ, we have

Rηg(u0) = g(u0) + η1/2
d∑
i=1

∂ig(u0)hi
(

Expθ?(η1/2u0)
)

(S26)
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+
η

2

d∑
i,j=1

{
∂2
ijg (u0)− η1/2

d∑
k=1

Γkij(Expθ?(η1/2u0))∂kg (u0)

}[
Σij + hihj

] (
Expθ?(η1/2u0)

)
+ (η/6)Rg,η(u0) ,

where, setting θ0 = Expθ?(η1/2u0),∣∣Rg,η(u0)
∣∣ ≤ 8η1/21KK (θ0)E

[
‖C3(g,η)‖γ1A{θ0

‖HK‖3θ0
]

+ 16‖C2(g,η)‖E
[
‖YK‖2θ0

]
, (S27)

using the definitions of HK , YK , Aθ0 , KK and γ in Lemma S6-(S13),

‖C2(g,η)‖ = sup{|C2(g, u,η)[v⊗2]| : u ∈ Tθ?Θ, v ∈ Rd, ‖v‖2 = 1}
‖C3(g,η)‖γ = sup{|C3(g, u,η)[v⊗3]| : u ∈ η−1/2Exp−1

θ? (γ([0, 1])), v ∈ Rd, ‖v‖2 = 1} ,
(S28)

where C2(g, u,η) and C3(g, u,η) are defined in (S24) and (S25).

Proof. Using A1-(i) and [1, Proposition 12.9], (ui)i∈{1,...,d} are global coordinates on the Hadamard manifold
Θ. Let g : Tθ?Θ → R be a smooth function with compact support and g : Θ → R defined for any θ ∈ Θ by
g(θ) = g(Exp−1

θ? (θ)). Note that since ‖Exp−1
θ? (θ)‖θ? = ρΘ(θ?, θ), for any θ ∈ Θ by [1, Corollary 6.12], g is a smooth

function with compact support as well. In addition, by definition of the normal coordinates, g : u 7→ g(Expθ?(u))
is the expression of g in this coordinate system. Using this fact and the definitions of the Riemannian gradient
and Hessian [1, Equation 2.14, Example 4.22], we have, for any θ0 ∈ Θ,

grad g(θ0) =

d∑
i=1

∂ig(u0)∂ui ,

Hess g(θ0) =

d∑
i,j=1

{
∂2
ijg(u0)−

d∑
k=1

Γkij(Expθ?(u0))∂kg(u0)

}
dui ⊗ duj , (S29)

where u0 = Exp−1
θ? (θ0) and (Γkij)i,j,k∈{1,...,d} are the Christoffel symbols. Combining these expressions with

Lemma S7-(S22) and Lemma S6-(b)-(S11) gives

Rηg(u) = g(u0) + η

d∑
i=1

∂ig(u0)hi(Expθ?(u0))

+ (η2/2)

d∑
i,j=1

{
∂2
ijg(u0)−

d∑
k=1

Γkij(Expθ?(u0))∂kg(u0)

}[
Σij (Expθ?(u0)) + hihj (Expθ?(u0))

]
+ (η2/6)R̃g,η(u0) ,

where R̃g,η(u0) = Rg,η(θ0) is bounded using (S14), for θ0 = Expθ?(u0) and g : θ 7→ g(Exp−1
θ? (θ)).

Replacing g with gη : u 7→ g(η−1/2u) defined over Tθ?Θ and using that for any i, j ∈ {1, . . . , d} and u0 ∈ Tθ?Θ,

∂igη(u0) = η−1/2∂ig(η−1/2u0) and ∂2
ijgη(u0) = η−1∂ijg(η−1/2u0) , (S30)

we have for any u0 ∈ Tθ?Θ,

Rηgη(u0) = g(η−1/2u0) + η1/2
d∑
i=1

∂ig(η−1/2u0)hi (Expθ?(u0))

+ (η/2)

d∑
i,j=1

{
∂2
ijg

(
u0

η1/2

)
− η1/2

d∑
k=1

Γkij(Expθ?(u0))∂kg

(
u0

η1/2

)}[
Σij + hihj

]
(Expθ?(u0))

+ (η2/6)R̃gη,η(u0) . (S31)
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Expressing R̃gη,η(u0) using partial derivatives shows explicitly the dependency on η. Using (S30) and the
equivalent formula for the third order derivative, we have for any K > 0,

η2
∣∣∣R̃gη,η(u0)

∣∣∣ ≤ 8η31KK (θ0)E
[
‖∇Hess gη‖γ,∞1A{θ0

‖HK‖3θ0
]

+ 16η2‖Hess gη‖∞ E
[
‖YK‖2θ0

]
, (S32)

where θ0 = Expθ?(u0), γ : [0, 1] → Θ is defined by γ(t) = Expθ0(tηHθ0(X1)), HK , YK and Aθ0 are defined
in (S13). Using (S29) and Proposition S17, we have Hess gη(u) = η−1C2(g,η−1/2u0,η) and ∇Hess gη(u) =
η−3/2C3(g,η−1/2u0,η), where C2 and C3 are defined in (S24) and (S25) respectively. This gives

‖∇Hess gη‖γ,∞ = η−3/2‖C3(g,η)‖γ and ‖Hess gη‖∞ = η−1‖C2(g,η)‖ , (S33)

where ‖C2(g,η)‖ and ‖C3(g,η)‖γ are defined in (S28). Setting u0 = η1/2u0 in (S31), we get

Rηgη(η1/2u0) = g(u0) + η1/2
d∑
i=1

∂ig(u0)hi
(

Expθ?(η1/2u0)
)

+ (η/2)

d∑
i,j=1

{
∂2
ijg (u0)− η1/2

d∑
k=1

Γkij(Expθ?(η1/2u0))∂kg (u0)

}[
Σij + hihj

] (
Expθ?(η1/2u0)

)
+ η2R̃gη,η(η1/2u0) . (S34)

Therefore, letting Rg,η(u0) = ηR̃gη,η(η1/2u0), and combining Lemma S7-(S22), (S32), (S33) and (S34) gives the
desired result.

Lemma S9. Assume A1-(i)-(ii) and H5. Consider normal coordinates (ui)i∈{1,...,d} centered at θ? with respect
to the orthonormal basis (ei)i∈{1,...,d} of Tθ?Θ. Then h can be expressed in this chart as, for any η > 0, u ∈ Tθ?Θ,

h
(

Expθ?(η1/2u)
)

=

d∑
i=1

{
η1/2

d∑
k=1

Ai
ku

k + Ri
h

(
η1/2u

)}
∂ui , (S35)

where A is defined in H 5, uk are the components of u in (ei)i∈{1,...,d} and for any i ∈
{1, . . . , d}, limu→0{|Ri

h(u)|/‖u‖θ?} = 0.

Proof. Since Θ is a Hadamard manifold, these normal coordinates are defined throughout Θ. Thus, for any θ ∈ Θ,
it is possible to write,

h(θ) =

d∑
j=1

hj(θ)∂uj(θ) . (S36)

Recall the definition of the metric coefficients in the coordinates (ui)i∈{1,...,d} at θ ∈ Θ, for any i, j ∈ {1, . . . , d},

gij(θ) = 〈∂ui(θ), ∂uj(θ)〉θ . (S37)

Then, taking the scalar product of (S36) with each ∂ui, we have for any i ∈ {1, . . . , d},

d∑
j=1

gij(θ)h
j(θ) = 〈h(θ), ∂ui(θ)〉θ . (S38)

From the Taylor expansion formula for vector fields given by Theorem S16 for the geodesic γ : [0, 1]→ Θ given by
γ(0) = θ? and γ̇(0) = Exp−1

θ? (θ), it follows that,

∂ui(θ) = Tγ
01

[
ei +∇(∂ui)θ?

(
Exp−1

θ? (θ)
)]

+ R∂ui(θ) , (S39)

where the remainder is given by

R∂ui(θ) =

∫ 1

0

(1− t)Tγ
t1∇2(∂ui)γ(t)(γ̇(t), γ̇(t))dt .
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Let ‖∇2∂ui‖∞,γ = sup{|∇2(∂ui)γ(t)(v, v)| : t ∈ [0, 1], v ∈ Uγ(t)Θ} which is finite as γ[0, 1] is compact. Then
using that for any t ∈ [0, 1], ‖γ̇(t)‖γ(t) = ρΘ(θ?, θ) by [1, Corollary 5.6] and that geodesics are length-minimizing
curves by A1-(i); and that the parallel transport map is an isometry [1, p.108], we have

|R∂ui(θ)| ≤ (1/2)‖∇2∂ui‖∞,γρ2
Θ(θ?, θ) .

This proves that limθ→θ? |R∂ui(θ)/ρΘ(θ?, θ)| = 0. By the definition of normal coordinates centered at θ?, for
any i, j ∈ {1, . . . , d},∇∂uj∂ui =

∑d
k=1 Γkji∂uk and (Γkji)i,j,k∈{1,...,d} vanishes at θ? [1, Proposition 5.24] so (S39)

becomes
∂ui(θ) = Tγ

01(ei) + R∂ui(θ) . (S40)
Taking the scalar product of (12) and (S40), it follows that

〈h(θ), ∂ui(θ)〉θ = 〈AExp−1
θ? (θ), ei〉θ? + R̃i

h(θ) , (S41)

since parallel transport preserves scalar products, where limθ→θ?{|R̃i
h(θ)|/ρΘ(θ?, θ)} = 0. On the other hand,

from (S37) and (S40), since the (ei)i∈{1,...,d} are orthonormal,

gij(θ) = δij + Rij
g (θ) , (S42)

where δij = 1 if i = j and δij = 0 otherwise and limθ→θ?{|Rij
g (θ)|/ρΘ(θ?, θ)} = 0. Plugging (S41) and (S42) in

(S38), we obtain

hi(θ) =

d∑
j=1

Ai
ju
j(θ) + Ri

h(θ) , (S43)

where limθ→θ?
∣∣Ri

h(θ)
∣∣ = 0. Finally, (S35) is obtained from (S36)-(S43), by setting θ = Expθ?(η

1/2u), for
u ∈ Tθ?Θ, and noting that

uj(Expθ?(η1/2u)) = 〈Exp−1
θ? (Expθ?(η1/2u)), ej〉θ? = η1/2uj ,

ρΘ

(
Expθ?(η1/2u), θ?

)
= η1/2 ‖u‖θ? ,

which follow from [1, Corollary 5.6] and the definition of the coordinates (ui)i∈{1,...,d}.

Lemma S10. Assume A 1-(i)-(ii), MD 1, MD 2, MD 3, MD 4, H 1, H 2, H 5 and H 6 hold. Let η =
[2C2L(1 + σ2

1)]−1 ∧ (4C3)−1. Then the family of distributions (νη)η∈(0,η], defined by (11), is tight.

Proof. For any η ∈ (0,η], the conditions of Lemma S7 hold, thus the Markov chain (Un)n∈N is ergodic and its
invariant distribution νη is given by (11). For any r ≥ 0, let Br = {u ∈ Tθ?Θ : ‖u‖θ? ≤ r} be the tangent closed
ball at θ? of center 0 and radius r. Then, by (S23) and [1, Corollary 6.13], for any r > 0 and η ∈ (0,η], we have

νη
(
Tθ?Θ \ Br

)
= νη

(
Tθ?Θ \ Bη1/2r

)
= µη

(
Θ \ B(θ?,η1/2r)

)
. (S44)

However, by H6,

µη
(

Θ \ B(θ?,η1/2r)
)
≤ φ−1(η1/2r)

∫
Θ\{θ?}

φ(ρΘ(θ?, θ))dµη(θ)

≤ φ−1(η1/2r)

∫
Θ\{θ?}

V (θ)dµη(θ) . (S45)

Now, using H6 and Lemma S5 taking K? = {θ?}, we have,∫
Θ\{θ?}

V (θ)dµη(θ) ≤ 2ηL
{
σ2

0 + C1(1 + σ2
1)
}
/λ .

Combining this result and (S45) in (S44) implies that for any r > 0,

νη
(
Tθ?Θ \ Br

)
≤ 2ηL

{
σ2

0 + C1(1 + σ2
1)
}
/[λφ(η1/2r)]

≤ sup
η≤η
{η/φ(η1/2r)}(2L/λ)

{
σ2

0 + C1(1 + σ2
1)
}
,

where limr→+∞{supη≤η η/φ(η1/2r)} = 0 using H6. Therefore, for any ε > 0, there exists r > 0 such that for any
η ∈ (0,η], νη(Tθ?Θ \ Br) ≤ ε. This concludes the proof that (νη)η∈(0,η] is tight.
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Proof of Theorem 7. Consider normal coordinates (ui)i∈{1,...,d} centered at θ? with respect to the orthonormal
basis (ei)i∈{1,...,d} of Tθ?Θ. Define for any i, j ∈ {1, . . . , d}, hi : Θ → R, Σij : Θ → R by hi = dui(h) and
Σij = [dui ⊗ duj ]{Σ}. Let g : Tθ?Θ→ R be a smooth function with compact support. Applying Lemma S8 to g
gives (S26). Using MD3, Σ is continuous, which implies that for any u0 ∈ Tθ?Θ,

Σ
(

Expθ?(η1/2u0)
)

=

d∑
i,j=1

{
Σij? + Rij

Σ

(
η1/2u0

)}
∂ui ⊗ ∂uj , (S46)

where for any i, j ∈ {1, . . . , d}, Σij
? = Σij(θ

?), Rij
Σ is continuous over Tθ?Θ and Rij

Σ (0) = 0. Using Lemma S9,
replacing Σij and hi in (S26) with (S35) and (S46) gives for any u0 ∈ Tθ?Θ,

Rηg(u0) = g(u0) + η

d∑
i=1

∂ig(u0)

d∑
k=1

Ai
ku

k
0 + (η/2)

d∑
i,j=1

∂2
ijg(u0)Σij? + ηRg,η,Σ,h(u0)

+ (η/6)Rg,η(u0) ,

(S47)

where uk0 are the components of u0 in (ei)i∈{1,...,d},

Rg,η,Σ,h(u0) = η−1/2
d∑
i=1

Ri
h

(
η1/2u0

)
∂ig(u0)

+ (1/2)

d∑
i,j=1

{
∂2
ijg(u0)− η1/2

d∑
k=1

Γkij

(
Expθ?(η1/2u0)

)
∂kg(u0)

}[
Rij

Σ

(
η1/2u0

)]

+ (1/2)

d∑
i,j=1

{
∂2
ijg(u0)− η1/2

d∑
k=1

Γkij

(
Expθ?(η1/2u0)

)
∂kg(u0)

}[
hihj

(
Expθ?(η1/2u0)

)]

− (η1/2/2)

d∑
i,j,k=1

Γkij

(
Expθ?(η1/2u0)

)
∂kg(u0)Σij? .

By Lemma S10, (νη)η∈(0,η] is tight and therefore relatively compact. Therefore, it is enough that for any limit
point ν?, ν? = N(0,V) where V ∈ Rd×d is the solution of the Lyapunov equation AV + VA> = Σ(θ?). Let
(ηn)n∈N∗ be a sequence with values in (0,η], such that limn→+∞ ηn = 0, and (νηn)n∈N∗ weakly converges to ν?.

First by (S47), we have∫
Tθ?Θ

νηn(du0)

∫
Tθ?Θ

Rηn(u0,du1)g(u1)

=

∫
Tθ?Θ

νηn(du0)g(u0) + ηn

∫
Tθ?Θ

νηn(du0)

d∑
i=1

∂ig(u0)

d∑
k=1

Ai
ku

k
0

+ (ηn/2)

∫
Tθ?Θ

νηn(du0)

d∑
i,j=1

∂2
ijg(u0)Σij? + ηn

∫
Tθ?Θ

νηn(du0)Rg,ηn,Σ,h(u0)

+ (ηn/6)

∫
Tθ?Θ

νηn(du0)Rg,ηn(u0) .

Therefore using that νηn is stationary with respect to Rηn , we obtain that

lim sup
n→+∞

∣∣∣∣∣∣
∫

Tθ?Θ

νηn(du0)


d∑
i=1

∂ig(u0)

d∑
k=1

Ai
ku

k
0 +

d∑
i,j=1

∂2
ijg(u0)Σij?


∣∣∣∣∣∣

≤ lim sup
n→+∞

∣∣∣∣∫
Tθ?Θ

νηn(du0)Rg,ηn,Σ,h(u0)

∣∣∣∣+

∣∣∣∣∫
Tθ?Θ

νηn(du0)Rg,ηn(u0)

∣∣∣∣ . (S48)
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Consider a sequence of independent random variables (Yn)n∈N such that for any n ∈ N, the law of Yn is νηn .
By Slutsky’s theorem, since (Yn)n∈N converges in distribution and limn→+∞ ηn = 0, we obtain that η

1/2
n Yn

converges in distribution towards 0. Moreover, using the continuous mapping theorem, we have

lim sup
n→+∞

|E[Rg,ηn,Σ,h(Yn)]| = 0 . (S49)

Similarly, we use (S27) to obtain, for any n ∈ N and K > 0,∣∣Rg,ηn(Yn)
∣∣ ≤ 8η1/2

n 1KK (θn)E
[
‖C3(g,ηn)‖γ1A{

θn

‖HK‖3θn
∣∣∣θn]

+ 16‖C2(g,ηn)‖E
[
‖YK‖2θn

∣∣∣θn] ,
where for any n ∈ N, θn = Expθ?(η

1/2
n Yn) are independent random variables and by (S23), the distribution of θn is

µηn . Thus we obtain for any K ≥ 0, using 1KK (θn) ‖HK‖θn is almost surely bounded by 4[K3 +supθ∈KK ‖h(θ)‖3θ],
Markov’s inequality and MD4,

lim sup
n→+∞

∣∣E[Rg,ηn(Yn)]
∣∣ ≤ lim sup

n→+∞
16‖C2(g,ηn)‖E[‖eθn(X1)‖2θn {1− χK(‖eθn(X1)‖θn)}]

≤ 16‖C2(g, 0)‖K−ε{σ̃2
0 + σ̃2

1E[V (θ?)]} , (S50)

using that (θn)n∈N converges in distribution to θ?. For any smooth function with compact support g : Tθ?Θ→ R,
combining (S48)-(S49)-(S50), taking K → +∞ and using the weak convergence of (νηn)n∈N to ν? when n→ +∞
shows that ∫

Tθ?Θ

ν?(du0)


d∑
i=1

∂ig(u0)

d∑
k=1

Ai
ku

k
0 +

d∑
i,j=1

∂2
ijg(u0)Σij?

 = 0 . (S51)

Finally, by [6, Theorem 2.2.1], there exists a unique matrix V ∈ Rd×d solution to the Lyapunov equation
AV + VA> = Σ(θ?). By [7, Theorem 10.1], N(0,V) is the unique probability distribution on Tθ?Θ satisfying
(S51). This concludes the proof.

S5 Proofs for Section 4

S5.1 Proof of Lemma 8

Recall that f is λf -strongly geodesically convex, if and only if for any θ1, θ2 ∈ Θ,

f(θ2) ≥ f(θ1) +
〈
Exp−1

θ1
(θ2), grad f(θ1)

〉
θ1

+ λfρ
2
Θ(θ1, θ2) . (S52)

Put θ1 = θ? and θ2 = θ. Since θ? is a stationary point of f , so grad f(θ?) = 0, it follows from (S52) that

f(θ)− f(θ?) ≥ λfρ2
Θ(θ?, θ) ,

which is the second identity in (13). To obtain the first identity, put θ1 = θ and θ2 = θ?, in (S52), so

f(θ?)− f(θ) ≥
〈
Exp−1

θ (θ?), grad f(θ)
〉
θ

+ λfρ
2
Θ(θ?, θ) . (S53)

Since f(θ?) ≤ f(θ), this implies

−
〈
Exp−1

θ (θ?), grad f(θ)
〉
θ
≥ λfρ2

Θ(θ?, θ) = λf
∥∥Exp−1

θ (θ?)
∥∥2

θ
.

Or, after using the Cauchy-Schwarz inequality,

‖grad f(θ)‖θ ≥ λf
∥∥Exp−1

θ (θ?)
∥∥
θ
. (S54)

Finally, using once more the Cauchy-Schwarz inequality, and (S53) and (S54),

f(θ)− f(θ?) ≤ −
〈
Exp−1

θ (θ?), grad f(θ)
〉
θ
≤ (1/λf ) ‖grad f(θ)‖2θ ,

which is equivalent to the first identity in (13).
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S5.2 Proof of Lemma 10

Without loss of generality, we assume that f(θ?) = 0. First, we show that for any θ ∈ Θ,

f(θ) ≤Mfρ
2
Θ(θ?, θ) . (S55)

Let θ ∈ Θ and γ : [0, 1]→ Θ the unique geodesic such that γ(0) = θ? and γ(1) = θ. Then since f is continuously
differentiable using [1, Proposition 4.15-(ii) and Theorem 4.24-(iii)], we get that f(θ) =

∫ 1

0
〈grad f(γ(t)), γ̇(t)〉γ(t) dt.

Therefore, using the Cauchy-Schwarz inequality and for any t ∈ [0, 1], ‖γ̇(t)‖γ(t) = ρΘ(θ?, θ) we obtain that
|f(θ)| ≤ ρΘ(θ?, θ) ‖grad f(γ(t))‖γ(t) which shows that (S55) holds by assumption.

We now proceed with the proof of the main statement. Since f is twice continuously differentiable, f̃ has this
same property. In addition, for any θ ∈ Θ,

grad f̃(θ) = grad f(θ)/[2(f(θ) + 1)1/2] . (S56)

Therefore, using the assumption that for any θ ∈ Θ, ‖grad f(θ)‖2θ ≤ Mfρ
2
Θ(θ?, θ) and the second inequality of

Lemma 8, we get that

‖grad f̃(θ)‖θ = ‖grad f(θ)‖θ /[2(f(θ) + 1)1/2] ≤M1/2
f ρΘ(θ?, θ)/[2(λfρ

2
Θ(θ?, θ) + 1)1/2]

≤ C1/2
f [1 ∧ ρΘ(θ?, θ)] ,

with C1/2
f ← (M

1/2
f /2)[1 ∧ λ−1/2

f ].

It remains to show that for any θ ∈ Θ, −〈Exp−1
θ (θ?), grad f̃(θ)〉θ ≥ λ̃fV1(θ), where V1 is defined by (9) with δ = 1

and λ̃f ← λ
1/2
f /2. Using (S56) again, F2 and (S55), we obtain that for any θ ∈ Θ,

−
〈

Exp−1
θ (θ?), grad f̃(θ)

〉
θ

= −
〈
Exp−1

θ (θ?), grad f(θ)
〉
θ
/[2(f(θ) + 1)1/2]

≥ λfρ2
Θ(θ?, θ)/[2(f(θ) + 1)1/2] ≥ λfρ2

Θ(θ?, θ)/[2(Mfρ
2
Θ(θ?, θ) + 1)1/2] .

Using that for any θ ∈ Θ, V1(θ) = {ρ2
Θ(θ?, θ) + 1}1/2 − 1 ≤ ρΘ(θ?, θ), we get that

−
〈

Exp−1
θ (θ?), grad f̃(θ)

〉
θ
≥ λfV1(θ)ρΘ(θ?, θ)/[2(Mfρ

2
Θ(θ?, θ) + 1)1/2] ≥ λfV1(θ)/(2M

1/2
f ) .

S5.3 Proof of Proposition 11

The proof consists in an application of Theorem 1-(b). First, by Proposition 5, V1 defined by (9) with δ = 1,
satisfies H1. In addition, by [2, Lemma 16], V1 is continuously differentiable with gradient given for any θ ∈ Θ by

gradV1(θ) = −Exp−1
θ (θ?)/{1 + ρ2

Θ(θ?, θ)}1/2 .

Therefore, for any θ ∈ Θ, by F3 we get

〈gradV1(θ), grad f(θ)〉θ = −
〈
Exp−1

θ (θ?), grad f(θ)
〉
θ
/{1 + ρ2

Θ(θ?, θ)}1/2

≥ λ̃fV1(θ)/{1 + ρ2
Θ(θ?, θ)}1/2 . (S57)

In addition, t2 ∧ 1 − ab{(t2 + 1)1/2 − 1}/(1 + t2)1/2 ≤ 0 for any t ≥ 0, b > 0 and a = 4b−1 using that
(t2 + 1)1/2 − 1 ≥ t2/[2(1 + t2)1/2]. As a result, using F3 for any t ≥ 0, b > 0 and a = 4b−1, it follows that H2 is
satisfied with C1 ← 0, C2 ← 4Cf/λ̃f for h = −grad f and V ← V1. Therefore, we obtain using Theorem 1-(b)
that for any η ∈ (0,η],

n−1
n−1∑
k=0

E
[
〈gradV1(θk), grad f(θk)〉θk

]
≤ 2V1(θ0)/(nη) + 2η(1 + κ)σ2

0 ,
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where η = [(8Cf/λ̃f )(1 + κ)(1 + σ2
1)]−1. Using (S57), we have

(λ̃f/n)

n−1∑
k=0

E
[
V1(θk)/{1 + ρ2

Θ(θ?, θk)}1/2
]
≤ 2V1(θ0)/(nη) + 2η(1 + κ)σ2

0 ,

which concludes the proof since (t2 +1)1/2−1 ≥ t2/[2(1+ t2)1/2] for any t ≥ 0 implying V1(θ)/{1+ρ2
Θ(θ?, θ)}1/2 ≥

D2
Θ(θ?, θ)/2 for any θ ∈ Θ.

S5.4 Proof of Proposition 12

Define X = {θi : i ∈ {1, . . . ,Mπ}} and recall that D = sup{ρΘ(θ0, θ) : θ ∈ X}. Set S = B(θ0,D). Note that the
closed ball S, is compact by [4, Theorem 1.7.1], geodesically convex, and X ⊂ S, as well as θ0 ∈ S. We consider in
this section, for any θ ∈ Θ and x ∈ X, Hθ(x) = Exp−1

θ (x).

First note that θn ∈ S, for all n ∈ N by a straightforward induction using that S is geodesically convex and θ0 ∈ S.
Indeed, θ0 ∈ S, and, if θn ∈ S, then θn+1 lies on the geodesic segment connecting θn and Xn+1, two points which
belong to S, and therefore θn+1 ∈ S. This means that the SGD scheme used here is equivalent to

θn+1 = projS
(
Expθn(ηHθn(Xn+1))

)
.

Define H and V2 as in Proposition 4. It is possible to show that H = S. Indeed, for θ ∈ S, and x ∈ X, since x ∈ S,
and S is convex, the geodesic segment connecting θ to x is entirely contained in S. However, by definition, this
geodesic segment is the set of points Expθ(tHθ(x)), where t ∈ [0, 1]. Now, since η ≤ η ≤ 1, Proposition 4 implies
that V2 verifies H1-(i)-(ii) where L← CLπ, Lπ = (D + 1)(1 + κ coth(κD)) and C is a universal constant.

The objective function f satisfies F2 with λf = 1/2 (that is, f is 1/2-strongly convex), since by [4, Theorem
5.6.1] fi(θ) = ρ2

Θ(θ, θi)/2 is 1-strongly geodesically convex for any i ∈ {1, . . . ,Mπ}. Thus, by (S52) for all θ ∈ S〈
Exp−1

θ (θ?), grad f(θ)
〉
θ
≤ −(1/2)ρ2

Θ(θ?, θ) . (S58)

Now, for any θ ∈ S, v ∈ TθΘ, using [4, Theorem 5.6.1], we have,

‖Hess fθ(v, v)‖θ ≤M
−1
π

Mπ∑
i=1

‖(Hess fi)θ(v, v)‖θ

≤M−1
π

Mπ∑
i=1

κρΘ(θ, θi) coth(κρΘ(θ, θi)) ‖v‖2θ ≤ L̃π ‖v‖
2
θ ,

where L̃π = 2Dκ coth(2κD), since t 7→ t coth(t) is non-decreasing over R+. Therefore, by [2, Lemma 10], grad f is
geodesically L̃π-Lipschitz continuous on S.In particular, for any θ ∈ S,

‖grad f(θ)‖θ ≤ L̃πρΘ(θ?, θ) . (S59)

By (S58) and (S59), it is straightforward that V = V2 and h = −grad f satisfy H 2, with C1 = 0 and
C2 = 2L̃2

π ≤ 25L2
π. In addition, by Proposition 4, (S58) implies V2 verifies H3-(∅), with λ = 1/2.

Finally, MD1 holds with σ2
0 = D2 and σ2

1 = 0 since for any θ ∈ S and x ∈ X,

‖Hθ(x)‖θ =
∥∥Exp−1

θ (x)
∥∥
θ
≤ 2D .

Therefore, we can apply Theorem 1-(c) which implies that for any η ≤ η,

E[V2(θn)] ≤ {1− η/4}n V2(θ0) + 4ηLπD2 .

To conclude, it only remains to note that V2(θn) = ρ2
Θ(θ?, θn) and V2(θ0) = ρ2

Θ(θ?, θ0), since (θn)n∈N and θ?

belong to H = S.
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S5.5 Proof of Theorem 13

We consider in this section the recursion

θn+1 = Expθn [ηHθn(Xn+1)] (S60)

Hθn(Xn+1) = Exp−1
θn

(
X

(1)
n+1

)/(
2{ρ2

Θ(θn, X
(2)
n+1)/2 + 1}1/2

)
,

where Xn+1 = (X
(1)
n+1, X

(2)
n+1 and (X

(1)
n , X

(2)
n )n∈N∗ is an i.i.d. sequence of pairs of independent random variables

with distribution π. Denote by Qη the Markov kernel corresponding to (S60).

We give first some additional intuition and motivation behind the scheme (S60). It can be interpreted as a
stochastic optimization method to minimize

f̃π = (fπ + 1)1/2 ,

in place of fπ. First note that fπ and f̃π have the same minimizer, but compared to fπ it may be shown that
grad f̃π, given for any θ ∈ Θ by

grad f̃π(θ) = (1/2)grad fπ(θ)(fπ(θ) + 1)−1/2 ,

is geodesically Lipschitz. However, note that (S60) is not an unbiased stochastic optimization scheme for the
function f̃π since

E [Hθn(Xn+1)] = (1/2){grad fπ(θn)}E
[
{ρ2

Θ(θn, X
(2)
n+1)/2 + 1}−1/2

]
.

The proof of Theorem 13 then consists in adapting the proof of Theorem 1 to deal with this additional difficulty
taking for the Lyapunov function V , V1 defined by (9) with δ = 1. A general theory could be derived but we
believe that this is out the scope of the present document and leave it for future work. We start by preliminary
technical results which are needed to establish Theorem 13.
Lemma S11. Assume A 2 and MD 5. Let θ?π be the Riemannian barycenter of the probability measure π,
i.e. θ?π = argminΘ fπ where fπ is defined by (16). Then, for any θ ∈ Θ,

−
∫

Θ

〈
Exp−1

θ (θ?π),Exp−1
θ (ν)

〉
θ
π(dν) ≤ −ρ2

Θ(θ, θ?π)/2 .

Proof. Using A2 and [4, Theorem 5.6.1], we have that for any ν ∈ Θ, the operator norm of the Riemannian
Hessian of θ 7→ ρ2

Θ(θ, ν)/2 is lower bounded by 1. Therefore, by [8, Theorem 11.19], θ 7→ ρ2
Θ(θ, ν)/2 is 1/2-strongly

convex. Applying this to θ and θ?π ∈ Θ, we have for any ν ∈ Θ,

ρ2
Θ(θ?π, ν)/2− ρ2

Θ(θ, ν)/2 ≥ −
〈
Exp−1

θ (θ?π),Exp−1
θ (ν)

〉
θ

+ ρ2
Θ(θ, θ?π)/2 .

Using MD5, we can integrate this inequality w.r.t. π, bringing

fπ(θ?π)− fπ(θ) ≥ −
∫

Θ

〈
Exp−1

θ (θ?π),Exp−1
θ (ν)

〉
θ
π(dν) + ρ2

Θ(θ, θ?π)/2 .

Since by definition of θ?π, 0 ≥ fπ(θ?π)− fπ(θ), this completes the proof.

Lemma S12. Assume A 2 and MD 5. Let θ?π be the Riemannian barycenter of the probability measure π,
i.e. θ?π = argminΘ fπ where fπ is defined by (16). Then, for any θ ∈ Θ,∫

Θ

{ρ2
Θ(θ, ν)/2 + 1}−1/2π(dν) ≥ {ρ2

Θ(θ, θ?π) + 2fπ(θ?π) + 1}−1/2 .

Proof. Let θ ∈ Θ. Using Jensen’s inequality with the convex function t 7→ (t+ 1)−1/2 on R∗+, we have∫
Θ

{ρ2
Θ(θ, ν)/2 + 1}−1/2π(dν) ≥ {fπ(θ) + 1}−1/2

. (S61)

However, using the triangle and Hölder’s inequalities, we have for any θ and ν ∈ Θ, ρ2
Θ(θ, ν)/2 ≤ ρ2

Θ(θ, θ?π) +
ρ2

Θ(θ?π, ν). Taking the integral with respect to π, by MD5 we get fπ(θ) ≤ ρ2
Θ(θ, θ?π) + 2fπ(θ?π). Lastly, combining

this result with (S61) and using that the function t 7→ (t+1)−1/2 is non-increasing on R∗+ completes the proof.
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Lemma S13. Assume A 2 and MD 5. Let θ?π be the Riemannian barycenter of the probability measure π,
i.e. θ?π = argminΘ fπ where fπ is defined by (16). Then, for any θ0 ∈ Θ,

QηV1(θ0) ≤ V1(θ0)− [η/(4C1/2
π )]D2

Θ(θ0, θ
?
π) + 2η2(1 + κ){1 + fπ(θ?π)} (fπ(θ?π) + 2) ,

where V1 is defined in (9) with δ ← 1, θ? ← θ?π, Cπ = 1 + 2fπ(θ?π) and D2
Θ : Θ2 → [0, 1] is defined by (14).

Proof. Let θ0 ∈ Θ, and consider

Hθ0(X) = (1/2)Exp−1
θ0

(
X(1)

)/{
ρ2

Θ

(
θ0, X

(2)
)/

2 + 1
}1/2

,

where X(1), X(2) are independent random variables with distribution π.

Let γ : [0, 1]→ Θ be the geodesic curve defined by γ : t 7→ Expθ0 [tηHθ0(X)]. Using [2, Lemma 1] with γ and V1,
we get

V1(γ(1)) ≤ V1(θ0) + 〈gradV1(θ0), γ̇(0)〉θ0 + (L/2) ‖γ̇(0)‖2θ0
= V1(θ0) + η 〈gradV1(θ0), Hθ0(X)〉θ0 + ((1 + κ)η2/2) ‖Hθ0(X)‖2θ0 , (S62)

by Proposition 5. We now compute the expectation of the terms in (S62). Using that (X(1), X(2)) are independent,
we obtain

E
[
〈gradV1(θ0), Hθ0(X)〉θ0

]
= (1/2)

〈
gradV1(θ0),E

[
Exp−1

θ0

(
X(1)

)]
E
[{
ρ2

Θ

(
θ0, X

(2)
)/

2 + 1
}−1/2

]〉
θ0

.

Moreover, using (S10) and Lemmas S11 and S12 yields

E
[
〈gradV1(θ0), Hθ0(X)〉θ0

]
= −(1/2)

{
ρ2

Θ (θ0, θ
?
π) + 1

}−1/2 E
[〈

Exp−1
θ0

(θ?π),Exp−1
θ0

(X(1))
〉
θ0

]
E
[{
ρ2

Θ(θ0, X
(2))
/

2 + 1
}−1/2

]
≤ −(1/4)ρ2

Θ (θ0, θ
?
π)
[{
ρ2

Θ(θ0, θ
?
π) + 1

}{
ρ2

Θ(θ0, θ
?
π) + 2fπ(θ?π) + 1

}]−1/2

≤ −(16Cπ)−1/2D2
Θ(θ0, θ

?
π) , (S63)

where Cπ = 1 + 2fπ(θ?π) and D2
Θ : Θ2 → [0, 1] is defined by (14). Looking to bound the expectation of the last

term in (S62), we use that ‖Exp−1
θ0

(X(1))‖θ0 = ρΘ(θ0, X
(1)) and that X(1) has distribution π to obtain,

E
[
‖Hθ0(X)‖2θ0

]
= (1/4)E

[
ρ2

Θ(θ0, X
(1))
]
E
[{
ρ2

Θ(θ0, X
(2))/2 + 1

}−1
]

= (fπ(θ0)/2)E
[{
ρ2

Θ(θ0, X
(2))/2 + 1

}−1
]
. (S64)

Denote by M = ρΘ(θ?π, θ0)/2. We bound the expectation in (S64) using the event {ρΘ(θ?π, X
(2)) ≥M} and its

complement. On {ρΘ(θ?π, X
(2)) ≥M}, we use Markov’s inequality with the increasing map t 7→ t2/2 + 1,

E
[
1[M,+∞)(ρΘ(θ?π, X

(2)))/[ρ2
Θ(θ0, X

(2))/2 + 1]
]
≤ P

(
ρΘ(θ?π, X

(2)) ≥M
)

≤
(
E
[
ρ2

Θ(θ?π, X
(2))
]/

2 + 1
)/(

M2/2 + 1
)
. (S65)

On {ρΘ(θ?π, X
(2)) < M}, using the triangle inequality, we have

ρΘ(θ0, X
(2)) ≥ |ρΘ(θ0, θ

?
π)− ρΘ(θ?π, X

(2))| ≥ ρΘ(θ0, θ
?
π)−M = M .

Then, we obtain
E
[
1[0,M)(ρΘ(θ,X(2)))/{ρ2

Θ(θ0, X
(2))/2 + 1}

]
≤ 1/[M2/2 + 1] . (S66)
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Figure S1: Monte Carlo approximations of the mean distance at convergence in Theorem 13

Adding (S65) and (S66) together and using the definition of M we obtain,

E
[{
ρ2

Θ

(
θ0, X

(2)
)/

2 + 1
}−1

]
≤ (fπ(θ?π) + 2)

/[
ρ2

Θ(θ?π, θ0)/8 + 1
]
. (S67)

Plugging (S67) in (S64), we get

E
[
‖Hθ0(X)‖2θ0

]
≤ (fπ(θ0)/2) (fπ(θ?π) + 2) /

[
ρ2

Θ(θ?π, θ0)/8 + 1
]
. (S68)

Using the triangle and Hölder’s inequalities, we have for any θ and ν ∈ Θ, ρ2
Θ(θ, ν)/2 ≤ ρ2

Θ(θ, θ?π) + ρ2
Θ(θ?π, ν).

Taking the integral with respect to π, by MD5 we get fπ(θ) ≤ ρ2
Θ(θ, θ?π) + 2fπ(θ?π). Combining this result and

(S68), we obtain

E
[
‖Hθ0(X)‖2θ0

]
≤ {ρ2

Θ(θ?π, θ0)/2 + fπ(θ?π)} (fπ(θ?π) + 2) /
[
ρ2

Θ(θ?π, θ0)/8 + 1
]
≤ 4{1 + fπ(θ?π)} (fπ(θ?π) + 2) .

Combining this result and (S63) in (S62) concludes the proof.

Proof of Theorem 13. Let θ0 ∈ Θ,η > 0 and n ∈ N. Then, for any k ∈ {1, . . . , n}, using Markov’s property and
Lemma S13 we have,

[η/(4C1/2
π )]E

[
D2

Θ(θk−1, θ
?
π)
]

= [η/(4C1/2
π )]

∫
Θ

D2
Θ(θ, θ?π)Qk−1

η (θ0,dθ)

≤ Qk−1
η V1(θ0)−QkηV1(θ0) + 2η2(1 + κ)(1 + fπ(θ?π))(fπ(θ?π) + 2) .

Summing these inequalities for k ∈ {1, . . . , n} implies that

[η/(4C1/2
π )]

n−1∑
k=0

E
[
D2

Θ(θk, θ
?
π)
]
≤ V1(θ0)−QnηV1(θ0) + 2nη2(1 + κ)(1 + fπ(θ?π))(fπ(θ?π) + 2) .

Finally, dividing both sides by [nη/(4C
1/2
π )] and using that V1 is a non-negative function, we obtain

n−1
n−1∑
k=0

E
[
D2

Θ(θk, θ
?
π)
]
≤ 2V1(θ0)C1/2

π

/
(ηn) + 2η(1 + κ)(fπ(θ?π) + 1)(fπ(θ?π) + 2)(2fπ(θ?π) + 1)−1/2 .

Which concludes the proof by setting Bπ = (1 + κ)(fπ(θ?π) + 1)(fπ(θ?π) + 2)(2fπ(θ?π) + 1)−1/2.

Similarly to Figure 2, Figure S1 illustrates Theorem 7. To this end, 1000 replications of the experiment derived for
Figure 3 are performed, obtaining {(θ(i)

n ) : i ∈ {1, . . . , 1000}} for n = d50/ηe and η ∈ {1, 2.8, 4.6, 6.4, 8.2, 10} ×
10−2. We estimate, with these samples, the mean and the variance of D2

Θ(θ, θ?π), for θ following the stationary
distribution µη. We observe that the mean and variance are both linear w.r.t. the step-size η, indicating that the
iterates of the SA scheme remain in a neighborhood of diameter O(η1/2) to the ground truth.

Even though the setting of this experiment goes beyond the assumptions of Theorem 7, it suggests that such a
result may be applicable also in the setting of Theorem 13. The proof of such a result is left for future work.
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S6 Background on Markov chain theory and Riemannian geometry

We give here some useful definitions and results that are used throughout the paper.

S6.1 Markov chain notions

We refer to [3] for a general introduction to Markov chains in general state space. Let (Y,Y) be a measurable
state space and P be a Markov kernel on Y × Y. Consider for any y ∈ Y, the distribution Py of the canonical
Markov chain (Yn)n∈N corresponding to P and starting from y on the canonical space (YN,Y⊗N). Denote by Ey
the corresponding expectation.

Denote for any A ∈ Y, τA = inf{l ≥ 1 : Yl ∈ A} and NA =
∑+∞
l=1 1{A}(Yl).

We say that (Yn)n∈N is ψ-irreducible if there exists a measure ψ on Y such that whenever ψ(A) > 0, we have
Py(τA <∞) > 0 for any y ∈ Y. Moreover, a set A ∈ Y is called Harris-recurrent if Py(NA =∞) = 1 for any y ∈ A.
Finally, a chain (Yn)n∈N is called Harris-recurrent if it is ψ-irreducible and every set A ∈ Y such that ψ(A) > 0 is
Harris-recurrent.

Let V : Y → [1,+∞). We say that P is V -uniformly geometrically ergodic if there exist ρ ∈ [0, 1) and C ≥ 0
such that for any y ∈ Y and k ∈ N,

∥∥δyP k − µ∥∥V ≤ CρkV (y), where ‖·‖V is defined for two probability measures
ν1, ν2 on (Y,Y) by ‖ν1 − ν2‖V = sup{|ν1(g)− ν2(g)| : supY{|g| /V } ≤ 1}.

S6.2 Useful results from Riemannian geometry

We now give definitions and auxiliary results related to tensor fields along curves, their derivatives, and Taylor
expansions on Riemannian manifolds.

Let M be a smooth manifold with or without boundary. Given a smooth curve γ : I → M defined on an
interval I, and any k, l ∈ N, a (k, l)-tensor field along γ is a continuous map F : I → T(k,l)TM, such that
F (t) ∈ T(k,l)(Tγ(t)M) for any t ∈ I, where T(k,l)TM is the bundle of (k, l)-tensors on M, see e.g. [1, Appendix B].
A vector field Y along γ is a (1, 0)-tensor field, in which case for any t ∈ I, Y (t) is just a tangent vector in Tγ(t)M.
We say that a tensor field F along γ is extendible if there exists a tensor field F̃ defined on a neighborhood of
γ(I) such that F = F̃ ◦ γ.

We let Xk,l(γ) denote the set of smooth (k, l)-tensor fields along γ, and X(γ) = X1,0(γ) denote the set of smooth
vector fields along γ. In particular, X0,0(γ) is the set of smooth functions g : I → γ(I)×R such that for any t ∈ I,
g(t) = (γ(t), f(t)) for some smooth function f : I → R and therefore can be identified with the set of smooth
functions f : I → R. In the sequel, we adopt if no confusion is possible this identification. We extend to tensor
fields along γ the following definition of the trace on tensors. For any (k, l)-tensor T , we denote by Tr�,4(T ) the
(k− 1, l− 1)-tensor with component of index (i1, . . . , ik−1, j1, . . . , jl−1), given by

∑d
m=1 T

j1,...,j4−1,m,j4,...,jl−1

i1,...,i�−1,m,i�,...,ik−1
. In

particular, for any ω ∈ X0,1(γ), Y ∈ X(γ),

Tr(1,1)(ω ⊗ Y ) = ω(Y ) .

Also, for any F ∈ Xk,l(γ), any ω1, . . . , ωk0 ∈ X0,1(γ) and Y1, . . . , Yl0 ∈ X(γ), with k0 ≤ k, l0 ≤ l, denote by
[F : ω1 ⊗ · · · ⊗ ωk0 ⊗ Y1 ⊗ · · · ⊗ Yl0 ], the (k − k0, l − l0) smooth tensor field along γ defined by the induction:

[F : ω⊗1:i] = Tr(1,l+1)([F : ω⊗1:(i−1)]⊗ ωi) (S69)

[F : ω⊗1:k0 ⊗ Y⊗1:j ] = Tr(k−k0+1,1)([F : ω⊗1:k0 ⊗ Y⊗1:(j−1)]⊗ Yj) , (S70)

setting ω⊗1:i = ω1 ⊗ · · · ⊗ ωi, Y⊗1:j = Y1 ⊗ · · · ⊗ Yj . Note that for any ωk−k0+1, . . . , ωk ∈ X0,1(γ) and
Yl−l0+1, . . . , Yl ∈ X(γ),

[F : ω⊗1:k0 ⊗ Y⊗1:l0 ](ωk−k0+1, . . . , ωk, Yl−l0+1, . . . , Yl) = F (ω1, . . . , ωk, Y1, . . . , Yl) . (S71)

Proposition S14. Let M be a smooth manifold with or without border, ∇ be a connection on TM and γ : I → M
a smooth curve defined on an interval I. Then, for any k, l ∈ N, ∇ determines an operator Dt : Xk,l(γ)→ Xk,l(γ),
satisfying the following conditions.
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(a) On X(γ), Dt is the usual covariant derivative along γ, see [1, Theorem 4.24].
(b) On X0,0(γ), Dt is the usual derivative for real functions, i.e. for any f ∈ X0,0(γ), Dtf = df/dt.
(c) For any F ∈ Xk,l(γ), any ω1, . . . , ωk ∈ X0,1(γ) and any Y1, . . . , Yl ∈ X(γ),

(DtF )
(
ω1, . . . , ωk, Y1, . . . , Yl

)
=

d

dt

[
F
(
ω1, . . . , ωk, Y1, . . . , Yl

)]
−

k∑
i=1

F
(
ω1, . . . , ωi−1,Dtω

i, ωi+1, . . . , ωk, Y1, . . . , Yl
)

−
l∑

j=1

F
(
ω1, . . . , ωk, Y1, . . . , Yj−1,DtYj , Yj+1, . . . , Yl

)
.

(S72)

In particular, Dt satisfies these additional properties.

(i) Dt satisfies the product rule, i.e. for any f ∈ X0,0(γ), F ∈ Xk,l(γ),

Dt (fF ) =

(
d

dt
f

)
F + fDtF .

(ii) For any k1, l1, k2, l2 ∈ N, and any F ∈ Xk1,l1(γ), G ∈ Xk2,l2(γ),

Dt(F ⊗G) = DtF ⊗G+ F ⊗DtG .

(iii) For any positive integers k0 ≤ k, l0 ≤ l, F ∈ Xk,l(γ),

Dt

{
Tr(k0,l0)(F )

}
= Tr(k0,l0) (DtF ) .

(iv) Let F ∈ Xk,l be an extendible tensor field, i.e., such that there exists a (k, l)-tensor field F̃ defined on a
neighborhood of γ(I) satisfying for any t ∈ I, F (t) = F̃ (γ(t)). Then, for any t ∈ I,

DtF (t) = ∇γ̇(t)F̃ (γ(t)) .

Finally, if D̃t : Xk,l(γ)→ Xk,l(γ) is another operator satisfying (a),(b),(i),(ii) and (iii), then Dt = D̃t.

Proof. Let k, l ∈ N. Note first that (a)-(b) and (S72) define DtF for any F ∈ Xk,l(γ), setting for any ω ∈ X0,1(γ)
and Y ∈ X(γ),

[Dtω] (Y ) = d [ω(Y )] /dt− ω(DtY ) . (S73)

We now show that DtF ∈ Xk,l, which will imply that Dt : Xk,l → Xk,l. Second, we establish that (i)-(ii)-(iii)-(iv)
are satisfied. We conclude the proof by proving uniqueness of Dt.

Using [1, Lemma B.6], to show that DtF ∈ Xk,l it is enough to prove that DtF is multilinear over X0,0(γ). For
that, we start proving (i) on X0,1(γ). Let ω ∈ X0,1(γ), f ∈ X0,0(γ) and Y ∈ X(γ), then by (S73),

[Dt(fω)] (Y ) = d [fω(Y )] /dt− fω (DtY ) = [df/dt]ω(Y ) + f [Dtω] (Y ) , (S74)

which proves (i) on X0,1(γ). Now, let k, l ∈ N, F ∈ Xk,l(γ), ω1, . . . , ωk ∈ X0,1(γ), Y1, . . . , Yl ∈ X(γ). Let
f ∈ X0,0(γ) and k0 ∈ N∗, k0 ≤ k. We have, using the multilinearity of F over X0,0(γ), the definition of Dt (S72),
and (S74)

[DtF ]
(
ω1, . . . , ωk0−1, fωk0 , ωk0+1, . . . , ωk, Y1, . . . , Yl

)
=

d

dt

[
F
(
ω1, . . . , ωk0−1, fωk0 , ωk0+1, . . . , ωk, Y1, . . . , Yl

)]
−

k∑
i=1,i6=k0

fF
(
ω1, . . . , ωi−1,Dtω

i, ωi+1, . . . ωk, Y1, . . . , Yl
)

− F
(
ω1, . . . , ωk0−1,Dt(fω

k0), ωk0+1, . . . , ωk, Y1, . . . , Yl
)
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−
l∑

j=1

fF
(
ω1, . . . , ωk, Y1, . . . , Yj−1,DtYj , Yj+1, . . . , Yl

)
=

[
d

dt
f

] {
F
(
ω1, . . . , ωk, Y1, . . . , Yk

)
− F

(
ω1, . . . , ωk, Y1, . . . , Yk

)}
+ f [DtF ]

(
ω1, . . . , ωk, Y1, . . . , Yl

)
= f [DtF ]

(
ω1, . . . , ωk, Y1, . . . , Yl

)
.

The same arguments apply if we replace Yl0 with fYl0 , for some l0 ≤ l. Thus, using [1, Lemma B.6], DtF ∈ Xk,l.

Next, regarding (i), using the definition of Dt,

[DtfF ]
(
ω1, . . . , ωk, Y1, . . . , Yl

)
=

[
d

dt
f

]
F
(
ω1, . . . , ωk, Y1, . . . , Yl

)
+ f [DtF ]

(
ω1, . . . , ωk, Y1, . . . , Yl

)
,

thus proving (i). Moreover, we prove (ii). Let k1, l1, k2, l2 ∈ N and F ∈ Xk1,l1(γ), G ∈ Xk2,l2(γ), ω1, . . . , ωk1+k2 ∈
X0,1(γ), Y1, . . . , Yl1+l2 ∈ X(γ). Setting

f = F (ω1, . . . , ωk1 , Y1, . . . , Yl1) and g = G(ωk1+1, . . . , ωk1+k2 , Yl1+1, . . . , Yl1+l2) ,

we have

[Dt(F ⊗G)]
(
ω1, . . . , ωk1+k2 , Y1, . . . , Yl1+l2

)
=

d

dt
[fg]−

[
k1∑
i=1

F
(
ω1, . . . , ωi−1,Dtω

i, ωi+1, . . . , ωk1 , Y1, . . . , Yl1
)

+

l1∑
j=1

F
(
ω1, . . . , ωk1 , Y1, . . . , Yj−1,DtYj , Yj+1, . . . , Yl1

) g
− f

[
k2∑
i=1

G
(
ωk1+1, . . . , ωk1+i−1,Dtω

k1+i, ωk1+i+1, . . . , ωk1+k2 , Yl1+1, . . . , Yl1+l2

)
+

l2∑
j=1

G
(
ωk1+1, . . . , ωk1+k2 , Yl1+1, . . . , Yl1+j−1,DtYl1+j , Yl1+j+1, . . . , Yl1+l2

)
= [DtF ]

(
ω1, . . . , ωk1 , Y1, . . . , Yl1

)
g + f [DtG]

(
ωk1+1, . . . , ωk1+k2 , Yl1+1, . . . , Yl1+l2

)
= [DtF ⊗G+ F ⊗DtG]

(
ω1, . . . , ωk1+k2 , Y1, . . . , Yl1+l2

)
,

which proves (ii). Furthermore, to prove (iii), let t0 ∈ I and (bi)i∈{1,...,d} be a basis of Tγ(t0)Θ. Using (a) and [1,
Theorem 4.32], define for any i ∈ {1, . . . , d} and t ∈ I,

ei(t) = Tγ
t0,tbi ,

where Tγ
t0,t denotes the parallel transport map along γ from Tγ(t0)Θ to Tγ(t)Θ. As the parallel transport map is

an isomorphism, (ei(t))i∈{1,...,d} is a basis of Tγ(t)Θ, for any t ∈ I. Therefore the family of smooth vector fields
(ei)i∈{1,...,d} is a parallel frame along γ (with respect to ∇). Denote (εj)j∈{1,...,d} its dual coframe. Using (S73)
on Y = ei, ω = εj , for any i, j ∈ {1, . . . , d}, shows that the coframe (εj)j∈{1,...,d} is parallel along γ. Note that for
(ei)i∈{1,...,d} and (εj)j∈{1,...,d} to be well defined, we have used ∇, as well as the operator Dt on X(γ) and X0,1(γ).

Let k, l ∈ N∗ such that k0 ≤ k, l0 ≤ l, and let F ∈ Xk,l(γ). There exist a family of functions {F j1,...,jli1,...,ik
∈ X0,0(γ) :

i1, . . . , ik, j1, . . . , jl ∈ {1, . . . , d}} such that

F =

d∑
i1,...,ik=1

d∑
j1,...,jl=1

F j1,...,jli1,...,ik

k⊗
4=1

ei4

l⊗
�=1

εj� .
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Since the frame and its dual coframe are parallel along γ, for any i ∈ {1, . . . , d} Dtei = 0 and Dtε
i = 0. Combining

this fact with (i) and (ii) gives

DtF =

d∑
i1,...,ik=1

d∑
j1,...,jl=1

[
d

dt
F j1,...,jli1,...,ik

] k⊗
4=1

ei4

l⊗
�=1

εj� . (S75)

Let k0, l0 ∈ N∗ such that k0 ≤ k, l0 ≤ l, then by definition of Tr(k0,l0), for any i1, . . . , ik−1, j1, . . . , jl−1 ∈ {1, . . . , d},

Tr(k0,l0)(F )
j1,...,jl−1

i1,...,ik−1
=

d∑
m=1

F
j1,...,jl0−1,m,jl0 ,...,jl−1

i1,...,ik0−1,m,ik0 ,...,ik−1
. (S76)

We remind the reader that Tr(k0,l0)(F ) does not depend on the choice of coordinates [1, Appendix B]. Thus, using
(S75) and (S76), we have

Dt

[
Tr(k0,l0)(F )

]
=

d∑
i1,...,ik−1=1

d∑
j1,...,jl−1=1

d

dt

[
Tr(k0,l0)(F )

j1,...,jl−1

i1,...,ik−1

] k−1⊗
4=1

ei4

l−1⊗
�=1

εj�

=

d∑
i1,...,ik−1=1

d∑
j1,...,jl−1=1

d∑
m=1

d

dt
F
j1,...,jl0−1,m,jl0 ,...,jl−1

i1,...,ik0−1,m,ik0 ,...,ik−1

k−1⊗
4=1

ei4

l−1⊗
�=1

εj�

= Tr(k0,l0) (DtF ) ,

thus proving (iii).

To prove (iv), first for any f ∈ X(0,0)(γ), extendible in f̃ , we have by composition and definition of the covariant
derivative, that for any t ∈ [0, 1],

(df/dt)(t) = df̃γ(t)(γ̇(t)) = ∇γ̇(t)f̃(γ(t)) . (S77)

Also, using [1, Theorem 4.24-(iii)] gives (iv) for any Y ∈ X(γ). Combining (S77), (S73), its counterpart for tensor
fields defined over a manifold [1, Proposition 4.15-(a)] and (iv) over X(γ), proves (iv) over X(0,1)(γ). Now, for
any k, l ∈ N, using (iv) over X(γ) and X(0,1)(γ) combined with (S72) and its counterpart for tensor fields defined
over a manifold [1, Equation (4.12)] gives (iv) over X(k,l)(γ).

Finally, we address uniqueness. Suppose now that D̃t is an operator on Xk,l(γ) that satisfies (a),(b),(i),(ii) and
(iii). First, (a) and (b) show that Dt and D̃t coincide on X0,0(γ) and X(γ). Second, for any Y ∈ X(γ), ω ∈ X0,1(γ),
writing ω(Y ) = Tr(1,1)(Y ⊗ ω) and using (iii) gives

D̃tω = d[ω(Y )]/dt− ω(D̃tY ) = Dtω ,

using (S73). Thus, D̃t and Dt also agree on X0,1(γ). Therefore, the frame (ei)i∈{1,...,d} and its dual coframe
(εj)j∈{1,...,d} are also parallel with respect to D̃t along γ. Let F ∈ Xk,l(γ), then using (i) and (ii) shows that
(S75) holds for the operator D̃t, proving that DtF = D̃tF . This concludes the proof.

Lemma S15. Let M be a smooth manifold and ∇ be a connection on TM. Let γ : [0, 1] → M be a smooth
curve and denote Dt the covariant derivative operator along γ associated with ∇, defined in Proposition S14. Let
F ∈ Xk,l(γ), ω1, . . . , ωk0 ∈ X0,1(γ) and Y1, . . . , Yl0 ∈ X(γ), with k0 ≤ k, l0 ≤ l. Then, we have

Dt

(
[F : ω⊗1:k0 ⊗ Y⊗1:l0 ]

)
= [DtF : ω⊗1:k0 ⊗ Y⊗1:l0 ]

+

k0∑
i=1

[F : ω⊗1:(i−1) ⊗Dtω
i ⊗ ω(i+1):k0 ⊗ Y⊗1:l0 ]

+

l0∑
j=1

[F : ω⊗1:k0 ⊗ Y⊗1:(j−1) ⊗DtYj ⊗ Y⊗(j+1):l0 ] .

(S78)
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Proof. Let F be a smooth (k, l)-tensor field along γ. We show (S78) by induction. Following the recursive
definition of the contraction in (S69), we prove it by induction on k0 ∈ N∗, k0 ≤ k, for any ω1, . . . , ωk0 ∈ X0,1(γ).

The case k0 = 1 follows from Proposition S14-(ii) and (iii), combined with the definition in (S69),

Dt

[
F : ω1

]
= Dt Tr(1,l+1)(F ⊗ ω1)

= Tr(1,l+1)(Dt[F ⊗ ω1])

= Tr(1,l+1)(DtF ⊗ ω1 + F ⊗Dtω
1)

=
[
DtF : ω1

]
+
[
F : Dtω

1
]
,

where we have used the linearity of Tr. Now assume there exists k0 ∈ {1, . . . , k− 1} such that (S78) holds for any
smooth 1 forms ω1, . . . , ωk0 and l0 = 0. Moreover, consider any smooth 1 forms ω1, . . . , ωk0+1. Then, using the
same arguments as for the case k0 = 1 and the induction hypothesis, we obtain

Dt

[
F : ω⊗1:(k0+1)

]
= Dt Tr(1,l+1)

([
F : ω⊗1:k0

]
⊗ ωk0+1

)
= Tr(1,l+1)

(
Dt

[
F : ω⊗1:k0

]
⊗ ωk0+1

)
+ Tr(1,l+1)

([
F : ω⊗1:k0

]
⊗Dtω

k0+1
)

= Tr(1,l+1)

([
DtF : ω⊗1:k0

]
⊗ ωk0+1

)
+
[
F : ω⊗1:k0 ⊗Dtω

k0+1
]

+

k0∑
i=1

Tr(1,l+1)

([
F : ω⊗1:(i−1) ⊗Dtω

i ⊗ ω⊗(i+1):k0
]
⊗ ωk0+1

)
=
[
DtF : ω⊗1:(k0+1)

]
+

k0+1∑
i=1

[
F : ω⊗1:(i−1) ⊗Dtω

i ⊗ ω⊗(i+1):(k0+1)
]
.

Subsequently, using the recursive definition of the contraction in (S70), we prove (S78) by induction on l0 ∈ N∗, l0 ≤
l for any k0 ≤ k and any ω1, . . . , ωk0 ∈ X0,1(γ). Let Y1 ∈ X(γ). Then, using once again Proposition S14-(ii) and
(iii), (S70), and (S78) in the case l0 = 0 justified above, the case l0 = 1 is proven as follows,

Dt

[
F : ω⊗1:k0 ⊗ Y1

]
= Tr(k−k0+1,1)

(
Dt

{[
F : ω⊗1:k0

]
⊗ Y1

})
= Tr(k−k0+1,1)

([
DtF : ω⊗1:k0

]
⊗ Y1

)
+
[
F : ω⊗1:k0 ⊗DtY1

]
+

k0∑
i=1

Tr(k−k0+1,1)

([
F : ω⊗1:(i−1) ⊗Dtω

i ⊗ ω⊗(i+1):k0
]
⊗ Y1

)
=
[
DtF : ω⊗1:k0 ⊗ Y1

]
+

k0∑
i=1

[
F : ω⊗1:(i−1) ⊗Dtω

i ⊗ ω⊗(i+1):k0 ⊗ Y1

]
+
[
F : ω⊗1:k0 ⊗DtY1

]
.

Furthermore, assume there exists l0 ∈ {1, . . . , l−1} such that (S78) holds for any k0 ≤ k, any ω1, . . . , ωk0 ∈ X0,1(γ)
and any Y1, . . . , Yl0 ∈ X(γ). Let Y1, . . . , Yl0+1 ∈ X(γ). Then using the same arguments as for the case l0 = 1 and
the induction hypothesis, we obtain

Dt

[
F : ω⊗1:k0 ⊗ Y⊗1:(l0+1)

]
= Tr(k−k0+1,1)

(
Dt

{[
F : ω⊗1:k0 ⊗ Y⊗1:l0

]
⊗ Yl0+1

})
= Tr(k−k0+1,1)

([
DtF : ω⊗1:k0 ⊗ Y⊗1:l0

]
⊗ Yl0+1

)
+

k0∑
i=1

Tr(k−k0+1,1)

([
F : ω⊗1:(i−1) ⊗Dtω

i ⊗ ω⊗(i+1):k0 ⊗ Y⊗1:l0

]
⊗ Yl0+1

)
+

l0∑
j=1

Tr(k−k0+1,1)

([
F : ω⊗1:k0 ⊗ Y⊗1:(j−1) ⊗DtYj ⊗ Y⊗(j+1):l0

]
⊗ Yl0+1

)
+ Tr(k−k0+1,1)

([
F : ω⊗1:k0 ⊗ Y⊗1:l0

]
⊗DtYl0+1

)
=
[
DtF : ω⊗1:k0 ⊗ Y⊗1:(l0+1)

]
+

k0∑
i=1

[
F : ω⊗1:(i−1) ⊗Dtω

i ⊗ ω⊗(i+1):k0 ⊗ Y⊗1:(l0+1)

]
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+

l0+1∑
j=1

[
F : ω⊗1:k0 ⊗ Y⊗1:(j−1) ⊗DtYj ⊗ Y⊗(j+1):(l0+1)

]
,

which concludes the proof.

Theorem S16. Let M be a smooth manifold and ∇ be a connection on TM. Let γ : [0, 1]→ M be a geodesic and
Y : M→ TM a smooth vector field. Then, for any t ∈ [0, 1], n ∈ N,

Tγ
t0Y (γ(t)) =

n∑
k0=0

(tk0/k0!) ∇k0Yγ(0) (γ̇(0), . . . , γ̇(0))

+

∫ t

0

[(t− s)n/n!]Tγ
s0∇n+1Yγ(s) (γ̇(s), . . . , γ̇(s)) ds ,

(S79)

where Tγ
t0 : Tγ(t)M→ Tγ(0)M is the parallel transport map along γ, and the (1, k0)-tensor field ∇k0Y is the total

derivative of order k0 of the (1, 0)-tensor field Y .

For a definition of the total covariant derivative, see [1, Proposition 4.15]. Also, in (S79), remark that even though
γ̇ is only a vector field along γ, and not a vector field, the value of a vector field ∇XY evaluated at θ ∈ M only
depends on X(θ) and on values of Y along smooth curves c : [0, 1]→ M satisfying c(0) = θ and ċ(0) = X(θ); by
[1, Proposition 4.26]. Therefore the expression ∇k0Yγ(t)(γ̇(t), . . . , γ̇(t)) in Theorem S16 is well defined for any
k0 ∈ N, t ∈ [0, 1].

Proof. Consider V : [0, 1]→ M the smooth vector field along γ and the function ϕ : [0, 1]→ Tγ(0)M defined by

V = Y ◦ γ and ϕ : t 7→ Tγ
t0V (t) .

Then we check by induction on n ∈ N∗ that ϕ is n-times differentiable with derivative of order n given for any
t ∈ [0, 1] by ϕ(n)(t) = Tγ

t0[Dn
t V (t)] and Dn

t V (t) = ∇nYγ(t)(γ̇(t), . . . , γ̇(t)), where Dt is the covariant derivative
operator along γ with respect to the connection ∇, defined in Proposition S14.

First, the case n = 1 is a direct application of [1, Theorem 4.34, Theorem 4.24] since Y is an extension of V .
Assume now that the property holds for n ∈ N∗. Then, for any t0, t ∈ [0, 1], t 6= t0, we have[

ϕ(n)(t)− ϕ(n)(t0)
]/

(t− t0) = Tγ
t00

[
Tγ
tt0Dn

t V (t)−Dn
t V (t0)

]/
(t− t0) .

Now [1, Theorem 4.34] ensures that the limit of the quantity above exists when t→ t0 and in addition this limit is

ϕ(n+1)(t0) = Tγ
t00Dn+1

t V (t0) ,

which shows that ϕ is n + 1 times differentiable on [0, 1]. We now show that for any t ∈ [0, 1], Dn+1
t V (t) =

∇n+1Yγ(t)(γ̇(t), . . . , γ̇(t)). Using Lemma S15 on the smooth (1, n)-tensor field along γ F = (∇nY ) ◦ γ, taking
k0 = 0 and n times the vector field γ̇, we have

Dt [F : γ̇⊗ · · · ⊗ γ̇] = [DtF : γ̇⊗ · · · ⊗ γ̇] ,

since Dtγ̇ = 0 because γ is a geodesic. Also, by (S71), [DtF : γ̇⊗ · · · ⊗ γ̇] = DtF (γ̇, . . . , γ̇). Finally, as ∇nY is an
extension of F , using the induction hypothesis and the definition of the total derivative give for any t ∈ [0, 1],

Dn+1
t V (t) = DtF (γ̇, . . . , γ̇) (t) = ∇γ̇(t)(∇nY )γ(t) (γ̇(t), . . . , γ̇(t))

= (∇n+1Y )γ(t) (γ̇(t), . . . , γ̇(t)) ,

concluding the induction.

Finally, (S79) is simply a consequence of Taylor’s formula with integral remainder of the vectorial valued function
ϕ identifying Tγ(0)M with Rd.
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Proposition S17. Let M be a smooth manifold, ∇ be a symmetric connection defined over the smooth vector
fields of M. For any smooth function f : M→ R and any local coordinates (ui)i∈{1,...,d}, we have

∇Hess f =

d∑
i,j,k=1

{
∂3
kijf −

d∑
l=1

[
Γlij∂

2
klf + Γlki∂

2
jlf + Γlkj∂

2
ilf
]
−

d∑
m=1

∂kΓmij∂mf

+

d∑
l,m=1

[
ΓlkjΓ

m
il + ΓlkiΓ

m
lj

]
∂mf

dui ⊗ duj ⊗ duk ,

where (Γkij)i,j,k∈{1,...,d} are the Christoffel symbols in these local coordinates, the local frame and its dual coframe
are denoted by (∂ui)i∈{1,...,d} and (duj)j∈{1,...,d}.

Proof. Let (ui)i∈{1,...,d} be local coordinates. By [1, Example 4.22], in this chart, we have

Hess f =

d∑
i,j=1

Fijdu
i ⊗ duj ,where for any i, j ∈ {1, . . . , d} , Fij = ∂2

ijf −
d∑

m=1

Γmij∂mf . (S80)

Applying [1, Proposition 4.18] on Hess f , we obtain that ∇Hess f =
∑d
i,j,k=1Gijkdui ⊗ duj ⊗ duk, where for any

i, j, k ∈ {1, . . . , d},

Gijk = ∂kFij −
d∑
l=1

(
ΓlkjFil + ΓlkiFlj

)
.

Expanding the expression above using (S80) gives for any i, j, k ∈ {1, . . . , d},

Gijk = ∂3
ijkf −

d∑
m=1

(
∂kΓmij∂mf + Γmij∂

2
kmf

)
−

d∑
l=1

Γlkj

(
∂2
ilf −

d∑
m=1

Γmil ∂mf

)

−
d∑
l=1

Γlki

(
∂2
ljf −

d∑
m=1

Γmlj ∂mf

)
.

The desired result is obtained by reordering this equation, which concludes the proof.
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