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Abstract

This paper studies fixed step-size stochas-
tic approximation (SA) schemes, including
stochastic gradient schemes, in a Riemannian
framework. It is motivated by several ap-
plications, where geodesics can be computed
explicitly, and their use accelerates crude Eu-
clidean methods. A fixed step-size scheme
defines a family of time-homogeneous Markov
chains, parametrized by the step-size. Here,
using this formulation, non-asymptotic perfor-
mance bounds are derived, under Lyapunov
conditions. Then, for any step-size, the cor-
responding Markov chain is proved to admit
a unique stationary distribution, and to be
geometrically ergodic. This result gives rise to
a family of stationary distributions indexed
by the step-size, which is further shown to
converge to a Dirac measure, concentrated
at the solution of the problem at hand, as
the step-size goes to 0. Finally, the asymp-
totic rate of this convergence is established,
through an asymptotic expansion of the bias,
and a central limit theorem.

1 INTRODUCTION

This paper deals with the study of fixed step-size
Stochastic Approximation (SA) algorithms (Robbins
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and Monro, 1951; Kushner and Yin, 2003; Polyak and
Juditsky, 1992), defined on a Riemannian manifold Θ
with metric g. Specifically, consider the problem

find θ ∈ Θ satisfying h(θ) = 0 ,

for a vector field h : Θ→ TΘ ,
(1)

where TΘ denotes the tangent bundle of Θ, and h is
only accessible through an oracle returning noisy esti-
mates. The setting where h = −grad f is of particular
interest for minimizing a smooth function f : Θ→ R.
In the Euclidean setting, Stochastic Gradient Descent
(SGD) and its variants are now common methods for
solving this problem (Bottou, 2010; Bottou and Bous-
quet, 2008). However, it should be stressed that (1)
encompasses several other applications in stochastic
optimization, reinforcement learning or maximum likeli-
hood estimation, such as online Expectation Maximiza-
tion algorithms (Cappé and Moulines, 2009), policy
gradient (Baxter and Bartlett, 2001) or Q-learning
(Jaakkola et al., 1993). Minimization over a Rieman-
nian manifold or its general formulation (1) arises
in many applications: Principal Component Analy-
sis (Edelman et al., 1998), dictionary recovery (Sun
et al., 2017), matrix completion (Boumal and Absil,
2011), smooth semidefinite programs (Boumal et al.,
2016), tensor factorization (Ishteva et al., 2011), and
Riemannian barycenter estimation (Said and Manton,
2019; Arnaudon et al., 2012). This has motivated the
development of a comprehensive framework for stochas-
tic optimization problems on Riemannian manifolds.
One of the first contributions in this field is Bonnabel
(2013), which derives asymptotic convergence results for
SA on Riemannian manifolds. Non-asymptotic results
are obtained by Zhang and Sra (2016) for a geodesically
convex function f . This study has been followed and
completed by Zhang et al. (2016); Sato et al. (2019)
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which introduce and analyze a Riemannian counterpart
of the Stochastic Variance Reduced Gradient (SVRG)
algorithm. Since then, many existing methods or re-
sults from the Euclidean case have been considered in
a Riemannian setting. For example, Khuzani and Li
(2017) suggest a Riemannian stochastic primal-dual
algorithm and most recently Tripuraneni et al. (2018)
study an averaged version of Riemannian SGD.

In this paper, we are interested in the study of fixed
step-size SA methods of the form

θn+1 = projS
[
Expθn {ηHθn(Xn+1)}

]
,

where Hθn(Xn+1) = h(θn) + eθn(Xn+1) .
(2)

In (2), η > 0 is a step-size, (Xn)n∈N∗ is an (Fn)n∈N-
adapted process, defined on a filtered probability
space, with values in a measurable space (X,X ), and
e : Θ × X → TΘ is a measurable function, such that
θ 7→ eθ(x) is a vector field over Θ, for any x ∈ X. In ad-
dition, Expθ : TθΘ→ Θ is the Riemannian exponential
mapping and projS : Θ→ S is a projection-like opera-
tor onto a subset S ⊂ Θ. This recursion is a natural
extension of Euclidean SA, akin to the Robbins-Monroe
algorithm, in a Riemannian setting.

In the Euclidean setting, the study of fixed step-size SA,
and in particular SGD, has recently attracted much
attention, see e.g. Ma et al. (2018); Vaswani et al.
(2019); Dieuleveut et al. (2017); Bach (2020); Bach and
Moulines (2011). Indeed, first of all, the step-size η
is the only parameter to tune, in contrast to the case
where a decreasing sequence of step-sizes is used in (2).
Furthermore, the forgetting of the initial condition is
exponentially fast (Nedić and Bertsekas, 2001; Needell
et al., 2014).

We aim to show, in a general Riemannian framework,
that the use of (2) provides a good solution for (1).
To this end, we establish non-asymptotic and asymp-
totic properties of (θn)n∈N, in the limit η → 0. Our
contributions can be summarized as follows.

(1) We derive non-asymptotic bounds, for the conver-
gence of (θn)n∈N to approximate solutions of (1), under
general Lyapunov assumptions and mild assumptions
on the manifold Θ and the subset S.
(2) Under additional regularity conditions, we show
that (θn)n∈N, as a Markov chain, admits a unique
stationary distribution µη and is geometrically ergodic,
i.e. converges to µη exponentially fast.
(3) We study the limiting behavior of the family
(µη)η>0 as η → 0. In particular, we show that if
(1) admits a unique solution θ? and other suitable con-
ditions hold, this family converges to the Dirac measure
at θ?. In addition, we asymptotically quantify this con-
vergence, through a central limit theorem. Precisely,
we prove that after a η−1/2-rescaling, this family of

stationary distributions converges weakly to a normal
distribution as η→ 0. These results illustrate the ex-
ponential forgetting of initial condition of the scheme
and that, at stationarity, the iterates (θn)n∈N stay in a
O(η1/2)-neighborhood of θ?. In addition, they can be
understood as generalizations to Riemannian spaces of
Pflug (1986, Theorem 1) and Dieuleveut et al. (2017,
Theorem 4).
(4) We apply our results to SGD. In particular, we es-
tablish the first non-asymptotic convergence bounds for
strongly geodesically convex functions, without bound-
edness assumptions on the manifold Θ.
(5) Finally, we introduce and prove the convergence of
an SGD scheme to compute the Riemannian barycenter,
also known as the Karcher mean, of distributions on
Hadamard manifolds. To the authors’ knowledge, our
contribution on this topic is one of the few without
boundedness assumptions on the distribution.

For ease of reading, all the assumptions are gathered
in the supplement Section S1. In the derivation of our
results, we use crucially the fact that (θn)n∈N defines
a Markov chain in Θ, under mild conditions. This
interpretation has been successfully used in several
papers dealing with the convergence of SA or SGD in
Euclidean spaces; see e.g. Benveniste et al. (1990);
Kushner and Huang (1981); Fort and Pagès (1999);
Pflug (1986).

We consider a more general setting and milder con-
ditions in comparison with most other studies in the
field. Indeed, most papers do not consider the gen-
eral SA framework, but only the case h = −grad f ,
dealing with SGD and its variants. To the authors’
knowledge, only Bonnabel (2013); Durmus et al. (2020)
tackle the general SA problem (1). Our main contri-
bution, compared to these two works, is to deal with
the fixed step-size setting. Besides, our study considers
general geodesically complete Riemannian manifolds
which encompass Hadamard spaces, which have been
the primary focus for Zhang and Sra (2016); Zhang
et al. (2016); Tripuraneni et al. (2018).

Furthermore, a majority of the previous studies on SGD
in a Riemannian space (see e.g. Zhang and Sra (2016);
Zhang et al. (2016); Tripuraneni et al. (2018); Alimisis
et al. (2020); Han and Gao (2020)), are purely local in
nature, because of the assumption that (θn)n∈N stays
almost surely in a (fixed and deterministic) compact
and geodesically convex subset of Θ. For example, note
that all the convergence results derived in Zhang and
Sra (2016) depend on the diameter of the compact in
which (θn)n∈N is assumed to stay. This assumption
rarely holds in practice, and is quite difficult to verify
in theory. It strongly limits the applicability of many
results in the literature over the past few years. On the
contrary, our results do not suffer from this problem,
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and can all be applied either on a compact or non-
compact Riemannian manifold. As a result, we consider
a new SA method to estimate the Karcher mean of a
distribution π on Θ, see Arnaudon et al. (2012); Le
(2004); Zhang and Sra (2016); Iannazzo and Porcelli
(2018), for which we derive non-asymptotic convergence
bounds without boundedness conditions on the support
of π.

Notations For any θ ∈ Θ and v, w ∈ TθΘ, denote
by gθ(v, w) = 〈v, w〉θ and its corresponding norm by
gθ(v, v) = ‖v‖2θ. ρΘ : Θ×Θ→ R+ denotes the distance
associated with the Riemannian metric g. For any
θ0 ∈ Θ, r > 0, set B(θ0, r) = {θ1 ∈ Θ : ρΘ(θ0, θ1) < r},
the open ball centered at θ0 with radius r. Similarly,
we define closed balls in Θ by B(θ0, r) = {θ1 ∈ Θ :
ρΘ(θ0, θ1) ≤ r}.

For a smooth function g : Θ → R, we denote by
grad g its Riemannian gradient (Lee, 2019, p. 27) and
by Hess g its Riemannian, or covariant, Hessian (Lee,
2019, Example 4.22). For a curve γ : I → Θ,Tγ

t0,t1 :
Tγ(t0)Θ → Tγ(t1)Θ stands for the parallel transport
map associated to the Levi-Civita connection along γ
from γ(t0) to γ(t1) (Lee, 2019, Equation 4.22). More-
over, for any θ ∈ Θ, under the assumption that Θ is
complete, consider the Riemannian exponential map
Expθ : TθΘ → Θ, see Lee (2019, Proposition 5.19).
This map projects a vector from the tangent space
TθΘ onto the manifold Θ, following a geodesic curve.

2 CONSTANT STEPSIZE
ANALYSIS FOR A
CONSTRAINED SCHEME

2.1 Main Results

In this section, we study the Stochastic Approximation
scheme (2), which is constrained on a subset S ⊂ Θ.
The following assumption on the manifold Θ and S
is considered all along this paper and allows us to
rigorously define projS.

A1. Assume one of the following conditions.

(i) Θ is a Hadamard manifold, i.e. a complete, simply
connected Riemannian manifold with non-positive sec-
tional curvature. In addition, S is a closed geodesically
convex subset of Θ with non-empty interior.
(ii) Θ is a complete, connected Riemannian manifold
and S = Θ.

Note that under A1, the exponential map Exp : TΘ→
Θ is well-defined, see Lee (2019, Theorem 6.19). Un-
der A1-(i), Sturm (2003, Proposition 2.6) shows that
there exists projS : Θ → S which is the Rieman-
nian counterpart of the Euclidean projection onto a
closed convex subset. More precisely, projS is the
unique mapping from Θ to S such that for any θ ∈ Θ,

ρΘ(projS(θ), θ) = infθ′∈S ρΘ(θ′, θ). Under A1-(ii), we
simply set projS = Id.

Recall that the recursion (2) only uses a noisy esti-
mate Hθ of the mean field h(θ), for any θ ∈ Θ. We
assume the following conditions on the noise to ensure
convergence.
MD 1. The sequence (Xn)n∈N∗ is independent and
identically distributed (i.i.d.). In addition, for any
θ ∈ Θ, E [eθ(X1)] = 0 and there exist σ2

0 , σ
2
1 > 0 such

that for any θ ∈ S, E[‖eθ (X1) ‖2θ] ≤ σ2
0 + σ2

1 ‖h(θ)‖2θ.

MD1 is referred to as the martingale difference set-
ting which implies that (θn)n∈N is a time-homogeneous
(Fn)n∈N-Markov chain, for which we denote by Qη its
corresponding Markov kernel. The Euclidean coun-
terpart of this assumption consists in replacing the
Riemannian norm with the Euclidean one, which is
usual in Stochastic Approximation (see Duflo, 1997).
MD2. (i) P-almost surely, the vector field θ 7→ eθ(X1)
is continuous on Θ.
(ii) For any θ ∈ Θ, Lebθ and the distribution of eθ(X1)
are mutually absolutely continuous, where Lebθ stands
for the Lebesgue measure on TθΘ.

MD2 ensures topological and aperiodicity properties of
the Markov chain under consideration. This condition
is used in the study of the limiting behaviour of (θn)n∈N.
Note that the condition MD 2-(ii) is automatically
satisfied adding some Gaussian noise, i.e., when eθ(Xi)
is replaced by eθ(Xi) + pθ(Zi) where for any θ ∈ Θ, pθ
is any invertible linear application from Rd to TθΘ and
(Zi)i∈N∗ is a sequence of i.i.d. d-dimensional Gaussian
random variables with zero-mean and covariance matrix
identity. The same assumption is considered in the
Euclidean case in Pflug (1986, Assumption A(v)-A(vi)).

To ensure recurrence of (θn)n∈N, we assume the ex-
istence of a Lyapunov function V : Θ → R+ for the
mean vector field h.
H1. (i) For any θ ∈ Θ, V ◦ projS(θ) ≤ V (θ).
(ii) V is continuously differentiable on Θ and its Rie-
mannian gradient gradV is geodesically L-Lipschitz,
i.e., there exists L ≥ 0 such that for any θ0, θ1 ∈ Θ,
and geodesic curve γ : [0, 1] → Θ such that γ(0) = θ0

and γ(1) = θ1,

‖gradV (θ1)− Tγ
01gradV (θ0)‖θ1 ≤ L`(γ) , (3)

where `(γ) = ‖γ̇(0)‖θ0 is the length of the geodesic.
(iii) V is proper on S, i.e., for any M ≥ 0, there exists
a compact set K ⊂ S such that for any θ ∈ S \ K,
V (θ) > M .
H2. There exist C1 ≥ 0 and C2 > 0 such that for any
θ ∈ S, ‖h(θ)‖2θ + C2 〈gradV (θ), h(θ)〉θ ≤ C1.

In addition, to quantify the convergence of (θn)n∈N in
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a neighborhood of a solution of (1), we consider the
following condition for some compact set K? ⊂ S.

H3 (K?). There exists λ > 0 such that for any θ ∈ S,
〈gradV (θ), h(θ)〉θ ≤ −λV (θ)1S\K?(θ).

Note that under H3(∅), if h(θ) = 0, then V (θ) = 0
since V is a nonnegative function.

It is relevant to recognize that H1, H2 and H3 boil
down to standard stability and recurrence conditions;
see e.g. Benveniste et al. (1990); Duflo (1997). In the
Euclidean case when we assume the uniqueness of a
solution θ?, a common choice for V is θ 7→ ‖θ − θ?‖2
because H1 is always satisfied. In this context, H2
and H 3 would read ‖h(θ)‖ ≤ A + B‖θ − θ?‖ and
infθ∈S\K〈θ − θ?, h(θ?)〉/ ‖θ − θ?‖2 ≥ λ respectively.
They are therefore the Riemannian counterparts of
Pflug (1986, Assumption A(i)-A(ii)). However, the
square distance is no longer a suitable candidate in
non-compact Riemannian settings, and therefore select-
ing a Lyapunov function adapted to the manifold Θ
and the geometry of the mean field h is all the more
important. Note that H1-(iii) is automatically satisfied
if S is compact. In addition, in most cases K? and V are
chosen such that K? = ∅ or {θ ∈ S : ‖h(θ)‖θ ≤ ε} for
some ε ≥ 0, −C2〈h(θ), gradV (θ)〉θ ≥ ‖h(θ)‖2θ for some
C2 > 0 and any θ ∈ Θ, and therefore H2 is satisfied
with C1 = 0.

The use of Lyapunov functions is really common
and widespread to analyze stochastic approximation
schemes, see Kushner and Yin (2003); Kushner and
Huang (1981); Duflo (1997). However, compared to
the Euclidean setting, the square distance cannot be
used in many situations because it does not satisfy H
1-(ii). This brought us to consider a different Lyapunov
function and therefore develop an adapted framework
for the Riemannian case; see Section 2.2 hereafter for
more details.

We start with our first result which is established along
with all the other statements of this section in the
supplement Section S3.

Theorem 1. Assume A1, MD1, H1-(i)-(ii), H2.

(a) Suppose in addition that for any θ ∈
S, 〈gradV (θ), h(θ)〉θ ≤ 0. Then, for any η ∈ (0,η],
θ0 ∈ S, and n ∈ N∗,

n−1
n−1∑
k=0

E
[
−〈gradV (θk), h(θk)〉θk

]
≤ 2V (θ0)/(nη) + ηb ,

(4)
where (θn)n∈N is defined by (2) starting from θ0, η =
[2C2L(1 + σ2

1)]−1, b = 2L{σ2
0 + C1(1 + σ2

1)}.

Suppose in addition that H3(K?) holds for some com-
pact set K? ⊂ S.

(b) Then for any η ∈ (0,η], θ0 ∈ S, and n ∈ N∗,

n−1
n−1∑
k=0

E[1S\K?(θk)V (θk)] ≤ V (θ0)/(anη)+ηb/(2a) , (5)

where a = λ/2.
(c) Define ‖V ‖K? = sup{V (θ) : θ ∈ K?} if K? 6= ∅
and ‖V ‖K? = 0 otherwise. Then for any η ∈ (0,η],
θ0 ∈ S, and any n ∈ N∗,

E[V (θn)] ≤ {1− ηa}n V (θ0) + ‖V ‖K? + ηb/(2a) . (6)

Note that Theorem 1 gives, in the case
K? = ∅, non-asymptotic bounds of or-
der η on n−1

∑n−1
k=0 E[−〈gradV (θk), h(θk)〉θk ],

n−1
∑n−1
k=0 E[V (θk)] and E[V (θn)] as n → +∞. In

addition, the forgetting of the initial condition in (4)
and (5) is linear w.r.t. n, contrary to (6) where it is
exponential. A statement similar to Theorem 1-(b)
holds only assuming H1-(i)-(ii) and replacing H3(K?)
by the condition that there exists λ > 0 such that for
any θ ∈ S, 〈gradV (θ), h(θ)〉θ ≤ −λ‖h(θ)‖2θ1S\K?(θ).
This result is postponed to the supplement Theo-
rem S2-Section S3.2. Theorem 1-(a) is a generalization
of Hosseini and Sra (2019, Lemma 7) for SGD
under a general Lyapunov condition and milder
assumptions. Theorem 1-(a) is also stated with very
similar assumptions in Durmus et al. (2020, Theorem
2) – except that 〈gradV (θ), h(θ)〉θ ≤ 0 in our setting
is replaced with ‖gradV (θ)‖θ ≤ c‖h(θ)‖θ – where the
result is not restricted to constant step-size settings.
However, Theorem 1-(c) can only be obtained for
constant step-size schemes, and the following results
use it as a stepping stone. We show in Section 4, how
this generalization can be applied to SGD to obtain
better convergence guarantees. Finally, in the same
Section, we show that Theorem 1-(b)-(c) can be used
to derive non-asymptotic convergence bounds for SGD
applied to a geodesically strongly convex function,
without any boundedness assumptions on Θ.

The study of the asymptotic behavior of (θn)n∈N is the
second step towards understanding the quality of the
approximation to the solution of (1). We now show,
under suitable assumptions and for η ≤ η given in
Theorem 1, first, that the chain is ergodic and admits
a unique invariant distribution, and second, that this
measure converges weakly to the Dirac measure at some
point θ?, as the stepsize of the scheme goes to zero.
In other words, the family of stationary distributions
(µη)η∈(0,η] concentrates around θ? as η → 0. Possi-
ble approximations of θ? are therefore derived from
sampling from µη or taking its Riemannian barycen-
ter, for a small enough η. If the sequence (θn)n∈N is
ergodic, then as n → +∞ the marginal distributions
of this Markov chain converge to µη and can be used
in turn as proxy to solve (1). A remaining question is



Durmus, Jiménez, Moulines, Said

to provide an estimate of the approximation error as a
function of the step-size η. This is tackled in Section 3.
Theorem 2. Assume A 1, MD 1, MD 2, H 1, H 2
and H3(K?) for some compact set K? ⊂ S. Let η ∈
(0,η] where η = [2C2L(1 + σ2

1)]−1. Then, (θn)n∈N
defined by (2) admits a unique stationary distribution
µη and is Harris-recurrent. In addition, there exist
ρ ∈ [0, 1) and C ≥ 0 such that for any θ0 ∈ S and
k ∈ N,

∣∣E[g(θn)]−
∫

Θ
g(θ)dµη(θ)

∣∣ ≤ Cρn(1 + V (θ0)),
for any measurable function g : Θ → R satisfying
supθ∈Θ{|g| /V } ≤ 1.

Taking n→ +∞ in Theorem 1-(c), we obtain by Theo-
rem 2 that∣∣∫

Θ
g(θ)dµη(θ)

∣∣ ≤ ‖V ‖K? + ηb/(2a) , (7)

for any measurable function g : Θ → R satisfying
supθ∈Θ{|g| /V } ≤ 1. In the case ‖V ‖K? = 0 (then
V (θ) = 0 for any θ ∈ K?), we get

∫
Θ
V (θ)dµη(θ) ≤

ηb/(2a). Therefore, this result indicates that the family
{µη : η ∈ (0,η]} concentrates in a O(η)-neighborhood
of K? as η→ 0. In particular, if V admits a unique zero
θ? which corresponds in many applications to a solution
of (1), then we can expect that {µη : η ∈ (0,η]}
converges in distribution to δθ? , the Dirac measure at
θ?, as η → 0. The specific additional conditions to
obtain such a result are the following.
H4. There exists θ? ∈ S such that for any r > 0, H
3(B(θ?, r)) holds and that there exists cr > 0 satisfying
for any θ ∈ S \ B(θ?, r), cr ≤ V (θ).

Note that assuming H4 is weaker than assuming H
3({θ?}) since in the first case the constant λ > 0 in H
3(B(θ?, r)) may depend on r. Pflug (1986) considers
a similar assumption in the Euclidean case (see Pflug,
1986, Assumption A(i)).

As announced previously, we obtain the convergence
in distribution of {µη : η ∈ (0,η]}.
Theorem 3. Assume A1, MD1, MD2, H1 and H2
and let η = [2C2L(1 + σ2

1)]−1.

(a) In addition suppose H3(K?) holds for some compact
set K? ⊂ S and that there exists c > 0 such that for any
θ ∈ S \K?, c ≤ V (θ). Then limη→0 µ

η{K?} = 1, where
µη is the stationary distribution of Qη for η ∈ (0,η].
(b) In addition suppose H4 holds. Then (µη)η∈(0,η]

converges weakly to δθ? , as η→ 0.

2.2 Two Examples of Lyapunov Functions

Having stated the main results of this section, we give
two examples of Lyapunov functions V under the fol-
lowing setting for Θ.
A2. Θ is a Hadamard manifold. In addition, there
exists κ > 0 such that the sectional curvature of Θ is
bounded below by −κ2.

A classical choice of Lyapunov function on Euclidean
spaces is θ 7→ ρ2

Θ(θ, θ?), being both strongly convex
and Lipschitz-gradient. However, this function does not
satisfy H1-(ii) as soon as Θ has non-zero curvature and
is non-compact. In an effort to show the capital impact
of curvature and in order to obtain a valid Lyapunov
function satisfying the conditions H1 and H3(B(θ?, r))
for r > 0, we now introduce the necessary assumptions
and consider a truncated version of θ 7→ ρ2

Θ(θ, θ?).

Let H = {Expθ(tHθ(x)) : θ ∈ S, x ∈ X, t ∈ [0,η]} be
the set of all points reached from geodesics γ : [0, 1]→
Θ of the form γ(0) ∈ S and γ̇(0) = ηHγ(0)(x), for any
x ∈ X. We assume in our next result that the closure of
H is compact which is implied for example in the case
where S is compact and (θ, x) 7→ Hθ(x) is bounded on
S× X.

Proposition 4. Assume A2 and that the closure H
of H is compact, denote DH = diam(H). Consider a
smooth function χH : Θ→ [0, 1] with compact support
satisfying χH(θ) = 1 for any θ ∈ H and for any θ ∈ Θ
such that infθ′∈H ρΘ(θ′, θ) ≥ 1, it holds χH(θ) = 0.
Consider now V2 : Θ→ R+ defined for any θ ∈ Θ by

V2(θ) = χH(θ)ρ2
Θ(θ?, θ) + (1− χH(θ))D2

H .

Then, H1-(i)-(ii) holds with V ← V2 and L← Cχ(DH+
1)(1 + κ coth(κDH)) where Cχ ≥ 0 is a constant only
depending on χH. Suppose in addition that there exist
r > 0, λρ > 0 such that for any θ ∈ S,

−
〈
Exp−1

θ (θ?), h(θ)
〉
θ
≤ −λρρ2

Θ(θ?, θ)1S\B(θ?,r)(θ) .

(8)
Then H3(B(θ?, r)) holds with λ← λρ.

Note that under the setting of Proposition 4, V2(θ) ≥
c for any θ ∈ S \ B(θ?, r) by definition, since it is
continuous. Clearly, H1-(iii) does not hold for V2 if S is
non-compact, since V2 is constant outside of the support
of χH. For this reason, and to weaken the assumptions
of Proposition 4, we introduce a “Huberized” version
of the distance to θ?.

Proposition 5. Assume A2. Let δ > 0 and consider
V1 : Θ→ R+ defined for any θ ∈ Θ by

V1(θ) = δ2
{

(ρΘ(θ?, θ)/δ)
2

+ 1
}1/2

− δ2 . (9)

Then, H1 holds with V ← V1 and L← 1+κδ. Suppose
in addition that there exist r > 0, λρ > 0 such that for
any θ ∈ S, (8) holds. Then, H3(B(θ?, r)) holds and
λ← λρ.

The proof is an extension of Durmus et al. (2020,
Lemma 17) and relies heavily on this result. This
Lyapunov function is still constructed upon the dis-
tance function, but as Proposition 5 shows, it is better
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suited for non-positive curvature spaces. expansion of
V , which is only possible because V is smooth. Note
that under the setting of Proposition 5, V1(θ) ≥ c for
any θ ∈ S \ B(θ?, r) by definition since it is continuous.

It is worth mentioning that if either Proposition 4 or
Proposition 5 can be applied, in order to use Theo-
rem 1 and Theorem 2 (resp. Theorem 3-(b)) the only
condition to verify (relative to the Lyapunov function)
is H2 (resp. are H2 and H4).

3 ASYMPTOTIC EXPANSION AND
LAW IN THE UNCONSTRAINED
CASE

The purpose of this section is to quantify the conver-
gence derived in Theorem 3-(b). First, we establish an
asymptotic expansion for the bias

∫
Θ

g(θ)dµη(θ)−g(θ?)
w.r.t. the step size η for g belonging to a certain class
of smooth functions from Θ to R. Our result can be
applied to SGD (h = −grad f) and implies then an
asymptotic expansion of

∫
Θ
‖grad f(θ)‖2θdµη(θ). Sec-

ondly, we establish that the convergence derived in
Theorem 3-(b) occurs at a rate η1/2, through a cen-
tral limit theorem for (µη)η∈(0,η]. These two results
can be understood as a bias-variance decomposition in
which both terms are of order η and are therefore weak
counterparts of Dieuleveut et al. (2017, Proposition
3, Theorem 5), Pflug (1986, Theorem 1) in a Rieman-
nian setting. The related proofs are postponed to the
supplement Section S4.

3.1 Asymptotic Expansion as η→ 0

Here, we assume that A1-(ii) holds, Θ is compact and
the conditions of Theorem 3-(b) hold. In addition,
define the covariance tensor field Σ on Θ, for any θ ∈ Θ
by,

Σ(θ) = E [eθ(X1)⊗ eθ(X1)] . (10)

Under appropriate conditions, letting n→ +∞ in The-
orem 1-(b), and Theorem S2 in the supplement, show
respectively that

∫
Θ
V (θ)dµη(θ) and

∫
Θ
‖h(θ)‖2θ dµη(θ)

are bounded by a term of order η. We specify this
result in the case where h = −grad f for a smooth
objective function f : Θ → R. More precisely, we
establish in what follows a weak asymptotic expan-
sion for

∫
Θ
‖grad f(θ)‖2θ dµη(θ), as η→ 0 based on the

following result for which we assume:

MD3. Σ is a continuous (2, 0)-tensor field on Θ.

Denote the contraction of a covariant 2-tensor F with
a contravariant 2-tensor G on Θ by [F : G]; see Sec-
tion S6.2 (S69)-(S70) in the supplementary for more
details. For two matrices A,B, [A : B] just corresponds
to Tr(AB>), where > denotes the transpose.

Theorem 6. Assume A 1-(ii), h is continuous,
h(θ?) = 0 and Θ is compact. Assume also MD1, MD
2, MD3, H1, H2 and H4. Let η = [2C2L(1 + σ2

1)]−1.
Then for any η ∈ (0,η] and smooth function g : Θ→ R,
we have

−
∫

Θ

〈grad g(θ), h(θ)〉θdµη(θ) =
η

2
[Hess g : Σ] (θ?) + Rg,η ,

where limη→0{|Rg,η|/η} = 0.

Applying this result to SGD, i.e. h = −grad f and
g = f , we obtain that

∫
Θ
‖grad f(θ)‖2θ dµη(θ) =

(η/2) [Hess f : Σ] (θ?)+Rf,η with limη→0{|Rf,η|/η} =
0.

3.2 A Central Limit Theorem on (µη)η∈(0,η]

Now, we assume both A1-(i) and A1-(ii), meaning
S = Θ and Θ is a Hadamard manifold. Note that
under this setting Exp−1

θ : Θ→ TθΘ is a well defined
diffeomorphism for any θ ∈ Θ by (Lee, 2019, Propo-
sition 12.9). In addition, we assume that the other
conditions of Theorem 3-(b) hold. Following the ap-
proach of Pflug (1986) in Euclidean SA, to find the
asymptotic rate of convergence of the family (µη)η∈(0,η]

defined in Section 2, we establish a central limit theo-
rem in Tθ?Θ, for the family of pushforward measures
(νη)η∈(0,η] defined for any A ∈ B(Tθ?Θ) by

νη(A) = µη
(

Expθ?(η1/2A)
)
. (11)

It is shown in Section S4 that for any η ∈ (0,η], νη is
the stationary distribution of the rescaled and projected
Markov chain (Un)n∈N defined for any n ∈ N by Un =
η−1/2Exp−1

θ? (θn). Therefore, since under A1-(i)-(ii), for
any u ∈ Tθ?Θ, ρΘ(θ?,Expθ?(u)) = ‖u‖θ? by (Lee, 2019,
Corollary 6.12,Proposition 12.9), showing a central
limit theorem for the family (νη)η∈(0,η] as η→ 0 shows
that asymptotically (µη)η∈(0,η] concentrates in regions
of diameter O(η1/2) around θ? for the Riemannian
distance.

We consider the following assumptions.
MD4. There exist εe > 0, σ̃2

0 , σ̃
2
1 ≥ 0 such that for

any θ ∈ Θ, E[‖eθ(X1)‖2+εe
θ ] ≤ σ̃2

0 + σ̃2
1V (θ).

H5. There exist a linear mapping A : Tθ∗Θ→ Tθ∗Θ
and a map H : Θ→ Tθ∗Θ, such that for any θ ∈ Θ,

h(θ) = Tγ
01

(
AExp−1

θ? (θ) + H (θ)
)
, (12)

where θ? is defined in H4, Tγ
01 denotes parallel trans-

port along the geodesic γ : [0, 1] → Θ with γ(0) = θ?

and γ(1) = θ, and limθ→θ?{‖H (θ)‖θ? /ρΘ(θ?, θ)} = 0.
In addition, the eigenvalues of the matrix A all have
strictly negative real parts. Finally, there exists C3 > 0
such that for any θ ∈ Θ, ‖h(θ)‖θ ≤ C3ρΘ(θ?, θ).

MD4 is a strengthened version of MD 1. We show in
Theorem S16 that (12) holds in the case h is twice con-
tinuously differentiable on Θ with A = ∇h(θ?). Note
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that when Θ = Rd is equipped with its Euclidean met-
ric, (12) translates into h(θ) = A(θ− θ?) + H (θ) with
limθ→θ?{‖H (θ)‖ / ‖θ − θ?‖} = 0, which is exactly the
assumption in Pflug (1986, Assumption B(ii)). For
ease of notation, we also denote by A and Σ(θ?) the
matrices associated with these two linear applications
in some orthonormal basis of Tθ?Θ. H5 guarantees the
existence and uniqueness of the solution V ∈ Rd×d of
the Lyapunov equation AV+VA> = Σ(θ?), see (Horn
and Johnson, 1994, Theorem 2.2.1).

We also assume that V can be compared to a function
of the distance on Θ which leads to the strengthening
of H4.

H 6. There exists θ? such that H 3({θ?}) holds
and there exists φ : R+ → R+ such that for any
θ ∈ Θ, V (θ) ≥ φ(ρΘ(θ?, θ)) and for any r > 0,
inf [r,+∞) φ > 0. In addition, there exists a > 0, such
that limr→+∞ supa≤a a/φ(a1/2r) = 0.

Note that the assumption on the growth rate of the
Lyapunov function is verified when V = V1, con-
sidered in Proposition 5. In this case, we can take
φ(r) = δ2[1 + (r/δ)2]1/2− δ2. Pflug (1986) only consid-
ers the Euclidean case with V : θ 7→ ‖θ − θ?‖2, in which
case H6 boils down to 〈θ − θ?, h(θ)〉 ≥ ‖θ − θ?‖2 λ. In
addition, for this particular choice of Lyapunov func-
tion, it is equivalent to H3(∅), as the other conditions
result from the existence and uniqueness of the solu-
tion θ? and the Euclidean properties of the squared dis-
tance function (see Pflug, 1986, Assumption A(i)-B(iii)).
However, for our study, we have to generalize this as-
sumption to any well-suited Lyapunov function, since,
as we have already discussed, taking V : θ 7→ ‖θ − θ?‖2
is no longer an option in the Riemannian case.

Theorem 7. Assume A1-(i)-(ii), MD1, MD2, MD3,
MD4, H1, H2, H5 and H6 hold. Suppose in addition
that h(θ?) = 0, h is continuous and let η = [2C2L(1 +
σ2

1)]−1 ∧ (4C3)−1. Then, the family of distributions
(νη)η∈(0,η], defined by (11), converges weakly to N(0,V)
as η→ 0 on Tθ?Θ, where V is the unique solution to
the Lyapunov equation AV + VA> = Σ(θ?).

Even though N(0,V) is a distribution on Rd, we iden-
tify Rd with Tθ?Θ using the same orthonormal basis as
before. As mentioned in Section 2, Theorem 7 comple-
ments Theorem 3 because it proves that the asymptotic
rate of convergence of (µη)η∈(0,η] to δθ? is η1/2, since
(Un)n∈N is rescaled by this factor with respect to the
actual SA scheme (θn)n∈N. Finally Theorem 7 can
be seen as a Riemannian counterpart of Pflug (1986,
Theorem 1). In the following section, we illustrate our
results on SGD.

4 APPLICATION TO SGD

We assume throughout this section that A 1-(i)-(ii)
holds. We apply the results of Section 2 and Sec-
tion 3, to the unconstrained stochastic gradient scheme,
i.e. (θn)n∈N defined by (2) with h = −grad f and S = Θ.
Proofs are postponed to the supplement, Section S5.

Geodesically Strongly Convex and Smooth
Function First, the objective function f : Θ → R
is subject to the following assumptions.
F1. f : Θ→ R is twice continuously differentiable and
grad f is geodesically Lf -Lipschitz, see (3).
F 2. f is continuously differentiable on Θ and
λf -strongly geodesically convex, for some λf >
0, i.e. for any θ1, θ2 ∈ Θ, f(θ2) ≥ f(θ1) +
〈Exp−1

θ1
(θ2), grad f(θ1)〉θ1 + λfρ

2
Θ(θ1, θ2).

Under F2, f admits a unique minimizer denoted by θ?.
In addition, we have the following inequalities.
Lemma 8. Assume A1-(i)-(ii) and F2. Then for any
θ ∈ Θ, we have

‖grad f(θ)‖2θ ≥ λf (f(θ)− f(θ?)) and ,

f(θ)− f(θ?) ≥ λfρ2
Θ(θ, θ?) .

(13)

Under F 1 and F 2, Lemma 8 implies that V (θ) =
f(θ)−f(θ?) and h = −grad f satisfy H1 with L← Lf ,
H2 with C1 ← 0, C2 ← 1 and H3(∅) with λ ← λf .
A direct application of Theorem 1-(c) leads to the
following result.
Corollary 9. Assume A 1-(i)-(ii), MD 1, F 1, F 2.
Consider (θn)n∈N defined by (2) with h = −grad f . Let
η = [2Lf (1 + σ2

1)]−1 and η ∈ (0,η]. For any θ0 ∈ Θ,
and n ∈ N,

E[f(θn)−f(θ?)] ≤ (1−ηλf/2)n(f(θ0)−f(θ?))+2ηLfσ
2
0/λf .

Then, setting η = η∧[ελf/{4σ2
0Lf}], for ε ∈ (0, 1), and

n = d[log(1/ε)− log(f(θ0)− f(θ?))]/ log(1− ηλf/2)e,
we get E[f(θn)− f(θ?)] ≤ ε.

Corollary 9 shows that (2) has a computational com-
plexity of order O(log(1/ε)ε−1) to minimize f , without
any boundedness assumptions on Θ, contrary to Zhang
and Sra (2016). In addition, Lemma 8 also implies
that H5 and H6 hold if f is three times continuously
differentiable and therefore Theorem 7 can be applied.

Geodesically Quasi-Convex Function with
Bounded Gradient Consider the following assump-
tion.
F 3. f is twice continuously differentiable. Fur-
ther, there exists λ̃f > 0 such that for any θ ∈ Θ,
−〈Exp−1

θ (θ?), grad f(θ)〉θ ≥ λ̃fV1(θ), where V1 is de-
fined by (9) with δ = 1. In addition, there exists
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Cf > 0 such that for any θ ∈ Θ, ‖grad f(θ)‖2θ ≤
Cf (ρ2

Θ(θ?, θ) ∧ 1).

In the Euclidean case, this assumption corresponds to
weak quasi-convexity as considered in Hardt et al. (2019,
Definition 2.1), 〈grad f(θ), θ − θ?〉 ≥ τ [f(θ) − f(θ?)]
where the Lyapunov function is θ 7→ f(θ)−f(θ?). Note
that the geodesical quasi-convexity condition F3 is a
weaker version of the usual geodesical convexity in the
SGD setting (see Zhang and Sra, 2016). By introducing
F3, we can relax the condition F1 using the following
result.

Lemma 10. Assume A2 and F2. Suppose in addition
that f is twice continuously differentiable and there
exists Mf > 0 such that for any θ ∈ Θ, ‖grad f(θ)‖2θ ≤
Mfρ

2
Θ(θ?, θ). Let f̃ = {f − f(θ?) + 1}1/2. Then f̃

satisfies F 3 with Cf ← (Mf/4)[1 ∧ λf ] and λ̃f ←
λf/(2M

1/2
f ).

Note that the condition introduced in Lemma 10 is
a relaxation of the condition that grad f is geodesi-
cally Lipschitz. Indeed, by Jost (2005, Theorem 5.6.1),
for θ? ∈ Θ, θ 7→ ρ2

Θ(θ?, θ) satisfies the conditions of
Lemma 10 but its gradient is not geodesically Lipschitz.
A non-asymptotic bound is now given in terms of the
distance-like function, defined for any θ1, θ2 ∈ Θ by

D2
Θ(θ1, θ2) = ρ2

Θ(θ1, θ2)/(1 + ρ2
Θ(θ1, θ2)) . (14)

Proposition 11. Assume that A2, MD1, F3 hold.
Let η = [(8Cf/λ̃f )(1 + κ)(1 + σ2

1)]−1 and η ∈ (0,η].
Consider (θn)n∈N defined by (2) with h = −grad f and
S = Θ. Then, for any θ0 ∈ Θ and n ∈ N∗,

n−1
n−1∑
k=0

E
[
D2

Θ(θ?, θn)
]
≤ 4V1(θ0)/(nηλ̃f )+4η(1+κ)σ2

0/λ̃f ,

where κ is given in A2, and V1 is defined by (9) with
δ = 1.

To the authors’ knowledge, such a bound is novel even
in a deterministic setting.

Application to the Riemannian Barycenter
Problem To conclude our study, we consider the
problem of computing the Riemannian barycenter θ?
of a probability distribution π on a Hadamard manifold
Θ. First, we look at the discrete case:

π = M−1
π

∑Mπ

i=1 δθi , (15)

where Mπ ∈ N∗ and {θi}Mπ
i=1 ∈ ΘMπ . The Riemannian

barycenter θ? or Karcher mean of π (Arnaudon et al.,
2012) is the unique global minimum of the function fπ :

θ 7→
∑Mπ

i=1 ρ
2
Θ(θ, θi)/(2Mπ) . By Jost (2005, Theorem

5.6.1), grad fπ(θ) = −M−1
π

∑Mπ

i=1 Exp−1
θ (θi) for any

θ ∈ Θ and fπ satisfies F2 with λf = 1/2 using Durmus
et al. (2020, Lemma 10). Therefore, by Lemma 10,

Proposition 11 can be applied. In addition, we get the
following result, as an application of Proposition 4 and
Theorem 1-(c).
Proposition 12. Assume A2. Let θ?π be the Rieman-
nian barycenter of the probability measure π in (15) on
the Hadamard manifold Θ, and let (θn)n∈N be given by
θn+1 = Expθn(ηExp−1

θn
(Xn+1)), where (Xn)n∈N∗ is a

sequence of i.i.d. random variables with distribution π.
Then, for any η ∈ (0, 1/(CL3

π)], θ0 ∈ Θ and n ∈ N,

E[ρ2
Θ(θn, θ

?
π)] ≤ (1− η/4)nρ2

Θ(θ0, θ
?
π) + CηLπD2 ,

where Lπ = (1 + D)(1 + κ coth(κD)), C is a universal
constant, and D = maxi=1,...,Mπ

ρΘ(θ0, θi).

Secondly, we tackle the general case where π is not
required to be discrete or compactly supported. In this
case, the mapping that we are looking to minimize is

fπ : θ 7→ (1/2)

∫
Θ

ρ2
Θ (θ, ν)π (dν) . (16)

The function fπ is well-defined and finite under the
following assumption.
MD 5. There exists θ ∈ Θ such that∫

Θ
ρ2

Θ(θ, ν)π(dν) < +∞.

Note that by the triangle inequality, MD5 is equivalent
to for any θ ∈ Θ such that

∫
Θ
ρ2

Θ(θ, ν)π(dν) < +∞ and
therefore fπ is finite. Using the Lebesgue’s dominated
convergence theorem and Jost (2005, Theorem 5.6.1),
we can compute its Riemannian gradient given for any
θ ∈ Θ by, grad fπ(θ) = −

∫
Θ

Exp−1
θ (ν)π (dν). Then,

fπ satisfies F2 with λf = 1/2 and admits a unique
minimizer θ?π. However, grad f does not satisfy F1
in general. More precisely, it fails to be geodesically
Lipschitz, see Jost (2005, Theorem 5.6.1). In the Eu-
clidean setting, several modifications of SGD have been
suggested to rescale the gradient such as RMSProp,
AdaGrad and Adam (Geoffrey, 2014; Duchi et al., 2011;
Kingma and Ba, 2017). Inspired by these methods, we
consider the stochastic approximation scheme (2) with
S = Θ and

Hθ(Xn+1) = (1/2)Exp−1
θ

(
X

(1)
n+1

)
{ρ2

Θ(θ,X
(2)
n+1)/2+1}−1/2 ,

(17)
where Xn+1 = (X

(1)
n+1, X

(2)
n+1) and (X

(1)
k , X

(2)
k )k∈N∗ is

an i.i.d. sequence of pairs of independent random vari-
ables with distribution π. The following result es-
tablishes non-asymptotic convergence bounds for the
resulting recursion.
Theorem 13. Assume A2 and MD5. Let θ?π be the
Riemannian barycenter of the probability measure π.
Let (θn)n∈N be given by (2) with S = Θ and H defined
by (17). Then, for any n ∈ N,

n−1
n−1∑
k=0

E
[
D2

Θ(θk, θ
?
π)
]
≤ 4V1(θ0)C1/2

π

/
(ηn) + 4ηBπ ,

where V1 is defined by (9) with δ ← 1, θ? ← θ?π, Cπ =

1+2fπ(θ?π), Bπ = (1+κ)(fπ(θ?π)+1)(fπ(θ?π)+2)C
−1/2
π

and D2
Θ is defined in (14).



Durmus, Jiménez, Moulines, Said

0 1000 2000
10

-4

10
-2

10
0

0 1000
10

-4

10
-2

10
0

0 1000 2000 3000
10

-4

10
-2

10
0

Figure 1: Paths of the algorithm in Proposition 12

5 NUMERICAL EXPERIMENTS

We consider in our experiments the Karcher mean es-
timation problem on Θ = Sym+

50(R) ⊂ R50×50, the
symmetric definite positive matrix manifold (SPD)
equipped with its affine-invariant metric, see Pennec
et al. (2006). Note that the dimension of Θ is 1275.

We first consider the case where π = (15)−1
∑15
i=1 δxi is

a discrete distribution, where {xi}15
i=1 are random sam-

ples from the Wishart distribution W(50, Id) i.e. with
50 degrees of freedom and scale matrix identity. The
Karcher mean θ?π associated with π is estimated using
the Matrix Means Toolbox (Bini and Iannazzo, 2013).

Figure 1 represents the behavior of the squared dis-
tance to the barycenter θ?π for a single path and three
step-sizes η ∈ {10−3, 4 × 10−3, 10−2}. As expected
from Proposition 12, two regimes can be observed. At
first, the squared-distance to the barycenter exponen-
tially decreases and then the iterates oscillate in a
O(η1/2)-neighborhood of θ?π. In addition, the rate of
convergence in the exponential decay depends on the
step-size.

In Figure 2, we aim at illustrating (7), Theorem 6
and Theorem 7. To this end, 1000 replications of
the previous experiment are performed to obtain
{(θ(i)

n ) : i ∈ {1, . . . , 1000}} for n = d10/ηe and
η ∈ {1, 2.8, 4.6, 6.4, 8.2, 10} × 10−2. These samples
are used to estimate the mean and the variance of
ρ2

Θ(θ, θ?π), for θ following the stationary distribution
µη. As expected, the mean and the variance are both
linear w.r.t. the step-size η, further confirming that the
iterates remain in a neighborhood of diameter O(η1/2)
to the ground truth.

Secondly, we examine the barycenter problem for π =
W(50, Id), following the scheme introduced in (17).
The estimation of θ?π, relative to the new distribution
π, is now done with a 100-batch-size version of our
methodology, with 106 iterations and η = 10−4.

As a counterpart to Figure 1, in Figure 3 we are inter-
ested in the mean values of (D2

Θ(θn, θ
?
π))n∈N along a sin-

gle path for three step-sizes η ∈ {10−3, 4×10−3, 10−2},
with respective burn-ins {13, 3.3, 1.645} × 103. As pre-
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Figure 3: Paths of the algorithm in Theorem 13

dicted by Theorem 13, an initial decrease in O(n−1) is
followed by a plateau in O(η). We can observe that
compared to Figure 1, averaging smoothes oscillations.

Finally, we also perform the experiment correspond-
ing to Figure 2 for the discrete setting to illustrate
numerically that the conclusions of (7), Theorem 6
and Theorem 7 still hold. However, due to space con-
straints and since the conclusions are the same than
for Figure 2, the corresponding figure is postponed to
the supplement Figure S1.
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