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1 MISSING PROOFS

1.1 Notation

First, we redefine spaces X ,
∏m

∆n2 × ∆n and Y , [−1, 1]2mn, where
∏m

∆n2 × ∆n is the short form of
∆n2 × . . .×∆n2︸ ︷︷ ︸

m

×∆n. Then we rewrite the WB problem for column vectors x = (x>1 , . . . , x
>
m, p

>)> ∈ X and

y = (y>1 , . . . , y
>
m)> ∈ Y in a saddle-point formulation

min
x∈X

max
y∈Y

F (x,y) ,
1

m

{
d>x + 2‖d‖∞

(
y>Ax− c>y

)}
, (1)

where d = (d>, . . . , d>,0>n )>, c = (0>n , q
>
1 , . . . ,0

>
n , q

>
m)> and A =

(
Â E

)
∈ {−1, 0, 1}2mn×(mn2+n) with block-

diagonal matrix Â of m blocks

Â =


A 02n×n2 · · · 02n×n2

02n×n2 A · · · 02n×n2

...
...

. . .
...

02n×n2 02n×n2 · · · A


and matrix

E> =

((
−In 0n×n

)︸ ︷︷ ︸
−B>

E

(
−In 0n×n

)︸ ︷︷ ︸
−B>

E

· · ·
(
−In 0n×n

)︸ ︷︷ ︸
−B>

E

)
.

We define the following regularizer

r(x,y) =
2‖d‖∞
m

(
10

m∑
i=1

〈xi, log xi〉+ 5m〈p, log p〉+ x̂>Â>(y)2 − p>E>(y)2

)
, (2)

where log x and (x)2 are entry-wise, and x̂ = (x>1 , . . . , x
>
m)>. Also we define z̄ = (x̄, ȳ) as a minimizer of r.

Also we recall the gradient operator for the problem (1):

G(x,y) =
1

m

(
d + 2‖d‖∞A>y
2‖d‖∞(c−Ax)

)
. (3)

1.2 Proof of Theorem 4.3

Theorem (Theorem 4.3). r is 3-area-convex with respect to the gradient operator G.

Proof. Firstly, we define some notation connected to block-diagonal matrices. Assume that D is a block diagonal
matrix of size ak × bk

D =


B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...
0 0 · · · Bk

 ,
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where matrices Bi of size a× b. We refer to i-th block of D as D(i) = Bi. Also we define D[i] as a matrix D with
all blocks zeroes except the i-th one. Equivalent, we can write D[i] = δ

(k)
ii ⊗D(i), where δ

(k)
ij is a matrix of size

k × k with 1 on the position i, j position and 0 in any other, and ⊗ is a Kronecker product of matrices.

We will use a second-order criteria proposed by Jambulapati et al. (2019). We will show that(
∇2r(z) −J
J ∇2r(z)

)
� 0,

where

J =
2‖d‖∞
m

(
0 AT

−A 0

)
=

2‖d‖∞
n

 0 0 Â>

0 0 E>
−Â −E 0


is the Jacobian matrix for F (x,y).

A good idea to remove a positive multiplicative term 2‖d‖∞m−1 to simplify the statement. Define r′(z) =
1/(2‖d‖∞m−1)r(z) and J ′ = 1/(2‖d‖∞m−1)J . Hence we only should show that

P =

(
∇2r′(z) −J ′
J ′ ∇2r′(z)

)
=

m

2‖d‖∞

(
∇2r(z) −J
J ∇2r(z)

)
� 0.

Then we can rewrite r′ in the following manner

r′(x,y) =

m∑
i=1

[
10〈xi, log xi〉+ 〈Axi, (yi)2〉

]
+5m〈p, log p〉 − pTET (y2) =

=

m∑
i=1

[
10〈xi, log xi〉+ 〈Axi, (yi)2〉

]
+

m∑
i=1

[
5〈p, log p〉+ 〈BEp, (yi)2〉

]
.

In this case, we can easily calculate the hessian of r′, divide it into blocks:

∇2r′(z) =

∇2
x̂,x̂r

′(z) ∇2
x̂,pr

′(z) ∇2
x̂,yr

′(z)

∇2
p,x̂r

′(z) ∇2
p,pr
′(z) ∇2

p,yr
′(z)

∇2
y,x̂r

′(z) ∇2
y,pr

′(z) ∇2
y,yr

′(z)


=

10 diag((x̂)−1) 0mn2×n 2Â> diag(y)
0n×mn2 5m diag((p)−1) −2E> diag(y)

2 diag(y)Â −2 diag(y)E 2 diag(Âx̂)− 2 diag(Ep)

 ,

where diag(v) for a vector v ∈ Rn produces a diagonal matrix with v on diagonal and v−1 is a entry-wise operation
on vector.

We notice that matrices diag((x̂)−1), Â> diag(y),diag(Âx̂) have a block-diagonal structure with m blocks. Define
the following matrices

Bi(z) =

10 diag((x̂)−1)[i] 0mn2×n 2(Â> diag(y))[i]

0n×mn2 0n×n 0n×2mn

2(diag(y)Â)[i] 02mn×n 2 diag(Âx̂)[i]


and

R(z) =

0mn2×mn2 0mn2×n 0mn2×2mn

0n×mn2 5m diag((p)−1) −2E> diag(y)
02mn×mn2 −2 diag(y)E −2 diag(Ep)

 .

Using these matrices, the decomposition of Hessian can be observed: ∇2r′(z) =
∑m
i=1Bi(z) +R(z).

We notice that the matrix J ′ has the same block decomposition:

Ci =

 0 0 (Â>)[i]

0 0 0

−(Â)[i] 0 0

 , S =

0 0 0
0 0 E>
0 −E 0

 .
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Clearly we have J ′ =
∑m
i=1 Ci + S. Using these two decompositions, we get the following:

P =

m∑
i=1

(
Bi(z) −Ci
Ci Bi(z)

)
︸ ︷︷ ︸

Pi

+

(
R(z) −S
S R(z)

)
.

It can be observed that each matrix Pi is almost a corresponding matrix for the area-convex regularizer for the
optimal transportation problem with variables xi, yi in (Jambulapati et al., 2019), except the rows and columns
of zeros. Moreover, it was proven that these matrices are positive semi-definite. Hence, only the remaining term
is need to be examined.

Firstly, we write the action of non-zero corner of R(z), called R̂(z), as a quadratic form:

QR̂(z)(u, v) = (u>, v>)R̂(z)

(
u
v

)
= (u>, v>)

(
5m diag((p)−1) −2E> diag(y)
−2 diag(y)E −2 diag(Ep)

)(
u
v

)
.

The we can use the trick induced by the structure of the matrix E to compute the quadratic form. The trick is
about to rewrite m in the following way: m = ‖E:,j‖1 = −

∑2mn
i=1 Eij ,∀j ∈ [n].

Then, we can calculate the quadratic form:

QR̂(z)(u, v) =
∑
i,j

(−Eij)

(
5u2

j

pj
+ 4ujviyi + 2v2

i pj

)
.

Secondly, we wrtie the action of non-zero corner of S, called Ŝ, as a bilinear form

BŜ((a, b), (u, v)) = (x>, y>)

(
0 E>
−E 0

)(
u
v

)
=
∑
i,j

Eij (ajvi − ujbi) ,

and, as a result, we have the complete analytic expression for the quadratic form induced by the remaining term
of P :

((a>, b>), (u>, v>))

(
R̂(z) −Ŝ
Ŝ R̂(z)

)
(
a
b

)
(
u
v

)


=
∑
i,j

(−Eij)

(
5a2
j

pj
+ 4ajbiyi + 2b2i pj + 2ajvi − 2ujbi +

5u2
j

pj
+ 4ujviyi + 2v2

i pj

)

=
∑
i,j

(−Eij)
1

pj

(
(2ajyi + bipj)

2 + (2ujyi + vipj)
2

+ (aj + vipj)
2 + (uj + bipj)

2 + (1− (yi)
2)(a2

j + u2
j ))

)
≥ 0.

The final inequality follows from the range of yi ∈ [−1, 1] and finishes the proof.

1.3 Proof of Theorem 4.4

Theorem (Theorem 4.4). Let at each iteration, Dual Extrapolation algorithm calls Alternating minimization
(AM) scheme to make the proximal steps. Then for N = d 4κΘ

ε e iterations of Dual Extrapolation algorithm running
with regularizer (2) and κ = 3, AM scheme accumulates additive error ε/2 running with

M = 24 log

((
88‖d‖∞
ε2

+
4

ε

)
Θ +

36‖d‖∞
ε

)
iterations in O(mn2 log γ) time, where γ = ε−1‖d‖∞ log n.
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The target function for this procedure can be written in the general form as following:

H(x,y) = 〈v,x〉+ 〈u,y〉+ r(x,y). (4)

To prove this theorem we will use the results from (Jambulapati et al., 2019) about their Alternating minimization
scheme. Firstly, we need to obtain a linear convergence and we can do it by adapting an argument of Jambulapati
et al. (2019, Lemma 6) to our setup.
Lemma 1.1. For some xk+1,yk, let Xk+1 = {x | x ≥ 1

2x
k+1} where inequality is entrywise, and let Yk be the

entire domain of y (i.e. Y). Then for any x′ ∈ Xk+1,y
′,y′′ ∈ Yk,

∇2r(x′,y′) � 1

12
∇2

yyr(x
k+1,y′′).

Proof. The only thing that differs in the analysis is a diagonal approximation then does not depends on y. Hence,
we only need to show that for any y

D(x) � ∇2r(x,y) � 6D(x),

where D(x) is the diagonal approximation

D(x) =

2 diag((x̂)−1) 0mn2×n 0mn2×2mn

0n×mn2 mdiag((p)−1) 0n×2mn

02mn×mn2 02mn×n diag(Âx̂)− diag(Ep)

 .

It is easy to see that D(x) has the same block structure as ∇2r(x,y) and we can prove our inequalities for each
block separately. But all blocks connected to x̂ is blocks that appears in optimal transport problem and the
required inequalities were proven in (Jambulapati et al., 2019). Hence, we only need to show that

D̂p(x) � R̂(x,y) � 6D̂p(x),

where
D̂p(x) =

(
m diag((p)−1) 0n×2mn

02mn×n −diag(Ep)

)
.

and R̂ was defined in the proof of Theorem 1.2.

Also, in the proof of Theorem 1.2 we show that

QR̂(z)(u, v) =
∑
i,j

(−Eij)

(
5u2

j

pj
+ 4ujviyi + 2v2

i pj

)
.

Using the same idea, we can write the action of quadratic form induced by D̂p:

QD̂p(x)(u, v) =
∑
i,j

(−Eij)

(
u2
j

pj
+ v2

i pj

)
.

Using the fact that yi ∈ [−1, 1], we can obtain the required by the following inequalities and finish the proof:

u2
j

pj
+ v2

i pj ≤
5u2

j

pj
+ 4ujviyi + 2v2

i pj ≤
6u2

j

pj
+ 6v2

i pj .

By the exactly same arguments, we obtain the linear rate of converge for our Alternating Minimization (AM)
scheme. We need to show last two points

• Bound the complexity of each iteration

• Bound the initial range
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Lemma 1.2. For H(x,y), defined in (4), we can implement the steps

1. xk+1 , arg min
x∈X

H(x,yk),

2. yk+1 , arg min
y∈Y

H(xk+1,y),

in time O(mn2).

Proof. First of all, divide a vector v from the definition of function (4) into m + 1 part and vector u into m
parts. We have the following function to optimize by some regrouping and rewriting a regularizer in homogeneous
manner

H(x,y) =
2‖d‖∞
m

m∑
i=1

(
m

2‖d‖∞
〈vi, xi〉+ 〈(yi)2, Axi〉+ 10〈xi, log xi〉

+
m

2‖d‖∞
〈ui, yi〉+ 〈BEp, (yi)2〉

)
+10‖d‖∞〈p, log p〉+ 〈vm+1, p〉.

We notice that each xi is independent from others and we can compute x(k+1)
i apart as a solutions of the following

optimization problems:

xk+1
i = arg min

x∈∆n2

〈
m

20‖d‖∞
vi +

1

10
A>(yki )2︸ ︷︷ ︸

γi

, x

〉
+ 〈x, log x〉,

and the solution of this type of problems is well-known and proportional to exp(−γi). The multiplication on the
matrix A and A> can be computed in O(n2) time, because these matrices consists of O(n2) non-zero entries, and
all these steps can be performed in O(mn2).

Also we need to compute an optimal p by the same idea

pk+1 = arg min
p∈∆n

〈
1

10‖d‖∞
vm+1 −

1

5m
E>(yk)2︸ ︷︷ ︸

γm+1

, p

〉
+ 〈p, log p〉.

As in the previous case, an optimal pk+1 is proportional to exp(−γm+1) and it can be computed in O(mn2) time.

For the computation of y(k+1) we notice that each [y
(k+1)
i ]j can be computed separately as a solution of the

following 1-D optimization problem:

[yk+1
i ]j = arg min

y∈[−1,1]

m

2‖d‖∞
[ui]j · y + ([Axk+1

i ]j + [BEp
k+1]j) · y2.

It could be easily solved in constant time if we know Axk+1
i and BEpk+1 = (p>, 0n)>

[yk+1
i ]j =


−1, α ≤ −1

1, α ≥ 1

α, α ∈ [−1, 1]

, where α =
−m[ui]j

4‖d‖∞([Axi]j + [BEp]j)
.

Hence, we can make all calculations in O(mn2).

Now we are ready to write the final proof.

Proof of Theorem 4.4. To proof the final result, we need to remind the proximal operator for r:

proxrz̄(v) = arg min
z∈Z
〈v, z〉+Br(z̄, z) = arg min

z∈Z
〈v −∇r(z̄), z〉+ r(z).
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We notice, that it is equivalent to the next view, separate over x and y:

proxrx̄,ȳ(v) = arg min
x∈X ,y∈Y

〈vx −∇xr(x̄, ȳ),x〉+ 〈vy −∇yr(x̄, ȳ),y〉+ r(x,y). (5)

We have precisely the type of problems that can be solved using AM scheme described above in linear time,
moreover, each step reduces error by 1/24 factor (similar as (Jambulapati et al., 2019)).

The only thing we need to bound is an initial error. For this goal we should bound the norm of the gradient and
the argument of the proximal function in all calls during the algorithm.

Firstly, divide gradient operator G(z) = (Gx(z)>, Gy(z)>)>, defined in (3), into two parts and bound uniformly
`∞ and `1 norms of each part respectively

‖Gx(z)‖∞ =
1

m
‖d + 2‖d‖∞A>y‖∞ ≤

‖d‖∞
m

+
2‖d‖∞
m
‖A>y‖∞ ≤ 3‖d‖∞,

‖Gx(z)‖1 =
1

m
‖2‖d‖∞(c−Ax)‖1 ≤

2‖d‖∞
m

(‖c‖1 + ‖Ax‖1) ≤ 8‖d‖∞.

In the inequality in the first row we used the fact m ≥ 1 for simplicity and in the second one we use the fact
that matrix A and vector xi are non-negative, hence, ‖Axi‖1 = 〈1n, Axi〉 = 2〈1n, xi〉 = 2, where 1n is a vector
consists of ones.

Then we can use the fact that the argument of the first prox-operator sk = (skx, s
k
y) is a sum of k gradients

multiplied by 1/2κ, computed in different points. In the second operator we also add gradient operator, multiplied
by 1/κ. Since k ≤ 4κΘ · ε−1, we have by triangle inequality

‖skx‖∞ ≤
k

2κ
· 3‖d‖∞ ≤

6Θ‖d‖∞
ε

,

‖sky‖1 ≤
k

2κ
8‖d‖∞ ≤

16Θ‖d‖∞
ε

.

Then, all our arguments of the proximal operator during the running time can be bounded in the following way
(for κ = 3)

‖vx‖∞ ≤
6Θ‖d‖∞

ε
+ ‖d‖∞,

‖vy‖1 ≤
16Θ‖d‖∞

ε
+

8

3
‖d‖∞.

Then fix x∗ and y∗ as minimizers for the proximal operator (5) and remind the bound for Θ ≤ 40 log n‖d‖∞+6‖d‖∞.
Also we can compute ‖∇xr(x̄, ȳ)‖∞ ≤ 20‖d‖∞(2 log n+ 1) and ‖∇yr(x̄, ȳ)‖1 = 0.

Then we can write a suboptimality gap δ0 for our algorithm for any initial x0 and y0:

δ0 = 〈vx −∇xr(x̄, ȳ),x0 − x∗〉+ 〈vy −∇yr(x̄, ȳ),y0 − y∗〉+ r(x0,y0)− r(x∗,y∗)
≤ ‖vx −∇xr(x̄, ȳ)‖∞‖x0 − x∗‖1 + ‖vy −∇yr(x̄, ȳ)‖1‖y0 − y∗‖∞ + Θ

≤ 2‖d‖∞ ·
(

6Θ

ε
+ 20 log n+ 10

)
+ ‖d‖∞ + 2 · 16Θ‖d‖∞

ε
+

8

3
‖d‖∞ + Θ

≤
(

44‖d‖∞
ε

+ 2

)
Θ + 18‖d‖∞.

Then we can compute the total number of iterations to obtain ε/2 desired accuracy:

N = log24/23

2δ0
ε
≤ 24 log

((
88‖d‖∞
ε2

+
4

ε

)
Θ +

36‖d‖∞
ε

)
= O(log γ),

where γ = ‖d‖ε−1 log n, as desired. Each iteration can be done in O(mn2) time and we obtain the required
complexity.
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