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Outline: This supplementary material provides the essential derivations to obtain the results of the main
paper (Section 1), the extension of these results to the Softmax classifier (Section 2) and further experiments
supporting our findings (Section 3). Specifically, Subsection 1.1 provides justifications about the CLT result for
concentrated vectors as per Theorem 3.2. Subsection 1.2 next presents the main ingredients for obtaining Theorem
4.8. Notations about the Softmax classifier are presented In Subsection 2.1, while Subsection 2.2 provides an
analog of Theorem 4.8 for the general case of the Softmax classifier. Finally, further experiments using multi-class
classification with synthetic Gaussian data and MNIST data as well as CNN representations of real images are
shown in Section 3.

Notation: The notation z ∈ z̃ ± Eq(σ) stands for z ∈ R satisfying z ∝ Eq(σ) and |z̃ − E[z]| ≤ O(σ), where | · |
replaces Euclidean norm for vectors. ⊗ stands for the Kronecker product.

Reproducibility: A github link for the project will be provided.

1 Proofs of the main paper results

1.1 CLT for concentrated random vectors

In this section, we consider an asymptotic quantity p ∈ N that will represent the dimension of the random vectors
we consider, and will be the quantity implicitly tending to infinity when we will employ the notations O(σ) of Eq(σ).
Let us first provide two fundamental result that were already evoked in the main paper: the concentration of the
Gaussian distribution γ = N (0, Ip) and the uniform distribution on the Sphere √pSp−1 ≡ {x ∈ Rp, ‖x‖ =

√
p}.

Theorem 1.1 (Concentration of the Gaussian distribution and the uniform measure on the sphere). If x ∼ γ or
x ∼ Unif(√pSp−1), then x ∝ E2.

Those two distributions are very similar and almost equal when p is high1. In general one can imagine concentrated
vectors x as distributed along a sphere of center E[x] and radius

√
Tr(Cx) where

Cx ≡ E[xxᵀ]− E[x]E[x]ᵀ,

thanks to the following lemma that is a mere consequence of the 1-Lipschitz character of the Euclidean norm and
whose full proof can be found in [Led05].

Lemma 1.2 (Concentrated vectors are distributed close to the sphere). If x ∝ E2, then:

P
(∣∣∣‖x− E[x]‖ −

√
Tr(Cx)

∣∣∣) ≤ Ce−ct2 .
We have the following result that can also be found in [LC20a], which controls the moments of concentrated
random variables.

1A famous result of Poincaré states indeed that any orthogonal projection of a random vector uniformly distributed on
the sphere √pSp−1 tends to a Gaussian vector when p tends to infinity.
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Proposition 1.3 (Characterization of the concentration with a bound on the moments). A random variable z
follows the concentration z ∈ z̃ ± Eq(σ) if and only if there exists two constants C, c > 0 such that for all p ∈ N,
for all r > q:

E [|z − z̃|r] ≤ C
(
r

q

) r
q

(cσ)r.

We provide below a proposition (similar to the result of [Kla07] provided in Theorem 3.2 in the main paper but
more simple) supporting the fact that concentrated vectors share a common concentration behavior with Gaussian
vectors. Specifically, given a random concentrated vector x ∝ E2, if one samples a vector u from the uniform
distribution on the unit sphere sphere2 Sp−1, then most likely, the random variable uᵀx behaves asymptotically
(as p grows) as a Gaussian random variable. Technically, this observation allows us to compute expectations of
functionals of wᵀx when x is independent from w (for instance in wᵀ

−ixi). Note however, that even though w is
a priori not guaranteed to be uniformly distributed on the unit sphere, our experiments (in the main paper and
subsequently) tend to validate the Gaussianity of the random variable wᵀx.
Proposition 1.4. Given an integer p ∈ N and a random vector x ∈ Rp, if x ∝ E2 and ‖E[x]‖ ≤ O(1), then
for any parameter κ ≥ 1 there exists two constants c, C > 0 and a subset Θ ⊂ Rp such that γ(Θ) ≥ 1− 2e−cκ

2

,
γ = N (0, 1pIp) and for any λ-Lipschitz mapping f : R→ R:

∀u ∈ Θ : |E[f(uᵀx)]− E[f(z)]| ≤ Cκλ
√
p
,

where z ∼ N (0, 1pE[‖x‖]) or z ∼ N (0, 1pE[Tr(C)]), with C = E[xxᵀ]− E[x]E[x]ᵀ.

Remark 1.5. If θ ∼ N (0, 1pIp), then θ ∝ E2(1/
√
p) and P(|‖θ‖ − 1| ≥ t) ≤ 2e−pt

2/2. Therefore, considering a
vector u ∈ Rp, if u is far from the sphere Sp−1, although it could possibly be in the set Θ, it is highly unprobable.
Our heuritic thus requires to apply Proposition 1.4 with the vector u/‖u‖ and the mapping t 7→ f(‖u‖t).

Proof. The set Θ appears from a concentration result where the deterministic vector u can be seen as a drawing
of the random vector θ ∼ γ that we chose to be independent of x. We already know that θ ∝ E2(1/

√
p) and we

know that φ : u 7→ E[f(uᵀx)] is λ′-Lipschitz with:

λ′ ≤ λ sup
‖v‖≤1

E[|vᵀx|] ≤ λ(|E[vᵀx]|+O(1)) ≤ O(λ)

thanks to Propostion 1.3, since vᵀx ∈ 0± E2. Therefore φ(θ) ∈ E[φ(θ)]± E2(λ/
√
p) thanks to the concentration

of θ and noting Θ = {u ∈ Rp | φ(u)−E[φ(θ)]| ≤ λκ√
p}, we know that there exist two constants C, c > 0 such that

P(θ /∈ Θ) ≤ 2e−cκ
2

.

Besides, noting Ex and Eθ, respectively, the expectation on x (with θ fixed) and the expectation on θ, we can
estimate:

E[φ(θ)] = Ex [Eθ[f(θᵀx)]] .

For a fixed x, θᵀx is a Gaussian random variable with mean equal to 0 and variance equal to 1
p‖x‖

2 (since
E[θθᵀ] = 1

pIp). Introducing a random variable z ∼ N (0, 1), independent of x, we have thus the identity
Eθ[f(θᵀx)] = Ez[f(‖x‖z/√p)]. Finally, we have the following bound thanks to Proposition 1.3:∣∣∣∣E [f (‖x‖z√p

)]
− Ez

[
f(E[‖x‖]z)
√
p

]∣∣∣∣ ≤ λ
√
p
E [|‖x‖ − E[‖x‖]|]E[|z|] ≤ O

(
λ
√
p

)
.

Therefore, choosing well the constant C > 0 provides the result of the proposition.

However, the above proposition needs to be adapted for estimating quantities of the form E[f(uᵀx)vᵀx] or
E[f(uᵀx)vᵀxxᵀw] for some deterministic vectors u,v,w ∈ Rp, as we will need subsequently. In particular, we
have the following result.

2Which is equivalent to the Gaussian distribution N (0,
Ip
n
).



Proposition 1.6. In the setting of Proposition 1.4, let us note ν = Unif(Sp−1), for any parameter κ > 0, there
exists two constants C, c > 0 and a subset Θ2 ⊂ (Rp)2 such that3 ν×2(Θ2) ≥ 1− 2e−cκ

2

and for any λ-Lipschitz
mapping f : R→ R such that |E[f(uᵀx)]| ≤ λ, we have

∀(u,v) ∈ Θ2 : |E[f(uᵀx)vᵀx]| ≤ Cκλ
√
p
.

Remark 1.7. Given two independent random vectors θ,σ ∼ N (0,
Ip
p ), the couple (θ,σ) ∈ (Rp)2 has the

distribution γ⊗2 and one can show that

P (|θᵀσ| ≥ t) ≤ C ′e−c
′pt2 + C ′e−c

′pt,

for some constants C ′, c′ > 0 (independent of p). The same result particularly holds for (θ,σ) ∼ ν×2. Thus,
we see that for sufficiently large κ, the couples of Θ2 have high probability to be quasi-orthogonal. Hence, if one
considers two vectors u,v ∈ Rp, our heuristic requires not to employ directly Proposition 1.6 as if (u,v) ∈ Θ2,
but rather employ it with the couple (u,v − (uᵀv)u), we end up therefore having the identity

E[f(uᵀx)vᵀx] = uᵀvE[f(uᵀx)uᵀx] +O
(
κλ
√
p

)
,

where the right hand side expectation can be estimated by Proposition 1.4, through the mapping t 7→ f(t)t.

Proof. This proof follows the same steps as the proof of Proposition 1.4. Considering (θ,σ) ∼ ν×2, we know that
(θ,σ) ∝ E2(1/

√
p) (ν×2 is similar to N (0, I2p/2p)), and the mapping (u,v) 7→ E[f(uᵀx)vᵀx] is λ′-Lipschitz for

the Euclidean norm of (Rp)2, where we can bound thanks to Proposition 1.3 and Hölder inequality:

λ′ =

√
‖E[λvᵀxx]‖2 + ‖E[f(uᵀx)x]‖2

≤
√

sup
‖a‖≤1

λ2 |E[(vᵀx)2]E[(aᵀx)2]|+ |E[f(uᵀx)2]E[(aᵀx)2]| ≤ O(λ).

Therefore, thanks again to Proposition 1.3, if we note:

Θ2 =

{
(u,v) ∈ Rp | |E[f(uᵀx)vᵀx]− E[f(θᵀx)σᵀx]| ≤ κλ

√
p

}
,

then, there exist two constants C, c > 0 such that P((θ,σ) ∈ Θ2) ≤ Ce−cκ
2

and we retrieve the result of the
proposition since (with the same notations as in the proof of Proposition 1.4):

E[f(θᵀx)σᵀx] = Ex [Eθ[f(θᵀx)]Eσ[σᵀx]] = 0.

1.2 Estimation of the weight statistics

The complete justifications leading to Theorem 4.8 are quite long and already provided in [LC20b] in the Gaussian
setting. We thus only provide here the main ingredients to have some intuitions on the results. Typically,
Propositions 1.4 and 1.6 will allow us to employ Stein-like identities as the ones given in the up coming proposition.
They are specifically provided for Gaussian vectors x, but, as we saw from the previous subsection, they can be
extended to any concentrated vector, as long as x ∝ E2 and ‖E[x]‖ ≤ O(1).
Proposition 1.8 (Stein identities). Given x ∈ Rp, a Gaussian random vector satisfying x ∼ N (µ,C) and,
f : Rp → R some three times differentiable function such that f , f ′ and f ′′ are all λ-Lipschitz with λ ≤ O(1),
then for any v,w ∈ Rp and any A ∈Mp, we have

E[f(wᵀx)vᵀx] = E[f(wᵀx)]vᵀµ+ E[f ′(wᵀx)]vᵀCw,

E[f(wᵀx) Tr(xxᵀA)] = E[f(wᵀx)] Tr (A (µµᵀ +C)) + E[f ′(wᵀx)]µᵀ(A+Aᵀ)Cw + E[f ′′(wᵀx)]wᵀCACw.

3ν×2 = ν × ν stands for the measure product.



Proof. The proposition is a straightforward result of applying the Stein’s identity; for z ∼ N (0, σ2) and f : R→ R
differentiable, E[f(z)z] = σ2[f ′(z)].

Remark 1.9. In the case where x is not Gaussian but rather only concentrated, such that x ∝ E2 and ‖µ‖ ≤ O(1)4,
the formulas in Proposition 1.8 become estimations with a vanishing error of order O(n−

1
2 )5 when ‖v‖ ≤ O(1)

and ‖A‖ ≤ O(1/n). In particular, normalizing the second inequality with n and considering A ∈Mp such that
‖A‖ ≤ 1, we have

1

n
E[f(wᵀx)xᵀAx] =

1

n
E[f(wᵀx)] Tr (AC) +O

(
n−

1
2

)
,

since 1
nµ

ᵀAµ ≤ O( 1
n ), | 1nµ

ᵀ(A+Aᵀ)Cw| ≤ O( 1
n ) and | 1nE[f ′′(wᵀx)]wᵀCACw| ≤ O( 1

n ).

We turn now to the estimation of the weight statistics, i.e., the quantities µw and Cw. Starting from the following
estimation ∥∥∥∥∥µw − 1

n

n∑
i=1

EAw [ξδk(i)
(xᵀ
iw−i)xi]

∥∥∥∥∥ ≤ O(n−
1
2 ), (1)

we apply Proposition 1.8 (more precisely Remark 1.9) which yields to; for most of vectors v ∈ Rp, such that
‖v‖ ≤ O(1),

EAw
[ξδk(i)

(xᵀ
iw−i)v

ᵀxi] = E[ξδk(i)
(z̃k(i))]v

ᵀµk(i) + E[ξ′δk(i)
(z̃k(i))]v

ᵀCk(i)EAw [w−i] +O
(
n−

1
2

)
,

where, this time, z̃k(i) is a Gaussian random variable having the same mean and variance as zi ≡ xᵀ
iw−i. Moreover,

to show that w−i has the same statistics as w, we need a supplementary result (Theorem 1.10) from [LC20b],
which in turn leads to Theorem 4.4.

Theorem 1.10. Under Assumption 1-4, for any i ∈ [n]: ‖w −w−i − 1
nQ−ixif(xᵀ

iw)‖ ∈ 0± E2(n−
1
2 ).

Thus, since for any deterministic vector u ∈ Rp such that ‖u‖ ≤ O(1), one can show that 1
nu

ᵀQ−ixi ∈ 0±E2(n−
1
2 ),

one can then deduce that uᵀw − uᵀw−i ∈ 0± E2(n−
1
2 ), which implies in particular that ‖EAw [w−i]− µw‖ ≤

O(n−
1
2 ). And studying now functionals of the form wᵀAw, with A ∈Mp such that ‖A‖ ≤ O(1), one can also

show that ‖EAw [w−iw
ᵀ
−i]−Cw‖ ≤ O(n−

1
2 ).

Hence, setting K ≡
∑k
`=1 γ`E[ξ′δ`(z̃`)]C` and µ̃ ≡

∑k
`=1 γ`E[ξδ`(z̃`)]µ`, we obtain from (1),

‖µw − µ̃−Kµw‖ ≤ O
(
n−

1
2

)
. (2)

Now looking for an estimation of Cw, we start from the identity:∥∥∥∥∥∥∥Cw+µwµ
ᵀ
w−

1

n2

n∑
i=1

EAw
[ξδk(i)

(xᵀ
iw−i)

2xix
ᵀ
i ]− 1

n2

∑
1≤i,j≤n

i6=j

EAw
[ξδk(i)

(xᵀ
iw−i)ξδk(j)

(xᵀ
jw−j)xix

ᵀ
j ]

∥∥∥∥∥∥∥
∗

≤O(n−
1
2 ).

(3)

Then, we first deduce as per Remark 1.9 that for any ` ∈ [k]:∥∥EAw
[ξδk(j)

(xᵀ
iw−i)

2xix
ᵀ
i ]− EAw

[ξδk(i)
(z̃k(i))

2]Ck(i)
∥∥ ≤ O(n−

1
2 ).

For any i, j ∈ [n], i 6= j, let us define w−i,j as the unique solution w−i,j = 1
nX−i,jf(Xᵀ

−i,jw−i,j), where
X−i,j is the matrix X−i with a zero vector in the jth column. Then we can show from Theorem 1.10 that

4The concentration x ∝ E2 automatically implies that ‖C‖ ≤ O(1). Indeed for all v ∈ Rp, vᵀx ∈ vᵀµ± E2 and thus,
Proposition 1.3 implies ‖C‖ = sup‖v‖≤1 v

ᵀCv = sup‖v‖≤1 E[(v
ᵀx− vᵀµ)2] ≤ O(1).

5Recall that p (the dimension of the data) and n (the number of data) are of the same order i.e p = O(n) and n = O(p).



xᵀ
iw−i − x

ᵀ
iw−i,j ∈ 0± E2(1/

√
n) (since xi is mutually independent with w−i and w−i,j), thus

EAw
[ξδk(i)

(xᵀ
iw−i)ξδk(j)

(xᵀ
jw−j)x

ᵀ
iAxj ]

= EAw
[ξδk(i)

(xᵀ
iw−i,j)ξδk(j)

(xᵀ
jw−i,j)x

ᵀ
iAxj ] +O(n−

1
2 )

=
(
E[ξδk(i)

(z̃k(i))]µk(i) + E[ξ′δk(i)
(z̃k(i))]Ck(i)µw

)ᵀ
A
(
E[ξδk(j)

(z̃k(j))]µk(j) + E[ξ′δk(j)
(z̃k(j))]Ck(j)µw

)
+ E[ξ′δk(i)

(z̃k(i))]E[ξ′δk(j)
(z̃k(j))] Tr(Ck(i)ACk(j)Cw) +O(n−

1
2 ).

Therefore, summing up these estimations for 1 ≤ i, j ≤ n and i 6= j, we obtain:

1

n2

∑
1≤i,j≤n

i6=j

EAw
[ξδk(i)

(xᵀ
iw−i)ξδk(j)

(xᵀ
jw−j)x

ᵀ
iAxj ] = µᵀ

wAµw +
1

n
Tr(CwKAK) +O(n−

1
2 ).

Moreover, if we note C̃ ≡
∑k
`=1 γ`EAw

[ξδ`(z̃`)
2]C`, equation (3) implies that,∥∥∥Cw − C̃ −KCwK∥∥∥

∗
≤ O(n−

1
2 ). (4)

Since ‖K‖ < 1 − ε′ (see [LC20b] for details), for some constant ε′ > 0, the matrix R1 = (Ip −K)−1 and the
linear mapping R2 introduced in the main paper are well defined, and we have from (2) and (4), the estimations,

‖µw −R1µ̃‖ ≤ O
(
n−

1
2

)
,
∥∥∥Cw −R2(C̃)

∥∥∥
∗
≤ O

(
n−

1
2

)
.

We can then naturally approximate the quantities δ` = 1
n Tr

(
C` (Ip −K)

−1
)
, m` = E[z̃`] and σ` = E[z̃2` ]−m2

`

as the solutions to the fixed point equation presented in Theorem 4.8 of the main paper. Note however that the
proof of the existence and uniqueness of the solutions is quite an elaborate problem, but the simulations strongly
confirm this conjecture.

2 Extension to the Softmax classifier

2.1 Position of the Problem and first properties

The main encountered difficulty with the Softmax classifier setting is that the mapping f goes from Rk to Rk
instead of being scalar, thus its derivative is now a differential which brings some purely formal complexities. For
any ` ∈ [k], let us denote

f` : Rk −→ Rk

v 7−→

[
φ(va)/λa∑k
b=1 φ(vb)

k∑
b=1

Ỹ`,bψ(vb)− Ỹ`,aψ(va)

]
1≤a≤k

,

(5)

where Ỹ = Ik contains in the `th column the label of the class `. Then, the fixed point equation satisfied by the
Softmax weights W = (wᵀ

1 , . . . ,w
ᵀ
k)ᵀ ∈ Rpk (all stacked in a vector) writes in the simpler form,

W =
1

n

n∑
i=1

x̃ifk(i)(x̃
ᵀ
iW ),

where x̃i ≡ Ik ⊗ xi =

 xi
. . .

xi

 ∈ Mpk,k ∀i ∈ [n]. Let us introduce a constant ε > 0 and define the

event AW as,

AW ≡

 sup
1≤`≤k

z∈Rk

‖df` z‖
n
‖X̃X̃ᵀ‖ ≤ 1− ε

 ,

where X̃ = (x̃1, . . . , x̃n) ∈Mpk,nk. Then, replacing Assumptions 3 by its analog as follows,



Assumption 3 bis. sup 1≤`≤k

z∈Rk

‖df` z‖
n E[‖X̃X̃ᵀ‖] ≤ 1− 2ε,

we have the following analog to Lemma 4.2:
Lemma 2.1. Under Assumption 1, 2 and 3 bis, there exists two constants C, c > 0 such that: P(AcW ) ≤ Ce−cn.

Proof. It is a consequence of the result of concentration of product of concentrated variables provided in [LC20a] and
that sets that since ‖X̃‖/

√
n ∝ E2(n−

1
2 ) and E[‖X̃‖/

√
n] ≤ O(1), then 1

n‖X̃X̃
ᵀ‖ = 1

n‖X̃‖
2 ∝ E2(1/

√
n)+E1(1/n).

This signifies that there exist two constants C, c > 0 such that for any p ∈ N:

P
(∣∣∣∣ 1n‖X̃X̃ᵀ‖ − E

[
1

n
‖X̃X̃ᵀ‖

]∣∣∣∣ ≥ t) ≤ Ce−cnt2 + Ce−cnt.

Thus, in particular, Assumption 3 bis allows us to bound:

P(AcW ) ≤ P
(∣∣∣∣ 1n‖X̃X̃ᵀ‖ − E

[
1

n
‖X̃X̃ᵀ‖

]∣∣∣∣ ≥ ε) ≤ Ce−cnε2 + Ce−cnε,

which gives us the result of the Lemma, modifying slightly the constants C, c > 0.

Hence, in the case of the multiclass softmax classification, we obtain also the concentration of W .
Theorem 2.2. Under Assumption 1, 2 and 3 bis: (W | AW ) ∝ E2(n−

1
2 ).

2.2 Analog to Theorem 4.8

Basically, the fixed point equation of Theorem 4.8 remains the same in the (multi-class) Softmax setting, we
rather just need to adapt the objects Q, δ, ξ`, C̃, µ̃,K,R1,R2 to the vectorial mapping introduced in equation
(5). Hence, we are looking at first to an analog of Theorem 4.4 to link W with the random matrix W−i defined
as the only solution to W−i = 1

n

∑n
1≤j≤n

j 6=i
x̃jfk(j)(x̃

ᵀ
jW−i). For that an adaptation of Assumption 4 is needed.

Assumption 4 bis. ∀` ∈ [k], supz∈Rk ‖df2` z‖ ≤ ∞
6.

Then introducing the notations X̃−i = (x̃1, . . . , x̃i−1,0, x̃i+1, . . . x̃n) ∈Mpk,nk and:

Q−i ≡
(
Ikp −

1

n
X̃−iD

(i)X̃ᵀ
−i

)−1
∈Mkp, D(i) = Diag(D

(i)
j ) ∈Mkn, D

(i)
j ≡ dfk(j) x̃ᵀ

jW−i
∈Mk.

We have the following proposition which is at the core of the Softmax classifier analysis.
Proposition 2.3 (Analog to Theorem 4.4). Under Assumptions 1, 2, 3 bis and 4 bis, for any i ∈ [n]:

∀t > 0 : PAX

(∥∥∥∥x̃ᵀ
iW − x̃ᵀ

iW−i +
1

n
x̃ᵀ
iQ−ix̃ifk(i)(x̃

ᵀ
iW )

∥∥∥∥ ≥ t) ≤ Ce−cnt2 .
Consequently, we retrieve an analog to Theorem 4.8 for the Softmax classifier.
Theorem 2.4 (Analog to Theorem 4.8). Under Assumptions 1, 2, 3 bis and 4 bis, there exists three unique
tuples (m`)1≤`≤k ∈ (Rk)[k], (σ`)1≤`≤k ∈ (Mk)[k] and (∆`)1≤`≤k ∈ (Mk)[k] satisfying the conditions (∀` ∈ [k]):

• z̃` ∼ N (m`,σ
2
` );

• ξ` : Rk → Rk satisfying for any z ∈ Rk:

ξ`(z) = f`(z + ∆`ξ`(z));

• K ≡
∑k
a=1 γaE[dξa z̃a ]⊗Ca ∈Mkp;

• Q̄ ≡ (Ikp −K)
−1 ∈Mpk;

• ∆` =
[
1
n Tr

(
C`Q̄Ia,Ib

)]
1≤a,b≤k ∈Mk;

• R :Mpk →Mpk defined, for M ∈Mpk, as

R(M) = M +K(R(M))K;

• µ̃ =
∑k
a=1 γaE[ξa(z̃a)]⊗ µa ∈Mkp;

• C̃ =
∑k
a=1 γaE[ξa(z̃a)ξa(z̃a)ᵀ]⊗Ca ∈Mkp;

• m` = µᵀ
` Q̄µ̃;

• σ2
` =

[
1
n Tr

(
C`R(C̃)Ia,Ib

)
+ µ̃Q̄:,IaC`Q̄Ib,:µ̃

]
1≤a,b≤k

.

6Here, given z ∈ Rk, df2
` z is a bilinear form on Rk, thus ‖df2

` z‖ = sup‖a‖,‖b‖≤1 df
2
` z · (a, b).
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Figure 1: Theoretical and practical test accuracies on synthetic Gaussian data varying the regularizing vector λ.
The considered parameters are n = p = 200, k = 4, γ1 = 2/5, γ2 = 3/10, γ3 = 1/5 and γ4 = 1/10. The statistics
µ` and C` for ` ∈ [k] are sampled randomly as µ` ∼ N (0, Ip/p) and C` ∼ Diag(u) +

√
vvᵀ with u ∼ Unif([0, 1]p)

and v ∼ N (0, Ip/p).

Where ∀a ∈ [k], Ia ≡ {ap+ 1, . . . , (a+ 1)p} and we define for any matrix T ∈Mpk and any a, b ∈ [k]:

TIa,Ib ≡ [Ti,j ]i∈Ia,j∈Ib , TIa,: ≡ [Ti,j ]i∈Ia,j∈[pk] , T:,Ib ≡ [Ti,j ]i∈[pk],j∈Ib .

Then one has the following estimations,

‖µW − Q̄µ̃‖ ≤ O(n−
1
2 ), ‖CW −RC̃‖∗ ≤ O(n−

1
2 ),

and for a new datum x in class C`, independent of the training data x1, . . . ,xn, one has

‖EAW
[x̃ᵀW ]−m`‖ ≤ O(n−

1
2 ), ‖EAW

[x̃ᵀWW ᵀx]− σ2
` −m`m

ᵀ
` ‖ ≤ O(n−

1
2 ).

3 Further experiments

3.1 Synthetic Gaussian data

This subsection provides experiments using synthetic Gaussian data. Recalling the setting of Figure 1, which
depicts the theoretical versus the practical accuracies (of a four-class classification problem with Softmax) for
different choices of λ. One can first observe that the practical accuracies are perfectly estimated by their
theoretical counterparts as per Theorem 2.4. We have also depicted in this figure the global accuracy of the
classifier along with its weighted accuracy (computed as

∑
` γ`a` with a` being the accuracy of class C`). These

quantities notably highlight the existence of an optimal choice of λ for maximising the classifier accuracy (for the
less representative classes), which in turn might be anticipated through our present investigation.

3.2 GAN-generated MNIST images

We provide in this subsection experiments with a multi-class classification of data issued from a GAN7-generated
version of the MNIST digits “1”, “2”, and “3” with the following settings:

1. We samples 50000 images of each class;

2. We multiplied each of the data by a randomly chosen matrixA ∈Mp,pMNIST , where p = 200 and pMNIST = 784;

3. For each class C`, ` ∈ [3], we divided each set of indexes I` = [50000] into three subset: I tr
` , Itst

` and Ipop
`

such that #Itr
` = #Itst

` = 5000 and #Ipop
` = 40000;

4. For all ` ∈ [3], we computed the empirical mean µ` and covariance C` with the data indexed by Ipop
` ;

7We used a standard DC-GAN model [MO14] trained on the whole MNIST dataset.
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Figure 2: Classification accuracies of GAN-generated MNIST digits with unbalanced classes in the training set:
γ1 = 1/2, γ2 = 1/3 and γ3 = 1/6 for two choices of λ : [30, 30, 30] (left) [10, 20, 30] (right).

5. In order to make the classification problem harder, for all ` ∈ [3] we retrieved from each data indexed by Itr
`

and Itst
` the vector (1− α)µ`, with α = 0.5 and we corrected the mean (µ` ← αµ`).

Figure 2 pictures with two different regularizing vector λ ∈ R3:

• The theoretical performance on the training set and on the test set based on the estimated class-wise means
and covariances and relying on Theorem 2.4;

• The empirical performances computed on the data indexed by the sets Itr
` and Itst

` , for ` ∈ [k].

As we can notice from Figure 2, the theoretical estimations closely match the empirical ones in both settings.
Moreover, it is deductible that when the classes of the training set are unbalanced, the regularizing parameter
vector λ should be fine-tuned accordingly. Besides, note that with an optimal choice of λ, the accuracy of
classification of the less represented class is better than the accuracy of the two other classes. We therefore believe
that our present investigation could be helpful for the automatic fine-tuning of λ.

3.3 CNN features of real Imagenet images

In this subsection, we provide further experiments using real images from the Imagenet dataset [DDS+09].
Figure 3-(left) depicts the learned Softmax weights against their expected large p, n asymptotics as predicted by
Theorem 2.4. As for GAN generated images, we observe a perfect match between the learned weights and the
theoretical predictions. An almost perfect match is also observed for the scores (between the practical scores and
their theoretical counterparts) as depicted in Figure 3-(right) which strongly suggests that the conclusions of
Theorem 2.4 generalize to real data.
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