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Abstract

This paper provides a large dimensional anal-
ysis of the Softmax classifier. We discover
and prove that, when the classifier is trained
on data satisfying loose statistical modeling
assumptions, its weights become determinis-
tic and solely depend on the data statistical
means and covariances. As a striking conse-
quence, despite the implicit and non-linear
nature of the underlying optimization prob-
lem, the performance of the Softmax classifier
is the same as if performed on a mere Gaussian
mixture model, thereby disrupting the intu-
ition that non-linearities inherently extract
advanced statistical features from the data.
Our findings are theoretically as well as nu-
merically sustained on CNN representations
of images produced by GANs.

1 Introduction

The intricate nature of deep network training leaves
little insight on the information encoded into the inter-
layer connectivity weights of a fully trained network,
thereby so far not allowing for any useful interpretation
and control of their performances [YKYR18].

At the very source of these difficulties are the im-
plicit optimization scheme as well as the multiple
non-linearities involved in the network design: the
activation functions in the intermediate layers and
the soft or hard decision in the last layer [LWL+17].
For lack of a tractable comprehensive analysis, liter-
ature studies have mostly focused on individual net-
work components or rough network approximations.
For instance, the effect of non-linearities in a single-
hidden layer network was analysed in [PW17, LLC+18],
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Figure 1: Illustration of the Softmax classifier with
concentrated random vectors [Led05, LC18] (belonging
to some space X ) as input data, i.e., satisfying the
property P (|ϕ(x)− Eϕ(x)| > t) ≤ C e−(t/σ)

q

, for all
1-Lipschitz ϕ : X → R (see Definition 1). GAN data
as well as their deep network-based representations are
practical examples of such random vectors [SLTC20].

the learning dynamics in elementary network designs
in [SMG13, dCPS+18] and the basic understanding of
the loss surface geometry in a largely approximated
version of the deep network in [PB17, CHM+15].

These analyses provide basic behavioral intuitions but
fail to provide a performance assessment at the final
decision stage. As a first answer, the present article
instead focuses on the analysis of the weights and per-
formance of the Softmax classifier, commonly used as
the last decision step in neural networks. This clas-
sifier has the property, of key importance here, to be
optimal for Gaussian mixture inputs with equal co-
variance [YW19]. Modelling the input features of this
classifier as concentrated random vectors [Led05] (see
Figure 1), which is a natural assumption as concen-
trated random vectors enjoy the property to be stable
through Lipschitz maps and thus through the action
of intermediate neural network layers [SLTC20], the
article studies the statistical behavior of the Softmax
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classifier when trained independently of the remainder
of the network.

Our analysis leverages recent advances in random ma-
trix theory by supposing the realistic setting where the
number of data samples n (here their representations
at the penultimate layer) and their dimension p (the
size of this representation, i.e., the number of neurons
in this layer) are both large and comparable.

From a technical standpoint, as the (isolated) Soft-
max classifier training corresponds to a (possibly non-
convex) optimization problem, our analysis of the Soft-
max weights is performed by first expressing the op-
timization as a contracting fixed point equation, and
then showing that the concentration properties of the
data features “propagate” to the solutions of the fixed-
point equation and thus to the Softmax weights. This
importantly implies that, for large n, p, the Softmax
weights become fully deterministic and can be explic-
itly evaluated as a function of the data statistics and
the Softmax parameters. These conclusions may be
summarized as follows:

1. The above deterministic behavior exhibits a sur-
prising universality of the Softmax classifier, in
the sense that the large dimensional statistics of
the weights solely depend on the statistical means
and covariances of the input data features;

2. this suggests in turn that, quite counter-intuitively,
at least as far as the last Softmax classification
layer is concerned, no further discriminative fea-
ture of the data is extracted and, in particular,
the Softmax classifier treats the input data as if
they were Gaussian random vectors; this, in pass-
ing, supports the Gaussianity assumption on the
data representations commonly considered in the
literature [HRU+17, PRU+18, KG17];

3. combined to the aforementioned optimality of the
Softmax classifier on Gaussian mixture models
with strongly discriminative class-wise means, this
compellingly supports an overall classification op-
timality of the Softmax classifier on large dimen-
sional representations of real data. A similar be-
havior was already pointed out, yet not well un-
derstood, by the authors in [MVPC13, GCM18];

4. our findings are supported both theoretically and
practically by considering the input data features
as CNN-representations of images generated by
the BigGAN model [BDS18].

The remainder of the article introduces works related
to the present analysis (Section 2), before precisely
introducing the Softmax classifier and data model un-
der study, along with basic concentration of measure

prerequisites (Section 3). Our main theoretical results
are developed in Section 4 along with supporting ex-
periments, finally discussed in Section 5. The main
derivations of our results are deferred to the Supple-
mentary Material (see https://melaseddik.github.
io/files/rmt4softmax.pdf).

2 Related Works

The Softmax activation is commonly used as an output
activation of deep neural networks in many applications
[HZRS16, SVL14, CVMG+14, GMH13] to model cate-
gorical probability distributions [Bri90]. It is also used
in some recent learning mechanisms such as attention
models [VSP+17], at the core of a variety of very effi-
cient NLP models known as transformers [TDBM20].

Significant efforts have been made on the analysis and
improvement of the Softmax classifier: the authors
in [KFYA18] highlight the source of the bottleneck
effect of Softmax and propose an alternative which
improves the performance for language modelling; in
order to reduce the computational cost of training with
Softmax, the authors in [RCY+19] propose a sampled
version of Softmax relying on random Fourier features;
in [LWYY16], a generalized large-margin Softmax is
devised to enforce intra-class compactness and inter-
class separability between learned features in convolu-
tional neural networks; finally and closer to our present
findings, the article [KG17] develops a structured clas-
sification model relying on Softmax, which is the state-
of-the-art approach for deep learning heteroscedastic
classification – specifically, the model places a Gaus-
sian distribution on the logits of a standard Softmax
classification model. By describing the actual behavior
of the Softmax classifier on realistic data models (based
on concentration assumptions on data; see next), our
present findings support the Gaussianity assumption on
the logits as made by [KG17], which, to the best of our
knowledge, constitutes a first theoretical justification
of this assumption.

Our approach is closely related to the analysis of the
logistic regression model in [EKBB+13, MLC19] with
Gaussian assumptions on data, although we generalize
these ideas to a k-class mixture model under the more
general concentration assumption on the input data.

Notation: For m ∈ N, [m] ≡ {1, . . . ,m}. Vectors are
denoted by boldface lowercase and matrices by boldface
uppercase letters. The set of matrices of size p× n is
denotedMp,n, the set of squared matrices and diagonal
matrices of size n respectively Mn and Dn. ‖ · ‖ is
the Euclidean (resp., spectral) norm for vectors (resp.,
matrices); ‖ · ‖F stands for the Frobenius norm.

https://melaseddik.github.io/files/rmt4softmax.pdf
https://melaseddik.github.io/files/rmt4softmax.pdf
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3 Model setting

3.1 The Softmax classifier

Let (x1,y1), . . . , (xn,yn) be a set of n labeled data asso-
ciated to one of k classes C1, . . . , Ck, where xi ∈ Rp, and
yi ∈ Rk are one-hot encoded vectors such that yi` = 1
if xi ∈ C`. The xi’s form the input of an `2-regularized
classifier with regularization parameters (λ`)`∈[k] ∈ R+

and class-wise weight vectors w1, . . . ,wk ∈ Rp set to
minimize the loss1

L(w1, . . . ,wk) = − 1

n

n∑
i=1

k∑
`=1

yi` log pi` +
1

2

k∑
`=1

λ`‖w`‖2

with pi` =
φ(wᵀ

` xi)∑k
j=1 φ(w

ᵀ
j xi)

for some real-valued function

φ : R → R. In particular, φ(t) = et for the classical
Softmax classifier [GP17]. Cancelling the gradient of
the loss with respect to each weight vector w` yields,
for each ` ∈ [k],

λ`w` = − 1

n

n∑
i=1

(
yi`ψ(wᵀ

`xi)

−
φ(wᵀ

`xi)∑k
j=1 φ(wᵀ

j xi)

k∑
j=1

yijψ(wᵀ
j xi)

)
xi,

(1)

where ψ ≡ φ′/φ. Under appropriate statistical assump-
tions on the data matrix X ≡ [x1, . . . ,xn] ∈ Mp,n,
and assuming p, n large, we subsequently show that
the stacked vector W ≡ [wᵀ

1 , . . . ,w
ᵀ
k ]ᵀ ∈ Rpk has a

tractable behavior, which in turn allows us to accurately
predict the performances of the Softmax classifier.

3.2 Mixture of concentrated vectors as input

This section introduces the statistical data model used
to study the behavior of the weight vectorW . We first
characterize the data classes: if xi ∈ C`, then xi ∈ Rp
is a random vector with

µ` ≡ E[xi], C` ≡ E[xix
ᵀ
i ]− µ`µᵀ

` ,

and we note γ` = #C`
n , the proportion of data in class

C`. The vectors x1, . . . ,xn are further assumed to be
independent and such that X = [x1, . . . ,xn] ∈ Mp,n

satisfies a concentration property. To properly state
this central assumption (Assumption 1 below), the
notion of concentrated random vectors needs to be
defined.

Definition 1 (Concentrated vector). Given a normed
vector space (X , ‖·‖) and q > 0, a random vector x ∈ X

1Biases are not introduced in the present formulation as
their effect is known to be negligible in practice [KXR+19]
and would impede readability.

is said to be q-exponentially concentrated if for any 1-
Lipschitz ϕ : X → R, there exists C ≥ 0 independent
of dim(X ) and σ > 0 such that, for all t ≥ 0,

P (|ϕ(x)− Eϕ(x)| > t) ≤ C e−(t/σ)
q

. (2)

This is denoted as x ∝ Eq(σ), where σ is called the
observable diameter. If σ does not depend on dim(X )
we simply write x ∝ Eq.

The prototypical example of a concentrated random
vector is the Gaussian random vector z ∼ N (0, Ip)
for which z ∝ E2 [Led05]. But the richness of concen-
trated random vectors lies in their fundamental stability
property through Lipschitz operations, which naturally
generates wide families of concentrated random vectors.
Remark 3.1 (Stability through Lipschitz transforma-
tions). It is easily deduced from Definition 1 that, given
some Z 3 z ∝ Eq and an L-Lipschitz transformation
G : Z → X (L might depend on dim(X )), the concen-
tration property on z is transferred to G(z). Specifically,
G(z) ∝ Eq(L). Indeed, for all ϕ : X → R, 1-Lipschitz,
1
Lϕ ◦ G is 1-Lipschitz, and one can apply (2) to t

L .

The concentration of Gaussian vectors combined with
the stability through Lipschitz transformations as per
Remark 3.1 provides a wide range of concentrated
random vector families with possibly quite complex
dependence structures. A remarkable example of such
random vectors are random vectors produced by gener-
ative adversarial networks (GANs) [GPAM+14]: GAN
networks2 are such that their outputs have the same
concentration3 as their inputs [SLTC20]; in particular,
for Gaussian N (0, Id) inputs (as traditionally assumed)
whose observable diameter does not depend on the
dimension d, the observable diameter of the GAN gen-
erator outputs does not increase with the output data
dimension. Further operations through neural network
layers with controlled Lipschitz norms (as is again tra-
ditionally done) on concentrated random vectors also
maintain the concentration and observable diameter.

As a further consequence of the above remark, mak-
ing the reasonable approximation that GAN-generated
data are alike real data, we may assume that GAN data
fed into the first layer of a deep neural network are out-
put in the one-before-last layer as concentrated random
vectors with observable diameter independent of their
dimension. For our present interest, this assumption is
summarized as follows:
Assumption 1 (Concentrated data). Letting X =
[x1, . . . ,xn] ∈Mp,n with independent xi’s, X ∝ E2 in
the sense of Definition 1.

2Specifically, the generator part after training.
3When the GAN model has a controlled Lipschitz con-

stant, which is practically ensured by spectral normalization
as in the BigGAN model [BDS18].
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Our objective is to “transfer” the concentration of X
to the weight vector W as defined in (1). To this end,
we demand that the number of data n be of the same
order of magnitude as their dimension p.

Assumption 2 (Growth rate). As n → ∞, p/n →
c ∈ (0,∞) and for each ` ∈ [k], ‖µ`‖ ≤ O(1)4.

Concentrated vectors satisfy a host of further inter-
esting properties (see [Led05] for a detailed account
and [LLC+18] for their application to random matrix
asymptotics, closer to the present work). We close this
section by stressing one of these properties, of central
importance here, and which fundamentally justifies the
appearance of Gaussian-like behaviors in large neural
networks, even when the network input is far from
Gaussian [KGC18, NBA+18].

Theorem 3.2 (CLT for concentrated vectors [Kla07,
FGP07]). Let x ∈ Rp be a random vector with E[x] = 0
and E[xxᵀ] = Ip, and ν be the uniform measure on the
sphere Sp−1 ⊂ Rp of radius 1. Then, if x ∝ E2, there
exist two constants C, c > 0 and a set Θ ⊂ Sp−1 such
that ν(Θ) ≥ 1−√pCe−c

√
p and ∀θ ∈ Θ:

sup
t∈R
|P(θᵀx ≥ t)−G(t)| ≤ p−1/4,

for G(t) = 1√
2π

∫∞
t
e−u

2/2du.

4 Main results

4.1 Convergence of the Softmax weights

This section characterizes the statistical behavior of
the softmax classifier weights W ≡ [wᵀ

1 , . . . ,w
ᵀ
k ]ᵀ ∈

Mp,k, under Assumptions 1–2 and, as a result, retrieves
the (asymptotic) exact classifier performance. The
complete proofs of the results can be found in [LC20b].

For readability in the following, we restrict ourselves to
scalar labels (thus in R rather than Rk) and synthesize
(1) under the compact form

w =
1

n

n∑
i=1

f(wᵀxi)xi, (3)

where w ∈ Rp plays the role of the weight vector and
f : R→ R is a scalar function (parametrized by φ and
λ in the formulation of the Softmax classifier). The
results specific to the generic Softmax classifier (1) with
arbitrary k are only more technical; the detail is left
to the Supplementary Material.

4When not satisfied, this assumption is classically ob-
tained after a re-centering of the data, the dependence
between the data brought by the re-centering is limited and
can be controlled.

Equation (3) can be further simplified as the fixed-point
equation w = Ψ(w) where Ψ is the random mapping
defined for any z ∈ Rp as: Ψ(z) = 1

nXf(XTz) (with
f applied entry-wise). For w to be well-defined and
for the concentration of X to propagate into w, the
mapping Ψ : w 7→ 1

nXf(XTw) is required to have
contraction properties; assuming f differentiable, this
holds under the event

Aw =

{
1

n
‖f ′‖∞‖XXT ‖ ≥ 1− ε

}
.

for a constant ε > 0 independent of n, p. For this event
to be highly probable, we introduce some regularizing
properties on f and X.

Assumption 3 (Contractivity). The mapping f is
differentiable and:

1

n
‖f ′‖∞E[‖XXT ‖] ≤ 1− 2ε.

Remark 4.1 (Regularization parameter thresholding).
For the generic Softmax classification problem, As-
sumption 3 implies that the parameters λ`’s cannot be
chosen too small. Indeed, ‖f ′‖∞ being proportional
to 1/(inf`∈[k] λ`), 1

n‖f
′‖∞E[‖XXT ‖]→∞ as λ` → 0.

The upcoming results are thus only valid for sufficiently
large λ`’s. Yet, since (1) can be solved for small λ`’s
by gradient descent (rather than by fixed-point iterates),
one may hope that the article core results (notably The-
orem 4.8) still hold irrespective of λ` > 0 (although
the theoretical estimates may not be accessible through
fixed-point iterations).

Then we have the following lemma, proved in the Sup-
plementary Material.

Lemma 4.2. There exist two constants C, c > 0 inde-
pendent of p, n such that P(Acw) ≤ Ce−cn.

Under these conditions, our main result guarantees the
transfer of the concentration of X into w.

Theorem 4.3 (Concentration of w). Under Assump-
tions 1-3, w concentrates w.r.t. the event Aw

5 as

(w | Aw) ∝ E2
(

1√
n

)
.

Since their observable diameter 1/
√
n vanishes for n, p

large, Theorem 4.3 ensures that the random weight
vector w becomes deterministic as p, n grow. We now

5Formally, the random vectorw is a measurable mapping
Ω → Rpk, where (Ω,F ,P) is the underlying probability
space. If P(A) > 0, for A ∈ F , the random vector (w | A)
is the measurable mapping A → Rpk such that, ∀ω ∈ A,
(w | A)(ω) = w(ω). The statistics of (w | A) are then
computed in the probability space (A,F ∧ A,PA), where
F∧A = {B∩A, B ∈ F} and ∀B ∈ F , PA(B) = P(B)/P(A).
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fine-tune this result by characterizing its first and sec-
ond order statistics

µw ≡ E[w], Σw ≡ E[wwᵀ], Cw ≡ Σw − µwµ
ᵀ
w,

for all finite but large n, p. The estimation of µw

and Cw unfolds in two steps: (i) a first control of the
statistical dependence between w and X, delineated in
Subsection 4.2, and (ii) the proper evaluation of mw

and Cw, in Subsection 4.3.

4.2 Control of the weight-data dependence

Taking the expectation on both sides of (3), the
main technical difficulty arises from the evaluation of
E[xif(xᵀ

iw)] due to the elaborate dependence between
w and xi. Our approach consists in approximating
f(xᵀ

iw) with a functional ξk(i)(x
ᵀ
iw−i) where k(i) is

the class of xi, ξk(i) : R→ R is deterministic and w−i
is the vector w deprived of the contribution of xi, i.e.,
the solution to

w−i =
1

n
f(Xᵀ

−iw−i)X−i,

where X−i = [x1, . . . ,xi−1,0,xi+1, . . . ,xn] ∈ Mp,n.
From there, we are left to estimating E[xiξk(i)(x

ᵀ
iw−i)]

which is far easier to handle as Theorem 3.2 ensures
that zi ≡ xᵀ

iw−i behaves with high probability like
a Gaussian variable whose mean and variance can be
estimated from the statistics of xi and w (the latter
having the same statistics as w−i); see next Figure 3.

The link between w−i and w is made thanks to the
interpolation mapping w−i : [0, 1] → Rp, defined for
i ∈ [n] as the unique solution, for all t ∈ [0, 1], to

w−i(t) =
1

n
f(Xᵀ

−iw−i(t))X−i +
t

n
f (xᵀ

iw−i(t))xi.

(4)

This mapping can be seen as a path between the weights
vector w = w−i(1) of the Softmax classifier and w−i =
w−i(0).

By the inverse function theorem, t 7→ w−i(t) is shown
to be differentiable, and we obtain the explicit formula:

w′−i(t) =
1

n
χ′i(t)Q−i(t)xi, with

Q−i(t) ≡
(
Ip −

1

n
X−iD

(i)(t)Xᵀ
−i

)−1
∈Mp,

(5)

where χi(t) ≡ tf (xᵀ
iw−i(t)), and D(i)(t) ∈ Mn is

a diagonal matrix with diagonal entries D
(i)
j (t) ≡

f ′(xᵀ
jw−i(t)) ∈ R for j ∈ [n].

Relying on concentration of measure argu-
ments [LC20a], the random vector Q−i(t)xi is

almost constant w.r.t. t and thus almost equal to
Q−i(0)xi. The fact that Q−i(0) (now simply denoted
Q−i) is additionally independent of xi allows us to
integrate (5) to obtain the core technical result of the
article, which relates w−i to w. This is achieved under
a last very light assumption.
Assumption 4. ‖f ′′‖∞ ≤ ∞.
Theorem 4.4. Under Assumptions 1-4 there exist
C, c > 0 independent of p, n such that, ∀t > 0,

PAw

(∣∣∣∣xᵀ
iw − x

ᵀ
iw−i +

1

n
xᵀ
iQ−ixif(xᵀ

iw)

∣∣∣∣ ≥ t)
≤ Ce−cnt

2

.

To estimate xᵀ
iw as a deterministic functional of xᵀ

iw−i
we still need to estimate 1

nx
ᵀ
iQ−ixi. This follows from

the following random matrix argument (see [LC20a]).
Proposition 4.5. For any ` ∈ [k], let D̄` =
EAw [f ′(xTi w)] for xi in C` and define, for any pa-
rameter vector δ ∈ Rk, the deterministic matrix

Q̄(δ) ≡

(
Ip −

k∑
a=1

γaD̄a

1− δaD̄a
Ca

)−1
∈Mp.

Then the system of fixed point equations

∀` ∈ [k] : δ` =
1

n
Tr
(
C`Q̄(δ)

)
admits a unique solution δ ∈ Rk such that, for any
i ∈ [n] and for all t > 0,

PAw

(∣∣∣∣ 1nxᵀ
iQ−ixi − δk(i)

∣∣∣∣ ≥ t) ≤ Ce−cnt2 ,
for some C, c > 0 independent of p, n.

Theorem 4.4 combined with Proposition 4.5 lead to the
approximation:

f(xᵀ
iw) ≈ f

(
xᵀ
iw−i + δk(i)f(xᵀ

iw)
)
,

which allows us to connect xᵀ
iw and zi ≡ xᵀ

iw−i.
Proposition 4.6. Under Assumptions 1-4 and for any
` ∈ [k] and z ∈ R, the fixed point equation

x = f(z + δ`x),

admits a unique solution ξδ`(z). Besides, ∀t > 0,

PAw
(∣∣f(xᵀ

iw)− ξδk(i)(x
ᵀ
iw−i)

∣∣ ≥ t) ≤ Ce−cnt2 .
Note that for all z ∈ R and ` ∈ [k], ξ′δ`(z) =
f ′(z+δ`ξδ` (z))

1+δ`f ′(z+δ`ξδ` (z))
from which the following result en-

tails.
Lemma 4.7. Under Assumptions 1-4, ∀` ∈ [k],∣∣∣∣∣∣δ`− 1

n
TrC`

(
Ip−

k∑
a=1

γaEAw [ξ′δa(z̃a)]Ca

)−1∣∣∣∣∣∣ ≤ O(n−
1
2 )

where z̃` is a copy of zi ≡ xᵀ
iw−i for k(i) = `.
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4.3 Estimation of the weight statistics

By breaking the statistical dependence of the problem
through w−i, we may now estimate the statistics mw

and Cw. Indeed, letting ‖ · ‖∗ be the nuclear norm6

and k(i) the class of xi, from the identities∥∥∥∥∥µw −
1

n

n∑
i=1

EAw [ξδk(i)(x
ᵀ
iw−i)xi]

∥∥∥∥∥ ≤ O (n− 1
2

)
,∥∥∥∥∥∥Σw−

1

n

n∑
i,j=1

EAw [ξδk(i)(zi)ξδk(j)(zj)xix
ᵀ
j ]

∥∥∥∥∥∥
∗

≤O
(
n−

1
2

)
and Stein-like formulas [Bri90] provided in the Supple-
mentary Material (those can be used since xi behaves
like a Gaussian vector by Theorem 3.2) we deduce an
estimate of µw and Cw depending on the input data
statistics (µ`)`∈[k] and (C`)`∈[k] as well as on

EAw [ξδ`(z̃`)], EAw [ξ′δ`(z̃`)], EAw [ξδ`(z̃`)
2],

for ` ∈ [k]. In turn, z̃` behaving like a Gaussian random
variable, the latter quantities only depend on the first
order statistics of w and x1, . . . ,xn. This brings us to
the final result of the article.
Theorem 4.8 (Asymptotic statistics of w). Under As-
sumptions 1-4, there exists a unique tuple of parameters
(δ,m,σ) ∈ (Rk)3 satisfying the identities:

• ∀` ∈ [k]: z̃` ∼ N (m`, σ
2
` );

• ∀` ∈ [k]: δ` = 1
n Tr

(
C` (Ip −K)

−1
)

;

• µ̃ ≡
∑k
`=1 γ`E[ξδ`(z̃`)]µ` ∈ Rp;

• C̃ ≡
∑k
`=1 γ`E[ξδ`(z̃`)

2]C` ∈Mp;

• K ≡
∑k
`=1 γ`E[ξ′δ`(z̃`)]C` ∈Mp;

• Q̃ ≡ (Ip −K)−1;

• R :Mp →Mp defined, for M ∈Mp, as

R(M) = M +K(R(M))K;

• m` ≡ µᵀ
` Q̃µ̃;

• σ2
` ≡ 1

n Tr(C`R(C̃)) + µ̃ᵀQ̃C`Q̃µ̃.

With these definitions,∥∥∥µw − Q̃µ̃
∥∥∥ ≤ O (n− 1

2

)
,∥∥∥∥Cw −

1

n
R(C̃)

∥∥∥∥
∗
≤ O

(
n−

1
2

)
,

6For A ∈Mp,n, ‖A‖∗ = sup
‖M‖≤1

Tr(AM) = Tr(
√
AAT ).

and, for all ` ∈ [k] and any x ∈ C` independent of X,

|E[xᵀw]−m`|,
∣∣E[(xᵀw)2]− (σ2

` +m2
`)
∣∣ ≤ O (n− 1

2

)
.

Extrapolating Theorem 4.8 to the generic Softmax
classifier (thoroughly covered in the Supplementary
Material), we obtain that, under data concentration
(Assumption 1), the (large n, p) behavior of the Soft-
max classifier only depends on the class-wise means
and covariances of the input data. This, we recall, is a
direct consequence of (i) the Lipschitz character of the
Softmax classifier which preserves concentration (by
Lipschitz stability: Remark 3.1) and of (ii) the presence
of a projection of the parameter vectors w` onto the
concentrated data xi at the core of the optimization
formulation (by Theorem 3.2, these projections induce
an asymptotic Gaussian behavior with mean and vari-
ance depending only on the first order statistics of the
data and the weight vector w).

As an aftermath of this stable large n, p behavior, the
performances of the Softmax classifier are in turn the-
oretically tractable. Specifically, the asymptotic mis-
classification probability

Et(x ∈ C`) ≡ 1− P(∀j ∈ [k] \ {`} : p`(x) ≥ pj(x))

for x genuinely belonging to class ` ∈ [k], with

p`(z) =
φ(wᵀ

` z)∑
j∈[k] φ(wᵀ

j z)
, (6)

the probability for z to belong to class ` ∈ [k], can
be inferred as an immediate corollary of Theorem 4.8.
Again, Et(x ∈ C`) is only a function of the means and
variances (µ`)`∈[k] and (C`)`∈[k]. This demonstrates
the remarkable universality property of the Softmax
classifier with respect to the data distribution, which
we recall is only requested to satisfy the very loose
concentration condition of Assumption 1.

4.4 Experimental validation

4.4.1 Synthetic Gaussian and MNIST data

This section aims to validate Theorem 4.8 by means of
Algorithm 1 which estimates the quantities (δ,m,σ)
as defined in Theorem 4.8.7

Figure 2 depicts the practical versus theoretical ac-
curacies 1− Et (based on Theorem 4.8) on synthetic
Gaussian data, for varying data dimension p. A per-
fect match between theory and empirical results are
observed both for training and test data, thereby sup-
porting Theorem 4.8 even for not-so-large n, p couples.

7An implementation of Algorithm 1 is provided in https:
//github.com/melaseddik/rmt4softmax.

https://github.com/melaseddik/rmt4softmax
https://github.com/melaseddik/rmt4softmax
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Algorithm 1: Estimation of the statistics of
xᵀw

Input: Data statistics {µ`,C`}k`=1, scalar
function f : R→ R, precision
parameter ε and number of drawings T
for Monte Carlo (MC) estimation.

Output: δ,m,σ ∈ Rk
δ,m,σ ← 1k; δ′,m′,σ′ ← 2 · 1k;
while ‖m−m′‖+ ‖σ −σ′‖+ ‖δ − δ′‖ ≥ ε do

m′ ←m; σ′ ← σ; δ′ ← δ;
for ` ∈ [k] do

- Sample (zt)t∈[T ] ∼ N (m`, σ
2
` );

- Estimate E[ξδ`(z̃`)], E[ξδ`(z̃`)
2] and

E[ξ′δ`(z̃`)] with MC based on (zt)t∈[T ].
end
- Compute the quantities µ̃, C̃, K, Q̃ and
R(C̃);
for ` ∈ [k] do

- m` ← µᵀ
` Q̃µ̃;

- σ2
` ← 1

n Tr(C`R(C̃)) + µ̃ᵀQ̃C`Q̃µ̃;

- δ` ← 1
n Tr

(
C`

(
Ip − C̃

)−1)
.

end
end

Since our results hold under the broader “quasi-realistic
data” Assumption 1, our results are next applied, step
by step, to raw data from the MNIST dataset [LeC98],
specifically to classify images of the digits “1” and “2”
(so k = 2 here). Figure 3 first depicts the histograms of
the random variables xᵀ

iw−i and x
ᵀ
jw−j with xi ∈ C1

and xj ∈ C2, as well as their estimated Gaussian limits
as per Theorem 4.8. Remarkably, even though the
input data is far from Gaussian, their projections onto
w have clear Gaussian distributions, the means and
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Figure 2: Classification accuracy on Gaussian mixtures;
n = 400, γ1 = 1/3, γ2 = 2/3, λ = 20, C1 = C2 = Ip,
‖µ1,2‖ = 1
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Figure 3: Histogram of (left) zi ≡ xᵀ
iw−i and (right)

zj ≡ xᵀ
jw−j , for k(i) = 1, k(j) = 2 on MNIST dataset;

C1: digit “1”, C2: digit “2”, γ1 = γ2 = 1/2, λ = 20,
with centered means. m`, σ`, for ` ∈ [k], defined in
Theorem 4.8.

variances of which are obtained in Theorem 4.8; this
result supports the Gaussianity assumption on the
logits previously made by Kendall and Gal [KG17]. As
a result, the classification accuracy on MNIST data,
here depicted in Figure 4, is consistently estimated.

4.4.2 CNN features of GAN images

This section provides further experiments to support
our theoretical findings on CNN representations of
GAN-generated images which, unlike the previously
studied MNIST images, are truthfully concentrated
random vectors. The input data X = [x1, . . . ,xn]
are here independent Resnet188 representations of size
p = 512 [SIVA17] of images generated by the BigGAN
generative adversarial network model [BDS18]: as such,
being the composition of two neural networks (BigGAN
and Resnet18) applied to random standard Gaussian

8We used the Pytorch implementation [PGM+19] pre-
trained on the Imagenet dataset [DDS+09].
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Figure 4: Classification accuracy on MNIST data; C1:
digit “1”, C2: digit “2”; p = 784, γ1 = γ2 = 1/2, λ = 20,
with centered means.
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Figure 5: (Left) Learned weights (blue circles) versus theoretical estimates (red crosses) from Theorem 4.8.
(Right) Practical (a) versus theory-predicted (b) logits, on a test set independent from the training set. The data
are Resnet18 [SIVA17] representations (p = 512) of BigGAN-generated images [BDS18], which are concentrated
vectors by definition [SLTC20]; k = 3 classes: hamburger, mushroom, pizza; n = 3000; regularization constants
λ1 = λ2 = λ3 = 1.5; data normalized such that ‖xi‖ = 0.1 · √p to ensure Aw.

noise (as per the BigGAN model),X is concentrated by
construction and satisfies Assumption 1 (see [SLTC20]
for a detailed analysis of the Lipschitz properties of
these networks). Under this setting, Figure 5-(left)
depicts the learned Softmax weights against their ex-
pected large n, p asymptotics as per Theorem 4.8 (see
the Supplementary Material for the adaptation of the
theorem to the generic Softmax classifier). Despite the
finite p, n setting of the simulation, a perfect match is
again observed between the learned weights and the
theoretical predictions. Further experiments, available
in the Supplementary Material, were performed on real
images from the ImageNet dataset [DDS+09], which
confirm this perfect match between theory and practice.

Figure 5-(right) then displays the class-wise scores of a
practical Softmax classifier on an independent test set
against their simulated Gaussian equivalents predicted
by Theorem 4.8. Again here, the empirical and theoret-
ical values agree. The Supplementary Material reports
similar outputs for real (rather than GAN-produced)
ImageNet data. We insist again that, in compliance
with Theorem 4.8, the theoretical estimates in all these
figures were obtained using only the empirical class-wise
means and covariances of the input data.9 Figure 5

9For GAN images, these can be estimated accurately by
drawing a large number of independent realizations, while
for real images, the whole dataset is used to obtain empirical

thus confirms the theoretically predicted universality
of the Softmax classifier.

5 Concluding Remarks

Even though the Softmax classifier has a non-linear
nature, a property supposedly useful to extract “deep”
non-linear features, the article proved instead that, for
reasonably large n, p, the input data are in fact treated
as if generated from a mere Gaussian mixture model.
This universality phenomenon fundamentally revisits
the conventional insights acquired along the years on
non-linear classification methods. As an aftermath,
being optimal for Gaussian mixture inputs with com-
mon covariance, our study strongly suggests that the
Softmax classifier is indeed the optimal last layer of a
deep neural network classifier.

This claim however assumes a clear-cut separation be-
tween a back-end network training isolated from the
front-end Softmax layer. A thorough validation of
the equivalence between full network training and this
divided approach would be necessary to confirm the
claimed optimality and anticipate the performances of
Softmax classification for an end-to-end deep neural
network.

estimates.



Mohamed El Amine Seddik1 Cosme Louart2,3 Romain Couillet3 Mohamed Tamaazousti2

Acknowledgements

This work is supported by the MIAI LargeDATA Chair
at University Grenoble-Alpes and the GIPSA-HUAWEI
Labs project Lardist.

References

[BDS18] Andrew Brock, Jeff Donahue, and Karen
Simonyan. Large scale gan training
for high fidelity natural image synthesis.
arXiv preprint arXiv:1809.11096, 2018.

[Bri90] John S Bridle. Probabilistic interpreta-
tion of feedforward classification network
outputs, with relationships to statistical
pattern recognition. In Neurocomputing,
pages 227–236. Springer, 1990.

[CHM+15] Anna Choromanska, Mikael Henaff,
Michael Mathieu, Gérard Ben Arous, and
Yann LeCun. The loss surfaces of multi-
layer networks. In Artificial intelligence
and statistics, pages 192–204, 2015.

[CVMG+14] Kyunghyun Cho, Bart Van Merriënboer,
Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase repre-
sentations using rnn encoder-decoder for
statistical machine translation. arXiv
preprint arXiv:1406.1078, 2014.

[dCPS+18] Remi Tachet des Combes, Mohammad
Pezeshki, Samira Shabanian, Aaron
Courville, and Yoshua Bengio. On the
learning dynamics of deep neural net-
works. arXiv preprint arXiv:1809.06848,
2018.

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-
Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database.
In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–
255. Ieee, 2009.

[EKBB+13] Noureddine El Karoui, Derek Bean,
Peter J Bickel, Chinghway Lim, and
Bin Yu. On robust regression with
high-dimensional predictors. Proceed-
ings of the National Academy of Sciences,
110(36):14557–14562, 2013.

[FGP07] B. Fleury, O. Guédon, and G. Paouris.
A stability result for mean width of l p
-centroid bodies. Advances in Mathemat-
ics, 214:865–877, 2007.

[GCM18] Samantha Guerriero, Barbara Caputo,
and Thomas Mensink. Deep nearest
class mean classifiers. In International
Conference on Learning Representations,
Worskhop Track, 2018.

[GMH13] Alex Graves, Abdel-rahman Mohamed,
and Geoffrey Hinton. Speech recognition
with deep recurrent neural networks. In
2013 IEEE international conference on
acoustics, speech and signal processing,
pages 6645–6649. IEEE, 2013.

[GP17] Bolin Gao and Lacra Pavel. On the
properties of the softmax function with
application in game theory and rein-
forcement learning. arXiv preprint
arXiv:1704.00805, 2017.

[GPAM+14] Ian Goodfellow, Jean Pouget-Abadie,
Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversar-
ial nets. In Advances in neural informa-
tion processing systems, pages 2672–2680,
2014.

[HRU+17] Martin Heusel, Hubert Ramsauer,
Thomas Unterthiner, Bernhard Nessler,
and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a
local nash equilibrium. In Advances in
neural information processing systems,
pages 6626–6637, 2017.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of
the IEEE conference on computer vision
and pattern recognition, pages 770–778,
2016.

[KFYA18] Sekitoshi Kanai, Yasuhiro Fujiwara, Yuki
Yamanaka, and Shuichi Adachi. Sigsoft-
max: Reanalysis of the softmax bottle-
neck. In Advances in Neural Information
Processing Systems, pages 286–296, 2018.

[KG17] Alex Kendall and Yarin Gal. What un-
certainties do we need in bayesian deep
learning for computer vision? In Ad-
vances in neural information processing
systems, pages 5574–5584, 2017.

[KGC18] Alex Kendall, Yarin Gal, and Roberto
Cipolla. Multi-task learning using un-
certainty to weigh losses for scene geom-
etry and semantics. In Proceedings of



The Unexpected Deterministic and Universal Behavior of Large Softmax Classifiers

the IEEE conference on computer vision
and pattern recognition, pages 7482–7491,
2018.

[Kla07] B. Klartag. A central limit theorem for
convex sets. Inventiones mathematicae,
168:91–131, 2007.

[KXR+19] Bingyi Kang, Saining Xie, Marcus
Rohrbach, Zhicheng Yan, Albert Gordo,
Jiashi Feng, and Yannis Kalantidis. De-
coupling representation and classifier for
long-tailed recognition, 2019.

[LC18] Cosme Louart and Romain Couillet. Con-
centration of measure and large random
matrices with an application to sam-
ple covariance matrices. arXiv preprint
arXiv:1805.08295, 2018.

[LC20a] Cosme Louart and Romain Couillet. Con-
centration of measure and large random
matrices with an application to sample
covariance matrices. submitted to Ran-
dom Matrices: Theory and Applications,
2020.

[LC20b] Cosme Louart and Romain Couillet. Con-
centration of solutions to random equa-
tions with concentration of measure hy-
potheses, 2020.

[LeC98] Yann LeCun. The mnist database of
handwritten digits. http://yann. lecun.
com/exdb/mnist/, 1998.

[Led05] Michel Ledoux. The concentration of
measure phenomenon. Number 89. Amer-
ican Mathematical Soc., 2005.

[LLC+18] Cosme Louart, Zhenyu Liao, Romain
Couillet, et al. A random matrix ap-
proach to neural networks. The Annals
of Applied Probability, 28(2):1190–1248,
2018.

[LWL+17] Xuezhi Liang, Xiaobo Wang, Zhen Lei,
Shengcai Liao, and Stan Z Li. Soft-
margin softmax for deep classification.
In International Conference on Neural
Information Processing, pages 413–421.
Springer, 2017.

[LWYY16] Weiyang Liu, Yandong Wen, Zhiding Yu,
and Meng Yang. Large-margin softmax
loss for convolutional neural networks. In
ICML, volume 2, page 7, 2016.

[MLC19] Xiaoyi Mai, Zhenyu Liao, and Romain
Couillet. A large scale analysis of logis-
tic regression: Asymptotic performance
and new insights. In ICASSP 2019-
2019 IEEE International Conference on
Acoustics, Speech and Signal Processing
(ICASSP), pages 3357–3361. IEEE, 2019.

[MVPC13] Thomas Mensink, Jakob Verbeek, Flo-
rent Perronnin, and Gabriela Csurka.
Distance-based image classification: Gen-
eralizing to new classes at near-zero cost.
IEEE transactions on pattern analysis
and machine intelligence, 35(11):2624–
2637, 2013.

[NBA+18] Roman Novak, Yasaman Bahri, Daniel A
Abolafia, Jeffrey Pennington, and Jascha
Sohl-Dickstein. Sensitivity and general-
ization in neural networks: an empirical
study. arXiv preprint arXiv:1802.08760,
2018.

[PB17] Jeffrey Pennington and Yasaman Bahri.
Geometry of neural network loss surfaces
via random matrix theory. In Proceed-
ings of the 34th International Conference
on Machine Learning-Volume 70, pages
2798–2806. JMLR. org, 2017.

[PGM+19] Adam Paszke, Sam Gross, Francisco
Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga,
et al. Pytorch: An imperative style, high-
performance deep learning library. In Ad-
vances in Neural Information Processing
Systems, pages 8024–8035, 2019.

[PRU+18] Kristina Preuer, Philipp Renz, Thomas
Unterthiner, Sepp Hochreiter, and Gün-
ter Klambauer. Fréchet chemblnet dis-
tance: A metric for generative mod-
els for molecules. arXiv preprint
arXiv:1803.09518, 2018.

[PW17] Jeffrey Pennington and Pratik Worah.
Nonlinear random matrix theory for deep
learning. In Advances in Neural Informa-
tion Processing Systems, pages 2637–2646,
2017.

[RCY+19] Ankit Singh Rawat, Jiecao Chen, Felix
Xinnan X Yu, Ananda Theertha Suresh,
and Sanjiv Kumar. Sampled softmax
with random fourier features. In Ad-
vances in Neural Information Processing
Systems, pages 13857–13867, 2019.



Mohamed El Amine Seddik1 Cosme Louart2,3 Romain Couillet3 Mohamed Tamaazousti2

[SIVA17] Christian Szegedy, Sergey Ioffe, Vin-
cent Vanhoucke, and Alexander A Alemi.
Inception-v4, inception-resnet and the im-
pact of residual connections on learning.
In Thirty-first AAAI conference on arti-
ficial intelligence, 2017.

[SLTC20] Mohamed El Amine Seddik, Cosme
Louart, Mohamed Tamaazousti, and Ro-
main Couillet. Random matrix theory
proves that deep learning representations
of GAN-data behave as Gaussian mix-
tures. In Proceedings of the 37th Interna-
tional Conference on Machine Learning,
pages 8573–8582. PMLR, 2020.

[SMG13] Andrew M Saxe, James L McClelland,
and Surya Ganguli. Exact solutions to the
nonlinear dynamics of learning in deep
linear neural networks. arXiv preprint
arXiv:1312.6120, 2013.

[SVL14] Ilya Sutskever, Oriol Vinyals, and Quoc V
Le. Sequence to sequence learning with
neural networks. In Advances in neu-

ral information processing systems, pages
3104–3112, 2014.

[TDBM20] Yi Tay, Mostafa Dehghani, Dara Bahri,
and Donald Metzler. Efficient trans-
formers: A survey. arXiv preprint
arXiv:2009.06732, 2020.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In
Advances in neural information process-
ing systems, pages 5998–6008, 2017.

[YKYR18] Chih-Kuan Yeh, Joon Kim, Ian En-Hsu
Yen, and Pradeep K Ravikumar. Repre-
senter point selection for explaining deep
neural networks. In Advances in Neural
Information Processing Systems, pages
9291–9301, 2018.

[YW19] Yaqiong Yao and HaiYing Wang. Opti-
mal subsampling for softmax regression.
Statistical Papers, 60(2):235–249, 2019.


