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Abstract

It has been conjectured that the Fisher divergence

is more robust to model uncertainty than the

conventional Kullback-Leibler (KL) divergence.

This motivates the design of a new class of ro-

bust generative auto-encoders (AE) referred to as

Fisher auto-encoders. Our approach is to design

Fisher AEs by minimizing the Fisher divergence

between the intractable joint distribution of ob-

served data and latent variables, with that of the

postulated/modeled joint distribution. In contrast

to KL-based variational AEs (VAEs), the Fisher

AE can exactly quantify the distance between the

true and the model-based posterior distributions.

Qualitative and quantitative results are provided

on both MNIST and celebA datasets demonstrat-

ing the competitive performance of Fisher AEs in

terms of robustness compared to other AEs such

as VAEs and Wasserstein AEs.

1 Introduction

In recent years, generative modeling became a very active

research area with impressive achievements. The most pop-

ular generative schemes are often given by variational auto-

encoders (VAEs) (Kingma and Welling, 2014), generative

adversarial networks (GANs) (Goodfellow et al., 2014) and

their variants. VAEs rely on the maximum likelihood princi-

ple to learn the underlying data generating distribution by

considering a parametric model. Due to the intractability of

the parametric model, VAEs employ approximate inference

by considering an approximate posterior to get a variational

bound on the log-likelihood of the model distribution. De-

spite its elegance, this approach has the drawback of generat-

ing low-quality samples due to the fact that the approximate

posterior could be quite different from the true one. On

the other hand, GANs have proven to be more impressive

when it comes to the visual quality of the generated samples,
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while the training often involves nontrivial fine-tuning and is

unstable. In addition to difficult training, GANs also suffer

from “mode collapse” where the generated samples are not

diverse enough to capture the diversity and variability in the

true data distribution (Goodfellow et al., 2014).

In this work, we propose a new class of robust auto-encoders

that also serve as a generative model. The main idea is to

develop a ‘score’ function (Hyvärinen, 2005; Parry et al.,

2012) of the observed data and postulated model, so that

its minimization problem is equivalent to minimizing the

Fisher divergence (Ding et al., 2019) between the underly-

ing data generating distribution and the postulated/modeled

distribution. By doing this, we are able to leverage the po-

tential advantages of Fisher divergence in terms of computa-

tion and robustness. In the context of parameter estimation,

minimizing the Fisher divergence has led to the Hyvärinen

score (Hyvärinen, 2005), which serves as a potential sur-

rogate for the logarithmic score. The main advantage of

the Hyvärinen score over logarithmic sore is its significant

computational advantage for estimating probability distri-

butions that are known only up to a multiplicative constant,

e.g. those in mixture models and complex time series mod-

els (Hyvärinen, 2005; Parry et al., 2012; Ding et al., 2019;

Shao et al., 2019). Our work will extend the use of Fisher

divergence and Hyvärinen score in the context of variational

auto-encoders.

Similar to the logarithmic score, the Hyvärinen score is

also intractable to compute due to the intractable integration

over the latent variables. One way to mitigate this difficulty

is to bound the Hyvärinen score and obtain a variational

bound to optimize instead. However, unlike the logarithmic

score, this strategy seems to be very complicated and a varia-

tional bound seems to be out of reach. Alternatively, it turns

out that the variational bound in VAEs can be recovered

by minimizing the KL divergence between the joint distri-

bution over the data and latent variable and the modeled

joint distribution which can be easily calculated as the prod-

uct of the prior and the decoder distribution (Kingma and

Welling, 2019). Following the same principle, we propose

to minimize the Fisher divergence between the two joint

distributions over the model parameters. This minimization

results in a loss function that shares similar properties as

regular VAEs but more powerful from an inference point of

view.
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It turns out that our developed loss function is the sum of

three terms: the first one is the tractable Fisher divergence

between the approximate and the model posteriors, the sec-

ond is similar to the reconstruction loss in VAEs obtained by

evaluating the Hyvärinen score on the decoder distribution,

and the last term can be seen as a stability measure that

promotes the invariance property in feature extraction in

the encoder. Therefore, the new loss function is different

from the regular variational bound in regular VAEs in the

following aspects: 1) it considers the minimization of the

distance between the approximate and the model posteriors

which turns out to be difficult when considering the KL di-

vergence due to the intractable normalization constant in the

model posterior, 2) it allows to produce robust features by

considering a stability measure of the approximate posterior.

Experimental results on MNIST (LeCun and Cortes, 2010)

and CelebA (Liu et al., 2015) datasets validate these aspects

and demonstrate the potential of the proposed Fisher AE

as compared to some existing schemes such as VAEs and

Wasserstein AEs. Moreover, thanks to the stability measure

in the Fisher loss function, the encoder is proved to have

more stable and robust reconstruction when the data is per-

turbed by noise as compared to other schemes playing a

similar role as denoising auto-encoders (Vincent, 2011).

Related works. Previous works on learning variational auto-

encoders initiated by the work of (Kingma and Welling,

2014) are fundamentally maximum likelihood methods that

learn the underlying data distribution by the proxy of an

evidence lower bound (ELBO) on the log-likelihood. The

accuracy of such bound is mainly related to the KL diver-

gence between the true and the postulated posteriors. This

has been the focus of many works trying to minimize the

inference gap resulting from the postulated posterior. For

instance, normalizing flows (Rezende and Mohamed, 2015)

employs rich posterior approximations using tractable and

flexible transformations on initial densities. In the same cat-

egory, the work in (Pu et al., 2017) provides an efficient

way of directly sampling from the true posterior using the

Stein Variational Gradient Descent (SVGD) method. On the

other hand, Wasserstein auto-encoders (WAEs) proposed in

(Ilya et al., 2018) follow a different path by looking at the

Wasserstein distance between the true and the model distri-

butions. Relying on the Monge-Kantorovich formulation,

the Wasserstein distance naturally emerges as an optimiza-

tion over an encoder-decoder structure with a reasonable

geometry over the latent manifold.

Main contributions. First, we develop a new type of AEs

that is based on minimizing the Fisher divergence between

the underlying data/latent joint distribution and the postu-

lated model joint distribution. Our derived loss function

may be decomposed as divergence between posteriors +

reconstruction loss + stability measure. Second, our derived

method is conceptually appealing as it is reminiscent of

the classical evidence lower bound (ELBO) derived from

Kullback-Leibler (KL) divergence. Third, we affirmatively

address the conjecture made in some earlier work that Fisher

divergence can be more robust than KL divergence in model-

ing complex nonlinear models (Ding et al., 2019; Lyu, 2009)

in the context of VAEs. Our results indicate that Fisher di-

vergence may serve as a competitive learning machinery for

challenging deep learning tasks.

Outline. In Section 2, we provide a brief overview on VAEs

and some theoretical concepts related to the Fisher diver-

gence and the Hyvärinen score. In Section 3, we provide the

technical details related to the proposed Fisher auto-encoder.

Then, in Section 4 we give both qualitative and quantitative

results regarding the performance of the proposed Fisher AE.

Finally, we provide some concluding remarks in Section 5.

2 Background on VAEs and Fisher

divergence

2.1 Variational auto-encoders

By considering a probabilistic model of the data observa-

tions x ∈ RD given by pθ(x), the goal of variational infer-

ence is to optimize the model parameters θ to match the

true unknown data distribution p⋆(x) in some sense. One

way to match the true data distribution is to minimize the

Kullback-Leibler (KL) divergence as follows:

θ⋆ = argmin
θ

DKL [p⋆||pθ]

= argmin
θ

Ep⋆(x) − log pθ(x)

= argmin
θ

Ep⋆(x) − log

∫

p(z)pθ(x|z)dz,

(1)

where z ∈ Rd are latent variables with prior distribution

p(z) and pθ(x|z) is a likelihood function corresponding to

the decoder modeled by the parameters θ using a neural

network. Unfortunately, the intergration over the latent vari-

ables z in (1) is usually intractable and an upper bound on

the negative marginal log-likelihood is often optimized in-

stead. By introducing an alternative posterior over the latent

variables given by qφ(z|x) and by direct application of the

Jensen’s inequality, we have

− log pθ(x) = − log

∫
qφ(z|x)

qφ(z|x)
p(z)pθ(x|z)dz

≤ DKL [qφ(z|x)||p(z)]− Eqφ(z|x) log pθ(x|z)

= LVAE (x;φ, θ) ,

(2)

where qφ(z|x) is an approximate posterior corresponding

to the encoder parameterized by φ. The bound in (2) is

often called the evidence lower bound (ELBO) (w.r.t the log-

likelihood) and it is optimized w.r.t both model parameters

φ and θ:

φ∗, θ∗ = argmin
φ,θ

Ep⋆(x)LVAE (x;φ, θ) . (3)



Khalil Elkhalil1, Ali Hasan1, Jie Ding2, Sina Farsiu1, Vahid Tarokh1

The common practice is to consider a Gaussian model for

the posterior qφ(z|x), i.e., qφ(z|x) = N
(
z|µ(x), σ(x)2

)

where µ(x) and σ(x)2 are the output of a neural network tak-

ing as input the data sample x and parameterized by φ. This

allows to reparametrize z as z = µ(x) + σ(x)⊙ ǫ, where

⊙ denotes the point-wise multiplication and ǫ ∼ N (0, I)
which permits to efficiently solve (3) using stochastic gradi-

ent variational Bayes (SGVB) as in (Kingma and Welling,

2014).

2.2 Fisher divergence and the Hyvärinen score

A standard procedure in data fitting and density estima-

tion is to select from a parameter space Θ, the probabil-

ity distribution pθ, θ ∈ Θ that minimizes a certain diver-

gence D [.||.] with respect to the unknown true data distri-

bution p⋆. For a certain class of divergences, expanding

the divergence w.r.t the true probability distribution yields:

D [p⋆||pθ] = c⋆ + Ep⋆(x)s [pθ (x)], where c⋆ is a constant

that depends only on the data and s [.] : R+ → R is a

score function associated to D[.||.]. Clearly, the smaller

the score s [pθ (x)], the better the data point x ∼ p⋆
fits the model pθ. In practice, given a set of observations

{xi}i=1,··· ,N ∼i.i.d p⋆, one would minimize the sample

average N−1
∑N

i=1 s [pθ (xi)] over θ ∈ Θ. The most popu-

lar example of these scoring functions (Parry et al., 2012)

is the logarithmic score given by − log pθ (x) which is ob-

tained by minimizing the Kullback-Leibler (KL) divergence,

i.e. D = DKL. In this case, the procedure of minimizing

the score function is widely known as maximum likeli-

hood (ML) estimation and has been extensively applied

in statistics and machine learning. Popular instances of ML

estimation include logistic regression when minimizing the

cross-entropy loss w.r.t a Bernoulli model of the data and

regression when minimizing the squared loss in the pres-

ence of a Gaussian model of the data (Bishop, 2006). In

the context of variational inference, the logarithmic score is

fundamental in the construction of variational autoencoders

(Kingma and Welling, 2014) as we showed in the previous

section.

Recently, the Hyvärinen score (Hyvärinen, 2005; Ding et al.,

2019; Liu et al., 2016; Lyu, 2009) that we denote by s∇[.]
has been proposed as an alternative to the logarithmic score.

It turns out that the Hyvärinen score can be obtained by

minimizing the Fisher divergence defined as

D∇ [p⋆||pθ] = Ep⋆(x)
1

2
‖∇x log p⋆(x)−∇x log pθ(x)‖

2
,

(4)

where ∇x denotes the gradient w.r.t x. Assuming the same

regularity conditions as in Proposition 1 (Ding et al., 2019),

we have

D∇ [p⋆||pθ] = Ep⋆(x)
1

2
‖∇x log p⋆(x)‖

2
+ s∇ [pθ(x)] ,

(5)

with

s∇ [p(x)] =
1

2
‖∇x log p(x)‖

2
+∆x log p(x), (6)

for some probability density function p(x) and ∆x =
∑D

j=1
∂2

∂x2
j

f(x) denotes the Laplacian of some function f

w.r.t x. The potential of both the Fisher divergence and the

Hyvärinen score is their ability to deal with probability dis-

tributions that are known up to some multiplicative constant.

This interesting property allows to consider larger class of

unormalized distributions and therefore better fits the data.

In the next section, we provide a detailed description of how

we can extend the use of Fisher divergence and Hyvärinen

score in the context of variational auto-encoders.

3 Proposed Fisher Auto-Encoder

Recall from (2) that instead of minimizing the logarithmic

score − log pθ(x), we instead upper bound the score and

minimize LVAE (x;φ, θ). Similarly, one would look for an

upper bound to the Hyvärinen score s∇ [pθ(x)] and min-

imize it w.r.t model parameters φ and θ. However, this

is quite non-trivial as opposed to the logarithmic score

in (2). Fortunately, the upper bound in (2) can be recov-

ered by minimizing the KL divergence between the fol-

lowing two joint distributions: q⋆,φ(x, z) = p⋆(x)qφ(z|x)
and pη,θ(x, z) = pη(z)pθ(x|z) where qφ(z|x), pη(z) and

pθ(x|z) are respectively the variational posterior, the prior

and the decoder with parameters φ, η and θ.

φ⋆
VAE, η

⋆
VAE, θ

⋆
VAE

= arg min
φ,η,θ

DKL [q⋆,φ(x, z)||pη,θ(x, z)]

= arg min
φ,η,θ

Ep⋆(x)Eqφ(z|x)

[

log p⋆(x) + log
qφ(z|x)

pη(z)pθ(x|z)

]

= arg min
φ,η,θ

Ep⋆(x){DKL [qφ(z|x)||pη(z)]

− Eqφ(z|x) log pθ(x|z)}

= arg min
φ,η,θ

Ep⋆(x)LVAE (x;φ, η, θ) .

(7)

Following the same line of thought, we propose to minimize

the Fisher divergence between q⋆,φ(x, z) and pη,θ(x, z) as

follows:

φ⋆, η⋆, θ⋆

= arg min
φ,η,θ

D∇ [q⋆,φ(x, z)||pη,θ(x, z)]

= arg min
φ,η,θ

Eq⋆,φ(x,z)
1

2
‖∇x,z log q⋆,φ(x, z)−∇x,z log pη,θ(x, z)‖

2
,

(8)

where ∇x,z denotes the gradient w.r.t the augmented vari-

able {x, z}. The following theorem provides a simplified
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expression of the Fisher AE loss by expanding and simpli-

fying the Fisher divergence in (8).

Theorem 1. The minimization in (8) is equivalent to the

following minimization problem:

φ⋆, η⋆, θ⋆ = arg min
φ,η,θ

D∇ [q⋆,φ(x, z)||pη,θ(x, z)]

= arg min
φ,η,θ

Ep⋆(x)LF-AE (x;φ, η, θ) ,
(9)

where

LF-AE (x;φ, η, θ)

= D∇ [qφ(z|x)||pη,θ(z|x)]
︸ ︷︷ ︸

1©

+ Eqφ(z|x)

[

s∇ [pθ(x|z)]
︸ ︷︷ ︸

2©

+
1

2
‖∇x log qφ(z|x)‖

2

︸ ︷︷ ︸

3©

]

.

(10)

Proof. A proof can be found in the supplementary material.

The Fisher AE loss denoted by LF-AE (x;φ, η, θ) in (10) is

the sum of the following three terms: 1© the Fisher diver-

gence between the two posteriors qφ(z|x) and pη,θ(z|x).
In traditional VAEs, the KL divergence between these

two posteriors is generally intractable since pη,θ(z|x) =
pη(z)pθ(x|z)

pη,θ(x)
and pη,θ(x) is hard to compute because

pη,θ(x) =
∫
pη(z)pθ(x|z)dz. Interestingly, with the Fisher

divergence this limitation is alleviated since pη,θ(z|x) ∝
pη(z)pθ(x|z) and we only need ∇z log pη,θ(z|x) =
∇z log pη(z)+∇z log pθ(x|z) for computation. The second

term given by 2© is the Hyvärinen score of pθ(x|z) which is

nothing but a reconstruction loss similar to − log pθ(x|z) in

regular VAEs. When pθ(x|z) ∝ e−
1
2‖x−fθ(z)‖

2

, the recon-

struction loss is given by the squared loss1: 1
2 ‖x− fθ(z)‖

2

which is the same as in regular VAEs under the same model,

fθ(.) : Rd → RD is the decoder parametrized by θ. The last

term 3© is a stability term that permits to produce robust

features in the sense that the posterior distribution is robust

against small perturbations in the input data. This is similar

to contractive auto-encoders which promote the invariance

property in feature extraction (Rifai et al., 2011).

Remark 1. When qφ(z|x) = pη,θ(z|x), the Fisher AE

loss becomes exactly the Hyvärinen score of the model

distribution pη,θ(x), i.e. LF-AE (x;φ, η, θ) = s∇ [pη,θ(x)].
This is similar to traditional VAEs since we also have

LVAE (x;φ, η, θ) = − log pη,θ(x) in this case.

Proof. When qφ(z|x) = pη,θ(z|x),
D∇ [q⋆,φ(x, z)||pη,θ(x, z)] = D∇ [p⋆(x)||pη,θ(x)].
The proof is concluded by relying on (5).

1We omit the constant term coming from the Laplacian
∆x log pθ(x|z) since it is irrelevant to the minimization problem
in (9).

Given a data point x, the Fisher AE loss can be estimated

using Monte Carlo with L samples from qφ(z|x) as follows:

LF-AE (x;φ, η, θ)

≃ L
(L)
F-AE (x;φ, η, θ)

=
1

2L

L∑

l=1

[

‖∇z log qφ(z
(l)|x)−∇z log pη(z

(l))

−∇z log pθ(x|z
(l))‖2

+
∥
∥
∥x− fθ(z

(l))
∥
∥
∥

2

+
∥
∥
∥∇x log qφ(z

(l)|x)
∥
∥
∥

2
]

,

(11)

where z(l) = µ(x)+σ(x)⊙ǫ(l), ǫ(l) ∼ N (0, I). Moreover,

∇z log qφ(z
(l)|x) = − ǫ(l)

σ(x) and both ∇z log pθ(x|z
(l)) and

∇x log qφ(z
(l)|x) can be computed using automatic differ-

entiation tools like Autograd in PyTorch. To solve the mini-

mization in (9), we use stochastic gradient descent (SGD)

with minibatch data of size N as in (Kingma and Welling,

2014). Details of the optimization are given by Algorithm 1.

Algorithm 1 Training the Fisher AE with SGD

1: Initialize φ, η and θ

2: Repeat:

3: Randomly sample a minibatch of training data

{xi}
N
i=1

4: Compute gradient ∇φ,η,θ
1
N

∑N
i=1 L

(L)
F-AE (xi;φ, η, θ)

5: Update φ, η and θ with Adam Kingma and Ba (2014)

6: Until convergence

7: Output: φ∗, η∗ and θ∗

3.1 Fisher AE with exponential family priors

As discussed earlier, employing the Fisher divergence has

the advantage of dealing with probability distributions that

are known up to some multiplicative constant. This powerful

property allows to consider a rich family of distributions to

model the prior p(z). In this paper, we consider the use of

exponential family whose general form is given by:

pη(z) ∝ exp
(
η⊤T (z) + h(z)

)
, (12)

where η denotes the natural parameters, h(z) is the car-

rier measure and T (z) is referred to as a sufficient statistic

(Wainwright and Jordan, 2008). Popular examples of the

exponential family include the Bernoulli, Poisson and Gaus-

sian distributions to name a few (Wainwright and Jordan,

2008). Note that the form given by the right hand side of

(12) is not a valid PDF since it does not sum to 1, but it is

sufficient to compute the gradient of the log-density w.r.t

z which is given by ∇z log pη(z) = ∇z

(
η⊤T (z) + h(z)

)
.
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Therefore, the term 1© in (10) can be written as:

D∇ [qφ(z|x)||pθ(z|x)]

=
1

2

∫

qφ(z|x)‖∇z log qφ(z|x)−∇z

(
η⊤T (z) + h(z)

)

−∇z log pθ(x|z)‖
2dz.

which can be approximated using samples z(l) ∼ qφ(z|x),
l = 1, · · · , L as follows:

D∇ [qφ(z|x)||pθ(z|x)]

≃
1

2L

L∑

l=1

‖∇z log qφ(z
(l)|x)−∇z

(

η⊤T (z(l)) + h(z(l))
)

−∇z log pθ(x|z
(l))‖2.

A popular class of distributions that belongs to the exponen-

tial family is given by the factorable polynomial exponential

family (FPE) (Cobb et al., 1983) in which pη(z) is given by

pη(z) = pη(z1, · · · , zd) ∝ exp





d∑

j=1

K∑

k=1

ηjkz
k
j



 , (13)

where K denotes the order of FPE family and

{ηjk}1≤j≤d,1≤k≤K is a set of parameters. The natural pa-

rameters, the sufficient statistic and the carrier measure in

this case are given by:

η = [η11, η12, · · · , η1K , · · · , ηd1, ηd2, · · · , ηdK ]
⊤

T (z) =
[
z1, z

2
1 , · · · , z

K
1 , · · · , zd, z

2
d, · · · , z

K
d

]⊤

h(z) = 0.

With the model in (13), the gradient of log pη(z) w.r.t z can

be easily derived as

∂

∂zj
log pη(z) =

K∑

k=1

kηjkz
k−1
j , j = 1, · · · , d.

4 Experiments

In this section, we provide both qualitative and quantitative

results that demonstrate the ability of our proposed Fisher

AE model to produce high quality samples on real-world

image datasets such as MNIST and CelebA. We compare

results with both regular VAEs (Kingma and Welling, 2014)

and Wasserstein Auto-Encoders with GAN penalty (WAE-

GAN) (Ilya et al., 2018). In the supplementary material, we

provide full details for the encoder/decoder architectures

used by the different schemes for both MNIST and celebA

datasets.

Setup

For optimization, we use Adam (Kingma and Ba, 2014)

with a learning rate lr = 2.10−4, β1 = 0.5, β2 = 0.999, a

Figure 1: BCE vs. noise variance σ2 for MNIST.

mini-batch size of 128 and trained various models for 100

epochs. For all experiments, we pick d = 8 for MNIST and

d = 64 for celebA and use exponential family priors for the

Fisher AE as in (13). We notice that K = 5 (order of FPE

family) seems to work better in all experiments whereas

Gaussian priors are used for VAE and WAE-GAN. We use

Gaussian posteriors for both Fisher AE and VAE such that

qφ(z|x) = N
(
z;µφ(x), σφ(x)

2
)

where µφ(.) and σφ(.)
are determined by the encoder architecture for which details

are postponed to the supplementary material.

Sampling with SVGD

To sample from the exponential family prior after training,

we use Stein Variational Gradient Descent (SVGD) (Liu

and Wang, 2016) . Let M be the number of samples that

we would like to sample from pη∗
(z) denoted by {z∗i }

M

i=1.

We start with {zi}
M
i=1 ∼i.i.d N (0, I) and we keep evolving

these samples with a step-size 10−3 for 15, 000 iterations.

These parameters (step-size and number of iterations) seem

to work reasonably well across all experiments.

MNIST

Figure 2 exhibits a comparison between the three auto-

encoders in terms of robustness, test reconstruction, and

random sampling. In order to compare the robustness, we

plot the reconstructed samples of the different schemes when

the test data is corrupted by an isotropic Gaussian noise with

a covariance matrix 0.2× ID. The results of this experiment

are given by the first row of Figure 2. Clearly, WAE-GAN

completely fail to reconstruct the test data and Fisher AE

seems to be more robust to noise. This result is confirmed

quantitatively in Figure 1 where we plot the normalized

binary cross-entropy (BCE) w.r.t the noise variance added

to the test data, i.e. we feed the different trained models with

data = test data+N (0, σ2
ID) and compute the BCE

reconstruction loss w.r.t the true test data. In the second and
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Figure 2: Performance of the Fisher AE trained on MNIST

dataset in comparison with VAE and WAE-GAN. True test

data are given by the odd rows in both reconstruction tasks

(rows 1 and 2).

third rows of Figure 2, we show both the reconstruction and

generative performance of the different auto-encoders. For

both test reconstruction and random sampling, the proposed

Fisher AE exhibits a comparable performance to WAE-GAN

which achieves the best generative performance thanks to

the GAN penalty in the loss function (Ilya et al., 2018).

We further examine the robustness of the different models

w.r.t latent representation when the data is corrupted by

additive Gaussian noise. In Figure 4 using non-linear dimen-

sionality reduction techniques such as t-SNE, we visualize

the 2D latent structure of the different models. As shown in

Figure 4, even with corrupted data, the latent structure of

the Fisher AE is still preserved and the clusters associated

to different classes are relatively distinguishable. This is

not the case for VAE and WAE-GAN where the clusters

in the latent space are somewhat mixed up when the data

is perturbed by noise. This behavior is quantitatively con-

firmed in Figure 3 where test data is perturbed with Gaussian

noise with variance σ2, then encoded with each model en-

coder and projected with t-SNE and finally clustered using

k-means. The quality of clustering is measured using the

normalized mutual information: NMI = 2I(Ω;C)
H(Ω)+H(C) , where

Ω is the model clusters for a given noise level, C is the true

class labels, I(.; .) denotes the mutual information and H(.)
denotes the entropy. Clearly, Fisher AE exhibits a better

behavior in terms of clustering robustness where the decay

in performance is nearly linear whereas for both VAE and

WAE-GAN, the performance decays faster.

Figure 3: Robustness of latent space clustering in terms of

the normalized mutual information on MNIST test set.

Algorithm FID score

VAE

Fisher AE (Gaussian prior)

Fisher AE (Exp. prior)

WAE-GAN

89.1 ± 1.1

89.1 ± 0.9

84.7 ± 0.8

75.2 ± 1.0

Table 1: FID scores of the different generative models

trained on CelebA (smaller is better).

CelebA

For the CelebA dataset, it is clear from the first row (the

noisy reconstructions) of Figure 6 that the proposed Fisher

AE is more robust than both VAE and WAE-GAN when the

test data is corrupted with an isotropic Gaussian noise with

covariance matrix 2ID. We further validate this property

with different noise levels as depicted in Figure 5 where the

Fisher AE outperforms VAE and WAE-GAN in the recon-

struction MSE. Moreover, as shown in Figure 6, the Fisher

AE generates better samples than VAE and has compara-

ble quality to WAE. The visual quality of the samples is

confirmed by the quantitative results summarized in Table

1 where the proposed Fisher AE with exponential family

priors outperforms VAE in terms of the Fréchet Inception

Distance (FID) and has relatively worse performance than

WAE. Furthermore, sampling using the exponential prior

provides additional challenges due to the difficulty of con-

vergence of the algorithm. This may be alleviated with al-

ternative sampling algorithms, but that remains beyond the

scope of this paper.

5 Conclusion

In this paper, we introduced a new type of auto-encoders

constructed based on the minimization of the Fisher diver-
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Figure 4: Visualisation of models latent representation on MNIST test set using t-SNE for different noise levels.

Figure 5: MSE vs. noise variance σ2 for celebA. Errors are

computed from variances in batches in the test set.

gence between the joint distribution over the data and latent

variables and the model joint distribution. The resulting loss

function has two interesting aspects: 1) it allows to directly

minimize the tractable Fisher divergence between the ap-

proximate and the true posteriors and 2) considers a stability

measure of the encoder that allows to produce robust fea-

tures. Experimental results were provided to demonstrate

the competitive performance of the proposed Fisher auto-

encoders as compared to some existing schemes like VAEs

and Wasserstein AEs and their superiority in terms of robust-

ness. An interesting but non trivial extension of the present

work is to consider the modeling of the posterior distribution

using exponential family priors.
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