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Abstract

The global optimization of a high-dimen-
sional black-box function under black-box con-
straints is a pervasive task in machine learn-
ing, control, and engineering. These problems
are challenging since the feasible set is typi-
cally non-convex and hard to find, in addition
to the curses of dimensionality and the hetero-
geneity of the underlying functions. In partic-
ular, these characteristics dramatically impact
the performance of Bayesian optimization
methods, that otherwise have become the de
facto standard for sample-efficient optimiza-
tion in unconstrained settings, leaving practi-
tioners with evolutionary strategies or heuris-
tics. We propose the scalable constrained
Bayesian optimization (SCBO) algorithm that
overcomes the above challenges and pushes
the applicability of Bayesian optimization far
beyond the state-of-the-art. A comprehensive
experimental evaluation demonstrates that
SCBO achieves excellent results on a variety
of benchmarks. To this end, we propose two
new control problems that we expect to be of
independent value for the scientific commu-
nity.

1 Introduction

The global optimization of a black-box objective func-
tion under black-box constraints has many applications
in machine learning, engineering, and the natural sci-
ences. Examples include fine-tuning the efficiency of
a computing platform while preserving the quality of
service; maximizing the power conversion efficiency of
a solar cell material under stability and reliability re-
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quirements; optimizing the control policy of a robot
under performance and safety constraints; tuning the
performance of an aerospace design averaged over multi-
ple scenarios while ensuring a satisfactory performance
on each individual scenario (multi-point optimization).
Moreover, a popular approach for multi-objective opti-
mization tasks is to to reformulate them as constrained
problems. Here the functions that comprise the objec-
tive and the constraints are often given as black-boxes,
i.e., upon their evaluation we receive an observation of
the respective function, possibly with noise but with-
out derivative information. All of the above examples
have in common that their dimensionality, that is, the
number of tunable parameters, is large: it is usually up
to several dozens, which poses a substantial challenge
for current methods in derivative-free optimization.

High dimensionality makes black-box functions hard
to optimize due to the curses of dimensionality [Powell,
2019], even in the absence of constraints. Moreover,
these functions are often heterogeneous which poses
a problem for surrogate-based optimizers. Black-box
constraints make the task considerably harder since
the set of feasible points is typically non-convex and
hard to find, e.g., for control problems.

The main contributions of this work are as follows:

1. We propose the scalable constrained Bayesian op-
timization algorithm (SCBO), the first scalable al-
gorithm for the optimization of high-dimensional
expensive functions under expensive constraints.
SCBO is also the first algorithm to support large
batches for constrained problems with native sup-
port for asynchronous observations.

2. A comprehensive evaluation shows that SCBO out-
performs previous state-of-the-art methods by far
on high-dimensional constrained problems. More-
over, SCBO at least matches and often beats the
best performer on low-dimensional instances.

3. We introduce two new high-dimensional con-

1. This work was conducted while the authors were affili-
ated with Uber AI.
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strained test problems that will be of independent
interest given the novelty and anticipated impact
of large-scale constrained Bayesian optimization.

1.1 Related Work

Bayesian optimization (BO) has recently gained enor-
mous popularity for the global optimization of expen-
sive black-box functions, see [Frazier, 2018, Shahriari
et al., 2016] for an overview. While the vast major-
ity of work focuses on unconstrained problems, aside
from box constraints that describe the search space, a
handful of articles consider the presence of black-box
constraints. The seminal work of Schonlau et al. [1998]
extends the expected improvement criterion (EI) to
constraints by multiplying the expected improvement
at some point x over the best feasible point with the
probability that x itself is feasible, leveraging the in-
dependence between the objective function and the
constraints. Later this cEI algorithm was rediscovered
by [Gardner et al., 2014, Gelbart et al., 2014] and stud-
ied in a variety of settings, e.g., see [Sóbester et al.,
2014, Forrester et al., 2008, Parr et al., 2012b,a] and
the references therein. Letham et al. [2019] extended
the approach to noisy observations using quasi Monte
Carlo integration and were the first to consider batch
acquisition under constraints. Note that for noise-free
observations, as for the benchmarks that we study,
their approach reduces to the original cEI. Bayesian
optimization with constraints was also studied in the
context of lookahead acquisition and with multiple in-
formation sources [Lam et al., 2015, Lam and Willcox,
2017, Lam et al., 2018].

Hernández-Lobato et al. [2016] extended predictive
entropy search [Hernández-Lobato et al., 2014] to con-
straints and detailed how to make the sophisticated
approximation of the entropy reduction computation-
ally tractable in practice. Their PESC algorithm usu-
ally achieves great results and is widely considered the
state-of-the-art for constrained BO despite its rather
large computational costs. Picheny [2014] considered
the volume of the admissible excursion set under the
best known feasible point as a measure for the uncer-
tainty over the location of the optimizer. His algorithm
iteratively samples a point that yields a maximum
approximate reduction in volume.

By lifting constraints into the objective via the La-
grangian relaxation, Gramacy et al. [2016] took a dif-
ferent approach. Note that it results in a series of
unconstrained optimization problems that are solved
by vanilla BO. SLACK of Picheny et al. [2016] refined
this idea by introducing slack variables and showed that
this augmented Lagrangian achieves a better perfor-
mance for equality constraints. Very recently, Ariafar
et al. [2019] used the ADMM algorithm to solve an aug-

mented Lagrangian relaxation. All these algorithms
use the EI criterion.

Traditionally, BO, with or without constraints, has
been limited to problems with a small number of de-
cision variables, usually at most 15, and a budget of
no more than a couple of hundred samples. Recent
work has started exploring scalable BO for budgets
with tens of thousands of samples. Hernández-Lobato
et al. [2017] extended Thompson sampling [Thomp-
son, 1933] to large batch sizes and used a Bayesian
neural network for the surrogate to maintain scalabil-
ity (see also [Kandasamy et al., 2018]). Wang et al.
[2018] proposed the EBO algorithm that partitions the
search space to achieve scalability. Eriksson et al. [2019]
abandoned a global surrogate and instead maintained
several local models that move towards better solutions.
Their TURBO algorithm applies a bandit approach to
allocate samples efficiently between these local searches.
Independently, Mathesen et al. [2020] also proposed
to combine trust region modeling with Bayesian op-
timization with an EI-based acquisition criterion to
balance global and local optimization. BO has been
investigated for high-dimensional settings with small
sampling budgets, e.g., see [Wang et al., 2016, Binois
et al., 2015, Eriksson et al., 2018, Mutny and Krause,
2018, Oh et al., 2018, Rolland et al., 2018, Kirschner
et al., 2019, Nayebi et al., 2019, Letham et al., 2020,
Binois et al., 2020]. Bouhlel et al. [2018] combined a
dimensionality reduction via partial least squares with
kriging-based EI to solve a 50-dimensional reduced ver-
sion of the constrained MOPTA problem. The authors
pointed out that their approach cannot handle the full
MOPTA problem studied in Sect. 4.

The constrained optimization of black-box functions
has also been studied in the field of evolutionary strate-
gies and in operations research. CMA-ES is one of the
most powerful and versatile evolutionary strategies. It
uses a covariance adaptation strategy to learn a second-
order model of the objective function. CMA-ES handles
constraints by the ’death penalty’ that sets the fit-
ness value of infeasible solutions to zero [Kramer, 2010,
Arnold and Hansen, 2012]. COBYLA [Powell, 1994] and
BOBYQA [Powell, 2007] maintain a local trust region and
thus perform a local search. In our experience, this
strategy scales well to high dimensions, with COBYLA

having an edge due to its support for non-linear con-
straints. We will compare to cEI that we extended
to high-dimensional domains, PESC, SLACK, CMA-ES,
and COBYLA and thus have a representative selection of
above lines of work. Data-dependent transformations of
the black-box functions were studied in [Snelson et al.,
2004, Wilson and Ghahramani, 2010, Snoek et al., 2014,
Salinas et al., 2019].
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Structure of the article. The remainder of the ar-
ticle is structured as follows. In the next section we
define the problem formally. The SCBO algorithm is
presented in Sect. 3 and compared to a representative
selection of methods in Sect. 4. Sect. 5 summarizes the
conclusions and discusses ideas for future work.

2 The Model

The goal is to find an optimizer

argmin
x∈Ω

f(x) s.t. c1(x) ≤ 0, . . . , cm(x) ≤ 0 (1)

where f : Ω→ R and c`: Ω→ R for 1≤ `≤m are black-
box functions defined over a compact set Ω ⊂ Rd. The
term black-box function means that we may query
any x ∈ Ω to observe the values under the objective
function f and all constraints, possibly with noise, but
no derivative information. Specifically, we suppose
that we observe an i.i.d. (m + 1)-dimensional vector
with the `-th entry given by y0(x) ∼ N (f(x), λ0(x))
and y`(x) ∼ N (c`(x), λ`(x)) for 1≤ `≤m. Here the λ’s
give the variance of the observational noise and are
supposed to be known. In practice, we estimate the λ’s
along with the hyperparameters of the surrogate model.
Note that we may rescale the search space Ω w.l.o.g.
to the unit hypercube [0, 1]d. If all functions are ob-
served without noise, then our goal is to find a feasible
point with minimum value under the objective func-
tion. For noisy functions, we wish to find a point with
best expected objective value under all points that are
feasible with probability at least 1−δ, where δ is set
based on the context, e.g., the degree of risk aversion
(cp. Hernández-Lobato et al. [2016]).

3 Scalable Constrained Bayesian
Optimization (SCBO)

We propose the Scalable Constrained Bayesian Opti-
mization (SCBO) algorithm. SCBO follows the paradigm
of the generic BO algorithm [Frazier, 2018, Shahriari
et al., 2016] and proceeds in rounds. In each round,
SCBO selects a batch of q points in Ω that are then
evaluated in parallel. Note that SCBO is easily extended
to asynchronous batch evaluations.

SCBO employs the trust region approach introduced
by Eriksson et al. [2019] that confines samples locally.
This addresses common problems of Bayesian opti-
mization in high-dimensional settings, where popular
acquisition functions spread out samples due to the
inherently large uncertainty and thus fail to zoom in on
promising solutions. Moreover, for the popular Matérn
kernels, the covariance under the prior is essentially
zero for two points if they differ substantially in one

coordinate only. The use of trust regions results in
more exploitation and often a better fit for the local
surrogate. SCBO maintains the invariant that the trust
region is centered at a point of maximum utility. Thus,
the trust region is moved through the domain Ω as
better points are discovered.

The generalization to black-box constraints poses addi-
tional fundamental problems that were not considered
by Eriksson et al. [2019]. For many problems it is hard
to even find a feasible solution, since the feasible set
is typically non-convex. An investigation in Sect. 4
demonstrates the difficulty of this task. Moreover,
black-box functions often vary drastically in their char-
acteristics across Ω. We will provide examples where
some constraints exhibit a huge variability whereas oth-
ers are smooth. SCBO applies tailored transformations
that account for the specific roles of the objective and
the constraints.

Extending Thompson sampling to constrained
optimization. SCBO extends Thompson sampling (TS)
to black-box constraints, and is to the best of our
knowledge the first to do so. TS scales to large batches
at low computational cost and is at least as effective
as EI, as we demonstrate below. To select a point for
the next batch, SCBO samples r candidate points in Ω
(see the supplement for details).

Let x1, . . . , xr be the sampled candidate points. Then
SCBO samples a realization (f̂(xi), ĉ1(xi), . . . , ĉm(xi))

T

for all xi with 1 ≤ i ≤ r from the respective posterior
distributions on the functions f, c1, . . . , cm. Let F̂ =
{xi | ĉ`(xi) ≤ 0 for 1 ≤ ` ≤ m} be the set of points
whose realizations are feasible. If F̂ 6= ∅ holds, SCBO
selects an argminx∈F̂ f̂(x). Otherwise SCBO selects a
point of minimum total violation

∑m
`=1 max{ĉ`(x), 0},

breaking ties via the sampled objective value. While
we found that this natural selection criterion is able
to identify a feasible point quickly for smooth con-
straints, we observed that it struggles when functions
vary significantly in their magnitudes.

Transformations of objective and constraints.
The key observations are that for the objective function
we are particularly interested in the locations of possi-
ble optima, whereas for constraints we are interested
in identifying feasible areas, i.e., where the constraint
function values become negative. Thus, we apply trans-
formations that emphasize these areas particularly; see
also Fig. 1. To the objective function, we apply a
Gaussian copula [e.g., see Wilson and Ghahramani,
2010]. The Gaussian copula first maps all observations
under the objective to quantiles using the empirical
CDF. Then it maps the quantiles through an inverse
Gaussian CDF. Note that this procedure magnifies
differences between values that are at the end of the
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Figure 1: (Left) The original function where the distance to the origin varies considerably for the observations.
If this was a constraint, the feasible region, denoted by the change of the sign, would be hard to detect. If it was
the objective function, we would struggle to identify the minima, since the observations in the center differ only
slightly and are considerably smaller in absolute value than the observations on the boundary. (Middle) The
bilog transformation stretches out observations around zero, thereby making it easier to detect feasible areas.
Note that a GP has been fitted to the observations given by the orange points in the middle and the right plot.
The blue line depicts the posterior mean and the shaded area gives the posterior uncertainty of the GP. (Right)
The copula transformation magnifies values that are at the ends of the observed spectrum, which facilitates the
task of finding optima. Note that these transformations are advantageous over a naive standardization of each
function as the latter is insensitive to the areas of interest.

observed range, i.e., minima or maxima. It affects the
observed values but not their location. Finally, we
apply Gaussian process regression to the mapped ob-
servations, as usual. For the constraints we employ the
bilog transformation: bilog(y) = sgn(y) ln (1 + |y|) for
a scalar observation y. It magnifies the range around
zero to emphasize the change of sign that is decisive
for feasibility. Moreover, it dampens large values.

Maintaining the trust region. The trust region is
initialized as a hypercube with side length L = Linit.
We count for each trust region the number of suc-
cesses ns and failures nf since it was resized last. First
suppose that all functions are observed without noise.
Then a success occurs when SCBO observes a better
point; by construction, this point must be inside the
trust region. A failure happens when no point in the
batch is better than the current center of the trust
region. The center C of the trust region is chosen as
follows. We select the best feasible point for C if any.
Otherwise we pick a point with minimum total viola-
tion, again breaking ties via the objective. Note that
we use (transformed) observations from the black-box
functions, not realizations from the posterior. Thus,
the center is moved to a new point whenever a success
occurs. The trust region is resized as follows: if ns = τs
then the side length is set to L = min{2L,Lmax} and
we reset ns = 0. If nf = τf , then we set L = L/2 and
nf = 0. If the side length drops below a set thresh-
old Lmin, then we initialize a new trust region. For
noisy functions we follow the same rules, and use the
posterior mean of GP model instead of the observed

value. Note that the procedure for maintaining the
trust regions follows [Eriksson et al., 2019] and is de-
scribed here for completeness. In the next section we
demonstrate that SCBO achieves excellent performance
across all benchmarks.

3.1 Summary of the SCBO Algorithm

We summarize the SCBO algorithm.

1. Evaluate an initial set of points and initialize the
trust region at a point of maximum utility.

2. Until the budget for samples is exhausted:

(a) Fit GP models to the transformed observa-
tions.

(b) Generate r candidate points x1, . . . , xr ∈ Ω
in the trust region.

(c) For each of the q points of the next batch we
sample a realization
{(f̂(xi), ĉ1(xi), . . . , ĉm(xi))

T | 1≤i≤r} from
the posterior over each candidate and add a
point of maximum utility to the batch.

(d) Evaluate the objective and constraints at the q
new points.

(e) Adapt the trust region by moving the center
as described above. Update the counters ns,
nf , and size L. If L < Lmin, initialize a new
trust region.

3. Recommend an optimal feasible point (if any).
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For noisy functions, we recommend a point of minimum
posterior mean under all points that are feasible with
probability at least 1−δ (if any). Note that SCBO is con-
sistent and hence will converge to a global optimum as
the number of samples tends to infinity. The proof was
deferred to the supplement due to space constraints.

4 Experimental Evaluation

We compare SCBO to the state-of-the-art:
PESC [Hernández-Lobato et al., 2016] in Spearmint,
cEI [Schonlau et al., 1998, Gardner et al., 2014],
SLACK [Picheny et al., 2016] in laGP, the implementa-
tion of Jones et al. [2014] for COBYLA [Powell, 1994],
CMA-ES [Hansen, 2006] in pycma, and random search
(RS). Please see Sect. 1.1 for a discussion of these
methods.

The Benchmarks. We evaluate the algorithms on a
comprehensive selection of benchmark problems. First,
we consider four low-dimensional problems in Sect. 4.1:
a 3D tension-compression string problem with four con-
straints, a 4D pressure vessel design with with four
constraints, a 4D welded beam design problem with
five constraints, and a 7D speed reducer problem with
eleven constraints. Next we consider the 10D Ackley
problem with two constraints in Sect. 4.2 that is par-
ticularly interesting because of its small feasible region.
Then we study four large-scale problems: the 30D
Keane bump function with two constraints in Sect. 4.3,
a 12D robust multi-point optimization problem with a
varying number of constraints in Sect. 4.4, a 60D trajec-
tory planning problem with 15 constraints in Sect. 4.5,
and a 124D vehicle design problem with 68 constraints
in Sect. 4.6. PESC and SLACK do not scale to large-scale
high-dimensional problems and large batch sizes and
are therefore omitted for these problems. Note that all
benchmarks have multi-modal objective functions and
are observed without noise. We perform 30 replications
for each experiment.

To compare feasible and infeasible solutions, we adopt
the rationale of Hernández-Lobato et al. [2016] that
any feasible solution is preferable over an infeasible one
and thus assign a default value to infeasible solutions
that is set to the largest found objective value for the
respective benchmark. Performance plots show the
mean with one standard error. All methods start with
an initial set of points given by a Latin hypercube
design (LHD). CMA-ES and COBYLA are initialized from
the best point in this design. Recall that SCBO applies
transformations to the functions. In the supplement
we investigate the performances of the baselines under
these transformations and show that SCBO performs
best.

4.1 Physics Test Problems

We evaluate the algorithms on a variety of physics
problems. We use a budget of 100 evaluations, batch
size q = 1, and 10 initial points. Fig. 2 summarizes
the results for the four test problems. SCBO outper-
forms all baselines on the 3D tension-compression string
problem [Hedar and Fukushima, 2006]: it found fea-
sible solutions in all runs and consistently obtained
excellent solutions. PESC and cEI are not competi-
tive. Their performance is only slightly better than RS

search on this problem. For the 4D pressure vessel de-
sign problem [Coello and Montes, 2002], SCBO obtains
the best solutions followed by cEI, PESC, and COBYLA.
SCBO also performs best for the 4D welded beam design
problem [Hedar and Fukushima, 2006], followed by cEI.
SCBO and PESC obtain excellent results for the 7D speed
reducer design problem [Lemonge et al., 2010].

4.2 The 10D Ackley Function

We study the performance on the 10D Ackley func-
tion on the domain [−5, 10]10 with the constraints

c1(x) =
∑10

i=1 xi ≤ 0 and c2(x) = ‖x‖2 − 5 ≤ 0. The
Ackley function has a global optimum with value zero
at the origin. This is a challenging problem where the
probability of randomly selecting a feasible point is
only 2.2 · 10−5. We use a budget of 200 function evalu-
ations, batch size q = 1, and 10 initial points. Fig. 3
shows that COBYLA initially makes good progress but
is eventually outperformed by SCBO which achieves the
best performance. PESC performs well, but is compu-
tationally costly: a run with PESC took 3 hours, while
the other methods ran in minutes.

4.3 The 30D Keane Bump Function

The Keane bump function is a common test function
for constrained global optimization [Keane, 1994]. This
function has two constraints. We consider d = 30 and
batch size 50 for SCBO, cEI, and CMA-ES. Each method
uses 100 initial points. COBYLA does not support batch-
ing samples and thus samples sequentially, which is an
advantage as it can leverage more data for acquisition.
However, Fig. 3 shows that nonetheless COBYLA is not
competitive. We see that SCBO clearly outperforms the
other algorithms for this challenging high-dimensional
benchmark. As stated above, we cannot compare to
PESC and SLACK on this large-scale benchmark due to
their computational overhead.

4.4 Robust Multi-point Optimization

Multi-point optimization is an important task in
aerospace engineering [Liem et al., 2014, 2017, Mar-
tins, 2018]. Here, a design is optimized over a col-
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Figure 2: (Upper left) SCBO outperforms the other methods on the Tension-compression string problem. (Upper
right) SCBO finds the best solutions on the pressure vessel design problem, followed by cEI, PESC, and COBYLA.
(Lower left) SCBO performs best on the welded beam design problem. (Lower right) SCBO and PESC perform
the best on the speed reducer problem.
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Figure 3: (Left) 10D Ackley function with two constraints. SCBO consistently finds solutions close to the global
optimum. (Right) 30D Keane function with two constraints. SCBO clearly outperforms the other methods from
the start.
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lection of flight conditions. Multi-point optimization
produces designs with better practical performance by
addressing the issue that tuning a design for a single
scenario often leads to designs with poor off-scenario
performance [Jameson, 1990, Cliff et al., 2001]. In this
section we propose a robust multi-point optimization
problem. The goal is to optimize the performance of
the design x averaged over m scenarios (potentially
weighted by importance), subject to individual con-
straints that assert an acceptable performance for each
scenario. Our problem is derived from the lunar lander
problem, where the goal is to find a 12D controller
that maximizes the reward averaged over m terrains.
We extend this problem by adding m constraints that
assert that no individual reward is below 200, which
guarantees that the lunar lands successfully. Without
these constraints, the algorithms often produce policies
that occasionally crash the lander. We evaluate the al-
gorithms with 1000 samples, batch size q = 50, and 50
initial points for three experiments that differ in the
number of constraints: m = 10, m = 30, and m = 50.
Tab. 1 summarizes the results.

m SCBO cEI CMA-ES COBYLA RS

10

Best 321.3 322.2 310.3 315.0 NA
Worst 302.8 250.9 266.4 293.0 NA

Median 318.0 318.5 291.9 299.7 NA
Feasible 28/30 27/30 21/30 2/30 0/30

30

Best 316.2 311.2 293.2 312.7 NA
Worst 295.2 267.2 270.3 294.2 NA

Median 311.8 288.4 283.7 295.2 NA
Feasible 26/30 10/30 11/30 5/30 0/30

50

Best 309.7 295.4 295.7 300.0 NA
Worst 276.2 262.7 256.3 276.5 NA

Median 306.0 269.9 274.5 285.1 NA
Feasible 27/30 8/30 11/30 3/30 0/30

Table 1: Results for the 12D multi-point optimization
problem. We observe that SCBO finds the best robust
policies over thirty runs and scales best to larger num-
bers of constraints.

We see that SCBO found a feasible controller for 28/30
runs when m = 10. cEI and CMA-ES found feasible
points in 27/30 and 21/30 runs respectively. COBYLA

and RS struggled visibly. We note that SCBO clearly
outperformed the other methods for the more con-
strained settings with m = 30 and m = 50. Note that
the best reward found by each algorithm clearly de-
creases when m increases. The problem becomes harder
when we add more scenarios, since feasible solutions
for m = 10 may not satisfy all constraints for m = 30
or m = 50.

4.5 60D Rover Trajectory Planning

We study a 60D route planning problem adapted
from [Wang et al., 2018]. The task is to position

30 waypoints that lead a rover on a path of mini-
mum cost from its starting position to its destination,
while avoiding collisions with obstacles. We propose
a constraint-based extension with m = 15 constraints
that are met if and only if the rover does not collide
with any associated impassable obstacles. The exact
formulation of these constraints is given in the sup-
plementary material. Fig. 4 (middle) illustrates the
setup and the best trajectory found by SCBO. There
are two types of terrain that vary in their cost: the
green terrain can be traversed at cost zero and a yellow
terrain that inflicts a certain cost. This problem turns
out to be challenging for small sampling budgets. Thus,
we have evaluated SCBO, cEI, CMA-ES, COBYLA, and RS

for a total of 5000 evaluations with batch size q = 100
and 100 initial points. Fig. 4 (left) summarizes the
performances. We see that SCBO outperforms the other
methods by far on this hard benchmark.

4.6 124D Vehicle Design with 68 Constraints

We evaluate the algorithms on a 124-dimensional vehi-
cle design problem MOPTA08 [Anjos, 2008], where the
goal is to minimize the mass of a vehicle subject to 68
performance constraints. The 124 variables describe
gages, materials, and shapes. We ran all experiments
with a budget of 2000 samples, batch size q=10, and 130
initial points. We point out that this benchmark show-
cases the scalability of the implementation of SCBO

that uses GPyTorch [Gardner et al., 2018] and KeOPS
[Charlier et al., 2018] to fit the 69 GP models in a
batch; see the supplement for details. Fig. 4 (right)
shows SCBO, cEI, CMA-ES, and COBYLA over 30 runs.
SCBO found a feasible solution in all 30 runs and the
best solution found by SCBO had value 236.7. COBYLA

found a feasible point in only 11/30 runs, one which
had objective value 238.8, while cEI was not able to
find a feasible solution with function value below 300.

4.7 Ablation studies

We investigate how the various components in SCBO

contribute to the overall performance: specifically, how
does the application of i) the transformations (Trans-
formed, Untransformed), ii) the acquisition criterion
(TS or EI), and iii) the use of a trust region (TR, Global)
affect the performance. Fig. 5 summarizes the perfor-
mances of all eight combinations on three benchmarks.
On the left, we see that the use of the trust region is
critical for the 30D Keane function. Approaches that
do not use a trust region struggle, just as in Sect. 4.6.
Moreover, the transformation provides an additional
gain, whereas the choice of the acquisition function has
no noticeable effect. The center plot is for the 2D toy
problem proposed by Hernández-Lobato et al. [2016]
that has a smooth objective function and two easy
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Figure 4: (Left) 60D trajectory planning with 15 constraints: SCBO finds excellent solutions quickly and
outperforms the other methods. (Middle) Illustration of the trajectory planning problem: The black
line is the best trajectory found by SCBO with a reward of 4.93. The green area can be traversed at no cost.
Yellow squares denote terrain that inflicts a cost upon traversal. Red squares are impassable obstacles. (Right)
124D Vehicle Design with 68 Constraints: SCBO finds a feasible point in 30/30 runs and consistently finds
good solutions.
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Figure 5: We investigate the effects of (i) the transformations, (ii) different acquisition functions (TS/EI), and
(iii) the trust region (TR). (Left) 30D Keane function with 2 black-box constraints. (Middle) 2D Toy problem
with 2 black-box constraints of Hernández-Lobato et al. [2016]. (Right) 5D Rosenbrock function with 2 poorly
scaled black-box constraints.

constraints. Here, BO without a trust region and EI

should shine, and this is indeed the case. The right plot
considers the 5D Rosenbrock function with two poorly
scaled constraints. Again the trust region is critical
for a good performance, as fitting a global surrogate
model seems challenging. Interestingly, TS achieves
significantly better results than EI.

5 Conclusions

We studied the task of optimizing a black-box objective
function under black-box constraints that has numerous
applications in machine learning, control, and engineer-
ing. We found that the existing methods struggle in the
face of multiple constraints and more than just a few

decision variables. Therefore, we proposed the Scalable
Constrained Bayesian Optimization (SCBO) algorithm
that leverages tailored transformations of the underly-
ing functions together with the trust region approach
of Eriksson et al. [2019] and Thompson sampling (TS)
to scale to high-dimensional spaces and large sampling
budgets.

We performed a comprehensive experimental evaluation
that compared SCBO to the state-of-the-art from ma-
chine learning, operations research, and evolutionary
algorithms on a variety of benchmark problems that
span control, multi-point optimization, and physics.
We found that SCBO outperforms the state-of-the-art
on high-dimensional benchmarks, and matches or beats
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the performance of the best baseline otherwise. In the
supplement, we also provide an efficient GPU imple-
mentation of SCBO based on batch-GPs and a formal
proof that SCBO converges to a global optimum.

For future work, we are interested in applications where
the objective and constraints have substantial correla-
tions. For example, consider the design of an aircraft
wing: here the aerodynamic performance (e.g., lift and
drag), the structural stability, and the fuel-burn will
be related. If the airfoil’s geometry generates turbu-
lent structures, the drag will increase and the fuel
burn will suffer. The heterogeneity of the involved
functions may make the adoption of a multi-output
Gaussian process challenging. We believe that lever-
aging these correlations may pave an avenue towards
solving problems with hundreds of constraints more
efficiently. Constraints also arise naturally for combi-
natorial black-box functions [Baptista and Poloczek,
2018, Oh et al., 2019] that have exciting applications
in engineering and science.

Moreover, we look forward to inter-disciplinary appli-
cations: SCBO’s ability to optimize high-dimensional
constrained problems will allow to optimize an airfoil
described by a mesh or the parameters controlling a
chemical process, e.g., for growing nanotubes or when
searching for a solar cell material [Herbol et al., 2018,
Ortoll-Bloch et al., 2019].
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