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A Granger Causality in Multivariate Wold Processes

As we discussed, X Granger-causes Y if knowing the past of X improves our prediction of the future of Y given the
past of the remainder of the processes in the network. (Quinn et al., 2015) showed that directed information (DI)
(or transfer entropy) captures Granger causality in a network of stochastic processes. More precisely, X Granger-
causes Y iff H(Y |X,Z) 6= H(Y |Z), where H denotes the Shanon entropy and Z represents all the variables in the
network apart from X and Y . Using this notation and following the steps in (Etesami et al., 2016) and (Eichler
et al., 2017) that relate Granger causality and the intensity function of multivariate Hawkes processes. It can be
shown that in MWPs, dimension k′ causes dimension k at time t, if H(λk(t|Ht)|Ht) 6= H(λk(t|Ht)|Ht \ Hk

′

t ).

By the definition of the conditional intensity function of MWP, if αk′,k/(βk′,k + ∆k′,k(t)) = 0, then
H(λk(t|Ht)|Ht) = H(λk(t|Ht)|Ht \ Hk

′

t ). In other words, dimension k′ does not Granger cause dimension
k. As a result, the support of the influence matrix encodes the Granger-causal networkstructure of a MWP.

B Derivations of the Variational Inference Updates

In this section, we present the derivations of variational updates for the MWP parameters. From (Blei et al.,
2017), we know that maximizing the ELBO with the mean-field assumption implies that the variational update of
a parameter xj from the parameter set x given the observation set d has the following form

q(xj) = exp
(
E−xj [log p(x,d)]

)
+ const. (13)

In the above expression, p(x,d) denotes the joint distribution of the parameters and the observations. The
expectation is taken with respect to the variational density of all the parameters except xj . Using this update
rule, we can explicitly derive all the variational updates of interest. For notational simplicity, we use the following
definitions throughout the appendix.

αk := {αk′,k}Kk′=1 , α := {αk}Kk=1,

βk := {βk′,k}Kk′=1 , β := {βk}Kk=1,

z := {zk,i : i ∈ [|Pk|]}Kk=1 , µ := {µk}Kk=1 .

B.1 Variational update for the auxiliary parent variables zk,i

Let −zk,i denote the set of all parameters except zk,i. From (13), we obtain

log (q (zk,i)) = E−zk,i [log p(µ, z,α,β|P)] + const. = E−zk,i
[
log p

(
zk,i
∣∣µk,αk,βk,P)]+ const.

The last equality holds because of the mean-field assumption. In order to obtain the conditional distribution of
the parent variable given the rest of the parameters, we use the fact that the number of events in a given interval
is distributed according to Poisson distribution. Hence,

p
(
zk,i
∣∣µk,αk,βk,P) = Poisson

(
z

(0)
k,i ;µk(tk,i − tk,i−1)

)
(14)

×
K∏
k′=1

Poisson
(
z

(k′)
k,i ;

αk′,k(tk,i − tk,i−1)

βk′,k + ∆k′,k(tk,i)

)
I{∑k′ z

(k′)
k,i =1},

where I denotes the indicator function. The product form in (14) results again the mean-field assumption, and
the indicator enforces that

∑K
k′=0 z

(k′)
k,i = 1. Substituting the above conditional distribution into the variational

update equation, we obtain

log (q (zk,i)) =Eµk
[
log (µk(tk,i − tk,i−1))

z
(0)
k,i

]
+ Eαk,βk

log

K∏
k′=1

(
αk′,k(tk,i − tk,i−1)

βk′,k + ∆k′,k(tk,i)

)z(k′)
k,i


+ log I{∑k′ z

(k′)
k,i =1} + const.

=z
(0)
k,iEµk [log (µk(tk,i − tk,i−1))]

+

K∑
k′=0

z
(k′)
k,i Eαk,βk

[
log

(
αk′,k(tk,i − tk,i−1)

βk′,k + ∆k′,k(tk,i)

)]
+ log I{∑k′ z

(k′)
k,i =1} + const.
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Therefore, q(zk,i) is Categorical, i.e.,

q(zk,i) = Categorical (K + 1; p
(0)
k,i , ..., p

(K)
k,i ), (15)

where p(k′)
k,i is the probability that z(k′)

k,i is one and the others are zero. Therefore, {p(k′)
k,i } is a valid probability

distribution, i.e.,
∑
k′ p

(k′)
k,i = 1.

B.2 Variational update for αk′,k

From (13), we have

log (q (αk′,k)) = E−αk′,k [log p(µ, z,α,β|P)] + const.

= E−αk′,k [log p(z|µ,α,β,P) + log p(α|P)] + const.

=

|Pk|∑
i=1

E−αk′,k
[
log p

(
zk,i

∣∣∣µk,αk,βk,P)]+ log p(αk′,k) + const.

=

|Pk|∑
i=1

E−αk′,k

[
z

(k′)
k,i log

(
αk′,k(tk,i − tk,i−1)

βk′,k + ∆k′,k(tk,i)

)
−
(
αk′,k(tk,i − tk,i−1)

βk′,k + ∆k′,k(tk,i)

)]
+ log p(αk′,k) + const.

=

|Pk|∑
i=1

E
z

(k′)
k,i

[z
(k′)
k,i ] log(αk′,k)− αk′,k

|Pk|∑
i=1

Eβk′,k

[
tk,i − tk,i−1

βk′,k + ∆k′,k(tk,i)

]
+ log p(αk′,k) + const.

If we select the prior distribution of αk′,k to be Gamma with with shape ak′,k and rate bk′,k, the variational
posterior remains Gamma, i.e.,

q(αk′,k) = Gamma (Ak′,k;Bk′,k) , (16)

where the shape and rate parameters are respectively given by

Ak′,k := ak′,k +

|Pk|∑
i=1

E
z

(k′)
k,i

[z
(k′)
k,i ], Bk′,k := bk′,k +

|Pk|∑
i=1

Eβk′,k
[ tk,i − tk,i−1

βk′,k + ∆k′,k(tk,i)

]
.

B.3 Variational update for µk

The update rule for µk is similar to the one of αk′,k.

log (q (µk)) = E−µk [log p(µ, z,α,β|P)] + const. = E−µk [log p(z|µ,α,β,P) + log p(µ|P)] + const.

=

|Pk|∑
i=1

E−µk
[
log p

(
zk,i

∣∣∣µk,αk,βk,P)]+ log p(µk) + const.

=

|Pk|∑
i=1

E−µk
[
z

(0)
k,i log (µk(tk,i − tk,i−1))− µk(tk,i − tk,i−1)

]
+ log p(µk) + const.

=

|Pk|∑
i=1

E
z

(0)
k,i

[z
(0)
k,i ] log(µk)− µk

|Pk|∑
i=1

(tk,i − tk,i−1) + log p(µk) + const.

Selecting a Gamma prior with shape ck and rate dk implies the result.
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B.4 Variational update for βk′,k

Note that βk′,k is defined for k′, k in [K] := {1, ...,K}. Similar to the update rule for αk′,k, we have

log (q (βk′,k)) = E−βk′,k [log p(µ, z,α,β|P)] + const.

= E−βk′,k [log p(z|µ,α,β,P) + log p(β|P)] + const.

=

|Pk|∑
i=1

E−βk′,k

[
z

(k′)
k,i log

(
αk′,k(tk,i − tk,i−1)

βk′,k + ∆k′,k(tk,i)

)
−
(
αk′,k(tk,i − tk,i−1)

βk′,k + ∆k′,k(tk,i)

)]
+ log p(βk′,k) + const.

= −
|Pk|∑
i=1

E
z

(k′)
k,i

[z
(k′)
k,i ] log(βk′,k + ∆k′,k(tk,i))− Eαk′,k [αk′,k]

|Pk|∑
i=1

tk,i − tk,i−1

βk′,k + ∆k′,k(tk,i)
+ log p(βk′,k) + const.

If we select an Inverse-Gamma prior for βk′,k with shape φk′,k and scale ψk′,k, q(βk′,k) will be proportional to

(βk′,k)−φk′,k−1e

(
−
ψ
k′,k
β
k′,k

)
|Pk|∏
i=1

(βk′,k + ∆k′,k(tk,i))
−E

z
(k′)
k,i

[z
(k′)
k,i

]

e

(
−

Eα
k′,k

[α
k′,k](tk,i−tk,i−1)

β
k′,k+∆

k′,k(tk,i)

)
, for k′, k ∈ [K]. (17)

This distribution is not analytically tractable, but it can be well-approximated by an inverse-Gamma distribution.
Therefore, we approximate the variational update for βk′,k as an Inverse-Gamma(Φk′,k,Ψk′,k). We choose its
parameters Φk′,k and Ψk′,k such that its resulting moments coincide with the moments of the distribution in (17).
Finding the moments of the distribution in (17) tends to be quite challenging. Instead, we use the following
observation to obtain our approximation.
Remark 1. Let f(x; a, b) be the p.d.f. of the Inverse-Gamma distribution with shape a and rate b. The Function
xuf(x; a, b) has a global maximum that occurs at b/(a+ 1− u) for u ∈ R+.

We argue that if the u-th moment of a Inverse-Gamma variable, with shape Φk′,k and rate Ψk′,k, coincides with
the u-th moment of the distribution in (17), denoted by h(x), then we should have∫

R+

xuf(x; Φk′,k,Ψk′,k)dx =

∫
R+

xuh(x)dx.

A sufficient condition for the above equality is that the points that maximize xuf(x; Φk′,k,Ψk′,k) and xuh(x)
should coincide. This happens if

Ψk′,k

Φk′,k + 1− u
= xu, (18)

where xu is the point that maximizes xuh(x). By equating the derivative of log(xuh(x)) to zero, it is easy to see
that xu is the real root of the following equation

φk′,k + 1− u
x

+

|Pk|∑
i=1

E
q(z

(k′)
k,i )

[z
(k′)
k,i ]

x+ ∆k′,k(tk,i)
− ψk′,k

x2
−
|Pk|∑
i=1

Eq(αk′,k)[αk′,k](tk,i − tk,i−1)

(x+ ∆k′,k(tk,i))2
= 0.

Since the above function has continuous derivatives, we can use, for example, Halley’s method to find its root.
Equation (18) alone cannot specify both Ψk′,k and Φk′,k. Thus, by selecting two different u, say u = v and u = w,
we obtain

Ψk′,k

Φk′,k + 1− v
= xv,

Ψk′,k

Φk′,k + 1− w
= xw.

Solving for Ψk′,k and Φk′,k, we obtain

Φk′,k =
wxw − vxv
xw − xv

− 1, Ψk′,k =
(w − v)xwxv
xw − xv

.

Lemma 1 implies that such xv and xw exist and the above shape and scale are positive for appropriate choices of
v, w, and φk′,k.
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B.5 Computing the required statistics

Note that the variational updates introduced in Section B depend on each others through some common statistics.
For instance, the variational update for the auxiliary variable zk,i in (15) requires computing Eαk′,k [logαk′,k]. In
this section, we provide analytical expressions of such statistics.

Since q(zk,i) is Categorical, for k ∈ [K], i ∈ Pk, k′ ∈ [K] ∪ {0}, we have

E
z

(k′)
k,i

[z
(k′)
k,i ] = p

(k′)
k,i , (19)

where p(k′)
k,i is the probability that z(k′)

k,i = 1 and z(l)
k,i = 0 for l 6= k′.

Given that αk′,k has a Gamma (Ak′,k;Bk′,k) distribution, we have for k ∈ [K], k′ ∈ [K],

Eαk′,k [αk′,k] =
Ak′,k
Bk′,k

, (20)

Eαk′,k [log(αk′,k)] = Υ(Ak′,k)− log(Bk′,k), (21)

where Υ(·) denotes the digamma function. Similarly, we can obtain the required statistics of µk.

Because we use an inverse-Gamma distribution for the variational update of βk′,k,

Eβk′,k
[ 1

βk′,k + ∆k′,k(tk,j)

]
=

∫
R+

1

y + ∆k′,k(tk,j)
y−Φk′,k−1 exp (−Ψk′,k/y)

dy

Z
,

Eβk′,k
[

log(βk′,k + ∆k′,k(tk,j))
]

=

∫
R+

log(y + ∆k′,k(tk,j))y
−Φk′,k−1 exp (−Ψk′,k/y)

dy

Z
,

where Z denotes the normalization factor of the inverse-Gamma(Φk′,k,Ψk′,k). The above expressions can be
approximated as follows

E
[ 1

βk′,k + ∆k′,k(tk,j)

]
≈ 1

Ψk′,k
Φk′,k−1 + ∆k′,k(tk,j)

, (22)

E
[

log
(
βk′,k + ∆k′,k(tk,j)

)]
≈ log

( Ψk′,k

Φk′,k − 1
+ ∆k′,k(tk,j)

)
. (23)

C Additional Experimental Results

In this section, we present some additional experimental results.

Analysis of performance w.r.t. number of training events. To evaluate the number of training samples
required to achieve a good performance for each approach, we ran the experiments with the same synthetic
simulation setup, fixed the number of dimensions K = 10, and varied the number of training events. We present
these results in Figure 5. Although BBVI was originally designed to train on small observations sequences, our VI
approach does as well or outperforms BBVI.

Alternative simulation setup. To further investigate the effect of the structural constraint required by GB,
i.e.,

∑
k αk′,k = 1 for all k′, k ∈ [K], we ran additional experiments on synthetic data where we normalized the

ground-truth {αk′,k} such that
∑
k αk′,k = 1. The results are shown in Figure 6. We see that, even if GB performs

better than in Figure 2, our VI approach still outperforms GB on all metrics.

Robustness to the choice of prior. To investigate the sensitivity of VI to choice of the prior, we ran
additional experiments on synthetic data. For K = 10 dimensions, we fixed the mean as in the experiments of
Section 5.1, and evaluated the performance for variance of the priors of {αk′,k} and {βk′,k} ranging between
10−2 and 102. As seen in Figure 7, for a large range of priors, VI remains stable. For all values tested, both the
PR-AUC and Precision@10 remained at 1.0.
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Figure 5: Results on synthetic data for varying numbers of training events. Panel (a) (log-scale) relative error,
(b) precision@10, (c) PR-AUC, and panel (d) (log-scale) empirical runtime of each approach in minutes.
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Figure 6: Results on synthetic data for the alternative synthetic simulation setup where we normalize the {αk′,k}
such that

∑
k αk′,k = 1. Panel (a) (log-scale) relative error, (b) precision@10, (c) PR-AUC, and panel (d)

(log-scale) empirical runtime of each approach in minutes.
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Figure 7: Analysis of the robustness of VI to the choice of prior. We report the relative error for a wide range of
variances for both {αk′, k}, {βk′,k}, keeping their mean fixed to the same value used in the experiments.
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Figure 8: Number of iterations performed in the experiments on synthetic data.

Analysis of the number of iterations. In Figure 2, we discussed the runtime of each algorithm on synthetic
data. To make the comparison fair, we also report the number of iterations performed in Figure 8. As stated in
Appendix E, we ran VI, BBVI and MLE until convergence or up to maximum 10 000 iterations. As the number of
dimensions increases, the number of iterations needed for VI to converge becomes sub-linear. BBVI almost always
ran to the cap on the maximum number of iterations because it uses Monte Carlos samples of the posterior at
each iteration and hence exhibit a larger variance between iterations. We ran GB for 3000 iterations, which was
found to be enough to reach convergence5.

D Computational Complexity

We report the computational complexity of GB to be O(|P| logK), while the authors of the method originally
report O(|P|(log |P|+logK)) in (Figueiredo et al., 2018). The difference lies in the computation of the inter-event
times {∆k′,k(tk,i)}, where the authors consider the computation of each inter-event time as O(log |P|) at each
iteration. However, it suffices to compute these values once and cache them. Therefore, this step is O(1), which
reduces the computational complexity of GB to O(|P| logK).

E Reproducibility

E.1 Simulation setup for synthetic data

We generated Erdös–Rényi random graphs withK nodes. We sampled background rates {µ∗k} from Uniform[0, 0.05],
edge weights {α∗k′,k} from Uniform[0.1, 0.2] for all edges, and parameters {β∗k′,k} from Uniform[1, 2], all indepen-
dently. Each algorithm was then run as follows.

VI. We ran the algorithm for a maximum of 10 000 iterations or until convergence. We defined convergence
5Note that (Figueiredo et al., 2018) used 300 iterations without further justification.
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when the maximum absolut difference of any parameter between two consecutive iterations is less than 10−4.
We used priors p(µk) = Gamma(0.1, 1), p(αk′,k) = Gamma(0.1, 1) and p(βk′,k) = InverseGamma(100, 100).

GB. We used the implementation released in (Figueiredo et al., 2018). We used 3000 iterations in all experiments.
As advised by the authors, we used the same Dirichlet prior with uniform parameters 1/K, and set the
parameters {βk′,k} to the data-driven heuristic βk′,k = median({tk,i+1 − tk,i|tk,i ∈ Pk})/ exp(1).

BBVI. We adapted the implementation released in (Salehi et al., 2019). More details are provided in E.2.
Analogous to VI, we ran the method for a maximum of 10 000 iterations or until convergence. As in (Salehi
et al., 2019), we used Log-Normal posterior distributions, Laplacian priors {αk′,k}, and Gaussian priors
for {µk} and {βk′,k} with the same parameters released in the code of (Salehi et al., 2019).

MLE. Analogous to VI, we ran the method for a maximum of 10 000 iterations or until convergence.

All experiments were run on a single-core, on the same machine with a processor Intel(R) Xeon(R) CPU E5-2680
v3 @ 2.50GHz and 256GB of RAM.

E.2 Adaptation of the BBVI approach for Wold processes

BBVI was introduced in (Salehi et al., 2019) to learn the parameters of a Hawkes process. They maximized the
ELBO

ELBO(q) = Eq [log p (P|θ)] + Eq [log p (θ)]− Eq [log q (θ)] (24)

over the parameters θ of Hawkes process, using gradient descent with black-box VI. Specifically, a posterior q(θ)
was first postulated (chosen to be Log-Normal), and Monte Carlo samples was used to evalue the expecations
in (24). In addition, the variational EM algorithm was used to update the parameters of the prior p(θ) based on
the current estimate of the posterior.

To adapt the approach for MWPs, we only needed to replace the log-likelihood term log p (P|µ,α,β) in (24) by
the likelihood defined in (2).

E.3 Experiments on Real Datasets

E.3.1 Email-EU-core dataset

As explained in Section 5, the Email-EU-core dataset is composed of emails between researchers from a European
research institution. Each email in the dataset is a tuple (sender, receiver, timestamp). To build each process
from the dataset, we used the same preprocessing steps as Figueiredo et al. (2018). More precisely, we excluded
users with no sent email and defined the set of processes as the top-100 users with the most received emails. We
then aggregated the timestamps by receivers. The entries in the ground-truth influence matrix are defined by
counting the number of emails sent from each sender to each receiver (a weight zero indicates the absence of an
edge). The preprocessing code is made available publicly.

For the hyper-parameters, we ran a sweep over the Dirichlet prior of GB over [0.01, 0.1, 1.0, 10.0, 100.0] and
reported the best results obtained with 10.0. For VI, we ran a sweep over the of parameters of the priors
over [0.01, 0.1, 1.0, 10.0, 100.0] and used p(µk) = Gamma(1.0, 1.0), p(αk′,k) = Gamma(1.0, 1.0) and p(βk′,k) =
InverseGamma(100.0, 100.0).

E.3.2 MemeTracker dataset.

The MemeTracker dataset is composed of online blog posts. We used the top-100 blogs with the highest number
of published posts and built the processes by aggregating the sequences of published timestamps, resulting
in 15 168 774 events in 100 dimensions. The preprocessing code is made available publicly. We ran a sweep
over the Dirichlet prior of GB over [0.01, 0.1, 1.0, 10.0], and did not observe a significant difference between
the different values and reported the results obtained for 0.01. For VI, we used priors p(µk) = Gamma(0.1, 1),
p(αk′,k) = Gamma(0.1, 1) and p(βk′,k) = InverseGamma(104, 104).


