Supplementary Materials

A  Appendix

A.1 Total Variations, Bellman Contraction and Symmetry Bridge

Fact 1. Let m' and m? be probability measures on R™ whose singular continuous parts are zero. Decompose m'
and m? into their absolutely continuous and discrete parts: m* = m} + mb, m? =m?2 + mZ. Then

1 1
Dry (m||m?) = 3 ([[mg —mg, +[lmg —m3|,) £ 5 [m* —m?,.

Proof. (Hewitt and Ross, 1963, Theorem 19.20) implies Dpy (m'||m?) = Dy (mk||m2) + Dy (mlb|m3), so
Fact |1]is proved by combining (Hewitt and Ross, 1963, Theorem 19.20) and that TV distance = half of ¢; norm
for absolutely continuous or discrete measures.

To avoid using a big hammer, we provide an alternative proof by revising the usual proof of “TV distance =
half of £, norm” with the Lebesgue decomposition: m = m, + mg4. Since m} and mZ are absolutely continuous
w.r.t. Lebesgue measure, let d', d? be the corresponding probability density functions.

Let B = B, U By where B, = {z € Supp(m!) U Supp(m2) : d'(z) > d*(z)}, B4 = {z € Supp(m}) U
Supp(m?) : mL(z) > m%(z)}. Since m, and m, are mutually singular, we know

ma(Ba) = mg(Ba) = 0 = mq(Ba) = m(Ba) (1)
Also, the complement operation implies
m2(A°) —m'(A°) =1 —m?*(A) — 1 + m'(A) = m'(A) —m?(A), for any measurable set A (2)
Hence we have an important result

m'! (B) —m*(B) =mg(B) — mg(B) + mg(B) — mj(B)

Bk (Ba) = m2(By) + mh(Ba) — m3(Ba)

B2 [k (Ba) — m2(Ba) + ma(B) — mb(B5) + mi(Ba) — m3(B) + m(BS) — mh(B5)]

1
== {/ d'(z) — d*(z)dx + / d*(z) — d*(x)dx
2 B, Supp(m})USupp(m2)\Ba

+ Z mi(z) —m3(x) + Z mi(x) — mcli(ﬂj)}

zE€Bg z€Supp(m})USupp(m?2)\Bq

d'(z) - d*(x)|do + > [mi(e) = m(a)|

xGSupp(mb)USupp(mi)

1 [/
2 Supp(ml)USupp(m32)

1
=5 (lma = mfly +[lmi —mall,) £ 3 [}m" —m?],.

1
2



(i) By definition of TV distance, we get

Dy (m!|[m?) > [m! (B) = m?(B)| = m(B) — m*(B) & _ | m? —n?,

) 1
2
(ii) For any measurable set A in R", we know
m!'(A) —m*(A) = [m' (AN B) —m*(AN B)] + [m'(AN B°) — m*(AN B°)]
By definition of B, the first term is nonnegative while the second term is nonpositive; therefore
Im! (A) — m?(A)| <max {ml(A N B) —m2(ANB), m*(AN B°) —m' (AN BC)}

<max {ml(B) N m2(B) m?*(B°) — ml(Bc)}

21 (B) - m*(B) ¥ = ||m —m?|
Taking a supremium over A, we arrive at
Dy (m'|lm?) < 5 ||m —m?];
Combining (i) and (ii), the result follows. O

Due to Fact [1} in the following we will treat TV distance as the half of /; norm. Also, to unify the operations
in discrete and continuous parts, we will consider “generalized” probability density functions where Dirac delta
function is included. Thus, Fact [I]is rephrased as

Dry (m||m?) /|d1 (2)dz,

where d', d? are the generalized density functions of m' and m?. This allows us to prove Fact

Fact 2. B, 7 is a y-contraction w.r.t. total variation distance.

Proof. Let p1(s), p2(s) be the density functions of some state distributions.

DTV(BTA' T(pl)HBwT p2 /}B‘n'T pl - BTrT p2 |d5

= 5/’7‘/T(8|s/,a/)ﬂ(a/|s’)(p1(3’) — pa(s))ds'dd’

%/T(s|s’,a’)w(a’|s')’p1(s’) — pa(s')|ds'da’ds

ds

IA

O

The advantages of working on contractions are their convergence and unique fixed-point properties [Theorem
1.1.]JConrad| (2014).

Fact 3. Let (X,d) be a complete metric space and f: X — X be a map such that

d(f(z), f(a')) < cd(z,2')

for some 0 < c <1 and all x, ' € X. Then f has a unique fized point in X. Moreover, for any o € X the
sequence of the iterates xg, f(xo), f(f(xg)),... converges to the fized point of f.

Fact 4. The normalized state occupancy measure ppo’ (s) is a fized point of the Bellman flow operator By ().



Proof.

T (5) =(1 =) S 7 fi(slpo, . T)

=0

=1 =) fo(slpo, ™, T) +~v(1 =~ ZW fix1(slpo, m,T)
=0

(1= 7)po(s) +1(1 ~ 7 Zv/ (515", o) (a'|') 5| po, ., T do!

(1= () +7 [ Tl a)m(al) S A (S oo, T

=0
=1 =7)po(s) +7/T(8|8’7a’)ﬂ(a’|8 )7y (8')ds'da” = By r(p7 (s)).
O

Together, Fact [2 and [3] imply the Bellman flow operator has a unique fixed point, and according to Fact [4] the
unique fixed point is the state occupancy measure. The contraction and the fixed point properties are particularly
useful for proving the symmetry bridge Lemma.

Lemma 1 (symmetry bridge). Let By be a Bellman flow operator with fized-point ps. Let p1 be another state
distribution. If B is a n-contraction w.r.t. some metric |||, then ||p1 — p2|| < ||p1 — B2(p)|l /(1 —n).

Proof.
0 . .
o1 = pall = llor = B (o)l < llon = Balpn)ll + D || Bior) = BE (o)
i=1
oo
< llp1 — Ba(p1)| + Z lp1 — Ba(p)lln" = [lp1 — Ba2(p)ll /(1 — 7).
i=1
The first line uses the fixed-point property and the triangle inequlaity for the distance metric ||-||. The second
line uses the contraction property. O

A.2 Error of Policies

Lemma 2 (Error w.r.t. TV Distance between Occupancy Measures). Let py(s,a), pa(s,a) be two normal-
ized occupancy measures of rollouts with discount factor . If 0 < r(s,a) < r™**  then |R(p1) — R(p2)| <
Drvy (p1||p2)r™2*/(1 — ~). where Dpvy is the total variation distance.

Proof.

1
7 r(s,a)p1(s,a)dsda < T (s, a) max (p1(s,a), p2(s,a))dsda
- -

= Rlpa) 4 1 [ rls0) (i (o1 5. 0), s, ) — pa(s,0) ) dsda

max
r

1—~ /max (pl(saa)ap2(3, a)) — pa2(s,a)dsda

rmax max
=R - — =R D .
(p2) + 1= ~3 lpr = p2lly = Rlp2) + 1— 5 rv(p1llp2)

R(p1) =

< R(p2) +

Because the TV distance is symmetric, we may interchange the roles of p; and ps; thus we conclude that

|R(p1) — R(p2)| < Drv (p1l[p2)r™* /(1 — 7).



Theorem 1 (Error of Policies). If 0 < r(s,a) < ™ and the discrepancy in policies is
L w =y o [Drv (xp(1s)w(1s))]. then |Rrp, T) — Rlx, T)] < e, s ( L 4 2.

S~ P

Proof. Let B, v, Bz 1 be Bellman flow operators whose fixed points are p7" (s), p7.(s), respectively.

According to Lemma we need to upper bound Drvy (p7” (s, a)||pF(s,a)). Observe that

Drv (637 (s, llpF s.0) = 5 [ |62 (s0) = ph(s,)|dsda = 5 [ 65 (s)mplals) = p (9)m(al)|dsda

<5 [or©

€np.m + Drv (07" (5)]1P7(5))

m(als) — w(als)| + m(als)| 32 (s) — P (s)| dsda )

As for the rest, by the properties of the Bellman flow operators, we have

Drv (p7° (s)llp7(s)) < ﬁDTV(/)?’(S)IIBW,T(PQD(S)))
1
= ——Drv (B, 1(p7" (8)||Br,7(p7° (5)))
o ' (5)
< m/T(sp',a')‘wD(aqs’) n(d'|s")| o2 (s')ds' da’ds
_ 7 T
- 1 _'7 TD,T)

where the top two lines follows from the symmetry bridge property (Lemma (1) and the fixed-point property.
Combining Eq. and , we know Dry (pFP (s, a)||pF(s,a)) < eX (14 725 ); therefore by Lemma

— "Tp,T

max 1 ’y
R T) = Rm. T)| < €6, o7 (1= + = 3)

O
Corollary 1 (Error of Behavior Cloning). Let mp and 7 be the expert policy and the agent policy. If0 < r(s,a) <
r®and B, o Dir(mp(-[s)|7(|s)) < eBe, then |R(wp,T) — R(w, T)| < \/630/27“"‘&"(* + = 7)2)
Proof. The result is immediate from Theorem [I] and the Pinsker’s Inequality. O

Corollary 2 (Error of GAIL). Let p and 7 be the expert policy and the agent policy. If 0 < r(s,a) < r™®* and
Dys(p7° %) < €garr. Then |R(mp,T) — R(m, T)| < \2egarLr™™ /(1 — 1)

Proof. By definition of the JSD, for any distributions P, @ and their average M = (P + @)/2 we know

Dys(PllQ) = %[DKL(PHM) + Drr(QIIM)] > Dy (PIM)* + Drv(QIIM)?* > 5 Drv(P||Q)?,

N |
!

where the first inequality follows from Pinsker’s Inequality, and the second inequality holds because that
Dz (P||M) + Drv(Q||M) > D7y (P||Q) by triangle inequality and that 2a + 2b*> > ¢? if a +b > ¢ > 0.

Thus, we know Dpy (p721p5) < v2ecarr. Applying Lemma completes the proof. O

A.3 MBRL with Absolutely Continuous Stochastic Transitions

Theorem 2 (Error of Absolutely Continuous Stochastic Transitions). Let mp, T and T be the sampling policy,
the real and the learned tmnsitioqs. If 0 < r(s,a) < r™= gnd the error in one-step total variation distance is
= E(y ypo [Drv (T(ls, [T (1s,a))], then [R(xp, T) — Rmp, T)] < €55rm(1 — )72,

T T s,a)~pry



Proof. If there is a upper bound for Dyv (p7” (s, a)|[pZ" (s, a)), by Lemma we are done. Also, observe that

D (5 (5, a) 105 (5, ) = 5 / 7o (als)| o3P (5) — p (s)|dsda = Dy (o3 (s)[1%2 (5),

so Drv (p7” (s)[|p%” (s)) is of interest. Employing the properties of Bellman flow operator, we have

1

:ILDMBWDT@T $)IIB,, (057 (s)))

- gl (sls',a") = T(s|s',a))mp(d'|s')p5P (s')ds'da’ |ds
s /I [ @

Dy (52 () 11677 () <%DTV< 2 ()1B,, (05 (5))

/’ (s|s’,a’) (s|s’,a’))‘p}D(s/,a/)dsds’da'
Y ox
=1 —WE(S aympi2 Drv (T'(:]s, a)||T(-|s, a)) = 1~ €

where the top two lines follows from the symmetry bridge property (Lemma [I) and the fixed-point property.
Finally, from Lemma [2] we conclude that

T maX ’y
|R(mp, T) = R(rp, T)| < e70r =2

O

Corollary 3 (Error of MBRL with Absolutely Continuous Stochastic Transition). Let mp, 7, T and T be the
sampling policy, the agent policy, the real transition and the learned transition. If 0 < r(s,a) < r™®* gnd

the discrepancies are €T = E(sq)npr o Dy (T(-|s,a)||T(|s,a)) and e = =E, Dry (mp(-|s)||7(:|s)), then
|R(m, T) = R(m, T)| < (7 + €571 + €5 )™y /(1= )2 + (€50 + €17/ (1 = 7).

Proof. Observe that |R(w,T) — R(x,T)| < |R(x,T) = R(xp,T)|+ |R(xp,T) — R(zp,T)| +|R(xp,T) — R(x,T)|.

Combining Theorem [2] and [I] the result follows. O

Lemma 3. Let v > [ be discount factors of long and short rollouts. Let mp and T be the sampling policy and
D ™

the real transition, then DTV(pQVHpPT“ Py<@—=7)8/(y - B).

D
Proof. Since p7P is generated by the triple (pg,7p,T) with discount factor v while ppT’”’ﬂD is generated by
T,y .5
(p}”{/, mp,T) with discount factor 8. By definition of the occupancy measure we have

oo

Ppr2(s,a) = > (1 =) fi(s, ).
1=0
PR ZZ (1= )71~ BB fils,a),
i=0 j=0

where f;(s,a) is the density of (s,a) at time ¢ if generated by the triple (pg, 7p,T). Then,

Drv (Rl ™) < 30| - - S -9 | = ;iu — iu -a(2)|

=0 7=0 0 7=0 v
=Y | s+ (B) -y
1=0
M-—1
@ l=y? > (- 1) = L= — )
S( ~ 7B



where (%) comes from that —3(1 — ) + (%)’(1 — B)7 is a strictly decreasing function in . Since 7y > §, its sign

flips from + to — at some index; say M. Finally, the sum of the absolute value are the same between Zij\igl
and Z;’i o because the total probability is conservative, and the difference on one side is the same as that on
the other. O

Corollary 4 (Error of MBRL with A. C. Stochastic Transition and Branched Rollouts). Let vy > 3 be discount
factors of long and short rollouts. Let wp, m, T and T be sampling policy, agent policy, real transition and

learned transition. If 0 < r(s,a) <™ and the discrepancies are €L}, = ESNP;gDTV(WD('|S)||7T('|S)),

el = ESNPP;%WDT\/(WD(~|S)||7T(~|S)), and ,e;fjgﬁ = ]E(S w2 Dry(T(-|s,a)|[T(-[s,a)), then
7,8 ’ 7,8

TD,B T,ﬁ T 7 3
1- ﬂ ” T max Gz’vﬂ (eT,DT + eTl'D,Tl')ﬁ €LY et 6
‘R”“m’ﬁﬁr)*‘fti;fthT?,w,Tﬂ‘§7~ (( L . )

TD,T TD,T

1—7)? (1—,6’)(1—7)Jr -~ y—8

Proof. Expand with the triangle inequality:

1_6 T 2

[0, 7) = 3= R m. 7|

]-_ﬁ us
,YRﬁ(pT,Dwﬂ—D’T)‘—F

S‘R’Y(pOaﬂ—vT) - R’Y(IOOa'R—DvT)’ + ‘RV(PO,WQT) .

1_5 0 g 1_5 0 7 T 7
E‘Rﬂ(PT?V,WD,T) - Rﬁ(PT?W?TD,T)‘ + G‘Rﬁ(PT%JD,T) - Rﬁ(PT?Y,W,T)‘

By Theorem |1} the first term < el pmax (ﬁ + ﬁ)

The second term is a short extension of Lemma [2] and Lemma [3t

R (o, 70 T) ﬁ r(s,a)p7® (s, a)dsda < ﬁ/r(s,a) max (p?%(S,a),Pfgng (s,a))dsda
_ %Ra(p%mﬂ + ﬁ rls.a) (max (97(5,0). 775 ™ (5.) = 7 (5,) ) dada
< %Ra(p%m,ﬂ +1 n:w / (masx (9 (5,0). 15 ™ (s.)) = 015 (5.) ) dsda
D el 0, T) + T Dy a7 )

By the symmetry of the total variation distance and Lemma [3] we obtain

1-5 -
‘RW(PO,WQT) - mRﬁ(PT,DwWD,T)’ <

max D
P ~>TD

g
DTV pﬂ'D p S 7,max .
B R

By Theorem |2, the third term < €;DTﬁ rma"%.

7,5 pmax( _1_ B

By Theorem the fourth term < ez 7 rm® (lfv + (1—ﬁ)(1—7))' O
A.4 MBRL with Deterministic Transition and Strong Lipschitz Continuity

Assumption 1.

(1.1) T, T are (L7 o L7.4), (L?,s’Lia) Lipschitz w.r.t. states and actions.

(1.2) A is a convex, closed, bounded (diameter diam 4 ) set in a dim 4-dimensional space.
(1.8) m(als) ~ PN (pr(s), Zx(s))] and wp(als) ~ PalN (pxp(s), Xy (5))]
(1.4) pr, trp E}r{f, and ¥ are Ly, Lrpps Lrs, Lz, s Lipschitz w.r.t. states.



The validation of Assumption [1]is below.

1.1 The real and learned transitions are Lipschitz w.r.t. states and actions. For the real transition
especially in continuous control, the Lipschitzness follows from the laws of motion, as computed in Eq. (10)
in the paper. For the learned transition, the Lipschitzness can be made by spectral normalization (Miyato
et al.l 2018]) or gradient penalty (Gulrajani et al., [2017), which are some notable approaches to ensure the
Lipschitzness of the discriminator in Wasserstein GAN (Arjovsky et al., |2017).

1.2 The action space is convex, closed and bounded in a finite dimensional linear space. This is
a standard assumption in continuous-control and is usually satisfied (or made satisfied) in practice (Fujita
and Maedal [2018). The boundness assumption, if not naturally satisfied, is addressed in 1.3.

1.3 The policy follows truncated Gaussian, by projecting the Gaussian r.v. onto the action space.
According to (Fujita and Maeda, |2018]), this is a common practice in RL experiment. The Gaussain as-
sumption is made by training some NNs for the mean and variance of the policies. As for the projection of
action to a bounded convex set, it is perfectly fine in RL experiment and is largely used in most MuJoCo
experiments as MuJoCo also provides the bounds for the action space. It is also a good practice since it
helps stabilize the training.

1.4 The mean and covariance of the policy are Lipschitz w.r.t. state. As again noted in 1.1, the
Lipschitzness can be realized by spectral normalization or gradient penalty. Since the mean and covariance
of the policy are represented by some NN, this assumption can be easily made in practice.

Lemma 4 (Conditional Contraction). Under assumption|l, if n, 7 = Lz , + Lz ,(Lzu + Lz svdima) < 1/7,
where v is the discount factor of B, 7, then B, 7 is a yn, z-contraction w.r.t. 1-Wasserstein distance.

Proof. Recall B_7(p(s)) = (1 —v)po(s) + v [ (s = T(s',a'))m(d'|s")p(s)ds'da’. Let pi(s), p2(s) be some distri-
butions over states. We have

Wi(B, 7(p1) | B, 7(p2))
(a)

< inf E; || T(s1,a1) —T(s2,a
_’7J(sl,al,sz,ag)wr{(pl(s)ﬂ'(a\s),pg(s)ﬂ'(a|s)) 7 H ( ! 1) ( 2 2)”2
= inf E; HT(sl, ar) —T(s1,as) +T(s1,az) — T(sz,a2)|‘2

J(s1,a1,82,a2)~I(p1(s)m(als),p2(s)m(als))
< inf EsLz ,|la1 —az|ly + Lz, |[s1 — s
’7J(sl,al,sz,ag)wﬂ(pl(s)ﬂ'(a\s),pg(s)ﬂ'(a|s)) JET, || 1 2H2 T, H ! 2”2
b
2 Ej Lz , ||Palix(51) + 512 (51)€1] — Palpin (52) — Z}/Q(sg)fg]Hz + Lz ¢ |51 — 52|,

inf
J(51,61,52,62)~I1(p1,N,p2,N)
(o) .

<y inf
J(51,61,82,62)~I1(p1,N,p2,N)

< inf (IE, Lo+ Lo L) llsy—soll, +
=Y Jor sorbior oy Vo7 T Lo L) [ls1 = sall

EjLz,

pin(s1) + S5 2 (s1)€1 — pa(s2) — 2717/2(82)52“2 + L, [|s1 — s2ll,

Ex Lz,

inf »1/2(g _ /2 H )
K (&1,62)~II(N,N) 7 (51)& # 7 (52)62 )

©) .

< inf (Es(Lp, + Ly L) 51 = s2lls + Be, Ly, [B12(51) = S¥2(s) | lleall, )
J(s1,82)~I1(p1,p2) ’ ’ ’ op

(e)

<~ inf Ej(L7  + L o(Lry + Lr sv/dima)) [[s1 — s2ll,

T J(s1,82)~I(p1,p2)
(L7, + L o (L + L sV/Aim ) Wa (1 [ p2) = v, 7Wi (o1 | p2),

where inf takes a infimum over all joint distributions J(si, s2) whose marginals are p; and p2. (a)
J(s1,52)~I1(p1,p2)

selects a joint distribution over B 7(p1) and B, 7(p2) that share the same randomness of (1 — )po, which
establishes a upper bound and allows us to cancel (1 — v)pg. (b) uses the Gaussian assumption of the policy,
with &, & being standard normal vectors. (c) uses the non-expansiveness property of projection onto a closed
convex set.(d) selects & = & and uses the property of operator norm. (e) uses the Lipschitz assumption of

271/2(5) and that ||&1]] < v/dim 4 by Jensen inequality. O



Lemma 5 (Error w.r.t. W1 Distance between Occupancy Measures). Let pi(s,a), pa2(s,a) be two normalized
occupancy measures of rollouts with discount factor ~. If the reward is L,-Lipschitz, then |R(p1) — R(p2)| <

Wi(p1 || p2) L /(1 = 7).

Proof. The cumulative reward is bounded by

R(pr) = 7= [ r(s.alpa(s.a)dsda = Ripa) + 7= [ r(s.0) (pr(s.0) = pa(s,) dsde

= R(p2) + % / %(m(s, a) — pa(s,a))dsda

L,
< Rip+ 125 s [ #s.0)(or(5.)  pals.a))dsda

L
= R(pQ) + 1% sup E(S,G)NPI [f(s, a)] - IE(s,a)~P2 [f(S: a)]
TN fllpip<t

L,
= R(p2) + mwl(/’l | p2)-

The third line holds because r(s,a)/L, is 1-Lipschitz and the last line follows from Kantorovich-Rubinstein
duality |Villani (2008). Since W; distance is symmetric, the same conclusion holds if interchanging p; and p1;
thus

|R(p1) — R(p2)| < Wi(p1 || p2)Lr/(1 = 7).
O

Theorem 3 (Error of Deterministic Transitions with Strong Lipschitzness). Under Lemma|f}, let T, T, r, mp
be deterministic real transition, deterministic learned transtion, reward and sampling policy. If v(s,a) is L,-

Lipschitz and the Uy error is €, then |R(rp,T) — R(mp,T)| < (14 Ly, . + LWD’Z\/dimA)LT%.
DT

Proof. Observe that the Wasserstein distance over the joint can be upper bounded by that over the marginal.

Wi (pZP (s,a) || pEP (s,a)) = inf Ejs|l(s1 —s2,a1 —a
RN =, B Bl s el

< inf ) Ejls1—s2ly + llar — azfl,
J(s1,0,52,2)€N(RZP (,0), 9P (5,0)

()
S(l-ﬁ-Lﬂ—D’H-i-LWD,E\/dimA) inf E; ||81 —82H2

T (s1,52)€M(pZP ().0ZP ()

=(1+ Lrpy+ Lapsv dim 4)W; (p%D ()] p;D (s)),

where (*) follows from the same analysis in Lemma [4] Also, the Wasserstein distance over the marginal is upper
bounded by the ¢ error:

Wilpz”(s) | P27 (s)) <= p” %W1(PTD(S) 1 BZ? (p7”(s))) = WWH(BTD (o7 ()| BZ” (7" (5)))
TD, ™D,
§$ inf E]HT(Sl,al) _%(SQ,GQ)H
L= = J(s1,01,5.02) ~I(EP (s)7p (als) o2 (s)7p (al ) 2
v - 2 v
< 1_ v LE(s,a)Np%D (s)mp(als) T(87 Cl) - T(Sa Cl) ’2 - Wefz'
7I'D,T 7I'D,T

(7)

The first line follows from conditional contraction (Lemma [4]), symmetry bridge (Lemma (1)) and fixed-point
property. The second line uses the fact that B%D and B%D have 1 —~ fraction in common, so we can create a joint



distribution to cancel it. The third line builds a upper bound by choosing (s1,a1) = (s2,a2) ~ pZ” (s)mp(als).
Combining Eq. (6], (7) and Lemma 5] we conclude that

- . Y€ty
R(mp,T) — R(mp,T)| < (1 + Lrp pu+ Lz s/ dimy)L, .
R0 T) = B, T)| < (1 Lig o+ Lo o/ i) Ly s d e

7T‘D,T

O

Corollary 5 (Error of MBRL with Deterministic Transition, Strong Lipschitzness and Branched Rollouts). Let

~v > 3 be discount factors of long and short rollouts. Let np, m, T and T be sampling policy, agent policy, real
deterministic transition and deterministic learned transition. Under assumption [1], suppose the reward is both

bounded 0 < r(s,a) < r™* and L,-Lipschitz. Let ezg,ﬂ = ESNP%D Dry (mp (8|7 (:]s)),

~

ezbﬁnr = oD Dy (mp(-[s)||n(-]s)) and e, p =E oD np HT(&(I) —T(s,a)H . Then,
SNP%,;Y (S)G)NPT)A’Y 2
Aep o dga dpg dp i de
R pO77TJT _7R plD ,7]'7T ‘ Srmax( D, + D, + D, D, + )
+( ) 1—v s( T,y ) 1—7)2 " 1-8)1—-7) 1—~ P

4+ (1+ Ly o + Lrp sy/dima) Ly Bets
(=m0 —=pn_ =)

Proof. Modifying the proof of Corollary [ with Theorem [3] the result follows. O

A.5 MBRL with Deterministic Transition and Weak Lipschitz Continuity

Theorem 4 (One-sided Error of Deterministic Transitions). Let T, T, r, mp be deterministic real transition,
deterministic learned transtion, reward and sampling policy. Suppose 0 < r(s,a) < ™. T(s,a), 7(s,a) and
mp(als) are Lipschitz in s for any a with constants (Lz, Ly, Lxy,). Assume that Lz <1+ (1 — )t with v <1

and that the action space is bounded: diam 4 < oo. If tge training loss in lo error is €p,, then

% /2¢ep, Ly ,diam 4.

_ 2~ 14+~ prp 1+O(L)
R(WD>T)*R(7TD7T)§W 2eq,r LTJFW

Proof. Recall the £ error is E(S’G)NP%D [HT(S, a) — %(s, a)HQ] = €7,. By Markov’s Inequality, for any § > 0,

Py a)m? ( HT(s,a) - T(s,a)”2 < 5) >1- % 8)

Eq. means for a length H ~ Geometric(1 — ) rollout {s;,a;}L, generated by (po,7p,T),

HT(st, az) — T(st, at)H2 < ¢ with probability greater than 1 — E’T"‘.

Following this idea, we say a rollout is consistent to T, if for each t, ‘St—i-l — T(st,at)H < §; in other words,
2

a rollout is consistent to T if for each time step, the state transition is similar to what T does. Let P£ be the
probability measure induced on the rollout following the real transition 7. The cumulative reward is bounded
by

Rirp,T) = /

traj

R(traj)dPs = /

traj consistent

R(traj)dPs + / R(traj)dPx

traj inconsistent (9)

< / R(traj)dPT+ %E[HQ]Tmax.
traj consistent 1)



The inequality holds because for a rollout generated by T with length H, the probability that it is inconsistent

to T is at most < ~2H by Eq. and the union bound over {s;, a;}L,. Also, the maximum reward of such rollout
is Hrmax,

Now, we’d like to change from P to P with the Lipschitz assumptions above. It suffices to reset the states

{si}1, so that the transition obeys T. Suppose the new states are
sh = s1, si=T(s,_1,ai-1), Vi>2. (10)
By the Lipschitzness of T, triangle inequlaity and T-consistency, the distance between s; and s} obeys

lls1 = sill, =0

i = stlly < || = T(si-1,as0) | +||T (i1, 00-1) = Tsimysai-n)||| <6+ L [simr = sy Vi 2 2.
That is,
i—2 Li71 -1
i — <d LJ =0——F Vi>2. 11
||S Si ||2 Z L” o 1 1= ( )
The difference of cumulative reward between traj = {s;,a;}/L; and traj = {s},a;}[1, satisfies
H LZ 1 1

H H
@
R(traj) = E r(si,a;) <7”81,a1 )+ E 7( az )+ Ly llsi—s 1”2 = R(traJ ) + 0Ly Z g 1
P i—2 =2 T (12)

,_.
c,o

2 Rtraf’) + 6L, (H? /2 + (EH)20(0)),

where results from imposing L% =14 ¢(1—7) =1+ g% into the exponential:

HL%_lfl_ 1 (L%H_L% H+1) (1+ﬁ)H—L%—1<eL%—L%—1
= Lz-1 Lz-1 71 (EH)? (EH)? (13)
Li 2 240 LS H2
_gg) 2+O0T) 5+ (EH?0()

E®H)

Because the transitions are deterministic, {s}}Z, are constant given s, ay, ..., ag, which means the randomness
depends on sy, ay,...,ag (with {s/}L, being the conditions of 7p), and the density satisfies

H H
P (traj’) =po(si)mp(a1ls)) [ [ 7o (ailsi) > po(si)mp(arls) [] (wp(ails:) = Lap llsi — sill,)
=2 =2

() H Li*1 -1 H o sr _
. > P : _ ™D T
> po(sl)wD(a1|sl)iH2 (7plails) +OLr,, L — ) = Pr(tmaj) (1 ;:2: o) 171 )




Then, conditioning on the length of rollout being H, the integral term in Eq. @D is bounded by

/ R(traj)dPT:/ R(traj)Pr(traj)dsida;...dap
traj consistent|H $1,Q1,...,aH consis.
1—1
@ T oL, Li 1
< Rt'(Pt Px(t L )dd...d
o »/51,0«1,‘“,1111 consis. ( raJ) ( raJ ) + raJ ZZ: 7TD<(lz|Sz) LL -1 sida an
I H 5L Li71 -1
< R(traj)P=(traj’) +/ R(traj) Py(traj)
/51 ai,...,ay consis T S$1,Q1 4.y QFH ,LZ 7TD(aZ|SZ T -1
Q o/ 2 2 -/ (15)
< / (R(traj’) + 6L, (H?/2 + (EH) O(L)))P%(traj Ydsiday...dag+
$1,a1,...,aH CONSis.
H L’L'A—l o 1
0Ly,
/ Hr™* P(traj) z T dsiday...dag
51,01,...,H i—2 ﬂ-D(al"g T -1
(IE)
<

/ (R(traj’) + 0L, (H? /2 + (EH)?0(1))) Px(traj’) + Hr™§ Ly, diam 4 (H? /2 + (EH)*O())
<R(np,T)+ 6L, (H?/2 + (EH)?0(1)) + 6L, r™*diam_(H? /2 + H(EH)?0(1))

Combining Eq. @D , by choosing

5= 2e, rmaxE[ H2]
L, E[H?] + E[H]?0(1) 4+ Ly, r™*>diam 4 (E[H?] + E[H]?O(1))’

we are able to minimize:

%E[Hﬂrm“ + 0L (E[H?]/2 + (EH)?0(1)) + 0 L pr™**diam 4 (E[H?] /2 + (EH)30(1)),

yielding

R(rp,T) — R(rp, T)

<E[H?] \/ (26427'“13") (LT + E[H]20(2)/E[H2] + Ly, r™diam 4 (E[H3]/E[H2] + E[H]30(1) /E[H2]))

WEH]\/2e4,rmx L, + 2eg, L, (rmex)2diam 4 (E[H?] /E[H?) + E[HPO(2) /E[H?])

()

<E[H?\/2¢p,r™xL, + ]E[HQ]rmaX\/ 264, L, diam 4 (E[H3]/E[H?] + E[H]?O(.) /E[H?])

=E[H?)\/261,7" L, + ™ \/%eq, Ly diam 1/ E[H?) (E[H?] + E[HPO())

o 1 1 2P

(:)(1 +7)2\/W+ V1457457 +ﬁ;5/‘;( +7)0() P foe, T diama
-9 -7

(1
@ 14+ 14+0()
< 260, MLy + ————=1r% [2€¢, L di .
STy €0, T + (1_7)5/27“ €0, Lig,diam 4
(a) merge the two O(¢) terms together. (b) uses /o +y < o+ /y for x, y > 0. (c) applies the identities
E[H?] = 520, B[HY) = 55950 (d) uses vI T2 < 1+ 2/2. O

Corollary 6 (One-sided of MBRL with Deterministic Transition and Branched Rollouts). Let v > § be dis-

count factors of long and short rollouts. Let np, m, T and T be sampling policy, agent policy, real deter-
ministic transition and deterministic learned transition. Under the assumptions of Theorem let ewD =
E, ,=o Drv(tp(|s)ln(|s), exlx=E o  Drv(ro([s)|lr(]s))

pT,'v ’ T,~’

.SN,OT 5



T,y

and e, 3 = E HT s, a) T(s,a)” . Then R (po,m,T) — BR (pT 7, T) < rma"(z’l”:’wﬂ)z +
(s, a)Np 5 2
z 57\'6 ’71; ’Yﬂ+67r BTI‘ 1+ 1+0(¢) ax :
(1- ﬁD)(l ) + = 1—v B+ y— ,3) + a-pa— VvV 26@2,57" rt 1= B)%/Q(Ll ’y) \/2€z2,3LﬂDd1amA.
Proof. Plugging in Theorem 4| with L% <1+ (1— B)¢ to the proof of Corollary |4 the result follows. O
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