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A Appendix

A.1 Total Variations, Bellman Contraction and Symmetry Bridge

Fact 1. Let m1 and m2 be probability measures on Rn whose singular continuous parts are zero. Decompose m1

and m2 into their absolutely continuous and discrete parts: m1 = m1
a +m1

d, m2 = m2
a +m2

d. Then
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Proof. (Hewitt and Ross, 1963, Theorem 19.20) implies DTV (m1||m2) = DTV (m1
a||m2

a) + DTV (m1
d||m2

d), so
Fact 1 is proved by combining (Hewitt and Ross, 1963, Theorem 19.20) and that TV distance = half of `1 norm
for absolutely continuous or discrete measures.

To avoid using a big hammer, we provide an alternative proof by revising the usual proof of “TV distance =
half of `1 norm” with the Lebesgue decomposition: m = ma +md. Since m1

a and m2
a are absolutely continuous

w.r.t. Lebesgue measure, let d1, d2 be the corresponding probability density functions.

Let B = Ba ∪ Bd where Ba = {x ∈ Supp(m1
a) ∪ Supp(m2

a) : d1(x) ≥ d2(x)}, Bd = {x ∈ Supp(m1
d) ∪

Supp(m2
d) : m1

d(x) ≥ m2
d(x)}. Since ma and md are mutually singular, we know

m1
a(Bd) = m2

a(Bd) = 0 = m1
d(Ba) = m2

d(Ba) (1)

Also, the complement operation implies

m2(Ac)−m1(Ac) = 1−m2(A)− 1 +m1(A) = m1(A)−m2(A), for any measurable set A (2)

Hence we have an important result
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(i) By definition of TV distance, we get

DTV (m1||m2) ≥ |m1(B)−m2(B)| = m1(B)−m2(B)
(3)
=

1

2

∥∥m1 −m2
∥∥

1

(ii) For any measurable set A in Rn, we know

m1(A)−m2(A) =
[
m1(A ∩B)−m2(A ∩B)

]
+
[
m1(A ∩Bc)−m2(A ∩Bc)

]
By definition of B, the first term is nonnegative while the second term is nonpositive; therefore

|m1(A)−m2(A)| ≤max
{
m1(A ∩B)−m2(A ∩B), m2(A ∩Bc)−m1(A ∩Bc)

}
≤max

{
m1(B)−m2(B), m2(Bc)−m1(Bc)

}
(2)
=m1(B)−m2(B)

(3)
=

1

2

∥∥m1 −m2
∥∥

1

Taking a supremium over A, we arrive at

DTV (m1||m2) ≤ 1

2

∥∥m1 −m2
∥∥

1
.

Combining (i) and (ii), the result follows.

Due to Fact 1, in the following we will treat TV distance as the half of `1 norm. Also, to unify the operations
in discrete and continuous parts, we will consider “generalized” probability density functions where Dirac delta
function is included. Thus, Fact 1 is rephrased as

DTV (m1||m2) =
1

2

∫
|d1(x)− d2(x)|dx,

where d1, d2 are the generalized density functions of m1 and m2. This allows us to prove Fact 2:

Fact 2. Bπ,T is a γ-contraction w.r.t. total variation distance.

Proof. Let p1(s), p2(s) be the density functions of some state distributions.

DTV (Bπ,T (p1)||Bπ,T (p2)) =
1

2

∫ ∣∣Bπ,T (p1(s))−Bπ,T (p2(s))
∣∣ds

=
1

2

∫
γ
∣∣∣ ∫ T (s|s′, a′)π(a′|s′)

(
p1(s′)− p2(s′)

)
ds′da′

∣∣∣ds
≤ γ

2

∫
T (s|s′, a′)π(a′|s′)

∣∣p1(s′)− p2(s′)
∣∣ds′da′ds

=
γ

2

∫ ∣∣p1(s′)− p2(s′)
∣∣ds′ = γDTV (p1||p2).

The advantages of working on contractions are their convergence and unique fixed-point properties [Theorem
1.1.]Conrad (2014).

Fact 3. Let (X, d) be a complete metric space and f : X → X be a map such that

d(f(x), f(x′)) ≤ cd(x, x′)

for some 0 ≤ c < 1 and all x, x′ ∈ X. Then f has a unique fixed point in X. Moreover, for any x0 ∈ X the
sequence of the iterates x0, f(x0), f(f(x0)),... converges to the fixed point of f .

Fact 4. The normalized state occupancy measure ρρ0,πT,γ (s) is a fixed point of the Bellman flow operator Bπ,T (·).



Proof.

ρρ0,πT,γ (s) =(1− γ)

∞∑
i=0

γifi(s|ρ0, π, T )

=(1− γ)f0(s|ρ0, π, T ) + γ(1− γ)

∞∑
i=0

γifi+1(s|ρ0, π, T )

=(1− γ)ρ0(s) + γ(1− γ)

∞∑
i=0

γi
∫
T (s|s′, a′)π(a′|s′)fi(s′|ρ0, π, T )ds′da′

=(1− γ)ρ0(s) + γ

∫
T (s|s′, a′)π(a′|s′)(1− γ)

∞∑
i=0

γifi(s
′|ρ0, π, T )ds′da′

=(1− γ)ρ0(s) + γ

∫
T (s|s′, a′)π(a′|s′)ρρ0,πT,γ (s′)ds′da′ = Bπ,T (ρρ0,πT,γ (s)).

Together, Fact 2 and 3 imply the Bellman flow operator has a unique fixed point, and according to Fact 4, the
unique fixed point is the state occupancy measure. The contraction and the fixed point properties are particularly
useful for proving the symmetry bridge Lemma.

Lemma 1 (symmetry bridge). Let B2 be a Bellman flow operator with fixed-point ρ2. Let ρ1 be another state
distribution. If B2 is a η-contraction w.r.t. some metric ‖·‖, then ‖ρ1 − ρ2‖ ≤ ‖ρ1 −B2(ρ1)‖ /(1− η).

Proof.

‖ρ1 − ρ2‖ = ‖ρ1 −B∞2 (ρ1)‖ ≤ ‖ρ1 −B2(ρ1)‖+

∞∑
i=1

∥∥Bi2(ρ1)−Bi+1
2 (ρ1)

∥∥
≤ ‖ρ1 −B2(ρ1)‖+

∞∑
i=1

‖ρ1 −B2(ρ1)‖ ηi = ‖ρ1 −B2(ρ1)‖ /(1− η).

The first line uses the fixed-point property and the triangle inequlaity for the distance metric ‖·‖. The second
line uses the contraction property.

A.2 Error of Policies

Lemma 2 (Error w.r.t. TV Distance between Occupancy Measures). Let ρ1(s, a), ρ2(s, a) be two normal-
ized occupancy measures of rollouts with discount factor γ. If 0 ≤ r(s, a) ≤ rmax, then |R(ρ1) − R(ρ2)| ≤
DTV (ρ1||ρ2)rmax/(1− γ). where DTV is the total variation distance.

Proof.

R(ρ1) =
1

1− γ

∫
r(s, a)ρ1(s, a)dsda ≤ 1

1− γ

∫
r(s, a) max

(
ρ1(s, a), ρ2(s, a)

)
dsda

= R(ρ2) +
1

1− γ

∫
r(s, a)

(
max

(
ρ1(s, a), ρ2(s, a)

)
− ρ2(s, a)

)
dsda

≤ R(ρ2) +
rmax

1− γ

∫
max

(
ρ1(s, a), ρ2(s, a)

)
− ρ2(s, a)dsda

= R(ρ2) +
rmax

1− γ
1

2
‖ρ1 − ρ2‖1 = R(ρ2) +

rmax

1− γ
DTV (ρ1||ρ2).

Because the TV distance is symmetric, we may interchange the roles of ρ1 and ρ2; thus we conclude that

|R(ρ1)−R(ρ2)| ≤ DTV (ρ1||ρ2)rmax/(1− γ).



Theorem 1 (Error of Policies). If 0 ≤ r(s, a) ≤ rmax and the discrepancy in policies is

εTπD,π = Es∼ρπDT [DTV (πD(·|s)||π(·|s))], then |R(πD, T )−R(π, T )| ≤ εTπD,πr
max
(

1
1−γ + γ

(1−γ)2

)
.

Proof. Let BπD,T , Bπ,T be Bellman flow operators whose fixed points are ρπDT (s), ρπT (s), respectively.

According to Lemma 2, we need to upper bound DTV (ρπDT (s, a)||ρπT (s, a)). Observe that

DTV (ρπDT (s, a)||ρπT (s, a)) =
1

2

∫ ∣∣∣ρπDT (s, a)− ρπT (s, a)
∣∣∣dsda =

1

2

∫ ∣∣∣ρπDT (s)πD(a|s)− ρπT (s)π(a|s)
∣∣∣dsda

≤ 1

2

∫
ρπDT (s)

∣∣∣πD(a|s)− π(a|s)
∣∣∣+ π(a|s)

∣∣∣ρπDT (s)− ρπT (s)
∣∣∣dsda

= εTπD,π +DTV (ρπDT (s)||ρπT (s))

(4)

As for the rest, by the properties of the Bellman flow operators, we have

DTV (ρπDT (s)||ρπT (s)) ≤ 1

1− γ
DTV (ρπDT (s)||Bπ,T (ρπDT (s)))

=
1

1− γ
DTV (BπD,T (ρπDT (s))||Bπ,T (ρπDT (s)))

≤ γ

2(1− γ)

∫
T (s|s′, a′)

∣∣∣πD(a′|s′)− π(a′|s′)
∣∣∣ρπDT (s′)ds′da′ds

=
γ

1− γ
εTπD,π,

(5)

where the top two lines follows from the symmetry bridge property (Lemma 1) and the fixed-point property.
Combining Eq. (4) and (5), we know DTV (ρπDT (s, a)||ρπT (s, a)) ≤ εTπD,π(1 + γ

1−γ ); therefore by Lemma 2,

|R(πD, T )−R(π, T )| ≤ εTπD,πr
max
( 1

1− γ
+

γ

(1− γ)2

)

Corollary 1 (Error of Behavior Cloning). Let πD and π be the expert policy and the agent policy. If 0 ≤ r(s, a) ≤
rmax and Es∼ρπDT DKL(πD(·|s)||π(·|s)) ≤ εBC , then |R(πD, T )−R(π, T )| ≤

√
εBC/2r

max
(

1
1−γ + γ

(1−γ)2

)
.

Proof. The result is immediate from Theorem 1 and the Pinsker’s Inequality.

Corollary 2 (Error of GAIL). Let πD and π be the expert policy and the agent policy. If 0 ≤ r(s, a) ≤ rmax and
DJS(ρπDT ||ρπT ) ≤ εGAIL. Then |R(πD, T )−R(π, T )| ≤

√
2εGAILr

max/(1− γ)

Proof. By definition of the JSD, for any distributions P, Q and their average M = (P +Q)/2 we know

DJS(P ||Q) =
1

2

[
DKL(P ||M) +DKL(Q||M)

]
≥ DTV (P ||M)2 +DTV (Q||M)2 ≥ 1

2
DTV (P ||Q)2,

where the first inequality follows from Pinsker’s Inequality, and the second inequality holds because that
DTV (P ||M) +DTV (Q||M) ≥ DTV (P ||Q) by triangle inequality and that 2a2 + 2b2 ≥ c2 if a+ b ≥ c ≥ 0.

Thus, we know DTV (ρπDT ||ρπT ) ≤
√

2εGAIL. Applying Lemma 2 completes the proof.

A.3 MBRL with Absolutely Continuous Stochastic Transitions

Theorem 2 (Error of Absolutely Continuous Stochastic Transitions). Let πD, T and T̂ be the sampling policy,
the real and the learned transitions. If 0 ≤ r(s, a) ≤ rmax and the error in one-step total variation distance is
επD
T,T̂

= E(s,a)∼ρπDT
[DTV (T (·|s, a)||T̂ (·|s, a))], then |R(πD, T )−R(πD, T̂ )| ≤ επD

T,T̂
rmaxγ(1− γ)−2.



Proof. If there is a upper bound for DTV (ρπDT (s, a)||ρπD
T̂

(s, a)), by Lemma 2, we are done. Also, observe that

DTV (ρπDT (s, a)||ρπD
T̂

(s, a)) =
1

2

∫
πD(a|s)

∣∣ρπDT (s)− ρπD
T̂

(s)
∣∣dsda = DTV (ρπDT (s)||ρπD

T̂
(s)),

so DTV (ρπDT (s)||ρπD
T̂

(s)) is of interest. Employing the properties of Bellman flow operator, we have

DTV (ρπDT (s)||ρπD
T̂

(s)) ≤ 1

1− γ
DTV (ρπDT (s)||BπD,T̂ (ρπDT (s)))

=
1

1− γ
DTV (BπD,T (ρπDT (s))||BπD,T̂ (ρπDT (s)))

=
1

2(1− γ)

∫ ∣∣∣γ ∫ (T (s|s′, a′)− T̂ (s|s′, a′)
)
πD(a′|s′)ρπDT (s′)ds′da′

∣∣∣ds
≤ γ

2(1− γ)

∫ ∣∣∣(T (s|s′, a′)− T̂ (s|s′, a′)
)∣∣∣ρπDT (s′, a′)dsds′da′

=
γ

1− γ
E(s,a)∼ρπDT

DTV (T (·|s, a)||T̂ (·|s, a)) =
γ

1− γ
επD
T,T̂

,

where the top two lines follows from the symmetry bridge property (Lemma 1) and the fixed-point property.
Finally, from Lemma 2, we conclude that

|R(πD, T )−R(πD, T̂ )| ≤ επD
T,T̂

rmax γ

(1− γ)2

Corollary 3 (Error of MBRL with Absolutely Continuous Stochastic Transition). Let πD, π, T and T̂ be the
sampling policy, the agent policy, the real transition and the learned transition. If 0 ≤ r(s, a) ≤ rmax and
the discrepancies are επD

T,T̂
= E(s,a)∼ρπDT

DTV (T (·|s, a)||T̂ (·|s, a)) and εT,γπD,π = Es∼ρπDT DTV (πD(·|s)||π(·|s)), then

|R(π, T )−R(π, T̂ )| ≤ (επD
T,T̂

+ εT,γπD,π + εT̂ ,γπD,π)rmaxγ/(1− γ)2 + (εT,γπD,π + εT̂ ,γπD,π)rmax/(1− γ).

Proof. Observe that |R(π, T )−R(π, T̂ )| ≤ |R(π, T )−R(πD, T )|+ |R(πD, T )−R(πD, T̂ )|+ |R(πD, T̂ )−R(π, T̂ )|.
Combining Theorem 2 and 1, the result follows.

Lemma 3. Let γ > β be discount factors of long and short rollouts. Let πD and T be the sampling policy and

the real transition, then DTV (ρπDT,γ ||ρ
ρ
πD
T,γ ,πD

T,β ) ≤ (1− γ)β/(γ − β).

Proof. Since ρπDT,γ is generated by the triple (ρ0, πD, T ) with discount factor γ while ρ
ρ
πD
T,γ ,πD

T,β is generated by
(ρπDT,γ , πD, T ) with discount factor β. By definition of the occupancy measure we have

ρπDT,γ(s, a) =

∞∑
i=0

(1− γ)γifi(s, a).

ρ
ρ
πD
T,γ ,πD

T,β (s, a) =

∞∑
i=0

i∑
j=0

(1− γ)γi−j(1− β)βjfi(s, a),

where fi(s, a) is the density of (s, a) at time i if generated by the triple (ρ0, πD, T ). Then,

DTV (ρπDT,γ ||ρ
ρ
πD
T,γ ,πD

T,β ) ≤ 1

2

∞∑
i=0

∣∣∣(1− γ)γi −
i∑

j=0

(1− γ)γi−j(1− β)βj
∣∣∣ =

1

2

∞∑
i=0

(1− γ)γi
∣∣∣1− i∑

j=0

(1− β)
(β
γ

)j∣∣∣
=

1

2

∞∑
i=0

(1− γ)γi
1

γ − β

∣∣∣− β(1− γ) +
(β
γ

)i+1

(1− β)γ
∣∣∣

(∗)
=

(1− γ)β

γ − β

M−1∑
i=0

−(1− γ)γi + (1− β)βi =
(1− γ)β

γ − β
(γM − βM )

≤ (1− γ)β

γ − β
.



where (∗) comes from that −β(1− γ) + (βγ )i(1− β)γ is a strictly decreasing function in i. Since γ > β, its sign

flips from + to − at some index; say M . Finally, the sum of the absolute value are the same between
∑M−1
i=0

and
∑∞
i=M because the total probability is conservative, and the difference on one side is the same as that on

the other.

Corollary 4 (Error of MBRL with A. C. Stochastic Transition and Branched Rollouts). Let γ > β be discount
factors of long and short rollouts. Let πD, π, T and T̂ be sampling policy, agent policy, real transition and
learned transition. If 0 ≤ r(s, a) ≤ rmax and the discrepancies are εT,γπD,π = Es∼ρπDT,γDTV (πD(·|s)||π(·|s)),

εT̂ ,βπD,π = E
s∼ρ

ρ
πD
T,γ

,π

T̂ ,β

DTV (πD(·|s)||π(·|s)), and ,επD,β
T,T̂

= E
(s,a)∼ρ

ρ
πD
T,γ

,πD

T,β

DTV (T (·|s, a)||T̂ (·|s, a)), then

∣∣∣Rγ(ρ0, π, T )− 1− β
1− γ

Rβ(ρπDT,γ , π, T̂ )
∣∣∣ ≤ rmax

( εT,γπD,πγ

(1− γ)2
+

(επD,β
T,T̂

+ εT̂ ,βπD,π)β

(1− β)(1− γ)
+
εT,γπD,π + εT̂ ,βπD,π

1− γ
+

β

γ − β

)

Proof. Expand with the triangle inequality:∣∣∣Rγ(ρ0, π, T )− 1− β
1− γ

Rβ(ρπDT,γ , π, T̂ )
∣∣∣

≤
∣∣∣Rγ(ρ0, π, T )−Rγ(ρ0, πD, T )

∣∣∣+
∣∣∣Rγ(ρ0, πD, T )− 1− β

1− γ
Rβ(ρπDT,γ , πD, T )

∣∣∣+
1− β
1− γ

∣∣∣Rβ(ρπDT,γ , πD, T )−Rβ(ρπDT,γ , πD, T̂ )
∣∣∣+

1− β
1− γ

∣∣∣Rβ(ρπDT,γ , πD, T̂ )−Rβ(ρπDT,γ , π, T̂ )
∣∣∣

By Theorem 1, the first term ≤ εT,γπD,πr
max
(

1
1−γ + γ

(1−γ)2

)
.

The second term is a short extension of Lemma 2 and Lemma 3:

Rγ(ρ0, πD, T ) =
1

1− γ

∫
r(s, a)ρπDT,γ(s, a)dsda ≤ 1

1− γ

∫
r(s, a) max

(
ρπDT,γ(s, a), ρ

ρ
πD
T,γ ,πD

T,β (s, a)
)
dsda

=
1− β
1− γ

Rβ(ρπDT,γ , πD, T ) +
1

1− γ

∫
r(s, a)

(
max

(
ρπT (s, a), ρ

ρ
πD
T,γ ,πD

T,β (s, a)
)
− ρρ

πD
T,γ ,πD

T,β (s, a)
)
dsda

≤ 1− β
1− γ

Rβ(ρπDT,γ , πD, T ) +
rmax

1− γ

∫ (
max

(
ρπT (s, a), ρ

ρ
πD
T,γ ,πD

T,β (s, a)
)
− ρρ

πD
T,γ ,πD

T,β (s, a)
)
dsda

≤ 1− β
1− γ

Rβ(ρπDT,γ , πD, T ) +
rmax

1− γ
DTV (ρπDT,γ ||ρ

ρ
πD
T,γ ,πD

T,β )

By the symmetry of the total variation distance and Lemma 3, we obtain∣∣∣Rγ(ρ0, πD, T )− 1− β
1− γ

Rβ(ρπDT,γ , πD, T )
∣∣∣ ≤ rmax

1− γ
DTV (ρπDT,γ ||ρ

ρ
πD
T,γ ,πD

T,β ) ≤ rmax β

γ − β
.

By Theorem 2, the third term ≤ επD,β
T,T̂

rmax β
(1−β)(1−γ) .

By Theorem 1, the fourth term ≤ εT̂ ,βπD,πr
max
(

1
1−γ + β

(1−β)(1−γ)

)
.

A.4 MBRL with Deterministic Transition and Strong Lipschitz Continuity

Assumption 1.

(1.1) T , T̂ are (LT ,s, LT ,a), (L
T̂ ,s
, L

T̂ ,a
) Lipschitz w.r.t. states and actions.

(1.2) A is a convex, closed, bounded (diameter diamA) set in a dimA-dimensional space.

(1.3) π(a|s) ∼ PA[N (µπ(s),Σπ(s))] and πD(a|s) ∼ PA[N (µπD (s),ΣπD (s))]

(1.4) µπ, µπD , Σ
1/2
πD , and Σ

1/2
π are Lπ,µ, LπD,µ, Lπ,Σ, LπD,Σ Lipschitz w.r.t. states.



The validation of Assumption 1 is below.

1.1 The real and learned transitions are Lipschitz w.r.t. states and actions. For the real transition
especially in continuous control, the Lipschitzness follows from the laws of motion, as computed in Eq. (10)
in the paper. For the learned transition, the Lipschitzness can be made by spectral normalization (Miyato
et al., 2018) or gradient penalty (Gulrajani et al., 2017), which are some notable approaches to ensure the
Lipschitzness of the discriminator in Wasserstein GAN (Arjovsky et al., 2017).

1.2 The action space is convex, closed and bounded in a finite dimensional linear space. This is
a standard assumption in continuous-control and is usually satisfied (or made satisfied) in practice (Fujita
and Maeda, 2018). The boundness assumption, if not naturally satisfied, is addressed in 1.3.

1.3 The policy follows truncated Gaussian, by projecting the Gaussian r.v. onto the action space.
According to (Fujita and Maeda, 2018), this is a common practice in RL experiment. The Gaussain as-
sumption is made by training some NNs for the mean and variance of the policies. As for the projection of
action to a bounded convex set, it is perfectly fine in RL experiment and is largely used in most MuJoCo
experiments as MuJoCo also provides the bounds for the action space. It is also a good practice since it
helps stabilize the training.

1.4 The mean and covariance of the policy are Lipschitz w.r.t. state. As again noted in 1.1, the
Lipschitzness can be realized by spectral normalization or gradient penalty. Since the mean and covariance
of the policy are represented by some NN, this assumption can be easily made in practice.

Lemma 4 (Conditional Contraction). Under assumption 1, if ηπ,T = LT ,s + LT ,a(Lπ,µ + Lπ,Σ
√

dimA) < 1/γ,
where γ is the discount factor of Bπ,T , then Bπ,T is a γηπ,T -contraction w.r.t. 1-Wasserstein distance.

Proof. Recall Bπ,T (ρ(s)) = (1− γ)ρ0(s) + γ
∫
δ(s− T (s′, a′))π(a′|s′)ρ(s′)ds′da′. Let ρ1(s), ρ2(s) be some distri-

butions over states. We have

W1(Bπ,T (ρ1) ‖Bπ,T (ρ2))

(a)

≤γ inf
J(s1,a1,s2,a2)∼Π(ρ1(s)π(a|s),ρ2(s)π(a|s))

EJ
∥∥T (s1, a1)− T (s2, a2)

∥∥
2

=γ inf
J(s1,a1,s2,a2)∼Π(ρ1(s)π(a|s),ρ2(s)π(a|s))

EJ
∥∥T (s1, a1)− T (s1, a2) + T (s1, a2)− T (s2, a2)

∥∥
2

≤γ inf
J(s1,a1,s2,a2)∼Π(ρ1(s)π(a|s),ρ2(s)π(a|s))

EJLT ,a ‖a1 − a2‖2 + LT ,s ‖s1 − s2‖2
(b)
=γ inf

J(s1,ξ1,s2,ξ2)∼Π(ρ1,N ,ρ2,N )
EJLT ,a

∥∥∥PA[µπ(s1) + Σ1/2
π (s1)ξ1]− PA[µπ(s2)− Σ1/2

π (s2)ξ2]
∥∥∥

2
+ LT ,s ‖s1 − s2‖2

(c)

≤γ inf
J(s1,ξ1,s2,ξ2)∼Π(ρ1,N ,ρ2,N )

EJLT ,a
∥∥∥µπ(s1) + Σ1/2

π (s1)ξ1 − µπ(s2)− Σ1/2
π (s2)ξ2

∥∥∥
2

+ LT ,s ‖s1 − s2‖2

≤γ inf
J(s1,s2)∼Π(ρ1,ρ2)

(
EJ(LT ,s + LT ,aLπ,µ) ‖s1 − s2‖2 + inf

K(ξ1,ξ2)∼Π(N ,N )
EKLT ,a

∥∥∥Σ1/2
π (s1)ξ1 − Σ1/2

π (s2)ξ2

∥∥∥
2

)
(d)

≤γ inf
J(s1,s2)∼Π(ρ1,ρ2)

(
EJ(LT ,s + LT ,aLπ,µ) ‖s1 − s2‖2 + Eξ1LT ,a

∥∥∥Σ1/2
π (s1)− Σ1/2

π (s2)
∥∥∥
op
‖ξ1‖2

)
(e)

≤γ inf
J(s1,s2)∼Π(ρ1,ρ2)

EJ(LT ,s + LT ,a(Lπ,µ + Lπ,Σ
√

dimA)) ‖s1 − s2‖2

=γ(LT ,s + LT ,a(Lπ,µ + Lπ,Σ
√

dimA))W1(ρ1 ‖ ρ2) = γηπ,TW1(ρ1 ‖ ρ2),

where inf
J(s1,s2)∼Π(ρ1,ρ2)

takes a infimum over all joint distributions J(s1, s2) whose marginals are ρ1 and ρ2. (a)

selects a joint distribution over Bπ,T (ρ1) and Bπ,T (ρ2) that share the same randomness of (1 − γ)ρ0, which
establishes a upper bound and allows us to cancel (1 − γ)ρ0. (b) uses the Gaussian assumption of the policy,
with ξ1, ξ2 being standard normal vectors. (c) uses the non-expansiveness property of projection onto a closed
convex set.(d) selects ξ1 = ξ2 and uses the property of operator norm. (e) uses the Lipschitz assumption of

Σ
1/2
π (s) and that ‖ξ1‖ ≤

√
dimA by Jensen inequality.



Lemma 5 (Error w.r.t. W1 Distance between Occupancy Measures). Let ρ1(s, a), ρ2(s, a) be two normalized
occupancy measures of rollouts with discount factor γ. If the reward is Lr-Lipschitz, then |R(ρ1) − R(ρ2)| ≤
W1(ρ1 ‖ ρ2)Lr/(1− γ).

Proof. The cumulative reward is bounded by

R(ρ1) =
1

1− γ

∫
r(s, a)ρ1(s, a)dsda = R(ρ2) +

1

1− γ

∫
r(s, a)

(
ρ1(s, a)− ρ2(s, a)

)
dsda

= R(ρ2) +
Lr

1− γ

∫
r(s, a)

Lr

(
ρ1(s, a)− ρ2(s, a)

)
dsda

≤ R(ρ2) +
Lr

1− γ
sup

‖f‖Lip≤1

∫
f(s, a)

(
ρ1(s, a)− ρ2(s, a)

)
dsda

= R(ρ2) +
Lr

1− γ
sup

‖f‖Lip≤1

E(s,a)∼ρ1 [f(s, a)]− E(s,a)∼ρ2 [f(s, a)]

= R(ρ2) +
Lr

1− γ
W1(ρ1 ‖ ρ2).

The third line holds because r(s, a)/Lr is 1-Lipschitz and the last line follows from Kantorovich-Rubinstein
duality Villani (2008). Since W1 distance is symmetric, the same conclusion holds if interchanging ρ1 and ρ1;
thus

|R(ρ1)−R(ρ2)| ≤W1(ρ1 ‖ ρ2)Lr/(1− γ).

Theorem 3 (Error of Deterministic Transitions with Strong Lipschitzness). Under Lemma 4, let T , T̂ , r, πD
be deterministic real transition, deterministic learned transtion, reward and sampling policy. If r(s, a) is Lr-

Lipschitz and the `2 error is ε`2 , then |R(πD, T ) − R(πD, T̂ )| ≤ (1 + LπD,µ + LπD,Σ
√

dimA)Lr
γε`2

(1−γ)(1−γη
πD,T̂

) .

Proof. Observe that the Wasserstein distance over the joint can be upper bounded by that over the marginal.

W1(ρπD
T

(s, a) ‖ ρπD
T̂

(s, a)) = inf
J(s1,a1,s2,a2)∈Π(ρ

πD
T

(s,a),ρ
πD

T̂
(s,a))

EJ ‖(s1 − s2, a1 − a2)‖2

≤ inf
J(s1,a1,s2,a2)∈Π(ρ

πD
T

(s,a),ρ
πD

T̂
(s,a))

EJ ‖s1 − s2‖2 + ‖a1 − a2‖2

(∗)
≤ (1 + LπD,µ + LπD,Σ

√
dimA) inf

J(s1,s2)∈Π(ρ
πD
T

(s),ρ
πD

T̂
(s))

EJ ‖s1 − s2‖2

=(1 + LπD,µ + LπD,Σ
√

dimA)W1(ρπD
T

(s) ‖ ρπD
T̂

(s)),

(6)

where (*) follows from the same analysis in Lemma 4. Also, the Wasserstein distance over the marginal is upper
bounded by the `2 error:

W1(ρπD
T

(s) ‖ ρπD
T̂

(s)) ≤ 1

1− γη
πD,T̂

W1(ρπD
T

(s) ‖BπD
T̂

(ρπD
T

(s))) =
1

1− γη
πD,T̂

W1(BπD
T

(ρπD
T

(s)) ‖BπD
T̂

(ρπD
T

(s)))

≤ γ

1− γη
πD,T̂

inf
J(s1,a1,s2,a2)∼Π(ρ

πD
T

(s)πD(a|s),ρπD
T

(s)πD(a|s))
EJ
∥∥∥T (s1, a1)− T̂ (s2, a2)

∥∥∥
2

≤ γ

1− γη
πD,T̂

E(s,a)∼ρπD
T

(s)πD(a|s)

∥∥∥T (s, a)− T̂ (s, a)
∥∥∥

2
=

γ

1− γη
πD,T̂

ε`2 .

(7)

The first line follows from conditional contraction (Lemma 4), symmetry bridge (Lemma 1) and fixed-point
property. The second line uses the fact that BπD

T
and BπD

T̂
have 1−γ fraction in common, so we can create a joint



distribution to cancel it. The third line builds a upper bound by choosing (s1, a1) = (s2, a2) ∼ ρπD
T

(s)πD(a|s).
Combining Eq. (6), (7) and Lemma 5, we conclude that

|R(πD, T )−R(πD, T̂ )| ≤ (1 + LπD,µ + LπD,Σ
√

dimA)Lr
γε`2

(1− γ)(1− γη
πD,T̂

)
.

Corollary 5 (Error of MBRL with Deterministic Transition, Strong Lipschitzness and Branched Rollouts). Let

γ > β be discount factors of long and short rollouts. Let πD, π, T and T̂ be sampling policy, agent policy, real
deterministic transition and deterministic learned transition. Under assumption 1, suppose the reward is both

bounded 0 ≤ r(s, a) ≤ rmax and Lr-Lipschitz. Let εT ,γπD,π = Es∼ρπD
T,γ

DTV (πD(·|s)||π(·|s)),

εT̂ ,βπD,π = E
s∼ρ

ρ
πD
T,γ

,π

T̂ ,β

DTV (πD(·|s)||π(·|s)) and ε`2,β = E
(s,a)∼ρ

ρ
πD
T,γ

,πD

T,β

∥∥∥T (s, a)− T̂ (s, a)
∥∥∥

2
. Then,

∣∣∣Rγ(ρ0, π, T )− 1− β
1− γ

Rβ(ρπD
T ,γ

, π, T )
∣∣∣ ≤ rmax

( εT ,γπD,πγ

(1− γ)2
+

εT̂ ,βπD,πβ

(1− β)(1− γ)
+
εT ,γπD,π + εT̂ ,βπD,π

1− γ
+

β

γ − β

)
+ (1 + LπD,µ + LπD,Σ

√
dimA)Lr

βε`2,β
(1− γ)(1− βη

πD,T̂
)

Proof. Modifying the proof of Corollary 4 with Theorem 3, the result follows.

A.5 MBRL with Deterministic Transition and Weak Lipschitz Continuity

Theorem 4 (One-sided Error of Deterministic Transitions). Let T , T̂ , r, πD be deterministic real transition,

deterministic learned transtion, reward and sampling policy. Suppose 0 ≤ r(s, a) ≤ rmax. T̂ (s, a), r(s, a) and
πD(a|s) are Lipschitz in s for any a with constants (L

T̂
, Lr, LπD ). Assume that L

T̂
≤ 1 + (1 − γ)ι with ι < 1

and that the action space is bounded: diamA <∞. If the training loss in `2 error is ε`2 , then

R(πD, T )−R(πD, T̂ ) ≤ 1 + γ

(1− γ)2

√
2ε`2r

maxLr +
1 +O(ι)

(1− γ)5/2
rmax

√
2ε`2LπDdiamA.

Proof. Recall the `2 error is E(s,a)∼ρπD
T

[ ∥∥∥T (s, a)− T̂ (s, a)
∥∥∥

2

]
= ε`2 . By Markov’s Inequality, for any δ > 0,

P(s,a)∼ρπD
T

(∥∥∥T (s, a)− T̂ (s, a)
∥∥∥

2
< δ
)
> 1− ε`2

δ
(8)

Eq. (8) means for a length H ∼ Geometric(1− γ) rollout {st, at}Ht=1 generated by (ρ0, πD, T ),∥∥∥T (st, at)− T̂ (st, at)
∥∥∥

2
< δ with probability greater than 1− ε`2

δ .

Following this idea, we say a rollout is consistent to T̂ , if for each t,
∥∥∥st+1 − T̂ (st, at)

∥∥∥
2
< δ; in other words,

a rollout is consistent to T̂ if for each time step, the state transition is similar to what T̂ does. Let PT be the
probability measure induced on the rollout following the real transition T . The cumulative reward is bounded
by

R(πD, T ) =

∫
traj

R(traj)dPT =

∫
traj consistent

R(traj)dPT +

∫
traj inconsistent

R(traj)dPT

≤
∫

traj consistent

R(traj)dPT +
ε`2
δ
E[H2]rmax.

(9)



The inequality holds because for a rollout generated by T with length H, the probability that it is inconsistent

to T̂ is at most
ε`2
δ H by Eq. (8) and the union bound over {st, at}Ht=1. Also, the maximum reward of such rollout

is Hrmax.

Now, we’d like to change from PT to P
T̂

with the Lipschitz assumptions above. It suffices to reset the states

{si}Hi=1 so that the transition obeys T̂ . Suppose the new states are

s′1 = s1, s′i = T̂ (s′i−1, ai−1), ∀ i ≥ 2. (10)

By the Lipschitzness of T̂ , triangle inequlaity and T̂ -consistency, the distance between si and s′i obeys

‖s1 − s′1‖2 = 0

‖si − s′i‖2 ≤
∥∥∥si − T̂ (si−1, ai−1)

∥∥∥
2

+
∥∥∥T̂ (si−1, ai−1)− T̂ (s′i−1, ai−1)

∥∥∥
2
≤ δ + L

T̂

∥∥si−1 − s′i−1

∥∥
2
, ∀i ≥ 2.

That is,

‖si − s′i‖2 ≤ δ
i−2∑
j=0

Lj
T̂

= δ
Li−1

T̂
− 1

L
T̂
− 1

, ∀i ≥ 2. (11)

The difference of cumulative reward between traj = {si, ai}Hi=1 and traj′ = {s′i, ai}Hi=1 satisfies

R(traj) =

H∑
i=1

r(si, ai) ≤ r(s′1, a1) +

H∑
i=2

r(s′i, ai) + Lr ‖si − s′i‖2
(11)

≤ R(traj′) + δLr

H∑
i=2

Li−1

T̂
− 1

L
T̂
− 1

(13)

≤ R(traj′) + δLr(H
2/2 + (EH)2O(ι)),

(12)

where (13) results from imposing L
T̂

= 1 + ι(1− γ) = 1 + ι
EH into the exponential:

H∑
i=2

Li−1

T̂
− 1

L
T̂
− 1

=
1

L
T̂
− 1

(LH
T̂
− L

T̂

L
T̂
− 1

−H + 1
)

=
(1 + ι

EH )H − ι HEH − 1
ι2

(EH)2

≤
eι

H
EH − ι HEH − 1

ι2

(EH)2

=
(ι HEH )2/2 +O(ι3)

ι2

(EH)2

=
H2

2
+ (EH)2O(ι)

(13)

Because the transitions are deterministic, {s′i}Hi=1 are constant given s1, a1, ..., aH , which means the randomness
depends on s1, a1, ..., aH (with {s′i}Hi=1 being the conditions of πD), and the density satisfies

P
T̂

(traj′) =ρ0(s′1)πD(a1|s′1)

H∏
i=2

πD(ai|s′i) ≥ ρ0(s1)πD(a1|s1)

H∏
i=2

(
πD(ai|si)− LπD ‖si − s′i‖2

)
(11)

≥ ρ0(s1)πD(a1|s1)

H∏
i=2

(
πD(ai|si) + δLπD

Li−1

T̂
− 1

L
T̂
− 1

)
≥ PT (traj)

(
1−

H∑
i=2

δLπD
πD(ai|si)

Li−1

T̂
− 1

L
T̂
− 1

) (14)



Then, conditioning on the length of rollout being H, the integral term in Eq. (9) is bounded by∫
traj consistent|H

R(traj)dPT =

∫
s1,a1,...,aH consis.

R(traj)PT (traj)ds1da1...daH

(14)

≤
∫
s1,a1,...,aH consis.

R(traj)
(
P
T̂

(traj′) + PT (traj)

H∑
i=2

δLπD
πD(ai|si)

Li−1

T̂
− 1

L
T̂
− 1

)
ds1da1...daH

≤
∫
s1,a1,...,aH consis.

R(traj)P
T̂

(traj′) +

∫
s1,a1,...,aH

R(traj)PT (traj)

H∑
i=2

δLπD
πD(ai|si)

Li−1

T̂
− 1

L
T̂
− 1

(12)

≤
∫
s1,a1,...,aH consis.

(
R(traj′) + δLr(H

2/2 + (EH)2O(ι))
)
P
T̂

(traj′)ds1da1...daH+

∫
s1,a1,...,aH

HrmaxPT (traj)

H∑
i=2

δLπD
πD(ai|si)

Li−1

T̂
− 1

L
T̂
− 1

ds1da1...daH

(13)

≤
∫
s1,a1,...,aH

(
R(traj′) + δLr(H

2/2 + (EH)2O(ι))
)
P
T̂

(traj′) +HrmaxδLπDdiamA(H2/2 + (EH)2O(ι))

≤R(πD, T̂ ) + δLr(H
2/2 + (EH)2O(ι)) + δLπDr

maxdiamA(H3/2 +H(EH)2O(ι))

(15)

Combining Eq. (9) (15), by choosing

δ =

√
2ε`2r

maxE[H2]

LrE[H2] + E[H]2O(ι) + LπDr
maxdiamA

(
E[H3] + E[H]3O(ι)

) ,
we are able to minimize:

ε`2
δ
E[H2]rmax + δLr(E[H2]/2 + (EH)2O(ι)) + δLπDr

maxdiamA(E[H3]/2 + (EH)3O(ι)),

yielding

R(πD, T )−R(πD, T̂ )

≤E[H2]

√(
2ε`2r

max
)(
Lr + E[H]2O(ι)/E[H2] + LπDr

maxdiamA
(
E[H3]/E[H2] + E[H]3O(ι)/E[H2]

))
(a)
=E[H2]

√
2ε`2r

maxLr + 2ε`2LπD (rmax)2diamA
(
E[H3]/E[H2] + E[H]3O(ι)/E[H2]

)
(b)

≤E[H2]
√

2ε`2r
maxLr + E[H2]rmax

√
2ε`2LπDdiamA

(
E[H3]/E[H2] + E[H]3O(ι)/E[H2]

)
=E[H2]

√
2ε`2r

maxLr + rmax
√

2ε`2LπDdiamA

√
E[H2]

(
E[H3] + E[H]3O(ι)

)
(c)
=

1 + γ

(1− γ)2

√
2ε`2r

maxLr +

√
1 + 5γ + 5γ2 + γ3 + (1 + γ)O(ι)

(1− γ)5/2
rmax

√
2ε`2LπDdiamA

(d)

≤ 1 + γ

(1− γ)2

√
2ε`2r

maxLr +
1 +O(ι)

(1− γ)5/2
rmax

√
2ε`2LπDdiamA.

(a) merge the two O(ι) terms together. (b) uses
√
x+ y ≤

√
x +
√
y for x, y ≥ 0. (c) applies the identities

E[H2] = 1+γ
(1−γ)2 , E[H3] = 1+4γ+γ2

(1−γ)3 . (d) uses
√

1 + x ≤ 1 + x/2.

Corollary 6 (One-sided of MBRL with Deterministic Transition and Branched Rollouts). Let γ > β be dis-

count factors of long and short rollouts. Let πD, π, T and T̂ be sampling policy, agent policy, real deter-

ministic transition and deterministic learned transition. Under the assumptions of Theorem 4, let εT ,γπD,π =

Es∼ρπD
T,γ

DTV (πD(·|s)||π(·|s)), εT̂ ,βπD,π = E
s∼ρ

ρ
πD
T,γ

,π

T̂ ,β

DTV (πD(·|s)||π(·|s))



and ε`2,β = E
(s,a)∼ρ

ρ
πD
T,γ

,πD

T,β

∥∥∥T (s, a)− T̂ (s, a)
∥∥∥

2
. Then Rγ(ρ0, π, T ) − 1−β

1−γRβ(ρπD
T ,γ

, π, T ) ≤ rmax
(
εT,γπD,π

γ

(1−γ)2 +

εT̂ ,βπD,π
β

(1−β)(1−γ) +
εT,γπD,π

+εT̂ ,βπD,π

1−γ + β
γ−β

)
+ 1+β

(1−β)(1−γ)

√
2ε`2,βr

maxLr + 1+O(ι)
(1−β)3/2(1−γ)

rmax
√

2ε`2,βLπDdiamA.

Proof. Plugging in Theorem 4 with L
T̂
≤ 1 + (1− β)ι to the proof of Corollary 4, the result follows.
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